

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/160574

Anzt, H.; Dongarra, J.; Quintana Ortí, ES. (2019). Fine-grained bit-flip protection for
relaxation methods. Journal of Computational Science. 36:1-11.
https://doi.org/10.1016/j.jocs.2016.11.013

https://doi.org/10.1016/j.jocs.2016.11.013

Elsevier

Fine-grained Bit-Flip Protection for Relaxation Methods

Hartwig Anzta, Jack Dongarraa,b,c, Enrique S. Quintana-Ortı́d,

aInnovative Computing Lab, University of Tennessee, Knoxville, Tennessee, USA
bOak Ridge National Laboratory, USA

cSchool of Computer Science, University of Manchester, United Kingdom
dDepto. Ingenierı́a y Ciencia de Computadores, Universidad Jaume I, Castellón, Spain

Abstract

Resilience is considered a challenging under-addressed issue that the High Perfor-
mance Computing community (HPC) will have to face in order to produce reliable
Exascale systems by the beginning of the next decade. As part of a push towards a
resilient HPC ecosystem, in this paper we propose an error-resilient iterative solver
for sparse linear systems based on stationary component-wise relaxation methods.
Starting from a plain implementation of the Jacobi iteration, our approach intro-
duces a low-cost component-wise technique that detects bit-flips, rejecting some
component updates, and turning the initial synchronized solver into an asynchron-
ous iteration. Our experimental study with sparse incomplete factorizations from
a collection of real-world applications, and a practical GPU implementation, ex-
poses the convergence delay incurred by the fault-tolerant implementation and its
practical performance.

Keywords: Sparse linear systems, iterative solvers, Jacobi method, fault
tolerance, bit flips, high performance computing
2010 MSC: 15A06 (linear equations)

1. Introduction

Fault resilience has been identified as a critical challenge for future supercom-
puters [1, 2, 3]. In particular, the growth in the number of transistors in CMOS
integrated circuits, at the pace dictated by Moore’s Law [4], will render a signif-
icant increase in the rate of permanent, intermittent, and transient system faults
(e.g., due to the impact of alpha particles or radiation from chip packaging) [3].

Email addresses: hanzt@icl.utk.edu (Hartwig Anzt), dongarra@icl.utk.edu (Jack
Dongarra), quintana@uji.es (Enrique S. Quintana-Ortı́)

Preprint submitted to Journal of Computational Science November 21, 2016

This may eventually yield current checkpoint+restart methods too costly for large-
scale high performance computing (HPC) systems, necessitating alternative fault
tolerance mechanisms that ensure reliable exascale machines [3]. Without this
protection, applications will not run to completion, or even worse, they will suffer
soft errors (or silent data corruption, SDC), thereby returning an incorrect answer
without any indication of error.

In this paper we consider the solution of sparse linear systems of equations
via (resilient versions of) component-wise relaxation (i.e., stationary) solvers [5].
Despite the often superior convergence characteristics of Krylov methods, these
component-wise iterations remain an important building block as smoothers for
multigrid methods [6], and for the approximate solution of sparse triangular sys-
tems within an incomplete factorization preconditioner [7, 8].

Recently, we introduced an algorithmic-based fault tolerance (ABFT) tech-
nique that enhances the natural resilience of stationary methods with respect to
transient bit-flips (a class of SDC) [9]. Two key properties of our ABFT solution
for the Jacobi method [5], compared with a similar approach analyzed in [10], are:
1) we employ a component-wise bit-flip protection mechanism; and 2) our pro-
tection technique is based on a low-cost error detection mechanism, which rejects
the update of a component of the solution if the update is considered erroneous.
In case of rejected updates, the original Jacobi method becomes an asynchronous
solver. Nonetheless, our fault tolerance technique preserves the convergence of the
iteration in case high bit-flip rates. The initial evaluation of the method in [9], with
(the finite difference discretization of) the Laplace problem and four cases from
the University of Florida Matrix Collection1 (UFMC), exposed the efficiency of
the approach as well as the crucial role of the error threshold δ on the number of
detected bit-flips (DBF) and missed bit-flips (MBF), the number of false positives
(FPs), and, ultimately, on the convergence rate of the iteration.

In this paper we extend the results presented in [9], making the following new
contributions:

• We further refine the analysis by inspecting the impact of the error protection
mechanism when applied every 2–5 iterations, instead of when applied at
every iteration as done in [9]. We note that this relaxation increases the
practical value of the ABFT solution by reducing the overhead of the error
protection mechanism.

• We considerably augment the collection of real-world cases employed in
the experimental validation of the approach, including a larger collection of

1Available at https://www.cise.ufl.edu/research/sparse/matrices/. Last accessed:
May 2016.

2

cases from the UFMC benchmark collection.
• We provide strong evidence of the practical benefit of the approach by turn-

ing it from mostly a theoretical analysis, based on a MATLAB code, into
an actual HPC code for graphics processing units (GPUs) built on top of
MAGMA-sparse [11].

• We elaborate on the interaction between voltage scaling, energy efficiency,
and extended runtime due to bit-flip errors. This is particularly important as
near-threshold voltage computing (NTVC) [12] has been recently proposed
as a means to tackle the power wall, allowing for integration of additional
levels of hardware concurrency at the expense of more transistor area and
large volumes of systems faults [13].

There are two sources of overhead for our fault-tolerant version of the Jacobi iter-
ation: 1) the overhead introduced by the bit-flip protection mechanism; and 2) the
potential increase in the number of iterations due to MBFs that corrupt the solution
vector or to DBFs that result in missed updates on the solution vector. The bit-flip
protection mechanism requires a few operations on vectors that can be easily vec-
torized. With some re-organization effort, these operations can be also pipelined,
to reduce off-chip memory accesses, and their computational cost can be hidden
by overlapping them with the more expensive iteration. This motivates us to focus
our cost analysis on evaluating the second cause of overhead.

The rest of the paper is structured as follows. In Section 2 we review related
research efforts that also analyze fault tolerance/resilience in the solution of sparse
linear systems. In Section 3 we offer a brief introduction to stationary solvers, and
in Section 4 we summarize the fault model, bit-flip injection methodology, and
resilience-related metrics. In Section 5 we describe our fault tolerance technique
for low-cost error resilience in this type of method. In Sections 6 and 7, we investi-
gate the effect of bit-flips on the convergence rate and the practical performance of
an ABFT GPU implementation, respectively. In Section 8 we explore the trade-off
between undervolting and energy savings. We conclude in Section 9 with a few
remarks.

2. Related Work

Several recent works have considered the effect of soft errors, in most cases fo-
cusing on data corruption and (fundamental kernels for) iterative Krylov subspace
methods [5]. For example, Bronevetsky and de Supinski [14] analyze the vulnera-
bility to SDC of Krylov-based solvers. Chen [15] introduces an on-line verification
of orthogonality and residual to detect soft errors during the execution of Krylov
subspace solvers. Bridges et al [16] apply selective reliability to assemble a fault-
tolerant version of GMRES, furnished with an inner-outer iteration, that converges

3

at a rate that degrades with the fault rate. Elliott, Hoemmen, and Mueller [17]
present a low cost fault detection mechanism for GMRES, and investigate the con-
nection between errors in the IEEE 754 representation of real numbers, the dot
product kernel, and the effect of normalizing the data [18]. Sao and Vuduc [19]
depart from previous work by adopting “self-stabilization” to obviate the need for
full state saving and fault detection for CG.

Compared with these efforts, we also address the iterative solution of sparse
linear systems, but consider the error resilience of relaxation methods instead of
Krylov subspace-based solvers. We note that our results are orthogonal and com-
plementary to the analysis performed by Calhoun, Snir, Olson, and Garzaran [20]
on how soft errors propagate through a sparse matrix-vector multiply (SpMV).

3. Stationary Methods

Consider the linear system Ax = b, where A ∈ Rn×n is sparse, b ∈ Rn is the
right-hand side vector, and x ∈ Rn is the sought-after solution. Stationary solvers
apply component-wise relaxation principles, iteratively updating each individual
component of an approximated solution x{k}. A popular example is the Jacobi
iteration which, for a starting solution guess x{0}, can be formulated as:

x{k} := D−1
(

b− (A−D)x{k−1}
)
= D−1b+Mx{k−1}, k = 1,2, . . . , (1)

where D ∈ Rn×n is a diagonal matrix containing the diagonal entries of A [5].
An appealing property of the “Jacobi update” D−1b+Mx{k−1} is that all com-

ponents of x{k} can be obtained in parallel, as the arithmetic operations on any
component x{k}i only involve values from the previous iterate x{k−1}.

If an implementation of the Jacobi iteration does not update all components,
but some of them keep the value from the previous iteration, the method becomes
asynchronous (or “chaotic”) in the sense that, at a certain point during the itera-
tion process, some components may differ in the number of times they have been
updated. This is equivalent to an asynchronous iteration where each component
is modified in an arbitrary manner, but always using the latest available values for
the remaining components [21, 22]. Convergence of the synchronous Jacobi is
guaranteed if the spectral radius of the iteration matrix M fulfills

ρ(M) = ρ
(
I−D−1A

)
< 1.

The asynchronous iterations require a stronger property of the iteration matrix to
guarantee convergence, i.e. the spectral radius of the component-wise positive it-
eration matrix has to be smaller than one [22]. Nonetheless, both these criteria

4

are, for example, fulfilled for triangular matrices. Hence, both methods are suit-
able for approximate triangular solves in the context of incomplete factorization
preconditioning [7, 8].

The ABFT method we introduced in [9] builds upon an implementation of the
Jacobi method, rejecting the update of those locations (components) where a low-
cost error detection test indicates that a bit-flip occurred during the computation.
In case of rejected updates, this turns the initial Jacobi solver into an asynchronous
iteration, and as previously mentioned, imposes stronger convergence conditions
on the iteration matrix. In the remainder of the paper we will refer to the bit-flip
protected solver with the term Fault-Tolerant Jacobi (FTJacobi).

4. Fault Model, Errors, and Metrics

4.1. Unreliable floating-point operations and data

We target the following scenario:

1. The floating-point register file and floating point units (FPUs) are unreliable,
for example, due to the application of undervolting or because they are built
from faulty (but energy-efficient) technology [23].

2. The cache and the main memory are reliable but, in order to save energy,
feature no error protection mechanism (e.g., ECC). All data initially resides
in the main memory and is correct. Loading an element from the cache or the
main memory will fetch a correct value as long as it has not been overwritten
by a corrupted (incorrect) result produced by the FPUs in a previous stage.

3. The computation of the bit flip mechanism is reliable, for example, because
it is deviated to non-faulty hardware operating in a safe voltage scale.

4. All remaining data (integers, instructions, control, etc.) is reliable.

When running the Jacobi relaxation method under these conditions, it is necessary
to test every update to the solution vector, in order to detect whether its computa-
tion was affected by a bit-flip. Precisely, the updated values in the floating-point
registers need to be checked for correctness before they are pushed back to main
memory. We address the realization of this bit-flip detection mechanism in Sec-
tion 5.

4.2. Bit-flip injection methodology

In order to simulate the previously introduced scenario, we use the following
injection strategy to artificially introduce bit-flips:

• We assume every iteration of the Jacobi method is affected by κ bit-flips.

5

• At the beginning of each iteration of the Jacobi method, single bit-flips are
inserted into κ random positions of the un-corrupted positive iteration matrix
M before computing the SpMV involving this matrix; see (1).

• As we want to simulate the scenario of transient errors affecting data that lies
in the floating-point register file or is computed by the FPUs, we afterwards
restore the matrix values in preparation for the next iteration.

We emphasize again that this reflects a scenario where the results of κ floating-
point operations involving elements of M are corrupted, but the source of the data
(e.g., in main memory or certain level of the cache) remains correct. Also, a single
bit-flip in the k-th iteration will corrupt, at most, a single entry of xk. However, with
κ errors in M, the number of entries corrupted in xk equals the number of different
rows of M these errors affect, which can be smaller than κ .

4.3. Assessment criteria

We employ the following quantitative “metrics” to expose the properties of the
fault tolerance technique:

• DBFs and MBFs: Obviously, we would like to detect κ bit-flips per iteration
and miss none. In practice, because the bit-flips are detected by checking
the result xk, the maximum number of bit-flips that can be detected may be
smaller than κ , as two or more errors in the same row of M propagate to the
same entry of the result vector, corrupting only a single entry of it. Also, the
effect of a bit-flip may be small enough to be within the threshold or covered
by the noise of IEEE rounding.

• FPs: Detecting a false bit-flip in an entry of xk implies that this entry is
not updated during the current iteration and may slow down convergence.
Therefore, we would like to keep the number of FPs low.

• Relative convergence delay µ . If bit-flips are detected, and the respective
values are not pushed back to main memory, the convergence progress of the
method is delayed. We define a metric µ to measure this effect as the ratio
between the number of iterations required by a bit-flip protected method,
to reach a relative residual bounded by τ in the presence of κ errors per
iteration, and the number of iterations required by an un-protected method
to reach the same residual threshold when no errors occur. Ideally, we would
like the delay ratio to be close to 1, which is obviously impossible if we
neglect some bit-flip affected computations.

6

5. Bit-Flip Protection for Jacobi

Synchronous relaxation methods in general, and the Jacobi method in particu-
lar, exhibit the convenient property of a monotonic residual decay [5]. Consider the
relation between the residual r{k} = b−Ax{k} ∈Rn, at an iterate k, and the distance
(error) between the approximation x{k} at that step and the exact solution x{∗}:

r{k} = b−Ax{k} = A
(

x{∗}− x{k}
)
. (2)

For Jacobi, the residual decreases linearly with the iteration count, up to conver-
gence in appropriate floating-point format. Hence, a straight-forward strategy for
detecting errors occurred during the Jacobi iteration consists of checking for a
monotonic decrease of the residual vector, and only accepting the new solution
vector if it passes this test. Unfortunately, this approach is computationally expen-
sive, as the residual computation (which can also be affected by errors) has about
the same cost as the iteration itself. Furthermore, the method will not make any
progress in cases of high bit-flip rates.

5.1. Component-wise bit-flip protection
In addition to the monotonic convergence, the Jacobi iteration also fulfills the

contraction property of fixed-point iterations at the component level, which states
that the difference between the current and last iterate decreases component-wise:

∀i ∈ [1,n], ∃ 0 < θi < 1 :∣∣∣x{k}i − x{k−1}
i

∣∣∣≤ θi

∣∣∣x{k−1}
i − x{k−2}

i

∣∣∣≤ θ 2
i

∣∣∣x{k−2}
i − x{k−3}

i

∣∣∣ . . .
≡ z{k}i ≤ θi z{k−1}

i ≤ θ 2
i z{k−2}

i

(3)

This allows replacing the costly residual test with a component-wise convergence
test, based on the expected difference from the next iterate. For relaxation methods
with a linear convergence rate, for a specific problem, the component-wise ratio:

ci := z{k−1}
i / z{k}i , k = 2,3 . . . (4)

remains constant up to convergence in the respective format. This suggests one
should compute ci in some reliable mode, and exploit the tolerance-based estima-
tion for the difference ∣∣∣∣∣z{k−1}

i

z{k}i

− ci

∣∣∣∣∣≤ ci ·δ , (5)

for some user-defined threshold δ , as (part of) a component-wise error detection
mechanism. Thus, if this condition is not fulfilled, it might be an indicator that an

7

error has occurred, and the update to obtain x{l}i should be rejected. Hereafter we
will refer to the test (5) as the threshold condition (T-COND).

Despite being a good indicator for the practical case of limited precision, the
test T-COND is not perfect. In particular, the condition is not able to detect all
errors since bit-flips with a small effect on the component value can “slip” through
the threshold. This is acceptable, as errors of such magnitude will likely yield no
serious harm to the convergence rate of the relaxation method. On the other hand,
a failure to pass the test due to causes other than an actual bit-flip error can result in
false positives (FPs). Possible causes are rounding effects either in the derivation
of the contraction constants or in the fault detector, as well as delayed updates of
some other components. These FPs may not cause the divergence of the iteration,
but can still result in stagnation of the convergence. The threshold parameter δ

provides a mechanism to balance these two effects.
A central question is how the bit-flip protection strategy handles a negative

evaluation of T-COND. If the strategy rejects the complete Jacobi update, because
(almost) any iteration carries a corruption, an FP, or both, this option will result
in stagnation. Hence, it is beneficial to update only those components where the
condition is fulfilled, while rejecting the changes to locations violating T-COND.
However, accepting some component updates, but rejecting others, destroys the
synchronism of the relaxation method. As a consequence, if a component update
is rejected, the linear decay of the difference between the last and the new iteration
solution approximations will no longer be guaranteed for the remaining compo-
nents. Instead, components strongly depending on those entries which were not
updated may exhibit a small increase of this quantity in the current iteration. These
will expose themselves as FPs during the next iteration. Therefore, to also ensure
progress in the case of FPs, we propose to extend the strategy by a second con-
dition that becomes relevant if a component was not updated during the previous
iteration(s). Concretely, a flag (f lag f p

i) accumulates how many consecutive times
a certain component has not been updated, and the component-wise update is ac-
cepted if the false-positive condition (FP-COND) indicates that the component value
does not explode:

z{k−1}
i

z{k}i

> 10− f lag f p
i (6)

with a certain φ ≥ f lag f p
i . This bound should be chosen according to the con-

dition number of the system matrix and the sought-after relative residual reduc-
tion. Specifically, a higher bound in (6) permits convergence to a very small rela-
tive residual, with the danger of residual explosion for ill-conditioned systems. A
tighter bound prevents residual explosion at the cost of potential stagnation after
a certain residual reduction. In practice, we identified f lag f p

i ≤ φ = 10 to be a

8

good choice for many problems, as this yields convergence to machine precision at
the risk of a residual increase of —at most— φ orders of magnitude multiplied by
the last difference z{k−1}

i . We notice that although this strategy succeeds for the
55 test cases (respectively 110 incomplete triangular factors) we consider in this
paper, there may exist problems for which the mechanism has to be set differently
to detect false positives.

5.2. Implementation details

Figure 1 offers a practical implementation of the bit-flip protection mechanism
in MATLAB®. The function inputs correspond, in that order, to the problem dimen-
sion n, the threshold δ , the convergence component-wise ratio c, the values x{k−1}

and z{k−1} from the previous iterate (xprev and zprev), the current x{k} (xcur),
and values for flags associated with T-COND and FP-COND. After performing the
appropriate operations, the function updates only those entries that pass the test,
overwriting the “previous” xprev and zprev in preparation for the next iteration.
This particular implementation exposes the favorable properties of the bit protec-
tion mechanism for vectorization and execution on an SIMD unit or a data-parallel
architecture. The code involves 12 component-wise operations on vectors of length
n, plus a few masked array updates (e.g., flag fp(fpcond) = 0). Note in par-
ticular that this is also true for the max and min computations, which apply this
operator component-wise.

We emphasize that our approach assumes a reliable computation of c, to ensure
that the iteration has proceeded beyond the increase in the relative residual that can
occur at the beginning of an asynchronous iteration. In practice, we can ensure
the precision of c by, for example, repeating the first few iterations of the Jacobi
method, performing them on reliable hardware/mode, or use a spectral analysis for
a more accurate derivation of the contraction constants. In practice, the Jacobi
method is rarely used as solver, iterating until convergence. Instead, it is rather
used as a smoother or a preconditioner within a more sophisticated solver. In such
settings, a few Jacobi sweeps are repeatedly applied, e.g., in every preconditioned
application. The distinct preconditioned applications are likely to differ with re-
spect to the right-hand side, as well as how close the initial guess is to the solution.
Although the convergence rate mildly depends on the right-hand side vector and
the initial solution guess, performing the first preconditioner application in reliable
mode is likely to provide contraction constants that can be used for the detection
mechanism in all subsequent preconditioner applications that are then realized in
unreliable mode. Analyzing a high number of relaxation steps for a complete con-
vergence analysis comprises different scenarios with respect to the quality of the
initial guess, and allows for easier illustration of the effects encountered.

9

To conclude this discussion of practical aspects, let us inspect the update of
f lag f p. Define di = z{k}i and assume that, in the next iteration, z{k+1}

i does not pass
the test and the corresponding component is not be updated. In iteration k+2, the
update is accepted, provided z{k+2}

i < 101 · d. If rejected again, in iteration k+ 3,
the update will be accepted if z{k+3}

i < 102 ·d; and so on.

f u n c t i o n [...] =

Check_cond(n, delta , c, xprev , zprev , xcur , flag_t , flag_fp)

% Constant vectors

phi = 10;

vk = 10.^[0: -1: - phi];

% Compute component -wise quotient

zcur = max(abs (xcur - xprev), e p s);

zratio = zprev ./ zcur;

% Evaluate T-COND

t1 = abs (zratio - c);

t2 = delta * c;

tcond = (t1 < t2);

% Update FLAG_FP vector and evaluate FP-COND

flag_fp = flag_fp + 1;

t3 = min(flag_fp , phi);

t4 = vk(t3);

fpcond = (zratio > t4);

flag_fp(fpcond) = 0;

% combine T-COND or (flag_t == 1 & FP -COND)

ccond = tcond | (flag_t == 1 & fpcond);

% update flag_t

flag_t = ones(n,1);

flag_t(ccond) = 0;

% Update locations fulfilling T-COND or flag_t == 1 and FP-COND

zprev(ccond) = zcur(ccond);

xprev(ccond) = xcur(ccond);

Figure 1: Bit-flip protection in MATLAB.

6. Experimental Effect of Bit-flips on the Convergence Rate

6.1. Setup and solvers

The experiments in this section, which investigate the roles of the threshold
δ , the impact of the bit-flip location, and the frequency of the bit-flip protection

10

test, were all carried out using MATLAB (release R2016a) and IEEE 754 double-
precision (64-bit) arithmetic on a server equipped with two Intel Xeon E5-2670
sockets and 64 GB of RAM.

The baseline for the evaluation of our fault tolerance technique is a plain MAT-
LAB implementation of the Jacobi iteration in (1). Obviously, this iterative scheme
can be expected to experience slow convergence or even divergence in the presence
of bit-flips. The fault-tolerant variant FTJacobi integrates the soft-error protection
defined by (5)–(6). An implementation for the bit-flip protection is given in Fig-
ure 1.

In both the original and the fault-tolerant codes, the iteration is stopped when
the residual satisfies ‖rk‖2 < τ‖x‖2, for a user-defined threshold τ .

6.2. Detailed evaluation of the Laplace benchmark

In order to expose some basic insights on the performance of the ABFT strat-
egy, we initially target a finite difference discretization of the Laplace problem in
3D. The system matrix is derived from the use of a 27-pt stencil on a 16×16×16
discretization. This results in a regular system matrix with 97,336 nonzeros dis-
tributed over 4,096 rows and a small condition number [5] of 9.36e+01. The pur-
pose of the following evaluation is to assess the impact of these three factors on the
metrics defining the quality of the fault tolerance technique:

• The parameter δ controlling the update in (5).
• The position of the bit-flips, which may occur in any of the 64 bits of the

IEEE 754 representation of a double-precision floating-point number.
• The frequency of the bit-flip protection check fc.

To make the effect of bit-flips more evident, in some of these cases we enforce κ =
40 errors per SpMV, an error rate that could be considered high. The experimental
evaluation in the remainder of this section is based on data that is averaged over 100
repetitions of the experiments, with different random seeds in order to generate
different error positions. A descriptive visualization of the bit-flip check, and more
details about its effect on the relative convergence delay, can be found in [9].

6.2.1. Impact of δ

First, we explore and optimize the value for the threshold δ that balances FPs
against MBFs. To illustrate the effect of this parameter, we take a “snapshot” of
the iteration process at iteration 400, which, for this particular example, is some-
where in the middle of the convergence process. We analyze how many bit-flips
are detected/missed and how many FPs appear at this specific iteration. The first
row of plots in Figure 2 show the number of DBFs/MBFs with a single and κ =40

11

Threshold /
0.7 0.75 0.8 0.85 0.9 0.95 1

A
bs

ol
ut

e
va

lu
es

 fo
r

ite
ra

tio
n

40
0

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58
Detected bitflips
Missed bitflips

Threshold /
0.7 0.75 0.8 0.85 0.9 0.95 1

A
bs

ol
ut

e
va

lu
es

 fo
r

ite
ra

tio
n

40
0

16

17

18

19

20

21

22

23

24
Detected bitflips
Missed bitflips

Threshold /
0.7 0.75 0.8 0.85 0.9 0.95 1

A
bs

ol
ut

e
va

lu
es

 fo
r

ite
ra

tio
n

40
0

10-1

100

101

102

Detected bitflips
Missed bitflips
False positive

Threshold /
0.7 0.75 0.8 0.85 0.9 0.95 1

A
bs

ol
ut

e
va

lu
es

 fo
r

ite
ra

tio
n

40
0

101

102

103

Detected bitflips
Missed bitflips
False positive

Figure 2: DBF, MBF, and FPs for iteration 400 experienced by FTJacobi applied to the Laplace
benchmark. δ ∈ [0.7,1], κ = 1 (left) and κ = 40 (right).

bit-flips per SpMV (left and right plots, respectively). This case motivates the selec-
tion of a small threshold δ in order to detect more errors. The plots in the second
row also also include the number of FPs, which is about two orders of magnitude
larger. This shows that accepting more updates, by choosing a larger threshold δ ,
decreases the number of FPs. In particular, in cases of a large bit-flip rate (right-
hand side plots), the number of FPs dramatically decreases as δ → 1.

6.2.2. Bit-flip position
Our next experiment with the Laplace benchmark evaluates the impact of the

bit-flip position in the detection properties of the bit-flip protection mechanism and
the impact of MBFs as well as FPs on the convergence delay. Figure 3 illustrates
the behavior of these two metrics in four different scenarios corresponding to the
bit-flips affecting: 1) the sign, 2) the exponent, 3) the lower half of the mantissa, or
4) the upper half of the mantissa. The first two rows show a significant impact on
Jacobi, causing either stagnation (corruption in sign bit) or even explosion (cor-

12

ruption in exponent) of the residual (see left-hand side plots). The error protection
mechanism of FTJacobi generally catches all these bit-flips. Only during the first
iterations does this error type slip through. For the mantissa, the bit-flips become
crucial (and are detected) only if the location is relevant in the convergence pro-
cess. The more significant the position in the mantissa is, the higher the index of
the position in the IEEE format, and the earlier the bit-flip becomes relevant for
the Jacobi convergence, and the easier it is for the protection mechanism to detect
this corruption. An important insight is that “small” errors in the mantissa are not
important in the initial iterations, but become important later.

6.3. Relaxing the periodicity of the bit-flip protection test
Naturally, relaxing the error detection frequency fc reduces the overhead in-

troduced by the bit-flip protection mechanism compared to an un-protected Jacobi
iteration. At the same time, bit-flips have a stronger impact when error check-
ing occurs at a lower frequency: the errors propagate along the “dependencies”
in the linear system, and more updates are affected and have to be disregarded.
In Figure 4 we display the behavior of the relative convergence delay µ for error
checking tests performed at every iteration, every other iteration,. . . , up to every
fifth iteration (fc = 1,1/2, . . . fc = 1/5). We consider the two bit-flip rates κ = 1
(left hand-side plot in the figure), and κ = 5 (right hand-side plot). As expected,
the convergence delay rapidly grows with an increasing bit-flip rate and a more
relaxed checking frequency. At the limit, as soon as the combination of bit-flip
rate and propagation exceeds the checking frequency, the bit-flip protected Jacobi
fails to make progress towards the solution. Given this context, a high checking
frequency should be used for strongly connected systems.

6.4. Benchmark problems
Finally, we turn our attention to a collection of real-world benchmarks to eval-

uate the efficiency of the bit-flip protection in a more general setting. For this pur-
pose, we look into the approximate solution of sparse triangular systems arising
for incomplete factorization preconditioners. Particularly, we consider the prob-
lems that are solved using relaxation without bit-flip protection in [8]. These arise
from the incomplete LU factorization of the test matrices listed in Table 1. The
matrices belong to the UFMC test suite or arise as finite difference discretization
of the Laplace operator in 3D with Dirichlet boundary conditions. The sparsity
plots for the test matrices are given in Figure 5. In order to generate the incomplete
LU factors, we apply Reverse Cuthill-McKee (RCM) ordering to reduce the matrix
bandwidth and improve the incomplete factorizations’ accuracy [24]. As an excep-
tion, we use the natural orderings for the Laplace problem and the DC test matrix
as RCM brings no benefits for those two cases.

13

Bit-flip in the sign

Iterations
0 500 1000 1500

Av
er

ag
e

co
un

ts
 p

er
 it

er
at

io
n

0

5

10

15

20

25

30

35

40
Detected bitflips
Missed bitflips

Iterations
0 500 1000 1500

R
el

at
iv

e
re

si
du

al
 n

or
m

10-15

10-10

10-5

100

105

Jacobi no bitflips
Jacobi bitflips
FT-Jacobi no bitflips
FT-Jacobi bitflips

Bit-flip in the exponent

Iterations
0 500 1000 1500

Av
er

ag
e

co
un

ts
 p

er
 it

er
at

io
n

0

5

10

15

20

25

30

35

40
Detected bitflips
Missed bitflips

Iterations
0 500 1000 1500

R
el

at
iv

e
re

si
du

al
 n

or
m

10-15

10-10

10-5

100

105

Jacobi no bitflips
Jacobi bitflips
FT-Jacobi no bitflips
FT-Jacobi bitflips

Bit-flip in the half most significant bits of the mantissa

Iterations
0 500 1000 1500

Av
er

ag
e

co
un

ts
 p

er
 it

er
at

io
n

0

5

10

15

20

25

30

35

40
Detected bitflips
Missed bitflips

Iterations
0 500 1000 1500

R
el

at
iv

e
re

si
du

al
 n

or
m

10-15

10-10

10-5

100

105

Jacobi no bitflips
Jacobi bitflips
FT-Jacobi no bitflips
FT-Jacobi bitflips

Bit-flip in the half less significant bits of the mantissa

Iterations
0 500 1000 1500

Av
er

ag
e

co
un

ts
 p

er
 it

er
at

io
n

0

5

10

15

20

25

30

35

40
Detected bitflips
Missed bitflips

Iterations
0 500 1000 1500

R
el

at
iv

e
re

si
du

al
 n

or
m

10-15

10-10

10-5

100

105

Jacobi no bitflips
Jacobi bitflips
FT-Jacobi no bitflips
FT-Jacobi bitflips

Figure 3: DBF/MBF and convergence delay (right) experienced by FTJacobi applied to the Laplace
benchmark. δ = 0.9 and κ = 40 for different positions of the bit-flips.

14

1 1/2 1/3 1/4 1/5

Checking frequency f
c

0.95

1

1.05

1.1

1.15

1.2

R
e

la
ti
v
e

 c
o

n
v
e

rg
e

n
c
e

 d
e

la
y κ=1

κ=5

Figure 4: Convergence delay experienced by FTJacobi applied to the Laplace benchmark. δ = 0.9
and κ = 1 or 5 for different checking frequency fc in the bit-flip protection mechanism.

Name Abbrev. Description Nonzeros nz Size n

U
FM

C

CHIPCOOL0 CHP Convective thermal flow (FEM) 281,150 20,082
DC1 DC Circuit simulation matrix 766,396 116,835
STOMACH STO 3D electro-physical duodenum model 3,021,648 213,360
VENKAT01 VEN Unstructured 2D Euler solver (FEM) 1,717,792 62,424

LAPLACE3D LAP 3D Laplace problem (27-pt stencil) 6,859,000 262,144

Table 1: Test matrices.

Table 2 illustrates some key characteristics of the resulting sparse triangular
factors. A crucial difference with respect to the previous experiments is that, for
incomplete factorization preconditioning, the sparse triangular systems do not need
to be solved with high accuracy. Typically, an approximated solution reducing the
initial residual by a moderate factor is sufficient to produce the same precondi-
tioning benefits in the top-level solver as those attained from an “exact” triangular
solve via forward-backward substitution [7, 8]. For this reason, we investigate
the performance of the bit-flip protection for the relative residual stopping criteria

CHP DC STO VEN LAP

Figure 5: Sparsity plots of test matrices listed in Table 1.

15

Matrix Factor Dimension Nonzeros Condition number

CHP
L 20,082 150,616 7.90e+05
U 20,082 150,616 1.75e+11

DC
L 116,835 441,781 6.54e+10
U 116,835 441,450 6.50e+09

STO
L 213,360 1,660,005 1.38e+07
U 213,360 1,575,003 6.08e+07

VEN
L 62,424 890,108 1.85e+07
U 62,424 890,108 2.51e+10

LAP
L 262,144 3,560,572 4.19e+00
U 262,144 3,560,572 4.19e+00

Table 2: Characteristics of the sparse triangular factors employed in the experimentation.

τ ∈ {10−1,10−2}.
Table 3 lists the relative convergence delay (together with other statistics) for

scenarios with κ = 1 and κ = 5 bit-flips per SpMV. For STO, convergence is reached
within the reliable iterations. Furthermore, it can be observed that in the case of 5
corruptions per update, the convergence delay for the upper triangular factor U
of the DC problem is significant. The reason is that the nonzero entries in this
factor are not evenly distributed, but lie all in one row. When inserting 5 bit-flips
in random nonzero locations, the dense rows will almost always carry at least one
corruption. Except for that case, FTJacobi provides satisfying convergence to the
target accuracy with moderate convergence delay for all problems.

In order to validate the strategy on a larger set of problems, we conducted the
same experiment with additional matrices from UFMC. Concretely, we selected
55 matrices from this collection, computed the incomplete LU factors, and applied
FTJacobi in an SDC-prone environment where every SpMV is affected by κ = 1
and κ = 5 bit-flips, respectively. At this point, it is worth to pointing out that, with-
out an experimental setup to investigate the practical behaviour of the technology
under distinct stressing scenarios, it is difficult to determine whether 1/5 errors per
iteration correspond to reasonable values. Therefore, we follow previous work:
In [19] the authors experiment with 4 and 40 errors per iteration, but recognize that
these error rates are extremely high relative to estimates in the literature. In [16],
the authors considered the probability of faulty inner iterations to be in the range
0.1–0.5.

For brevity of presentation, we form the average values for DBF, MBF, and the
delay µ , over all lower and upper sparse triangular systems included in the study. In
Figure 6 we visualize these averages for different relative residual stopping criteria.
As could be expected from the evaluation on the bit-flip location in Section 6.2.2,
DBF increases with the demanded approximation accuracy. The test suite contains
some matrices with a circuit simulation origin that exhibit a high number of nonze-

16

κ = 1 κ = 5
Matrix τ = 10−1 τ = 10−2 τ = 10−1 τ = 10−2

Factor µ DBF MBF FPs µ DBF MBF FPs µ DBF MBF FPs µ DBF MBF FPs

CHP
L 1.00 12 88 4.16e+04 1.00 13 87 9.56e+04 1.00 10 90 8.31e+03 1.00 14 86 1.92e+04
U 1.00 15 85 5.30e+03 1.00 12 88 1.16e+04 1.00 10 90 1.06e+03 1.00 12 88 2.39e+03

DC
L 1.17 66 34 6.97e+06 1.14 63 37 5.63e+06 1.17 61 39 1.39e+06 1.14 60 40 1.13e+06
U 1.33 67 33 1.68e+06 1.57 71 29 1.80e+06 1.67 72 28 3.79e+05 1.43 72 28 3.79e+05

STO
L 1.00 * * * 1.00 41 59 4.36e+06 1.00 * * * 1.00 39 61 8.73e+05
U 1.00 * * * 1.00 85 15 8.52e+06 1.00 * * * 1.00 84 16 1.70e+06

VEN
L 1.23 34 67 1.91e+06 1.22 41 59 2.08e+06 1.23 34 66 3.81e+05 1.22 42 58 4.15e+05
U 1.12 34 66 1.78e+06 1.12 37 63 1.84e+06 1.12 33 67 3.56e+05 1.12 37 63 3.68e+05

LAP
L 1.00 11 89 7.20e+03 1.00 10 90 4.41e+05 1.00 5 95 1.44e+03 1.00 11 89 8.81e+04
U 1.00 11 89 1.20e+03 1.00 11 89 3.27e+05 1.00 5 95 2.40e+02 1.00 11 89 6.99e+05

Table 3: Relative convergence delay µ of FTJacobi applied to UFMC benchmarks for δ = 0.9,
κ = 1 (left) and κ = 5 (right). The number of DBPs, MBPs, and FPs is given relative to the number
of actual corruptions.

ros in the same row of the upper triangular factor (compare with the DC problem
in Figure 5). Thus, in particular for high bit-flip rates, there is a significant chance
that this row is affected by a randomly introduced bit-flip. As a result, the conver-
gence delay of FTJacobi is typically higher for the upper triangular systems; see
right-hand side plot of Figure 6. Comparing the delay for the two bit-flip scenarios
κ = 1 and κ = 5, the higher bit-flip rate causes only a moderate increase in the
convergence delay.

1e-2 1e-3 1e-4 1e-5 1e-6
Relative residual threshold =

0

20

40

60

80

100

A
ve

ra
ge

 o
ve

r
te

st
 c

as
es

 in
 [%

] Convergence delay 7
DBF
MBF

1e-2 1e-3 1e-4 1e-5 1e-6
Relative residual threshold =

0

20

40

60

80

100

A
ve

ra
ge

 o
ve

r
te

st
 c

as
es

 in
 [%

] Convergence delay 7
DBF
MBF

Figure 6: Relative convergence delay µ , DBF and MBF for FTJacobi as average over a set of
matrices from UFMC. Left side is for the scenario κ = 1, right side is for κ = 5. The solid lines
represent the data for solving the lower triangular ILU(0) factors, the dashed lines are for solving the
upper triangular ILU(0) factors. The matrices included have the unique UFMC ID 3, 23, 24, 26, 27,
30, 38, 44, 62, 159, 206, 207, 220, 221, 223, 315, 353–355, 422, 872–877, 889, 924, 1311–1315,
1331, 1347, 1358, 1360, 1363, 1406, 1409, 1506, 1621, 1623, 1625, 1847, 2203, 2204–2213.

17

7. HPC Implementation for GPUs

The production-code survey addressing the iterative solution of sparse trian-
gular systems in this section employs a GPU implementation of the plain (unpro-
tected) Jacobi solver (Jacobi) and a variant enhanced with the bit-flip protection,
both available in the MAGMA-sparse package, part of the MAGMA open source
software package [25]. The bit-flip protected FTJacobi differs from the plain im-
plementation in that it integrates the bit-flip check given in (1) prior to writing the
component updates back to main memory. MAGMA is compiled using CUDA
and cuSPARSE in version 7.5 [26], and employs a default thread block size of 256.
The GPU target architecture is an NVIDIA Tesla K40 GPU (Kepler microarchi-
tecture) with a theoretical peak performance of 1,682 (double precision) GFLOPS
(billions of floating-point arithmetic operations). The 12 GB of GPU main mem-
ory can be accessed at a theoretical bandwidth of 288 GB/s. A bandwidth analysis
using large data-streams reveals a realistic data access rate of about 193 GB/s [25].
The Jacobi solvers are GPU-only implementations, and all data resides in the GPU
main memory. Nevertheless, for completeness we mention that the host is the same
dual-socket Intel Xeon E5 architecture employed in the MATLAB analysis.

1 1/2 1/3 1/4 1/5

Checking frequency f
c

0

20

40

60

80

100

O
v
e
rh

e
a
d
 [
%

]

CHP

 DC

STO

VEN

LAP

1 1/2 1/3 1/4 1/5

Checking frequency f
c

0

20

40

60

80

100

O
v
e
rh

e
a
d
 [
%

]

CHP

 DC

STO

VEN

LAP

Figure 7: Overhead of bit-flip detection for the GPU implementation of Jacobi and different checking
frequencies fc. The left plot shows the data for the lower triangular factors, the data for the upper
triangular factors is on the right plot. Each curve shows the data for one sparse incomplete factor
with the respective properties listed in Table 2.

In the previous section, we evaluated the convergence process of FTJacobi
when running in an SDC-prone environment. When applied to the sparse triangu-
lar factors arising in the incomplete LU preconditioning process, the convergence
was delayed because of updates being rejected. This already makes the FTJacobi
slower than the un-protected Jacobi by a factor µ . On top of this, the iteration
process of FTJacobi is deccelerated as it performs the additional bit-flip check. In

18

Figure 7 we report the overhead introduced by this test in the GPU implementa-
tion of FTJacobi available in MAGMA-sparse. As expected, the overhead is very
different for the distinct test cases. Overall, the relative overhead decreases with a
rising cost of the SpMV. When the test is checked every other iteration, the overhead
is below 33% for all problems except for the lower ILU factor of DC, where the
combination of a low nonzero count and balanced distribution makes the sparse
matrix-vector product inexpensive. For this case, the SpMV has a computational
cost similar to the bit-flip check, which causes more than 90% overhead when the
test is performed every iteration. The overhead of the protection mechanism lin-
early decreases with the checking frequency.

8. Undervolting for Energy Efficiency

Dynamic voltage-frequency scaling (DVFS) is a common technology integrated
in most current HPC and embedded architectures to reduce power dissipation of the
processor and, for some applications, increase energy efficiency [27]. Compared
with DVFS, undervolting is an appealing technique which advocates for reduc-
ing the processor voltage only, leaving the frequency, and, therefore, the processor
performance, unchanged. However, pushing undervolting to the limits (a case of
NTVC) can result in a high number of bit-flips. As a consequence, undervolting is
only attractive for applications with some natural tolerance to errors (e.g., video/-
sound processing) or algorithms that are enhanced to deal with soft errors.

In this section we analyze the trade-off between extended runtime and reduced
voltage that can potentially render energy gains for our bit-flip protected version
of the Jacobi method. For this purpose, consider a particular voltage-frequency
configuration defined by (V1, f) that is “reliable”, and an alternative configuration
(V2, f) where the voltage is below the safe minimum so that the floating-point
hardware can introduce bit-flips.

The on-chip energy consumption of the Jacobi method, operating in the reliable
configuration, can be modeled as:

E1 = P1T1 = αV 2
1 f T1, (7)

where P1 and T1 denote the (average) power dissipation rate and execution time,
respectively; and we consider that the energy consumption is proportional (by a
factor α) to the product V 2

1 f [28]. We note that this estimation only accounts for
the dynamic voltage used in the computations, not the static energy draw constant
and independent of the computational load. Also, the energy consumption of the
main memory remains outside the scope of this analysis. For computations in
unreliable mode/hardware, the dynamic voltage is reduced to V2. Modeling the

19

energy draw of the fault-tolerant Jacobi remains difficult as the bit-flip protection
mechanism has to proceed in reliable mode. In most cases, however, from the
perspective of energy, the consumption of the fault-tolerant Jacobi is dominated the
sparse matrix-vector product, as the latter will have to retrieve the full matrix from
off-chip memory. Therefore, in order to keep the model simple, we neglect the
use of reliable computations in the detection mechanism, modelling the dynamic
on-chip energy of the Jacobi protected against bit-flips as

E2 = P2T2 = αV 2
2 f T1µ(1+Op), (8)

where µ is the convergence delay (due to MBF and FPs) while Op represents the
overhead due to the bit-flip protection mechanism. Here, the use of the same pa-
rameter α as in (7) reflects that this parameter depends on the properties of the
operation being executed and the hardware [29].

Given certain overhead factors defined by µ and Op, the unreliable configura-
tion delivers the same energy cost as the reliable one if the equation

E1 = αV 2
1 f T1 = αV 2

2 f T1µ(1+Op) = E2, (9)

holds. This implies, the unreliable computation has to be operated at the voltage
level

V 2
2 =

V 2
1

µ(1+Op)
. (10)

C
H
P L

C
H
P U

D
C
 L

D
C
 U

STO
 L

STO
 U

VEN
 L

VEN
 U

LA
P L

LA
P U

0.5

0.6

0.7

0.8

0.9

1

R
e

la
ti
v
e

 V
o

lt
a

g
e

f
c
=1

f
c
=1/2

f
c
=1/3

f
c
=1/4

f
c
=1/5

C
H
P L

C
H
P U

D
C
 L

D
C
 U

STO
 L

STO
 U

VEN
 L

VEN
 U

LA
P L

LA
P U

0.5

0.6

0.7

0.8

0.9

1

R
e

la
ti
v
e

 V
o

lt
a

g
e

f
c
=1

f
c
=1/2

f
c
=1/3

f
c
=1/4

f
c
=1/5

Figure 8: Required voltage reduction for the Jacobi method operating in unreliable mode to offer
the same energy efficiency as the unprotected Jacobi method executed in bit-flip free mode. The left
visualizes a scenario where the voltage reduction results in one bit-flip per iteration, κ = 1 (left) and
κ = 5 (right).

20

At this point, we note that we reported experimental values for µ and Op in
Table 3 and Figure 7, respectively. Armed with this data, and assuming a normal-
ized voltage V1 = 1, Figure 8 visualizes the reduction ratio V 2

2 /V 2
1 required by the

unreliable configuration to match the energy consumption of the reliable one, for
scenarios with a single bit-flip per iteration (left), five bit-flips per iteration (right),
and moderate checking frequencies fc = 1,1/2, . . . ,1/5. This experiment reveals
that, for most cases, a reduction of voltage in a factor around 20% or less is suf-
ficient to compensate the convergence delay and protection overhead. In addition,
as long as the error bit-flip rate remains within these bounds, for many of these
scenarios a larger reduction rate may even result in the unreliable mode rendering
higher energy efficiency than the reliable configuration.

9. Concluding Remarks

We have described a practical bit-flip protection mechanism that transforms a
synchronized Jacobi iteration —with no inherent protection against errors— into
an asynchronous fault tolerant relaxation method. The error protection scheme op-
erates at the component level, individually accepting or rejecting updates at each it-
eration, depending on whether they pass certain tests based on a single user-defined
threshold δ . Furthermore, the tests are composed of a few Level-1 BLAS-like op-
erations which can be efficiently implemented in vector (SIMD) units, yielding an
affordable overhead.

Our detailed experiments with several sparse benchmarks reveal a number of
key insights:

• The threshold δ offers a means to balance the effects of MBFs vs FPs. This
evaluation also reveals that, for reasonable bit-flip rates, the relative conver-
gence delay stays within reasonable margins for all residual thresholds.

• As the bit-flip location moves towards the less significant part(s) of the num-
ber, errors become easier too miss but exert a milder effect on the relative
residual until that level of accuracy is reached.

• For strongly connected systems, a high bit-flip rate can only be tackled via a
high checking frequency.

• Unless the bit-flips repeatedly corrupt the same component, the protection
mechanism is also able to ensure convergence for high bit-flip rates with a
reasonable convergence delay.

• For most problems, the bit-flip protected GPU implementation of FTJacobi
available in the MAGMA-sparse software package is only slightly slower
than the baseline implementation of Jacobi.

21

• The bit-flip protection makes the bit-flip protected Jacobi method attractive
for settings where undervolting is used to improve the energy efficiency at
the cost of relaxed reliability.

Future work will focus on realizing FTJacobi in a SDC-prone hardware set-
ting.

Acknowledgments

This material is based upon work supported in part by the U.S. Department of
Energy (Award Number DE-SC-0010042) and NVIDIA. E. S. Quintana-Ortı́ was
supported by project CICYT TIN2014-53495-R of MINECO and FEDER.

[1] M. Duranton, K. D. Bosschere, A. Cohen, J. Maebe, H. Munk, HiPEAC vi-
sion 2015, https://www.hipeac.org/assets/public/publications/
vision/hipeac-vision-2015_Dq0boL8.pdf (2015).

[2] P. Kogge, et al., ExaScale computing study: Technology challenges in achiev-
ing ExaScale systems, http://users.ece.gatech.edu/~mrichard/

ExascaleComputingStudyReports/exascale_final_report\

_100208.pdf (2008).

[3] R. Lucas, et al., Top ten Exascale research challenges, http:

//science.energy.gov/~/media/ascr/ascac/pdf/meetings/

20140210/Top10reportFEB14.pdf (2014).

[4] G. Moore, Cramming more components onto integrated circuits, Electronics
38 (8) (1965) 114–117.

[5] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.

[6] U. Trottenberg, A. Schuller, Multigrid, Academic Press, Inc., 2001.

[7] E. Chow, A. Patel, Fine-grained parallel incomplete LU factorization, SIAM
Journal on Scientific Computing 37 (2) (2015) C169–C193.

[8] H. Anzt, E. Chow, J. Dongarra, Iterative sparse triangular solves for precon-
ditioning, in: J. L. Träff, S. Hunold, F. Versaci (Eds.), Euro-Par 2015: Parallel
Processing, Vol. 9233 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2015, pp. 650–661. doi:10.1007/978-3-662-48096-0 50.
URL http://dx.doi.org/10.1007/978-3-662-48096-0_50

22

[9] H. Anzt, J. Dongarra, E. S. Quintana-Ortı́, Tuning stationary iterative solvers
for fault resilience, in: Proc. 6th Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems, ScalA’15, ACM, 2015, pp. 1:1–1:8.

[10] C. Chalios, D. S. Nikolopoulos, S. Catalán, E. S. Quintana-Ortı́, Evaluat-
ing asymmetric multicore systems-on-chip and the cost of fault tolerance
using iso-metrics, IET Computers & Digital TechniquesSubmitted. Avail-
able upon request from the authors. A preliminary version is available at
arXiv:1503.08104 and was presented at WAPCO-HiPEAC 2015.

[11] Innovative Computing Lab, Software distribution of MAGMA version 2.0,
http://icl.cs.utk.edu/magma/ (2016).

[12] U. Karpuzcu, N. S. Kim, J. Torrellas, Coping with parametric variation at
near-threshold voltages, Micro, IEEE 33 (4) (2013) 6–14.

[13] D. Kanter, Intel’s near-threshold voltage computing and applications,
http://www.realworldtech.com/near-threshold-voltage/

(September 2012).

[14] G. Bronevetsky, B. de Supinski, Soft error vulnerability of iterative linear al-
gebra methods, in: Proc. 22nd Annual Int. Conf. on Supercomputing, ICS’08,
2008, pp. 155–164.

[15] Z. Chen, Online-ABFT: An online algorithm based fault tolerance scheme
for soft error detection in iterative methods, in: Proc. 18th ACM SIGPLAN
Symp. Principles and Practice of Parallel Programming, PPoPP’13, 2013, pp.
167–176.

[16] P. G. Bridges, K. B. Ferreira, M. A. Heroux, M. Hoemmen, Fault-tolerant
linear solvers via selective reliability, ArXiv e-prints 1206.1390, 2012.

[17] J. Elliott, M. Hoemmen, F. Mueller, Evaluating the impact of SDC on the
GMRES iterative solver, in: Proc. 2014 IEEE 28th Int. Parallel and Dis-
tributed Processing Symp., IPDPS’14, 2014, pp. 1193–1202.

[18] J. Elliott, M. Hoemmen, F. Mueller, Exploiting data representation for fault
tolerance, in: Proc. 5th Workshop on Latest Advances in Scalable Algorithms
for Large-Scale Systems, ScalA’14, 2014, pp. 9–16.

[19] P. Sao, R. Vuduc, Self-stabilizing iterative solvers, in: Workshop Latest Ad-
vances in Scalable Algorithms for Large-Scale Systems, 2013, pp. 4:1–4:8.

23

[20] J. Calhoun, M. Snir, L. Olson, M. Garzaran, Understanding the propagation
of error due to a silent data corruption in a sparse matrix vector multiply, in:
IEEE Int. Conf. Cluster Computing 2015, 2015, pp. 541–542.

[21] D. Chazan, W. Miranker, Chaotic Relaxation, Linear Algebra and Its Appli-
cations 2 (7) (1969) 199–222.

[22] A. Frommer, D. B. Szyld, On asynchronous iterations, Journal of Computa-
tional and Applied Mathematics 123 (2000) 201–216.

[23] S. Venkataramani, S. T. Chakradhar, K. Roy, A. Raghunathan, Approximate
computing and the quest for computing efficiency, in: Proceedings of the
52nd Annual Design Automation Conference, DAC’15, 2015, pp. 120:1–
120:6.

[24] I. S. Duff, G. A. Meurant, The effect of ordering on preconditioned conjugate
gradients, BIT 29 (4) (1989) 635–657.

[25] H. Anzt, J. Dongarra, M. Kreutzer, M. Koehler, Efficiency of general Krylov
methods on GPUs – An experimental study, in: The Sixth International Work-
shop on Accelerators and Hybrid Exascale Systems (AsHES), 2016.

[26] NVIDIA Corporation, CUDA Toolkit v7.5 (September 2015).

[27] HP Corp., Intel Corp., Microsoft Corp., Phoenix Tech. Ltd., Toshiba Corp.,
Advanced configuration and power interface specification, revision 5.0
(2011).

[28] J. L. Hennessy, D. A. Patterson, Computer Architecture: A Quantitative Ap-
proach, 5th Edition, Morgan Kaufmann Pub., 2012.

[29] J. I. Aliaga, M. Barreda, M. F. Dolz, A. F. Martı́n, R. Mayo, E. S. Quintana-
Ortı́, Assessing the impact of the CPU power-saving modes on the task-
parallel solution of sparse linear systems, Cluster Computing 17 (4) (2014)
1335–1348.

24

Author biographies

Hartwig Anzt is a research scientist in Jack Dongarra’s Inno-
vative Computing Lab (ICL) at the University of Tennessee. He
received his Ph.D. in mathematics from the Karlsruhe Institute of
Technology (KIT) in 2012. Dr. Anzt’s research interests include
simulation algorithms, sparse linear algebra – in particular iter-
ative methods and preconditioning, hardware-optimized numerics
for GPU-accelerated platforms, and power-aware computing.

Jack Dongarra holds an appointment at the University of
Tennessee, Oak Ridge National Laboratory, and the University
of Manchester. He specializes in numerical algorithms in lin-
ear algebra, parallel computing, use of advanced-computer ar-
chitectures, programming methodology, and tools for parallel
computers. He was awarded the IEEE Sid Fernbach Award in
2004; in 2008 he was the recipient of the first IEEE Medal of
Excellence in Scalable Computing; in 2010 he was the first re-
cipient of the SIAM Special Interest Group on Supercomputing’s award for Career
Achievement; in 2011 he was the recipient of the IEEE IPDPS Charles Babbage
Award; and in 2013 he received the ACM/IEEE Ken Kennedy Award. He is a Fel-
low of the AAAS, ACM, IEEE, and SIAM and a member of the National Academy
of Engineering.

Enrique S. Quintana-Ortı́ received his bachelor and Ph.D.
degrees in Computer Sciences from the Universidad Politecnica
de Valencia (Spain) in 1992 and 1996. Currently he is professor
in Computer Architecture in the Universidad Jaume I of Castel-
lon (Spain). He has published more than 100 papers in interna-
tional conferences and journals, and has contributed to software
libraries like SLICOT and libflame. His research interests in-
clude parallel programming, linear algebra, power consumption,
as well as advanced architectures and hardware accelerators.

25

