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ABSTRACT
We study time series generated by the parametric family of fractional discrete maps
introduced by Wu and Baleanu in [34], presenting an alternative way of introducing
these maps.

For the values of the parameters that yield chaotic time series, we have studied the
Shannon entropy of the degree distribution of the natural and horizontal visibility
graphs associated to these series. In these cases, the degree distribution can be fitted
with a power law. We have also compared the Shannon entropy and the exponent
of the power law fitting for the different values of the fractionary exponent and
the scaling factor of the model. Our results illustrate a connection between the
fractionary exponent and the scaling factor of the maps, with the respect to the
onset of the chaos.
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1. Introduction

The classical logistic map popularized by May [24] is given by

v(n+ 1) = µv(n)(1− v(n)) (1)

where v(0) ∈ [0, 1] and µ ∈ R. When 0 ≤ µ ≤ 4, the logistic equation (1) gives
a discrete dynamical system defined on [0, 1]. For cases µ > 4, we have a discrete
dynamical system defined on the complementary of a certain Cantor set in [0, 1]. The
dynamics of a one-parameter discrete dynamical system is usually represented by a
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Feigenbaum (bifurcation) diagram. A point (µ̄, v̄) in this diagram represents that when
we take the parameter µ̄, v̄ is in the ω-limit of a particular initial condition.

Wu and Baleanu recently studied the chaos of a discrete fractional logistic map
inspired in the logistic equation from the left Caputo discrete delta difference [34].
They first showed an approach to how the Feigenbaum diagrams evolve when the
tuner µ of the fractional derivative varies. The delayed version of these models has
been studied by the same authors in [33].

Besides those diagrams, other techniques can provide some insight into the dynamics
of the discrete fractional logistic model. In this work, we consider the use of natural and
horizontal visibility graphs associated with time series generated by iteration under
the Wu-Baleanu model. They were introduced by Lacasa et al. in [18] and by Luque
et al. in [21] in order to analyse the evolution of a time series by mapping it into
a graph. They showed that the degree distribution in these graphs is inherited from
the structure of the given time series. For instance, periodic series are converted into
regular graphs, random series into random graphs and fractality is associated with
a power law distribution of the degree frequencies in these graphs. As it was noted
by Barabási and Albert, power law distributions for the values of the degrees are
associated with scale-free networks [4, 5].

This approach belongs to an emerging corpus of methods that map series to net-
works, see for instance [8, 16, 35]. Applications of such time series analysis can be found
in climate dynamics, multiphase flow, brain functions, ECG dynamics, economics and
traffic systems [12].

The degree distribution of the nodes of the associated networks usually follows a
power law distribution. Its connection with chaotic maps, flows, and stochastic pro-
cesses were shown in [27]. The study of Feigenbaum diagrams of the logistic map and
its connection with horizontal visibility graphs has been already considered in [22].
In this direction, these authors introduced what they call Feigenbaum graphs in order
to represent the dynamics of all stationary trajectories of this map. Moreover, they
showed that the network entropy mimics the Lyapunov exponent of the map indepen-
dently of its sign. See [15] for more methods and metrics for carrying out this kind of
analysis. See also [32] for a revision of different approximations to entropy for network
parameters.

In this work, we are going to consider the use of natural and horizontal visibility
graphs associated to time series generated by the discrete fractional model formerly
introduced from the fractional logistic map in [34]. We also study the links between the
evolution of the scaling factor and fractional exponent with the exponent used when
fitting the distribution of degrees of visibility graphs to power laws distributions. This
provides an integrated vision of the dynamics that cannot be obtained from single
Feigenbaum diagrams computed for every single case.

In Section 2 we introduce the fractional discrete model under study. We propose
an alternative way of introducing it respect to the one shown by Wu and Baleanu in
[34]. In Section 3, we recall some basic facts from visibility graphs. An analysis of the
dynamics of these fractional maps in terms of visibility graphs is shown in Section 4.
We also illustrate the connection of the power law exponent with the Shannon entropy
of the degree distribution of the visibility graphs. Finally, conclusions are outlined in
Section 5.
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2. Discrete fractional logistic model

Fractional integrals and derivatives are extensions of the classical ones and they are
the ideal candidates for modelling processes that contain some memory (spatial or
temporal). The following difference equation

∆u(n) = µu(n)(1− u(n)) u(0) = u0, (2)

where ∆ denotes the forward Euler operator, can be transformed into a logistic equa-
tion with the change of variable v(n) = µ

µ+1u(n), which yields

v(n+ 1) = (1 + µ)v(n)(1− v(n)), v(0) =
µ

1 + µ
u(0). (3)

The next definition was presented in [19, Formula 2.2] in the context of abstract
Cauchy problems on time difference equations. It corresponds to a particular case of
the fractional sum proposed by Atici and Eloe in [2]. It has been recently observed
that it coincides with the notion of Cesàro sums of order α > 0 and possesses a strong
connection with certain algebra homomorphisms.

Definition 2.1. Let α > 0 and u : N0 → X. We define the fractional sum of order α
as follows

∆−αf(n) =

n∑
k=0

kα(n− k)u(k), n ∈ N0, (4)

where

kα(j) :=
Γ(α+ j)

Γ(α)Γ(j + 1)
, j ∈ N0.

The numbers kα(n) are called Cesàro numbers of order α ([36, Vol. I, p.77]). The
kernels kα may equivalently be defined by means of the generating functions:

∞∑
n=0

kα(n)zn =
1

(1− z)α
, |z| < 1, α > 0. (5)

It can be checked that the numbers kα(n) satisfy the semigroup property, that is,
kα ∗ kβ = kα+β for α, β > 0. Moreover, for every α > 0 the following equality holds:

kα(n) =
nα−1

Γ(α)

(
1 +O

(
1

n

))
, n ∈ N, (6)

([36, Vol. I, p.77 (1.18)]). For α > 1, the kernel kα is increasing (as a function of n),
for 0 < α < 1 it is decreasing, and k1(n) = 1 for n ∈ N0 ([36, Theorem III.1.17]). It is
also straightforward to check that kα(n) ≤ kβ(n) for 0 < α ≤ β and n ∈ N0.

Remark 1. We note that allowing α < 0 in the above definition, we get the concept
of fractional difference in the sense of Grünwald-Letnikov. Observe that this definition
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corresponds to a discretization using the forward Euler operator, see the comments af-
ter Definition 2.1 in [19]. Details of the numerical computation of fractional derivatives
can be found in [6, 7].

The following notion is similar to the concept of a fractional derivative in the sense
of Riemann-Liouville, see [25] and [3]. It is interesting to observe that it coincides
with the sampling obtained with the Poisson distribution of the continuous fractional
difference of the same order. See [20, Theorem 3.5].

Definition 2.2. [20] Given f : N0 → X, the fractional difference operator of order
α > 0 (in the sense of Riemann-Liouville) is defined by

∆αf(n) := ∆m ◦∆−(m−α)f(n), n ∈ N0,

where m− 1 < α < m, m = dαe.

Interchanging the order of the operators in the definition of fractional difference
in the sense of Riemann-Liouville, the notion of fractional difference in the sense of
Caputo is defined as follows.

Definition 2.3. [20] Let f : N0 → X and α > 0. The α-th fractional Caputo like
difference is defined by

C∆αf(n) := ∆−(m−α)(∆m
0 f)(n), n ∈ N0, (7)

where m− 1 < α < m, m = dαe.

Recall that the finite convolution ∗ of two sequences f(n) and g(n) is defined by

(f ∗ g)(n) :=

n∑
j=0

f(n− j)g(j), n ∈ N0. (8)

For further use, we note the following relation between the Caputo and Riemann-
Liouville fractional differences of order 0 < α < 1.

Theorem 2.4. [19, Theorem 2.9] For each 0 < α < 1 and u ∈ s(N0;X), we have

C∆αu(n) = ∆αu(n)− k1−α(n+ 1)u(0), n ∈ N0. (9)

Let us fix some 0 < ν < 1. We consider the fractional analogous of (2)

C∆νu(t) = µu(n) (1− u(n)) , (10)

with u(0) = u0.
Using the property ∆−ν C∆νf(n) = f(n+1)−f(0), the discrete fractional equation

(10) can be rewritten as

u(n) = u(0) + µ

n∑
j=1

kν(n− j)(u(j − 1)(1− u(j − 1)). (11)
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In comparison with (1), the model in (11) includes some memory, since the value
at u(n), depends on the previous past values u(i), with 0 ≤ i ≤ n− 1. It also depends
on a parameter ν.

Remark 2. It is notable that the above expression coincides with those proposed by
Wu and Baleanu in [34, Formula (14)]. However, this connection has not been observed
before.

3. Visibility graphs

Visibility algorithms have been proposed in order to study time series as complex
networks. This allows to characterize the process in terms of network science. The key
idea is to convert the time series into a network, and then try to determine whether
this network inherits some structure of the time series. Given a time series {(n, un) :
n ∈ N}, two visibility graphs have been considered:

NVG. The Natural Visibility Graph was introduced in [18]. Here, a node corresponds
to each data in the time series. The correspondence is set in the same order as
it appears in the time series. Two nodes are connected by an edge if there is
a straight line that connects both nodes, and this line does not intersect any
intermediate data height. That is, nodes of any two arbitrary values (na, ya) and
(nb, yb) are connected by an edge if any other data (nc, yc), with na < nc < nb,
fulfills:

yc < yb + (ya − yb)
nb − nc
nb − na

. (12)

See the left part of figure 1 for a visual interpretation.
HVG. Horizontal Visibility Graph was later introduced in [21]. It is a particular case of

NVG. Here, nodes associated to (na, ya) and (nb, yb) are connected by an edge
if for any other node na < nc < nn, we have:

ya > yc and yb > yc. (13)

See the right part of figure 1 for a visual interpretation.

As a matter of fact, analysis of degree distributions, clustering coefficients, and mean
path length of NVG’s and HVG’s permits to identify when randomness is present, see
for instance [17, 18, 21, 22].

The resulting networks are always connected and have interesting properties, such
as the invariance of the graph under affine transformations on the data series. NVG’s
and HVG’s capture the hub repulsion phenomenon associated with fractal networks
[30] and thus distinguishes scale-free visibility graphs evidencing the small-world effect
from those showing scale invariance. More precisely, periodic series are converted into
regular networks, random series into random networks, and fractal series into scale-free
networks.

Chaotic series from logistic and Hénon maps have been compared and distinguished
from independent and identically distributed random variables in [21, 22]. HVG’s
associated with any random series give small-world random graphs with a universal
exponential degree distribution of the form P (k) = 1

3(2/3)k−2, independently of the
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Figure 1. Determination of links for the construction of the NVG (left) and HVG (right).

probability distribution. This provides an easy test for randomness. A more-in-depth
study of the different approaches to chaos has also been considered with the use of
HVG’s over trajectories obtained with the logistic maps. Different phenomena already
studied comprise the period-doubling bifurcation cascade [22], the quasiperiodicity
[23], and the intermittency, that is the seemingly random alternation of long laminar
phases, and relatively short chaotic bursts [26]. These approaches have been revisited
in [28].

In fact, new phenomena have arisen in the light of the visibility graphs approach,
such as sequential visibility graph motifs, smaller substructures of n consecutive nodes
that appear with characteristic frequencies [13].

Further analyses can be performed on the degree distribution of the visibility graphs,
such as the computation of Shannon entropy [29]. The entropy h of a discrete random
variable X is calculated as

h(X,Ω) = −
∑
xi∈Ω

p(xi) log2 p(xi), (14)

where Ω is certain set where X is defined, and p(xi) is the probability that X = xi.
In the case of the visibility graphs, it can be rewritten as

h(ni) = −
∞∑
j=1

pj(ni) log2 (pj(ni)) , (15)

where pj(ni) is the probability that the node i has degree j - although in some cases
the base 2 logarithm has been change for the natural logarithm. More information on
the quantification of the complexity of a network can be found in [1]. Worth to mention
are the Lyapunov exponents, which highly correlate with the entropy as Luque et al.
showed in [22]. For this reason we have decided to restrict ourselves to the entropy
instead of the Lyapunov exponents in this work.
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4. Results

4.1. Time series analyses

The logistic equation (1) starts to exhibit chaos from approximately 3.57 until 4, as it
can be observed from the bifurcation diagrams, see for instance [31]. Wu and Baleanu
also used Feigenbaum diagrams in order to numerically illustrate chaos phenomena for
particular cases of the fractionary exponent ν and the scaling factor µ of the model.
In fact, just a change in the values of ν in (11) lets us appreciate chaotic phenomena
in different zones, see [34, Fig. 4 & Fig. 7].

In figure 2, we have recalculated these diagrams with higher resolution. These dia-
grams were generated starting with u(0) = 0.3 as initial condition and with a step size
for µ of 0.001 in all the cases. For every pair of values of ν and µ we have computed
200 iterations, considering the last 100 of them to be plotted.

µ

u
(n

)

2.2 2.5 2.8 3.1

0
.1

0
.4

0
.7

1
.0

ν = 0.01

µ

u
(n

)

2.2 2.5 2.8−
0

.2
0

.1
0

.4
0

.7
1

.0
1

.3

ν = 0.2

µ

u
(n

)

2.2 2.5

0
.1

0
.4

0
.7

1
.0

1
.3

ν = 0.6

µ

u
(n

)

2.2 2.5 2.8

0
.1

0
.4

0
.7

1
.0

1
.3

ν = 1

Figure 2. Feigenbaum diagrams for the Wu-Baleanu model: Top-left ν = 0.01 and 2.1 ≤ µ ≤ 3 and 3.1 ≤
µ ≤ 3.20; top right ν = 0.2 and 2.39 ≤ µ ≤ 2.62, bottom-left ν = 0.6 and 2.35 ≤ µ ≤ 2.66, bottom-right ν = 1
and 2.70 ≤ µ ≤ 3.00.

When analysing these diagrams it is not clear where to establish the threshold of
the onset of the chaos. This uncertainty is due to the coarseness of the plot since
a closer look into the zone of interest would show another duplication of the orbits
in the ω-limit, and so on until the points in the bifurcation diagram are too entan-
gled to distinguished one limit from another. Improving the number of iterations and
the parameter step, these could be recognized. For more detailed studies of chaos of
fractional discrete maps we refer to [9–11].
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4.2. Visibility graphs analysis

As it has been previously discussed in Section 3, both NVG’s and HVG’s are related
to a single time series, i.e. a single value of µ in the Feigenbaum diagrams. A tool
to be able to measure chaos in a more quantifiable way than with these diagram
is through the computation of the Shannon entropy applied to the visibility graphs
derived from time series. We have calculated the Shannon entropy for different pairs
(µ, ν) in (µ, ν) ∈ [2.1, 3.3] × [0, 1], with a step of 0.01 for both parameters. For each
pair, we have then computed the exponent of the power law fitting to the degree
distribution as it has been explained in Section 3.

Shannon entropy of the NVG associated to each pair (µ, ν) is illustrated in figure 3
through a heat map. It can be appreciated that there exists a clear pattern of chaos
across the parametric space. A symmetry with respect to ν ≈ 0.4 is noted, as well as
a Hénon map-like shape. Moreover, there seems to be non-gradual steps of entropy
change, following the same approximate shape but in at least two clearly different
zones (light blue-yellow in figure 3). The blank space in the right part of the figure
is due to the divergence of the time series. In general trends, the more fractional the
equation is (closer to ν = 0.5) the sooner the chaos onset appears for lower values of
the scaling factor µ.

Figure 3. Shannon entropy for the different values of the Wu-Baleanu scaling factor µ and the fractionary

exponent ν in the case of the natural visibility graphs.

Analogously, the entropy heat map for the HVG Shannon entropies is shown in
figure 4. A quick visual inspection of this plot compared with figure 3 reveals high
similarities between both of them, including the different C-shaped waves of entropy
increment. In order to quantify these similarities, we have computed several correla-
tion metrics for matrices between the HVG’s matrix and the NVG’s matrix, already
considered in the literature [14]. The results can be observed in the third column of ta-
ble 1. With such high correlation values, we can state that the information concerning
the chaos onset from the NVG’s is essentially the same present in the HVG’s.

Finally, we have computed the exponents of the power law fitting of the degree dis-
tribution of the NVG’s for each combination of (µ, ν). The results can be observed in
figure 5. This resembles the aforementioned entropy heat maps, with a more clear gra-
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Figure 4. Shannon entropy for the different values of the Wu-Baleanu scaling factor µ and the fractionary
exponent ν in the case of the horizontal visibility graphs.

Correlation matrices c(X1,X2) formula c (MNVG,MHVG) c (MNVG,Mexp)

SMIOP
‖XT

1 X2‖2F
min(p,q) 1.000 1.000

RV
tr(YT

1 Y2)

(tr(YT
1 Y1)tr(YT

2 Y2))1/2
,

0.999 0.984
Y1 = X1X

T
1 ,Y2 = X2X

T
2

RV 2
tr(YT

1 Y2)

(tr(YT
1 Y1)tr(YT

2 Y2))1/2
,

0.999 0.984
Y1 = X1X

T
1 − diag(X1X

T
1 ),Y2 = X2X

T
2 − diag(X2X

T
2 )

RVadj
p·q·nc+nr·tr(CT

12C12)

([p2·nc+nr·tr(CT
11C11)][q2·nc·tr(CT

22C22))1/2
,

0.999 0.984
nr = (n− 1)/(n− 2), nc = 1− nr

PSI Average of the non-zero singular values of XT
1 X2. 0.993 0.971

GCD
RV (TU), where T and U are orthogonal bases

1.000 1.000
for the column spaces of X1 and X2, respectively.

Table 1. Different correlation metrics c(·, ·) for matrices [14] computed for the NVG matrix MNVG and the

HVG matrix MHVG (3rd column), and for the MNVG and the matrix with the exponents of the power law
fitting Mexp (4th column). Explanation of the formulae (2nd column): XT is the transpose of X, ‖ · ‖F stands

for the Fröbenius norm, p is the number of columns of X1, q is the number of columns of X2, tr(·) is the trace,

diag(·) is the matrix diagonal and Cij is the correlation matrix between Xi and Xj .

dient in the first C-shaped wave of the chaos onset. In the fourth column of Table 1 the
different correlations defined in [14] have been computed between the NVG’s entropy
matrix and the power law exponent fitting matrix. As it happened with both visibility
graphs matrices, the correlations are high in all the cases, meaning that the chaos-
related information encoded by the exponent of the power law fitting is qualitatively
the same as within the entropy of the NVG’s.

5. Conclusions

In this work, we have analyzed the chaos for a parametric family of fractional discrete
maps. We have tried to describe the chaos phenomena in terms of the Shannon entropy
of natural and horizontal visibility graphs associated with time series obtained from
these models. We have also compared these results with the exponent of the power
law fitting of each time series.
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Figure 5. Exponents for the power law fitting of the the natural visibility graphs degree distribution for the
different combinations of the Wu-Baleanu scaling factor µ and the fractional exponent ν. Values over 5 have

been disregarded of the plot, for the sake of visual comparison (these values where approximately 1.73% of the

total amount of numerical values).

Some C-shape curves are exhibited showing the connections between the fractional
exponent ν and the scaling factor µ. In addition, there is also a region in which the
orbits diverge and then the computation of the visibility graphs would not correctly
describe such behaviour. It would be interesting if some insight could be provided
into how both parameters ν and µ are linked. Besides, it will also be interesting to
determine beforehand the borders of the region where there exists the ω-limit of the
orbits.
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[26] A.M. Núnez, B. Luque, L. Lacasa, J.P. Gómez, and A. Robledo, Horizontal visibility
graphs generated by type-I intermittency, Phys. Rev. E 87 (2013), p. 052801.
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