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DYNAMICS OF THE VOLTERRA-TYPE INTEGRAL AND
DIFFERENTIATION OPERATORS ON GENERALIZED FOCK

SPACES

JOSÉ BONET*, TESFA MENGESTIE, AND MAFUZ WORKU

Abstract. Various dynamical properties of the differentiation and Volterra-
type integral operators on generalized Fock spaces are studied. We show that
the differentiation operator is always supercyclic on these spaces. We further
characterize when it is hypercyclic, power bounded and uniformly mean er-
godic. We prove that the operator satisfies the Ritt’s resolvent condition if
and only if it is power bounded and uniformly mean ergodic. Some similar
results are obtained for the Volterra-type and Hardy integral operators.

1. Introduction

For holomorphic functions f and g, the differentiation operator Df = f ′ and
the Volterra-type integral operator Vgf(z) =

∫ z

0
g′(w)f(w)dw are classical ob-

jects in operator theory, function spaces and differential equations. Many of their
basic properties including boundedness, compactness and spectra have been ex-
tensively studied when acting on several function spaces over various domains;
see for example [1, 5, 6, 8, 10, 11, 13, 20, 21, 22, 23] and the references therein.
Understanding the dynamical structures of these operators is another important
and basic problem in operator theory. The main purpose of this paper is to study
such structures on generalized Fock spaces Fp

(α,m). We are especially interested

in identifying their various forms of cyclicity, power boundedness, and uniform
mean ergodic properties.

Let us first set the generalized Fock spaces. For m,α > 0 and 0 < p < ∞, the
spaces Fp

(α,m) consist of all entire functions f for which

∥f∥p(p,α,m) =

∫
C
|f(z)|pe−pα|z|mdA(z) < ∞
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where dA denotes the usual Lebesgue area measure on C. Note that the norm
can be rewritten in terms of the integral mean Mp

p (f, r) =
∫ 2π

0
|f(reit)|p dt

2π
as

∥f∥p(p,α,m) = 2π

∫ ∞

0

Mp
p (f, r)re

−pαrmdr.

We now introduce a few relevant notations needed in the rest of the article. The
expression U(z) . V (z) (or equivalently V (z) & U(z)) means that there is a
constant C such that U(z) ≤ CV (z) holds for all z in the set in question. We
write U(z) ≃ V (z) if both U(z) . V (z) and V (z) . U(z).

The norms of the monomials will play an important role in studying the dy-
namical properties of both the differentiation and integral operators on the spaces
Fp

(α,m). Thus, we estimate them using Stirling’s formulas,

n! ≃
√
nnne−n and Γ(x+ 1) ≃

√
xxxe−x, x > 0, (1.1)

where Γ denotes the Gamma function, and we get

∥zn∥(p,α,m) =

(
2π

∫ ∞

0

rpne−pαrmrdr

)1/p

=

(
2πΓ

(
pn
m

+ 2
m

))1/p

m(pα)
n
m
+ 2

mp

≃ (pn+ 2−m)
n
m
+ 2

mp
− 1

2p

(pα)
n
m
+ 2

mpm
n
m
+ 2

mp
+ 1

2p e
n
m
+ 2

mp
− 1

p

≃
(

n

meα

) n
m
+ 2

mp
− 1

2p

. (1.2)

From the preceding estimate we have in particular, for all n ∈ N,

∥zn∥(p,α,1) ≃ n!α−nn
3−p
2p . (1.3)

Next, we recall some definitions related to iterates of an operator. Given a Banach
space X, we denote by L(X) the space of continuous linear operators T on X. An
operator T ∈ L(X) is said to be hypercyclic if there exists a vector x in X such
that its orbit, {T nx;n ∈ N0 = {0} ∪ N}, is dense in X. The operator is called
cyclic if the linear span of an orbit is dense in X, and supercyclic whenever a
projective orbit, {λT nx;n ∈ N0, λ ∈ C}, is dense in X. Obviously, hypercyclicity
is a stronger property than supercyclicity which in turn is stronger than cyclicity.
Good references on this subject are [3, 16].

An operator T ∈ L(X) is said to be power bounded if there exists a positive
number M such that ∥T n∥ ≤ M for all n ∈ N0. The operator T is called quasi-
nilpotent if limn→∞ ||T n||1/n = 0. It is said to be mean ergodic if there exists an
operator P ∈ L(X) such that

Px := lim
n→∞

1

n

n∑
k=1

T kx, x ∈ X

exists in X. If the convergence is in the operator norm, then T is called uniformly
mean ergodic. The standard references about mean ergodic operators are the
books of Krengel [18] and Yosida [29].
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2. Dynamics of the differentiation operator on Fp
(α,m)

The differentiation operator D has been studied on Banach spaces of analytic
functions by several authors. Harutyunyan and Lusky [17] identified conditions
under which the operator becomes bounded when acting between weighted spaces
of holomorphic functions endowed with the supremum norm; see also [1]. Bonet
[8] studied various dynamical properties of the operator on these weighted spaces,
and the study was continued jointly with Beltrán, Bonilla and Fernández in [6, 10].
Later in 2014, Beltrán [5] studied the dynamics of the operator on a wider class
of generalized weighted Bergman spaces. On the other hand, the operator is also
known to act in unbounded way in several functional spaces. For instance in
[28] Ueki showed its unboundedness on the classical growth type Fock spaces.
Mengestie and Ueki [23] verified its unboundedness on all classical Fock spaces
and generalized Fock spaces where the weight function grows faster than the
Gaussian weight function |z|2/2. The same conclusion was later drawn in [21] on
the Fock–Sobolev spaces which are typical examples of generalized Fock spaces
with weight function growing slower than the Gaussian function. Inspired by all
these, Mengestie [20] asked the question of how fast should the weight function
need to grow in order that the corresponding generalized Fock spaces support
a continuous differentiation operator. He further considered the spaces Fp

(1,m)

and showed that the weight function should actually grow much slower than the
classical Gaussian function. More specifically, it was proved that the operator D
is bounded on Fp

(1,m), 0 < p < ∞, if and only if m ≤ 1, and compact if and only if

m < 1. See also [5, Section 5]. In this section, we continue those lines of research
and investigate the dynamical behaviour of the operator D on Fp

(α,m).

Proposition 2.1. Let 1 ≤ p < ∞ and let the differentiation operator D be
bounded on Fp

(α,m). Then

(i) D is hypercyclic on Fp
(α,m) if and only if either m = 1 and α > 1 or

m = 1, α = 1 and p > 3.
(ii) D is supercyclic and hence cyclic on Fp

(α,m).

Proof. (i) First note that since D is bounded, m ≤ 1, as can be seen from (1.2). In
addition, since no compact operator is hypercyclic on a non zero complex Banach
space [3, Corollary 1.22], it follows that D is not hypercyclic on Fp

(α,m) whenever

m < 1. On the other hand, for m = 1, using the relation in (1.3), we have

lim inf
n→∞

∥zn∥(p,α,1)
n!

≃ lim inf
n→∞

n
3
2p

αn
√
n
=


0, for α = 1 and p > 3 or α > 1,

1, for α = 1 and p = 3,

∞, for α < 1 or α = 1 and p < 3.

Then, by Theorem 5.2 of [5], D is hypercyclic if and only if either α = 1 and p >
3 or α > 1.
(ii) For this part, we follow the arguments used in the proof of [8, Proposition 2.7].
Since for each n ∈ N the monomial zn belongs to the kernel KerDn+1 of Dn+1,
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the generalized kernel set

GKer :=
∞∪
n=0

KerDn

contains all the polynomials. Since the polynomials are dense in Fp
(α,m), it follows

that GKer is dense in Fp
(α,m). Moreover, the range of the operator D contains

polynomials and therefore it is dense in Fp
(α,m). Then our conclusion follows after

an application of [4, Corollary 3.3]. �

We note that the proof of part (i) depends on the hypercyclicity criterion due
to Bés and Peris [7], where the original idea goes back to the work of Kitai in her
Ph.D. thesis [16, Theorem 3.4]. The aforementioned Theorem 5.2 of [5] ensures
that D is hypercyclic on generalized Bergman spaces if and only if it satisfies the
hypercyclicity criterion. This was further shown to be equivalent to a condition
like

lim inf
n→∞

(n!)−1∥zn∥(p,α,1) = 0

which remains valid in our setting. Similarly, the proof of part (ii) was based on a
density condition in [4]. This condition is equivalent to the known supercyclicity
criterion; see [4, Lemma 3.1]. Therefore, D satisfies the supercyclicity criterion if
and only it is supercyclic. We note that not all supercyclic operators satisfy this
criterion; see [14] for an example.

Having completely identified conditions under which D is hypercyclic, we next
consider the question of when D can be topologically mixing on Fp

(α,m). Recall

that an operator T on a Banach space X is topologically mixing if for every pair
of non-empty open subsets U and V of X, there exists an N ∈ N such that
T n(U) ∩ V ̸= ∅ for all n ≥ N . Note that topologically mixing is a stronger oper-
ator theoretic condition than hypercyclicity in general. Following the discussions
above and the arguments used back in the proof of Theorem 2.4 and Corollary 2.6
of [8], the differentiation operator D is topologically mixing on Fp

(α,m) whenever

it is hypercyclic.
Now we investigate when the differentiation operator is power bounded and

uniformly mean ergodic.

Theorem 2.2. Let 1 ≤ p < ∞ and the differentiation operator D be bounded on
Fp

(α,m). Then the following statements are equivalent.

(i) D is power bounded and uniformly mean ergodic on Fp
(α,m).

(ii) Either m < 1 or m = 1 and α < 1.

Proof. We first show that (ii) implies (i). Since D is bounded, we have m ≤ 1.
If m < 1, then the operator is compact and by [20, Theorem 1.2], its spectrum
σ(D) contains only the zero element. By the spectral formula, there exist δ < 1
and N ∈ N such that

∥Dn∥ ≤ δn for all n ≥ N, (2.1)
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and therefore, D is power bounded and uniformly mean ergodic in this case. For
the case when m = 1 and α < 1, arguing as in (5.3) in [5, Proposition 5.9], we
get

∥Dkf∥p(p,α,1) ≤
(k!)pepαk

kpk
∥f∥p(p,α,1).

Using this along with Stirling formula (1.1), we deduce

∥Dk∥ . k
p
2

e(1−α)k
→ 0 (2.2)

as k → ∞ for α < 1, and hence the operator is power bounded in this case as
well. Now, applying the estimate in (2.2),∥∥∥∥ 1n

n∑
k=1

Dk

∥∥∥∥ ≤ 1

n

n∑
k=1

∥Dk∥ . 1

n

n∑
k=1

k
p
2

e(1−α)k
→ 0

as n → ∞, from which it follows that D is uniformly mean ergodic.
Now we show that (i) implies (ii). Assume that m = 1. Using exponential

functions eβ(z) = eβz, |β| < α, we get D(0, α) ⊂ σ(D), where D(0, α) is a disc
with center 0 and radius α. Thus, 1 is an accumulation point of σ(D) whenever
α ≥ 1. Since D is assumed to be power bounded, we apply [15, Theorem 3.16]
(see also [18, Theorem 2.7]), to get that the operator cannot be uniformly mean
ergodic in this case. Therefore, we must have α < 1. �

3. Dynamics of the Volterra-type integral operator on Fp
(α,m)

In this section we investigate the dynamics of Volterra-type integral operators

Vgf(z) =

∫ z

0

g′(w)f(w)dw.

Various aspects of the operator which includes boundedness, compactness, and
spectra have been well studied in large class of function spaces; see for examples
[11, 12, 13, 21, 24, 23] and the references therein. Much less is known about
its dynamical and mean ergodic properties, except in the special case when the
symbol g is the identity map. The fact that the iterates of the operator involve
multiple integrals makes it difficult to get best possible estimates of the norms.
In this paper, we begin the study of the dynamical properties of Vg on the spaces
Fp

(α,m). It was shown [13] (see also [12]), and in [11] for p = ∞, that Vg is bounded

on Fp
(α,m) if and only if g is a complex polynomial of degree l not bigger than m

(l ≤ m), and Vg is compact in this space if and only if the degree l of g is strictly
smaller than m or m is not a positive integer.

Proposition 3.1. Let 1 ≤ p < ∞. Let Vg be bounded on Fp
(α,m) and hence

g(z) = alz
l + al−1z

l−1 + ...+ a1z + a0, l ≤ m. Then

(i) Vg is not supercyclic on Fp
(α,m) and hence not hypercyclic.

(ii) If g(z) = azl + b, a ̸= 0, then Vg is cyclic if and only if l = 1.
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Proof. (i) Since Vgf(0) = 0 for every f in Fp
(α,m), the projective orbit of f under

Vg contains only functions that vanish at zero. Thus, it cannot be dense in Fp
(α,m),

which implies that Vg is not supercyclic on Fp
(α,m) and hence not hypercyclic either.

(ii) If l = 1, then (Vg)
n(1)(z) = anzn

n!
. Hence

{(Vg)
n(1), n ≥ 0} = {1, az, a

2z2

2
, · · · , a

nzn

n!
, · · · }.

The linear span of the latter is known to be dense in Fp
(α,m).

If l > 1 and f belongs to Fp
(α,m), using a functional that annihilates the (l− 1)-

th Taylor polynomial of f , together with the monomials zk, k ≥ l, we conclude
that f cannot be a cyclic vector for Vg. �
The class of Volterra-type integral operators include the classical integration op-
erator Jf(z) =

∫ z

0
f(w)dw in particular when g(z) = z. By [13, 23], [1] or [24,

Lemma 1.1], it follows that J is bounded on Fp
(α,m) if and only if m ≥ 1 and com-

pact if and only if m > 1. These conditions are opposite to the corresponding
conditions for the differentiation operator D except when m = 1, in which case
both J and D are bounded. Clearly DJf = f and JDf(z) = f(z) − f(0) for
all z ∈ C and f in Fp

(α,m). Observe that while D is supercyclic, there exists no

vector whose projective orbit under J is dense in Fp
(α,m).

To state our next main result, we first recall some definitions. Denote by H(C)
the set of entire functions on C. For r ≥ 0 and each f ∈ H(C), set

M∞(f, r) = sup
|z|=r

|f(z)|,

and define the growth type space F∞
(α,m) as the space of functions f ∈ H(C) such

that

∥f∥(∞,α,m) = sup
r>0

e−αrmM∞(f, r) < ∞.

The estimate corresponding to (1.2) becomes

∥zn∥(∞,α,m) ≃
(

n

meα

) n
m

. (3.1)

For m = 1, the space Fp
(α,1) is denoted by Bp,p(α) in [5]. To simplify the notation

below, we write the symbol g(z) = alz
l + al−1z

l−1 + ...+ a1z + a0, with l ≤ m, as
g = gl + gl−1 where gl(z) = alz

l and gl−1(z) = al−1z
l−1 + ...+ a1z + a0. Then the

operators on F∞
(α,m) satisfy

Vg = Vgl + Vgl−1
,

of which Vgl−1
is always compact and quasi-nilpotent.

Following [2], for each λ ∈ C, a ∈ C and m ∈ N, the operator Kλ is defined on
H(C) by

Kλf(z) = ameλz
m

∫ z

0

e−λwm

wm−1f(w)dw = amzm
∫ 1

0

eλz
m(1−tm)tm−1f(tz)dt
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Thus, when λ = 0 m = l ∈ N and a = al, then Kλ is just the Volterra-type
integral operator Vgl .

Lemma 3.2. Let m ≥ 1,m ∈ N.
(i) If |λ| < α, then the operator Kλ is continuous on F∞

(α,m) with operator

norm ∥Kλ∥ ≤ |a|
α−|λ| .

(ii) If l = m ∈ N, then Vgl is continuous on F∞
(α,m) and its operator norm

satisfies ∥Vgl∥ ≤ |al|
α
.

Proof. (i) For r > 0, we have

e−αrmM∞(Kλf, r) = e−αrm |a|mrm
∫ 1

0

e|λ|r
m(1−tm)tm−1M∞(f, rt)dt

= |a|mrm
∫ 1

0

tm−1e−α(tr)me(α−|λ|)rm(tm−1)M∞(f, rt)dt

≤ |a|mrm∥f∥(∞,α,m)

∫ 1

0

tm−1e(α−|λ|)rm(tm−1)dt ≤ |a|
α− |λ|

∥f∥(∞,α,m).

Therefore

∥Kλf∥(∞,α,m) = sup
r>0

e−αrmM∞(Kλf, r) ≤
|a|

α− |λ|
∥f∥(∞,α,m).

(ii) This is a direct consequence of part (i) for l = m, a = al and λ = 0. �
Theorem 3.3. Let 1 ≤ p ≤ ∞, m ≥ 1 and l ∈ N. Assume that the operator Vg

is bounded on Fp
(α,m), with g(z) = gl(z) + gl−1(z), gl(z) = alz

l, l ≤ m. Then

(i) If m > 1, 1 ≤ p ≤ ∞ and l < m, then Vg is compact, quasi-nilpotent,
hence power bounded, and uniformly mean ergodic on Fp

(α,m).

(ii) If l = m ∈ N and p = ∞, then Vg is power bounded if and only if |al| ≤ α.
(iii) If l = m ∈ N, p = ∞ and |al| ≤ α, then Vgl is uniformly mean ergodic if

and only if |al| < α.
(iv) If l = m ∈ N and 1 ≤ p < ∞ and Vg is power bounded, then |al| ≤ α.
(v) If l = m ∈ N and 1 ≤ p < ∞ and Vgl is power bounded and uniformly

mean ergodic, then |al| < α.

Proof. (i) From results in [11, 23] for p = ∞ and in [13] for 1 ≤ p < ∞, the
operator Vg is compact on Fp

(α,m) for all 1 ≤ p ≤ ∞, since l < m. Moreover,

by [9, Theorem] and [12, Theorem 1], we have σ(Vg) = {0}, hence Vg is quasi-
nilpotent. By the spectral radius formula, there exist β < 1 and N ∈ N such
that

∥V n
g ∥ ≤ βn for all n ≥ N. (3.2)

This shows that Vg is power bounded.
The operator Vg is also uniformly mean ergodic in this case. Indeed, an appli-

cation of (3.2) yields, for some C > 0 depending on N ,

1

n

∥∥∥∥ n∑
k=1

V k
g

∥∥∥∥ ≤ 1

n

n∑
k=1

∥∥V k
g

∥∥ ≤ C

n
+

β

n(1− β)
→ 0 as n → ∞.
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(ii) Now p = ∞ and l = m ∈ N. Assume that |al| ≤ α. By Lemma 3.2 (ii) we
have, for each n ∈ N,

∥V n
gl
∥ ≤ |al|n/αn ≤ 1.

This implies that Vgl is power bounded. Since the sum of a power bounded
operator and a quasi-nilpotent operator is power bounded, we conclude that Vg

is power bounded.
Conversely, suppose that Vg is power bounded. Since Vgl−1

is quasi-nilpotent
by part (i), we get that Vgl is power bounded. However, for each positive integer
n, a straightforward integral computation gives

V n
gl
(1)(z) =

ln(al)
nzln∏n

j=1(jl)
=

(al)
nzln

n!

from which and (3.1) we have

∥V n
gl
∥ ≥

∥V n
gl
1∥(∞,α,l)

∥1∥(∞,α,l)

≃ |al|n

n!(αel)n
(nl)n ≃ |al|n

αn

1√
n
→ ∞

as n → ∞ whenever |al| > α, a contradiction. Thus |al| ≤ α.
(iii) In this part we assume p = ∞, l = m ∈ N and |al| ≤ α. We first suppose

that |al| < α. By Lemma 3.2 we have, for each n ∈ N,

∥V n
gl
∥ ≤ |al|n/αn.

Hence

1

n

∥∥∥∥ n∑
k=1

V k
gl

∥∥∥∥ ≤ 1

n

n∑
k=1

∥∥V k
gl

∥∥ ≤ |al|
n(α− |al|)

→ 0 as n → ∞,

and Vgl is uniformly mean ergodic.
Conversely, suppose that Vgl is uniformly mean ergodic and that |al| ≤ α. Part

(ii) implies that Vgl is power bounded. From [9] it follows that the spectrum

σ(Vgl) = {λ ∈ C : |λ| ≤ |al|
α
}. Thus, if |al| = α, then 1 is an accumulation point

of σ(Vgl). By [15, Theorem 3.16] (see also [18, Theorem 2.7]), the operator Vgl is
not uniformly mean ergodic. Therefore |al| < α.

(iv) If l = m ∈ N and 1 ≤ p < ∞ and Vg is power bounded, then Vgl is power
bounded since Vgl−1

is quasi-nilpotent by part (i). Now, an integral computation
again gives, for each positive integers k and n,

V n
gl
(zk) =

(al)
nlnzln+k∏n

j=1(jl + k)

and hence

∥V n
gl
∥ & lim sup

k→∞

∥V n
gl
(zk)∥(p,α,l)

∥zk∥(p,α,l)
= lim sup

k→∞

|al|nln∥znl+k∥(p,α,l)∏n
j=1(jl + k)∥zk∥(p,α,l)

≥ lim sup
k→∞

|al|nln∥znl+k∥(p,α,l)
(nl + k)n∥zk∥(p,α,l)

, (3.3)
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where the last inequality follows since
n∏

j=1

(jl + k) = e
∑n

j=1 log(jl+k) ≤ en log(nl+k) = (nl + k)n.

Applying the norm estimate in (1.2),

∥znl+k∥(p,α,l)
∥zk∥(p,α,l)

≃ (nl + k)n

(eα)n

(
1 +

nl

k

) k
l
+ 2

pl
− 1

2p

and plugging this in (3.3) and making further simplifications

∥V n
gl
∥ ≥ |al|n

αn
lim sup
k→∞

(
1 + nl

k

) k
l

en

(
1 +

nl

k

) 2
pl
− 1

2p

≥ |al|n

αn
lim sup
k→∞

(
1 + nl

k

) k
l

en
=

|al|n

αn
,

which yields α ≥ |al|.
(v) Suppose that Vgl is power bounded and uniformly mean ergodic. It follows

from [12] that the spectrum σ(Vgl) = {λ ∈ C : |λ| ≤ |al|
α
}. Hence, if |al| = α, then

1 is an accumulation point of σ(Vgl). By [15, Theorem 3.16] (see also [18, Theorem
2.7]), the operator Vgl is not uniformly mean ergodic. This implies |al| < α. �
Corollary 3.4. Let 1 ≤ p ≤ ∞ and m ≥ 1. Then the integration operator J on
Fp

(α,m) satisfies

(i) If m > 1 and 1 ≤ p ≤ ∞, then J is compact, quasi-nilpotent, hence
power bounded, and uniformly mean ergodic on Fp

(α,m).

(ii) If m = 1 and p = ∞, then J is power bounded if and only if α ≥ 1.
(iii) If m = 1 and p = ∞, then J is uniformly mean ergodic if and only if

α > 1.
(iv) If m = 1 and 1 ≤ p < ∞ and J is power bounded, then α ≥ 1.
(v) If m = 1 and 1 ≤ p < ∞ and J is power bounded and uniformly mean

ergodic, then α > 1.

Proof. This follows immediately from Theorem 3.3. �

4. Dynamics of the Hardy operator on Fp
(α,m)

In this section we study the dynamics of the classical Hardy operator Hf(z) =
1
z

∫ z

0
f(w)dw = 1

z
Jf(z) on the spaces Fp

(α,m). Dynamical properties of this opera-

tor has been investigated in related contexts in [5, 6].

Theorem 4.1. Let 1 ≤ p < ∞. Then the Hardy operator H is both power
bounded and uniformly mean ergodic on Fp

(α,m). Furthermore, ∥H∥ = 1.

Proof. Let us first show that H is bounded and ∥H∥ = 1. Proceeding as in [5],
we get

Mp
p (Hf, r) ≤ Mp

p (f, r).
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Multiplying both sides by 2πre−pαrm and integrating over r yields

∥Hf∥p(p,α,m) ≤ ∥f∥p(p,α,m),

which implies that H is bounded and ∥H∥ ≤ 1.
On the other hand, if H is bounded, then

∥H1∥p(p,α,m) =

∫
C
|H1(z)|pe−pα|z|mdA(z) = ∥1∥p(p,α,m)

and hence ∥H∥ = 1.
Next fix n > 1. Let f(z) =

∑∞
k=0 akz

k be the Taylor series expansion of
f ∈ Fp

(α,m). A simple integral computation shows that

Hnf(z) =
∞∑
k=0

akz
k

(k + 1)n
. (4.1)

On the other hand, for each r > 0, applying Cauchy inequalities

|ak|rk =
rk

2π

∣∣∣∣ ∫
|ζ|=r

|f(ζ)|
ζk+1

dζ

∣∣∣∣ ≤ 1

2π

∫ 2π

0

|f(reiθ)|dθ ≤ Mp(f, r),

from which we get |ak|∥zk∥(p,α,m) ≤ ∥f∥(p,α,m) holds for k ≥ 0. This and (4.1)
imply

∥Hnf∥(p,α,m) ≤
∞∑
k=0

|ak|∥zk∥(p,α,m)

(k + 1)n
≤ ∥f∥(p,α,m)

∞∑
k=0

1

(k + 1)n
≃

∥f∥(p,α,m)

n− 1

for all n > 1. Therefore, H is power bounded. Observe also that,∥∥∥ 1
n

n∑
j=1

Hj
∥∥∥ ≤ 1

n

n∑
j=1

∥Hj∥ =
1

n

(
∥H∥+

n∑
j=2

∥Hj∥
)

=
1

n
+

1

n

n∑
j=2

∥Hj∥

. 1

n
+

1

n

n∑
j=2

1

j − 1
≃ 1

n
+

log |n− 1|
n

→ 0

as n → ∞. Therefore, H is also uniformly mean ergodic, which completes the
proof.

We now mention consequences of Theorem 4.1. Since all orbits {T nf ;n =
0, 1, 2, ...} of any power bounded operator T are bounded, it cannot be hyper-
cyclic. This conclusion fails to hold for the supercyclicity property in general.
But if the operator satisfies in addition for example Tf(ζ) = f(ζ) for all f in
the space and at least one point ζ ∈ C, then T is not supercyclic either. We will
prove this for the operator H, and the same proof works in general for any other
power bounded operator T .

Corollary 4.2. Let 1 ≤ p < ∞. Then the Hardy operator H is not supercyclic
on Fp

(α,m).

Proof. For each f and each n we have

Hf(0) = f(0) = Hnf(0). (4.2)
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Proceeding by contradiction, suppose that f is a supercyclic vector for H. Then
for the constant function 1, there exits a sequence (λkH

nkf) in the projective
orbit such that λkH

nkf → 1 as k → ∞. Consequently, by (4.2),

lim
k→∞

λkH
nkf(0) = lim

k→∞
λkf(0) = 1,

hence f(0) ̸= 0 and (λk) is not a null sequence either.
Similarly, for the function h(z) = z, there exists again a sequence (θjH

njf) in
the projective orbit such that θjH

njf → h as j → ∞, and

lim
j→∞

θjH
njf(0) = lim

j→∞
θjf(0) = h(0) = 0

lim
j→∞

θjH
njf(1) = lim

j→∞
θjf(1) = h(1) = 1, (4.3)

from which, since f(0) ̸= 0, we deduce θj → 0 as j → ∞. This and power
boundedness in Theorem 4.1 yield

lim
j→∞

∥θjHnjf∥(p,α,m) . ∥f∥(p,α,m) lim
j→∞

|θj| = 0.

Therefore, θjH
njf → 0 which implies θjH

njf(1) → 0 as j → ∞. This contradicts
(4.3). �

5. The Ritt’s resolvent condition

A classical operator theoretic problem, for any given bounded operator T on
a complex Banach space X, is to identify the relation between the size of the
resolvent (T − λI)−1 when λ is near to the spectrum of T and the asymptotic
behaviour of the orbits {T nx : x ∈ X}. In this perspective, recall that the Ritt’s
condition [27] for T states that there exists a positive constant C such that

∥(T − λI)−1∥ ≤ C

|λ− 1|

for each λ ∈ C and |λ| > 1. As an immediate consequence of Theorem 4.1, it
turns out that the Hardy operator H on generalized Fock spaces belongs to the
class of operators satisfying such condition.

Proposition 5.1. Let 1 ≤ p < ∞. Then

(i) the Hardy operator H satisfies the Ritt’s resolvent condition on Fp
(α,m).

(ii) the differentiation operator D satisfies the Ritt’s resolvent condition on
Fp

(α,m) if and only if it is power bounded and uniformly mean ergodic.

Proof. (i) Nagy and Zemanek [25] proved that a bounded operator T on a complex
Banach space satisfies the Ritt’s resolvent condition if and only if it is power
bounded and

sup
n≥1

n∥T n+1 − T n∥ < ∞. (5.1)
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Thus, by Theorem 4.1, it is enough to show that the operatorH satisfies condition
(5.1). To this goal, applying (4.1)

∥Hn+1f −Hnf∥(p,α,m) ≤
∞∑
k=0

|ak|∥zk∥(p,α,m)

(k + 1)n

∣∣∣ 1

k + 1
− 1

∣∣∣
≤ ∥f∥(p,α,m)

∞∑
k=0

k

(k + 1)n+1
≃

∥f∥(p,α,m)

n
,

and the conclusion easily follows.
(ii) Assume first that D is power bounded and uniformly mean ergodic. Then

by Theorem 2.2, either m < 1 or m = 1 and α < 1. For m < 1, arguing as in
(2.1) there exist N ∈ N and 0 < δ < 1 such that

n∥Dn+1 −Dn∥ ≤ n∥Dn+1∥+ n∥Dn∥ ≤ 2nδn for all n ≥ N. (5.2)

Similarly, if m = 1 and α < 1, then (2.2) implies

n∥Dn+1 −Dn∥ ≤ n∥Dn+1∥+ n∥Dn∥ ≤ n
(n+ 1)

p
2

e(1−α)(n+1)
+ n

n
p
2

e(1−α)n
. (5.3)

Now we take the supremum with respect to n ∈ N both in (5.2) and (5.3) to see
that condition (5.1) is satisfied.

For the other implication, by a result of Nagy and Zemanek [25], it is enough to
show that D is uniformly mean ergodic. We arrive at this conclusion if we show
that the Ritt’s condition fails when m = 1 and α ≥ 1. If m = 1, then using again
the exponential functions, eβ(z) = eβz, |β| < α, we get D(0, α) ⊂ σ(D). Thus,
then the spectrum σ(D) contains the unit circle T whenever if α ≥ 1. This is a
contradiction since the spectrum of an operator which satisfies the Ritt’s resolvent
condition contains only 1 from the unit circle; see [19] and [26, Theorem 4.5.4]
for more details. �
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14 JOSÉ BONET*, TESFA MENGESTIE, AND MAFUZ WORKU

[28] S. Ueki, Characterization for Fock-type space via higher order derivatives and its
application. Complex Anal. Oper. Theory, 8 (2014), 1475–1486.

[29] K. Yosida, Functional Analysis, Springer, Berlin, 1978.
[30] K. Yosida, S. Kakutani, Operator-theoretical treatment of Marko’s process and

mean ergodic theorem, Ann. Math., 42 (1941), no. 1, 188–228.
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