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Abstract 
Triangulation is a surveying method on which earlier maps made were based. 1 

Although the origins of the method can be traced back to the 16
th
 century, it is 2 

still used today, with minor changes, to adjust networks observed with modern 3 

geodetic techniques. In this paper we present the geodetic survey work that was 4 

carried out for the primary triangulation network of the first 1:500 urban map of 5 

the city of València (Spain). It spanned from 1929 to 1944 and resulted in 421 6 

maps covering about 174 square kilometres. We focus on four key elements to 7 

define the geometric framework of a map: (1) the geodetic network, (2) the 8 

cartographic projection, (3) the baseline measurements, and (4) the primary 9 

triangulation. The paper is based on the interpretation of original documents and 10 

field books recovered from the archives of the València City Council. In order to 11 

check the accuracy and consistency of the survey work, we recomputed all 12 

calculations directly from the field data, following the mathematical procedures 13 

of the time. We obtained a set of transformation parameters to convert the 14 

coordinates of 1929 to current coordinates based on the European Terrestrial 15 

Reference System of 1989 (ETRS89). Results showed that the 1929 primary 16 

triangulation angles and coordinates are accurate to 8” and 35 cm respectively, 17 

and that the coordinates transform well into the current reference system with 18 

average residuals of 26 cm across nine control points, demonstrating the high 19 

quality of the 1929 work.  20 

 21 

Keywords: urban mapping, triangulation, cartographic heritage, quality control, 22 

geodetic surveying, ETRS89 23 

 24 

1. Introduction  25 

In 1929, the València City Council commissioned the Instituto Geográfico y Catastral 26 

(IGC), the former Spanish National Mapping Agency, to make the first accurate urban 27 
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map at a scale of 1:500. This was quite a challenging technical endeavour at the time. 28 

The project took 15 years to complete, with an intervening civil war. València is located 29 

on the Mediterranean coast of Spain next to the mouth of the river Turia (Fig. 1) and has 30 

been historically the third city in Spain, temporarily becoming the capital of the country 31 

during the civil war. In the beginning of the 20th century, social and economic forces 32 

demanded further signs of development and modernity that had already been started 33 

with the celebration of the Regional Expo in 1909 and the inauguration of the new 34 

railway station in 1917. One key element that had to support those developments was a 35 

new urban map of the city, whose backbone was the triangulation network.  36 

[Figure 1 near here] 37 

The first use of the triangulation method in geodetic networks is usually 38 

attributed to the Dutch astronomer Willebrord Snel van Royen (Haasbroek 1968, 39 

Murdin 2009, Shank 2012). Snel, sometimes spelled as Snell after his latinised name 40 

Snellius, carried out a triangulation in 1615 with the purpose of finding the diameter of 41 

the earth. However, there are earlier references that include either theoretical definitions 42 

or practical applications of the method of triangulation. Indeed, it seems that Snel 43 

learned this method from publications by the Dutch cartographer and mathematician 44 

Gemma Frisius (Haasbroek 1968, Hewitt 2011), among whose students was the great 45 

cartographer Gerardus Mercator. The main reference by Frisius regarding triangulation 46 

was Cosmographia Petri Apiani, published in 1533, which contained an appendix 47 

defining the method of triangulation. 48 

Much less known are the early works of the Spaniard Jerónimo Muñoz who used 49 

a triangulation sketch on the Valencian coast (Fig. 2) in his university lectures. It is 50 

thought that this graphical triangulation, made in 1568 without the help of trigonometric 51 

or logarithmic calculations, and known afterwards through Snel, was the basis for the 52 
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creation of the Ortelian Valencian Map in 1585. It is considered a modern map with 53 

correct geodetic references, at the same technological level as other contemporary maps 54 

from nearby European countries (Navarro 2004, Roselló 2000, Roselló 2008). 55 

In 1929 the method of triangulation had evolved since its inception four 56 

centuries earlier, but was still in the pre-computer era. This means that computations 57 

had to be done by manual methods, with the use of logarithm tables, thus eliminating 58 

any possibility of automation. The standard procedure was to establish two baselines at 59 

the limits of the surveyed area. Once the baselines were measured and orientated, a 60 

chain of triangles, the triangulation network proper, had to be designed to connect both 61 

baselines. After computing all triangles from the starting baseline, the computed length 62 

and azimuth for the closing baseline were available. The comparison of the measured 63 

and the computed values of this baseline determined the quality of the network and, 64 

most importantly, the scale and the orientation of the resulting map. 65 

[Figure 2 near here] 66 

It should be noted that the map obtained from the network of 1929 was a high 67 

class product of its time. This map was routinely used for urban planning and public 68 

information purposes until the 1990s, and even later, in several city council services. 69 

The 1929 map is still the most reliable source for graphical information on older real 70 

estate properties, roads, railways, sewer lines and other public facilities. 71 

Therefore, this map must be considered as a valuable cartographic heritage item 72 

to be preserved. It should be made available to interested users, including general public 73 

users as well as researchers. In fact, urban development studies are potential candidates 74 

to extract new insights from such documents (Gatta 2010). In this line of research, the 75 

International Cartographic Association (ICA) created in 2007 the Commission on 76 
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Digital Technologies in Cartographic Heritage, whose aim is to encourage digital 77 

approaches to cartographic heritage (Bitelli et al. 2014). 78 

The main purpose of this paper is to report on field and mathematical procedures 79 

that defined the geodetic triangulation network of the map. A second, though not less 80 

important, goal of the paper is to keep a record of the standard surveying procedures 81 

existing in the first half of the 20
th

 century, and preserve that information for future 82 

generations of cartographers and scholars. 83 

2. Description and analysis of the triangulation 84 

In this section we provide the basic elements, formulas and terminology to conveniently 85 

follow the calculations given below. Triangulation has been used to define national 86 

mapping programmes in many countries (Ogilvie 1921, Adams 1940, Culley 1940, 87 

Staack 1940, Schofield & Breach 2007) using a hierarchical structure based on a 88 

primary network that is densified into several lower order networks, typically until the 89 

third or fourth order (Blachut et al. 1979). The network discussed herein must be 90 

considered as a fourth order or local network according to this classic approach. Modern 91 

techniques, especially space geodesy, have made this approach obsolete.  92 

Triangulation is a well-known surveying technique that relies on the 93 

measurement of the inner angles of a triangle network with the aim of determining the 94 

distances between the stations by trigonometry. This method requires that one or more 95 

baselines with known lengths and azimuths be measured separately to define the scale 96 

and orientation of the network (Gorse et al. 2012). In the end, the triangulation method 97 

provides spatial locations for every station in a plane coordinate system. Moreover, the 98 

three interior angles in each triangle allow for the checking of measurement errors 99 

(Brinker & Minnick 1987). In summary, a triangulation project requires a number of 100 
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interconnected triangles covering the mapping area whose angles are observed using 101 

typical surveying equipment. 102 

2.1. Coordinate reference system 103 

The lack of standards in 1929 led each country to adopt different local coordinate 104 

reference systems. In Spain, there were indeed several coordinate systems that were 105 

used simultaneously. Although the International Meridian Conference that defined 106 

Greenwich as the standard prime meridian had been held in 1884 in Washington, the 107 

use of a different prime meridian in each country was still common practice. In Spain, 108 

the geographic coordinates of the national geodetic network were computed using the 109 

so-called Madrid datum (Mugnier 2000), which was based on the prime meridian 110 

defined in the Madrid Astronomical Observatory (3º 41´15.45´´ west of Greenwich) and 111 

the Struve ellipsoid (IGC, 1928). The fieldwork reported in this paper was still based on 112 

the Spanish datum, even though the Greenwich meridian had officially been adopted in 113 

Spain in 1901. 114 

In geodetic terms, an urban network is a lower order (4
th

 order) or local network 115 

that needs to be geometrically connected to higher order networks to be consistent with 116 

national reference systems. Such a connection is achieved by including several high 117 

order stations in the urban network design, observation and computation. According to 118 

the documentation located for our study, the connecting network, which was executed 119 

prior to 1929, comprised 12 stations (Fig. 3), two of which (Miguelete and Almàcera) 120 

were also used in the urban network. 121 

We did not find specific information on the geodetic coordinate reference 122 

system used in the project, although it was not difficult to guess. The hint was a listing 123 

containing three geodetic stations located outside of the working area with geographical 124 

and plane coordinates. We assumed that the geographical coordinates were in the 125 



-6- 

 

Madrid datum and tried several projections. It turned out that the projected coordinates 126 

were computed using the Tissot projection (Cebrián & Los Arcos 1895, Tissot 1881) 127 

still used in 1929. 128 

It is not clear why this connecting network (see Fig. 3) was included in the files 129 

of the 1929 map. In theory, those networks were intended to transfer the coordinate 130 

reference system (specifically origin, scale and orientation) from the higher to the lower 131 

order network. However, the final decision was to use a local reference system with an 132 

arbitrary origin and astronomical orientation (see details in Section 2.3 and Section 4). 133 

Maybe, the information on this geodetic network was collected by the engineers from 134 

an early IGC project for the definition of the new urban coordinate system. But for 135 

some reason it was finally dismissed. 136 

[Figure 3 near here] 137 

2.2. Baseline length 138 

There were two baseline measurements in the triangulation project of 1929. The 139 

measurement stage comprised the length and the orientation determinations of the 140 

baselines which were conducted independently from the angle observations in the 141 

network. In the beginning of the 20
th

 century the use of rigid bars was common for 142 

baseline measuring apparatus until the advent of the invar wires technology. Invar 143 

devices were introduced in Spain by 1924 (de la Puente, 1925) and used in the 1929 144 

project. Invar is an alloy made of nickel (36%) and iron (64%) that has a uniquely low 145 

thermal expansion coefficient. Its invention dates back to the experiments conducted by 146 

Benoît and Guillaume in 1896 (Benoît & Guillaume 1917). 147 

Previously in 1880, Jadörin established a new methodology to stretch metal 148 

wires which was then used to manufacture invar measurement equipment. Both 149 

inventions allowed geodesists to dramatically reduce the time required for distance 150 
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measurements while increasing the accuracy. The paramount role of the invar 151 

measurement technique was explained in the lecture entitled ‘Invar and elinvar’, given 152 

by Guillaume when he was awarded the Nobel Prize in 1920 (Nobel Foundation 1998). 153 

The prize was awarded ‘in recognition of the service he has rendered to precision 154 

measurements in Physics by his discovery of anomalies in nickel steel alloys.’ 155 

The invar measurement technique requires a division of the baseline in sections 156 

that are measured sequentially and added up to obtain the total baseline length. All the 157 

sections must be perfectly aligned with auxiliary equipment to give reliable results. The 158 

nominal length of the invar wire is 24 m, its diameter is 1.65 mm and its circular cross 159 

section is 2.14 mm
2
 (Bomford 1952). The auxiliary equipment included a clinometer to 160 

read the slope angles, a thermometer to compute the thermal coefficient of the wires, 161 

target devices mounted on tripods to make readings against an index, a spring balance 162 

and tension poles. 163 

The measurement procedure gives the length of each section in 3D space. The 164 

raw measurement (L0) is first corrected for the observation temperature (IGE 1907):  165 

𝐿 = 𝐿𝑂 ∙  1 +  0.0618 ∙ (𝑡 − 𝑡𝑅𝐸𝐹) − 0.00065 ∙(𝑡 − 𝑡𝑅𝐸𝐹)2 ∙ 10−6  

 
[1] 

 

where L is the corrected measurement, Lo is the field observed measurement, t is the 166 

observation temperature and tREF is the reference calibration temperature (here 15ºC). 167 

This length should then be projected onto the horizontal plane using the formula: 168 

𝐿′ = 𝐿 ∙ 𝑐𝑜𝑠 𝐶𝑡    

 

[2] 

 

where L is the corrected slope length and Ct is the slope angle. The sum of all the values 169 

of L’ amounts to the total baseline length. In order to avoid gross errors, each section 170 
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was measured a number of times (five times in the project of 1929). The sample of 171 

observations provides a residual (νi) per individual measurement: 172 

𝜈𝑖 = 𝐿𝑚 − 𝐿𝑖  

 

[3] 

 
where Lm is the average value of the series and Li is the i

th
 measurement. The standard 173 

procedure also gives a formula to compute the standard deviation (sLi) of a single 174 

distance measurement for every section of the baseline: 175 

𝑠𝐿𝑖
=  

 𝜈𝑖
2𝑛

𝑖=1

𝑛 − 1
  

 

[4] 

 

The standard deviation of the mean of five measurements for each section computes as: 176 

𝑠𝐿 𝑖
=

𝑠𝐿𝑖

 5
  

 

[5] 

 

2.3 Baseline orientation 177 

The angular orientation with respect to a standard reference line is one of the basic 178 

operations in any topographic survey. Historically, map orientation tasks have been 179 

made by astronomical observations that provide the azimuth, that is the clockwise angle 180 

from geographic north, of one or more baselines. Then, the orientation was carried 181 

forward towards the rest of the map elements through the field survey work (Bennett & 182 

Freislich 1979). 183 

In the project of 1929, the orientation was conducted by the method of Polar star 184 

observations which allows obtaining the azimuth of the baseline with respect to the 185 

local meridian, or south-north line, and therefore the orientation of the map. We 186 

recreated the procedure recommended by the astronomic branch of the IGC back in 187 

1929. The procedure requires an astronomic almanac containing star ephemerides in 188 
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tabular format. After some bibliographic research, we found a copy of the almanac used 189 

in 1929 published by the IGC (1928). 190 

The computation consists basically of solving a spherical triangle whose corners 191 

are the astronomic pole (P), the local zenith (Z) and the observed star (S). The sides of 192 

the PZS  triangle are the Polar star zenith distance       −  , colatitude 𝑐     −  , 193 

and Polar distance        −  , where h is the altitude,   is the latitude of the station 194 

point, and   is the Polar star declination, which are all positive numbers when the 195 

station point and the observed star are on the same astronomic hemisphere.  196 

The azimuth angle θ is calculated for each polar observation in the field 197 

observation series with the following formula: 198 

tan 𝜃 =
sin 𝐻

sin  ∙ cos 𝐻 + tan  ∙ cos  
     

 

[6] 

 

Thus, the determination of the azimuth requires observations of the hour angle 199 

(H) of the Polar star, together with the values of the Polar star declination   and the 200 

latitude   of the station point. 𝐻 is the inner angle at the Pole in triangle ZPS, also called 201 

the local time angle or hour angle, and provides the time difference of the star position 202 

at observation time with respect to the local meridian of the observer. The H angle value 203 

to be taken for computational purposes in Eq. (6) is that corresponding to the mean of 204 

the corrected chronometer times of the n observations forming a set (Clark 1948). 205 

The other two parameters in Eq. (6) are known beforehand. The polar declination value 206 

used in the computations was     88º 55’12’’ as published in the almanac (IGC, 1928) 207 

and the latitude was      39º28’30’’ N known from previous national geodetic 208 

campaigns. The uncertainty in the measurement of the hour angle propagates into the 209 

value of the computed azimuth. Assuming that the observed hour angle (H) is in error 210 

by   𝐻, the error in the azimuth angle (θ) (both quantities in the same units, for instance 211 
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seconds of arc), may be easily obtained by differentiating the formula in Eq. (6) with 212 

respect to H. After some simplifications the error formula reduces to (Clark 1948): 213 

 𝜃 = −(sin − cos  ∙ cos 𝜃 ∙ tan  ) ∙  𝐻     

 

[7] 

 
 214 
2.4. Triangulation 215 

The 1929 primary triangulation comprised 28 triangles and 23 triangulation 216 

stations (Fig. 4). The observation was carefully planned to achieve quasi-equilateral 217 

triangles following the instructions of the IGE (1907). The computation was done using 218 

plane surveying procedures given the extent and the topography of the area. 219 

The location of the stations was a key issue in 1929 since the instruments used 220 

back then needed clear lines of sight. The engineers of the time selected a number of 221 

elevated sites as triangulation points, mainly building rooftops and bell towers, to 222 

achieve good visibility. All stations were described and identified in specific forms (Fig. 223 

5). Those documents are very accurate and contain text and graphical information to 224 

locate the exact station point; however, most of the marks have been lost over the years. 225 

After an exhaustive search, we found nine stations which were then used to conduct 226 

further geometric analyses (see Sections 3 and 4). 227 

The angular observation procedure used in the 1929 field work is described in the 228 

instruction manual of the Instituto Geográfico y Estadístico (IGE 1907). The field notes 229 

indicate that two sets (arcs) of directions were measured at the stations, with each set in 230 

two faces, following the standard procedure of ‘direction measurements’ (Kahmen & 231 

Faig 1988). For our computations, we extracted the required angles from the mean 232 

directions of all sets measured at stations that were reported in field notes. 233 

 [Figure 4 near here] 234 

[Figure 5 near here] 235 
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The computations were done originally by hand with the help of logarithm tables 236 

(Schrön 1893). In order to check for errors in the computations, we wrote a computer 237 

program that simulates each step of the manual procedure and found no errors. As for 238 

the accuracy of the primary triangulation, we recomputed the direction measurements 239 

directly from field data and adjusted the angles using the least squares method. 240 

Although the least squares technique is most often associated with high precision 241 

surveying, it can be used for quality control by processing sets of redundant 242 

observations according to mathematically well-defined rules (Kennie & Petrie 2010, 243 

Leick et al. 2015). 244 

Theoretically, all angles of a triangulation should be processed together by least 245 

squares to yield simultaneously their most probable values (Clark 1948). We processed 246 

the angle observations from 13 selected stations and created a redundant equation 247 

system of dimensions 30x20, where the number of rows (30) equals the number of 248 

angles and the number of columns (20) is the number of coordinates to be adjusted.  249 

Each angle generates an independent equation comprising three points i, j and k 250 

as follows (Teunissen 2006): 251 

 252 

𝑑𝛼𝑖𝑗𝑘 =
𝑦𝑗

𝑜 −  𝑦𝑖
𝑜

(𝑙𝑖𝑗
𝑜 )2

d𝑥𝑗 −
𝑦𝑗

𝑜 −  𝑦𝑖
𝑜

(𝑙𝑖𝑗
𝑜 )2

d𝑥𝑖 −
𝑥𝑗

𝑜 −  𝑥𝑖
𝑜

(𝑙𝑖𝑗
𝑜 )2

d𝑦𝑗 + 

            +
𝑥𝑗

𝑜 −  𝑥𝑖
𝑜

(𝑙𝑖𝑗
𝑜 )2

d𝑦𝑖 −
𝑦𝑘

𝑜 −  𝑦𝑗
𝑜

(𝑙𝑖𝑗
𝑜 )2

d𝑥𝑘 +
𝑦𝑘

𝑜 −  𝑦𝑗
𝑜

(𝑙𝑖𝑗
𝑜 )2

d𝑥𝑗 + 

                   +
𝑥𝑘

𝑜− 𝑥𝑗
𝑜

(𝑙𝑗𝑘
𝑜 )2 d𝑦𝑘 −

𝑥𝑘
𝑜− 𝑥𝑗

𝑜

(𝑙𝑗𝑘
𝑜 )2 d𝑦𝑗  =   𝛼𝑜 − 𝛼𝑐𝑎  

 

[8] 

 

where 𝑖 denotes the left target, 𝑗 is the instrument station, 𝑘 is the right target, 𝑑𝑥 ,  𝑑𝑥 , 253 

  𝑑𝑥 , 𝑑𝑦 , 𝑑𝑦 , 𝑑𝑦  are the unknowns (corrections to approximate coordinates), 254 

 𝑥 
  𝑥 

  𝑥 
  𝑦 

  𝑦 
  𝑦 

  
 
are the approximate coordinates, and 𝛼  𝛼   are the observed 255 

and calculated angle values respectively. 256 
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The least squares adjustment requires approximate coordinate values for each 257 

unknown station to calculate all parameters in Eq. (8). We used the coordinate values 258 

reported in the original documentation as approximations. The coordinates were 259 

computed using a set of ‘corrected angles’ that were obtained for every triangle by 260 

adding up the values of the three inner angles, then calculating the difference with 261 

respect to 180º, and finally distributing the angular misclosure equally to all three 262 

angles. 263 

The matrix form of the equation system and its solution is well-known (Leick et 264 

al. 2015, Strang & Borre 1997): 265 

𝐴 ∙ 𝑥 = 𝑏 + 𝜐 

 
[9] 

 
where 𝐴  is the coefficient matrix, 𝑥 is the vector of unknowns, 𝑏 is the vector of 266 

independent terms, and 𝜐 is the vector of residuals. The least squares method allows 267 

specific weighting for every observation equation. Since we did not find any 268 

suggestions for a weighting, we computed the adjustment with equally weighted 269 

observations: 270 

𝑥 = (𝐴𝑇 ∙ 𝐴)−1 ∙ 𝐴𝑇 ∙ 𝑏 

 

[10] 

 
The vector 𝑥 of the unknowns gives the corrections to the initial 271 

approximations of the coordinates. The most interesting point of the least squares 272 

method with respect to the approximate methods used in 1929 is the calculation of the 273 

variance-covariance matrix which contains the precision information of the variables. 274 

The expression of the variance-covariance matrix (  ) is: 275 

 𝑥 = 𝜎𝑜
2 ∙ (𝐴𝑇 ∙ 𝐴)−1 

 

[11] 

 
where 𝜎 

  is the a posteriori variance of unit weight which is computed using the 276 

following formula: 277 
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𝜎𝑜
2 =

𝜐𝑇 ∙ 𝜐

𝑛 − 𝑢
 

 

[12] 

 

where 𝜐 is again the vector of residuals, 𝑛 is the number of equations (observations), 278 

and 𝑢 is the number of unknowns. In network theory, the expression 𝑛 − 𝑢 is usually 279 

referred to as the degrees of freedom of the network which equals the number of 280 

redundant equations in the model. 281 

As mentioned in Section 1, there was no least squares adjustment to calculate the 282 

variances of the unknowns in the project of 1929. However, the triangle misclosures in 283 

the network may be used to estimate the overall angular precision of triangulations such 284 

as that of 1929. The classical literature provides the Ferrero equation as a means to 285 

compute the accuracy 𝑠  of the observed angles in triangulation projects (Bomford 286 

1952): 287 

𝑠𝛼 =   
 𝜀𝑖

2

3 ∙ 𝑛
   

 

[13] 

 

where n is the number of triangles, and 𝜀  is the misclosure in triangle i. It is worth 288 

noting here that this experimental formula is intended to calculate approximate probable 289 

errors in unadjusted triangulations from the angular measurements (Clark 1948). The 290 

value of the 𝑠  value will be discussed later in relation to the precision of the theodolite 291 

used and the a posteriori variance of unit weight 𝜎 
  in Section 4.2. 292 

3. Transformation of the 1929 network to ETRS89 293 

An interesting and challenging task of the present study was how to transform the 1929 294 

network into a modern coordinate reference system such as the European Terrestrial 295 

Reference System of 1989 (ETRS89), which is the official system in Spain since 2012. 296 

We had some cues, such as the relative error of the original baseline data and the least 297 



-14- 

 

squares adjustment results, which suggested the high quality of the data, and thereby 298 

promised good transformation results (Section 4.4). However, there was a practical 299 

limitation when selecting the control points for the transformation. After preliminary 300 

field work, we found that all stations of the southern half of the area, and some others in 301 

the central (urban area) and north area were lost. We were able to find nine points that 302 

have survived almost 90 years (Fig. 6), most of them pertaining to the primary network. 303 

[Figure 6 near here] 304 

The input data of a coordinate transformation consists of several pairs of 305 

coordinates in the source (1929) and target (ETRS89) coordinate systems, each pair 306 

representing some sort of transformation vector between the two spaces. While we had 307 

the source data from the published coordinates of 1929 (X1929 and Y1929 in Table 4), we 308 

did not have any information on the target system. In consequence, we had to do 309 

fieldwork to survey the target coordinates for every control point. Eight original marks 310 

were easily located following the descriptions in the project documentation. Seven 311 

marks were stations of the primary network (Grao, Castellar, Mislata, Almàcera, 312 

Benimàmet, Sancho, and Miguelete II), whereas the other two were stations of second 313 

order traverses (Puente del Mar and Petxina). 314 

We collected ETRS89 coordinates using global navigation satellite system 315 

(GNSS) equipment. Specifically, we used the virtual reference station (VRS) technique 316 

because it allows short observation lengths and requires no post-processing. VRS 317 

provides instant access to real-time kinematic (RTK) corrections utilising a network of 318 

permanent (fixed), continuously operating reference stations (Leick et al. 2015, Seeber 319 

2003). 320 

GNSS provides geographical coordinates ( , λ) of the station points in the 321 

ETRS89 coordinate reference system. In order to be more compatible with the original 322 
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Euclidean 2D system of 1929, the geographical coordinates were transformed to linear 323 

coordinates expressed in metres. Using well-known formulae (Snyder 1987, Wolf et al. 324 

2014) we converted the geographical coordinates into two coordinate systems: (1) the 325 

Universal Transverse Mercator (UTM) projection, which is the official map projection 326 

in Spain, and (2) a local 3D three dimensional vertical coordinate (LVC) system which 327 

is geometrically defined in very similar terms to those of the original 1929 triangulation, 328 

namely a 3D rectangular system with the z- axis parallel to the local vertical and the y-329 

axis pointing North. 330 

The subsequent conversion of the 1929 coordinates to the two contemporary 331 

coordinate sets (UTM and LVC) was conducted with an affine transformation. We 332 

chose the affine transformation because it is very flexible and allows a detailed analysis 333 

of the conversion. The formulas of the six-parameter affine transformation are well-334 

known (Wolf et al. 2014): 335 

𝑋2 = 𝐴 ∙ 𝑋1 + 𝐵 ∙ 𝑌1 + 𝐶 

𝑌2 = 𝐷 ∙ 𝑋1 + 𝐸 ∙ 𝑌1 + 𝐹 

 

[14] 

[15] 

 
where ( 𝑋  𝑌  ) and ( 𝑋  𝑌 ) are coordinates in the source and target systems 336 

respectively. Two of the six parameters A, B, C, D, E  and F  have a direct geometrical 337 

meaning (C and F  represent coordinate shifts or translations). The other four parameters 338 

can be expressed in terms of scale factors and rotations of the axes. The formulas to 339 

obtain the scales and rotations are (Wolf et al. 2014): 340 

𝜃 = arctan⁡ 
𝐷

𝐴
  

 

[16] 

 

∈= arctan  
𝐵

𝐸
 + 𝜃 

 

[17] 
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𝑆𝐹𝑥 =
𝐴

cos 𝜃
 

 

[18] 

 

𝑆𝐹𝑦 = 𝐸 ∙
cos 𝜖

cos(𝜖 − 𝜃)
 

 

[19] 

 

 341 

where 𝑆𝐹  and 𝑆𝐹  are the scale factors in 𝑋 and 𝑌 directions, ∈ is the correction for 342 

non-orthogonality between the x- and y-axes, and 𝜃 is the rotation angle of the x-axis. 343 

The  𝜖 − 𝜃  difference may be interpreted as the rotation angle of the y-axis. 344 

 345 

4. Results and discussion 346 

In this section we argue that the map of 1929, backed by a number of precise geodetic 347 

operations described in this paper, was a first class surveying project. We base our view 348 

on careful analyses of the original fieldwork records, as well as on exhaustive 349 

recomputations relating to the geodetic reference system, baseline measurements, 350 

triangulation adjustment, and geometric transformations. 351 

4.1. Geodetic coordinate system 352 

As reported above, the only reference to a proper geodetic reference system in this 353 

project was a list of coordinates in an unidentified system found in the project files. 354 

After trying several projection formulae sets, we found out that they were Tissot 355 

coordinates. Table 1 contains the coordinates listed in the 1929 project documentation 356 

together with our own Tissot computations from the original data and the differences 357 

between the two datasets. Although the computed coordinates are close to those 358 

reported in the 1929 dossier, there is a systematic shift in the x-axis, probably owing to 359 

computation procedures of the time. While we are pretty sure that the original listing 360 

contains Tissot coordinates, the reference system adopted finally was a different one as 361 

discussed below. 362 

[Table 1 near here] 363 



-17- 

 

4.2. Baselines 364 

The baselines (AB and CD in Fig. 4) gave orientation and scale to the 1929 urban map. 365 

Astronomic azimuth measurements were conducted according to the instructions 366 

defined by the IGC (1928). Each azimuth was determined twice, in opposite directions 367 

to avoid gross errors. The values reported in the project files were 𝜃 
   139º 03’17’’, 368 

𝜃 
   319º 03’29’’ for the baseline AB and 𝜃 

   351º 11’ 35’’, 𝜃 
   171º 11’30’’ for 369 

the baseline CD. The differences between the reverse observations were 12’’ and 5’’ for 370 

the two baselines and demonstrate the accuracy of the method. The computation report 371 

of the project also contains the difference between the observed (astronomic) azimuth 372 

and the computed (carried forward from AB) azimuth of the baseline CD. That 373 

difference was 3’17’’ which is another indicator of the quality of the observational 374 

scheme of the 1929 network. 375 

As for the baseline measurements, the execution of the invar wire measurements 376 

provided an estimation of the precision of each section. The project files contain 377 

observation data for the CD baseline only, although similar precision values should be 378 

expected for the baseline AB. The length values reported in the documentation were 379 

508888.627 mm for AB and 524362.716 mm for CD. The final coordinates of the 380 

terminals A, B, C and D are given in Table 2. We computed the standard deviations of 381 

each single measurement as well as of the mean of every group of five observations 382 

according to the instructions published by the IGE (1907). The standard deviations for 383 

the mean values of all sections of the baseline CD ranged from 0.0045 mm to 0.0656 384 

mm. Using the propagation law of variances we derived the precision of the whole 385 

length of 524362.716 mm as 0.17 mm (0.32 ppm). It is worth noting that this 386 

computation covers the precision of the invar measurements only. Classic references in 387 

the geodetic literature introduce the concept of ‘probable errors’ as a measure of the 388 
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influence of all other measurement and reduction errors. For instance, Bomford (1952) 389 

quotes typical values of 1-2 ppm for the total error budget of baselines for higher order 390 

networks and gives the following formula for the probable error of measurements: 391 

   𝜎 ∙        [20] 

 

where 𝜎 is the standard deviation of the invar measurement. Given the precision of the 392 

1929 invar measurements (0.17 mm), the probable error of the raw distance 393 

measurements equates only 0.114 mm. Other error sources are likely larger (Bomford, 394 

1952). 395 

[Table 2 near here] 396 

The primary triangulation network (Fig. 4) may be considered as a triangulation 397 

chain of 16.94 km length from the baseline AB to the baseline CD. In consequence, 398 

there are two length values for CD, the direct invar measurement (524.363 m) and the 399 

computed value (524.510 m) carried forward from AB. The difference between the 400 

measured and the computed lengths is 0.147 m, which is quite good considering the 401 

instruments of the time.  402 

The ratio of the baseline CD difference (0.147 m) to the distance (16.94 km) 403 

between the two baselines gives some sort of ‘kilometric error’ of the method. This 404 

error in the 1929 network amounts to 8.7 mm per km, or 8.7 parts per million (ppm). 405 

Some contemporary triangulation projects report relative errors ranging from 1 ppm to 406 

13.1 ppm (Hotine, 1939). Therefore the resulting value of 8.7 ppm in the 1929 project 407 

conforms to common practice of the time and must be considered a satisfactory result. 408 

 409 
4.3 Triangulation network 410 

The least squares adjustment of the network shown in Fig. 4 gave very good results 411 

(Table 3). The original 1929 network extends 13.4 km NS and 7.7 km EW. Due to 412 
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practical constrains, the network used to conduct the adjustment covers a reduced area 413 

of 8.9 km NS and 7.7 km EW.  414 

We fixed the stations Benimàmet, Miguelete I and Miguelete II based on a 415 

previous field study. The vector of unknowns gave very small coordinate corrections 416 

and the residuals of the angles were also small. Probably, the most interesting output of 417 

the least squares adjustment were the standard deviations of the coordinates and the 418 

angles. It is clear from Table 3 that the standard deviations 𝑠  and 𝑠  of the coordinates 419 

increase from the first station Burriel (0.023 m) to the last station Castellar (0.354 m). 420 

This increase of the standard deviation of the coordinates from North to South is 421 

expected since the three fixed stations are in the North. We based our choice of the three 422 

fixed points on previous work. In consequence, the southern part lacks geometric 423 

control leading to higher standard deviations. Still, the adjustment results agree well 424 

with the standards of 1929 for the geodetic control of large scale urban maps. .  425 

 [Table 3 near here] 426 

The least squares analysis also gives the a posteriori variance of an observation 427 

of unit weight 𝜎 
  as 63.97 (Eq. (12)). Thus, the a posteriori standard deviation 𝜎  of the 428 

measured angles was 8 seconds of arc. The triangle misclosures computed in 1929 from 429 

triangles 1 to 10 (Fig. 4) were: 7, 8, 9, 1, 17, 3, 9, 21, 29 and 11 seconds of arc 430 

respectively. Substituting these values into Eq. (13) provides an estimate of the overall 431 

angular precision 𝑠  in the network: 432 

𝑠𝛼   =  
 (72+82+92+12+172+32+92+212+292+112)

3∙10
= 8.12 𝑠 𝑐𝑜𝑛𝑑𝑠 

 

[21] 

 

 433 
This value (8.1 seconds of arc) is very close to the a posteriori standard deviation of a 434 

measurement of unit weight (8 seconds of arc for the measured angles) of the least 435 
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squares adjustment, which clearly indicates that the surveying methods of 1929 were 436 

appropriate and the quality of the angular observations (i.e. directions) was high. 437 

The coordinate values in Tables 1 and 3 deserve an explanation with regard to the 438 

geodetic reference system. The coordinates in Table 3 differ from those of the Tissot 439 

projection system (Table 1) that was common in Spain in 1929. Instead, the station A 440 

was given arbitrary, local coordinates (X = 20000, Y = 40000) ensuring that the origin of 441 

the coordinate system falls southwest of the entire surveyed area (Table 2). A major 442 

drawback of this project, was that the project files contained information on a geodetic 443 

network that was eventually not used by the engineers. The choice of setting an 444 

arbitrary coordinate origin, however, agrees with recommendations for the set-up of 445 

urban grid systems in the absence of reliable higher order networks. For instance, 446 

Blachut et al. (1979) state that ‘the plain coordinate system for each urban community, 447 

or group of communities, should be designed so as to fulfill the particular needs of that 448 

community, even if this means a departure from an otherwise accepted regional 449 

coordinate system.’ The coordinates in the false origin system are referred to as X1929 450 

and Y1929. 451 

4.4 Coordinate transformations 452 

The result of the transformation of the adjusted coordinates (X, Y) of Table 3 to 453 

ETRS89 is another interesting finding. It actually provides an insight into the geometric 454 

quality of the 1929 survey. As we progressed in our research, we realised that the 455 

original observations gave very consistent results and we expected a good agreement in 456 

rotation and scale when transforming the data of Table 3 into the ETRS89 system. 457 

We carried out the transformation with two points in mind. First, we chose the 458 

affine transformation (Eqs. (14)-(19)) among many possible candidates because it does 459 

not constrain scale and rotation, which facilitates posterior interpretation. This 460 
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transformation uses six parameters that can be converted to a differential rotation 461 

representing the lack of perpendicularity between the axes (∈), a rotation angle (𝜃), and 462 

two scale factors, one for each of the two axes (𝑆𝐹  𝑆𝐹    463 

The second point refers to the definition of the source and target coordinate 464 

systems and the agreement between them. As stated above, the 1929 coordinate 465 

reference system was defined as a plane, rectangular 2D system with an arbitrary origin 466 

and an orientation by astronomic methods. The ETRS89 was defined using GNSS 467 

techniques and geographic coordinates that are not compatible with plane coordinates. 468 

Therefore, we converted the geographical coordinates into two different target 469 

coordinate systems. 470 

[Table 4 near here] 471 

The first target system was the so-called local vertical coordinate (LVC) system, 472 

whose origin can be arbitrarily selected by the user (Wolf et al. 2014). It is worth noting 473 

here that the horizontal component (X, Y) of this coordinate system is, in many aspects, 474 

quite the same as the 2D plane system of 1929. The LVC coordinates are given in Table 475 

4. 476 

The second system is the well-known Universal Transverse Mercator (UTM) 477 

cylindrical projection which is widely used in urban and large scale mapping (Blachut et 478 

al. 1979). The UTM grid defines a 2D rectangular system but the coordinates are 479 

affected locally by several elements of the projection such as the grid convergence and 480 

the point scale factor (Iliffe & Lott  2008, Snyder 1987). The UTM coordinates of Table 481 

4 are in Zone 30. 482 

Table 5 shows the residuals of the affine transformations of the 1929 coordinates 483 

(Y1929 and Y1929 in Table 4) for all nine control points. The figures in both 484 

transformations are very similar. There are seven control points with residuals equal to 485 
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or less than 30 cm in the LVC transformation and six in the UTM transformation. We 486 

found residual vectors ranging from 4 cm to 65 cm (LVC) and from 3 cm to 63 cm 487 

(UTM) respectively. These large differences suggest that the use of more localised 488 

transformations would be beneficial to reduce the residuals of the transformation. 489 

Although this would be interesting, it is outside of the scope of this study. 490 

[Table 5 near here] 491 

The average residual 𝑠  for each transformation is another precision criterion which can 492 

be calculated from the residuals of the least squares solution of the affine transformation 493 

(Table 5): 494 

𝑠   
   

     
    

  𝑛 −  
 [22] 

 
where n is the number of control points (n=9) and p the number of parameters (p=6) of 495 

the transformation.  496 

The average values are 0.260 m and 0.255 m for the 1929-LVC and 1929-UTM 497 

transformations respectively, showing very similar residual behaviour in both cases. It is 498 

worth noting that these average values include the larger error vectors of 0.65 m for 499 

‘Grao’ in the two transformations under study. 500 

Some geometric parameters of the transformations, namely scales and rotations 501 

in X and Y, are shown in Table 6. For the LVC transformation, a perfect fit would give 502 

a value of 1.0 for the scale factors and a value of 0.0 degrees for the rotation and 503 

perpendicularity angles. Regarding the LVC system, the scale factors are very close to 504 

the unit value, the rotation angle 𝜃 of the X axis is -0.024253 degrees (1’27’’), and the 505 

perpendicularity angle ∈ is 0.007595 degrees (27 seconds of arc). These values prove 506 

the great performance of the invar wire and astronomical orientation techniques. 507 

[Table 6 near here] 508 
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When considering the UTM parameters, it is clear that the UTM scale factor and the 509 

UTM grid convergence mask the fit between the 1929 and the UTM spaces. In order to 510 

account for the influence of the projection on the transformation parameters we 511 

computed the nominal UTM values (point scale factor and grid convergence) of the 512 

central point Miguelete II of the study area and corrected the raw UTM transformation 513 

parameters. 514 

The UTM nominal values for Miguelete II are: 515 

Latitude:   39º 26’ 33.79’’ N 516 

Longitude:   0º 20’ 07.36’’ W 517 

Point scale factor:  1.00024744 518 

Grid convergence:  -1º 41’ 37’’ ~ -1.693611 deg 519 

Regarding the scale factors, it is worth noting that in the 1929-LVC transformation, they 520 

can be considered ‘true scale factors’ in the sense that they connect two pure Cartesian 521 

systems. In the 1929-UTM transformation, however, the nominal UTM scale factor 522 

affects the experimental scale factors so that they cannot be directly compared to their 523 

1929-LVC counterparts. In order to do that comparison properly, we applied the UTM 524 

nominal scale factor as follows: 525 

𝑆𝐹 
  

        

          
          

 
[23] 

 

𝑆𝐹 
  

        

          
          

 

[24] 

 

where 𝑆𝐹 
  and 𝑆𝐹 

  are the corrected scale factors which are similar to those of the 526 

1929-LVC transformation. Note that scale factors may also be computed in units of 527 
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ppm by subtracting the computed and nominal values which gives -104 ppm (1.000143-528 

1.000247) for 𝑆𝐹 
  and -42 ppm (1.000205-1.000247) for 𝑆𝐹 

 . 529 

The influence of the grid convergence angle is larger since it is ‘embedded’ in the target 530 

reference system. Furthermore, the affine transformation formulas do not provide 531 

mechanisms to separate convergence from true rotation either, so that we have to 532 

correct for that convergence after computing the transformation. The result is a 533 

corrected rotation angle for the x-axis after a summative operation: 534 

𝜃          −          −                  − ′  ′′ [25] 

 
This corrected value is now much smaller and about double the 𝜃 angle in the 1929-535 

LVC transformation. 536 

The results of the scale and rotation analyses suggest that the LVC system works 537 

slightly better than the UTM system in geometric terms, even after correcting the UTM 538 

parameters. However, in common practice, the LVC system is rarely used in large scale 539 

and urban mapping, and the UTM projection system is preferred. Be that as it may, the 540 

UTM results are suitable to transform the 1929 map into modern reference systems and 541 

integrate the 1929 map with digital databases. The relevant parameters (A to F) of the 542 

affine transformation are listed in Table 6. 543 

Another finding of the study was the exact location of the Miguelete I station 544 

used in the 1929 project. In the current Spanish national geodetic network there is a first 545 

order station called Miguelete. It was not clear whether those two stations were identical 546 

or in two close, but different locations. We confirmed that they were two different 547 

stations when we calculated the transformation between the 1929 local and the ETRS89 548 

coordinates. 549 
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Figure 7 shows three different points on the rooftop of the tower. The station 550 

Miguelete I is shown by an empty triangle with a central dot and the current first order 551 

station Miguelete with a red, solid triangle on the western half of the tower (above the 552 

‘e’ of ‘del’). The other solid triangle on the eastern half is Miguelete II (above the ‘t’ of 553 

‘Micalet’), which was also used in the 1929 project and is still marked on the tower 554 

roof. The resolution of the issue of the Miguelete I station was important for the 555 

determination of the geodetic coordinate reference system for the project. 556 

[Figure 7 near here] 557 

5. Conclusions 558 

In this paper we examined the geometric and cartographic characteristics of the 559 

triangulation network used to make the first 1:500 urban map of València. The study 560 

involved bibliographic work, field trips, and computer programming in a demanding 561 

research effort. As a result, we gained considerable insight into the fundamentals of the 562 

observational and computational processes of the network that were originally 563 

conducted almost one century ago. 564 

The quality and detail of the original survey documentation allowed us to 565 

reprocess the original data. The least squares processing of the original angular 566 

observations showed that the standard deviations of the measured angles and the 567 

adjusted coordinates were very satisfactory. 568 

The affine transformations based on a set of points of the original network and 569 

GNSS observations were used to convert the 1929 data into modern coordinate 570 

reference systems. The scale and rotation parameters of the affine transformations 571 

demonstrated the accuracy of the invar wire length measurements and the astronomic 572 

orientation of the baselines. 573 
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Although the plane coordinate system of the 1929 network is local, the 574 

fieldwork and computations conducted in this study allow us to integrate the urban map 575 

with modern spatial databases stored in global coordinate systems. There are many 576 

applications of such data integration in the regular operation of City Survey Offices as 577 

well as in cadastral and urban planning services. In the case of the València City 578 

Council, the 1929 map has been used in several legal matters. In summary, the map of 579 

1929 is a cartographic gem that can now be integrated with other municipal spatial 580 

databases for urban planning, cadastral and even legal purposes. 581 
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Table 1. Computed Tissot coordinates and differences from the published Tissot 668 

coordinates of 1929 669 

Station   X COMP (m)  Y COMP (m)  X PUBL (m) Y PUBL (m) ΔX (m) ΔY (m)  670 

Rebalsadores  877312.65  571584.17  877312.30  571584.14  0.35  0.03 671 

Cullera   896560.14  514338.09  896559.61  514338.07 0.53  0.02 672 

Faro  898140.52  569714.64  898140.20  569714.62  0.32  0.02 673 

 674 

Table 2. Coordinates of the terminals A, B, C and D of the two baselines AB and CD 675 

defining the 1929 local coordinate system 676 

Station X1929 (m) Y1929 (m) 

A 20000.00 40000.00 

B 19666.57 40384.44 

C 27659.42 24889.63 

D 27740.30 24371.39 

 677 

Table 3. Approximate coordinates (𝑋  𝑌  , adjusted coordinates (𝑋 𝑌 , and standard 678 

deviations of the adjusted coordinates 𝑠  and 𝑠 . Coordinates in the 1929 local 679 
coordinate system 680 
 681 

Station     (m)    (m)    (m)    (m)     (m)    (m) 682 

Benimamet 20225.56  37946.63  --------  --------   --------    -------- 683 
Burriel  21930.63  38069.11  21930.67  38069.09  0.023   0.071 684 
Mislata   20310.29  35452.40  20310.27  35452.41  0.071   0.093 685 
Miguelete I  23908.07  35473.72  --------  --------   --------    -------- 686 
Tormo  22563.03  33613.49  22563.02  33613.46  0.098   0.083 687 
S. Luis M  24720.81  32034.10  24720.89  32034.07  0.187   0.162 688 
Almácera  25616.76  39589.87  25616.86  39589.83  0.171   0.162  689 
Miguelete II 23915.46  35480.59  --------  --------   --------    -------- 690 
Malvarrosa 27994.72  36417.30  27994.73  36417.15  0.179   0.202 691 
Grao  27488.37  33846.34  27488.30  33846.17  0.237   0.166  692 
S. Luis M II 24723.88  32034.15  24723.73  32034.20  0.237   0.166 693 
Sancho   27377.67  31860.15  27377.41  31860.07  0.289   0.259 694 
Castellar   24961.98  30377.44  24961.90  30377.43  0.355   0.232 695 
  696 
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Table 4. Coordinates of the stations used in coordinate transformations (UTM 697 

coordinates in zone 30). X1929, Y1929 are the 1929 published coordinates in the local 698 

coordinate system. The UTM and LVC target coordinates were converted from the     699 

of the new GPS survey  700 

Station       (m)       (m)     
  (m)     

 (m)      (m)      (m) 

Benimamet 20225.56 37946.63 721973.321 4375175.925 -3688.540 2467.358 

Mislata 20310.29 35452.40 722139.615 4372684.928 -3604.900 -26.661 

Almácera  25616.76 39589.87 727326.543 4376970.213 1703.719 4108.799 

Miguelete 2 23915.46 35480.59 725740.934 4372816.608 0.000 0.000 

Sancho 27377.67 31860.15 729318.691 4369282.395 3459.953 -3621.696 

Grao 27488.37 33846.34 729361.254 4371284.690 3571.367 -1636.282 

Castellar   24961.98 30377.44 726935.213 4367744.983 1043.888 -5103.069 

Puente del Mar 25029.35 34925.50 726870.327 4372293.579 1113.434 -555.580 

Pechina 22514.06 35662.39 724350.668 4372923.164 -1401.247 182.420 

 701 

 702 

 703 

Table 5. Residuals of the coordinate transformations of the 1929 coordinates (X1929, 704 

Y1929 of Table 3) to the LVC (XLVC, YLVC in Table 4) and UTM spaces (XUTM, YUTM in 705 

Table 4) 706 

Station 1929 to LVC 1929 to UTM (Zone 30) 

     (m)      (m) 
   

    
  (m) 

      (m)    (m) 
   

    
  (m) 

Benimamet -0.2242 -0.1985 0.2994 -0.2040 -0.2615 0.3317 

Mislata 0.0684 0.0148 0.0700 0.0927 0.0410 0.1013 

Almácera 0.2707 0.3129 0.4138 0.2196 0.3361 0.4015 

Miguelete 2 0.0628 0.0024 0.0628 0.0581 0.0213 0.0619 

Grao -0.3641 -0.5353 0.6474 -0.3038 -0.5504 0.6287 

Sancho 0.0191 0.1590 0.1602 0.0423 0.1187 0.1260 

Castellar 0.2164  0.2178 0.3071 0.1478 0.2382 0.2804 

Puente del Mar -0.0406 -0.0158 0.0436 -0.0327 -0.0019 0.0327 

Pechina -0.0087 0.0427 0.0435 -0.0200 0.0585 0.0618 

 707 

  708 
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 709 

Table 6. Geometrical parameters of the affine transformations from the published 1929 710 

coordinates in the local coordinate system (columns 2, 3 in Table 4) to the GPS derived 711 

UTM (columns 4, 5 in Table 4) and LVC (columns 6, 7 in Table 4) systems 712 

Parameter     LVC        UTM 

𝑆𝐹  0.999933 1.000143 

𝑆𝐹  0.999983 1.000205 

∈ (degrees) 0.007595 0.007705 

𝜃 (degrees) -0.024253 1.644985 

A 0.999933 0.999731 

B 0.000556 -0.028578 

D -0.000423 0.028711 

E 0.999983 0.999797 

C (m) -23933.622 702845.845 

F (m) -35469.863 4336656.581 

  713 
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Figure 1 714 

 715 

 716 
 717 

 718 
 719 

Figure 2 720 
 721 

 722 
 723 
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 726 
 727 
Figure 3 728 
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Figure 4 732 
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Figure 5 735 
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Figure 6 739 
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Figure 7 743 

 744 

 745 
  746 



-38- 

 

Figure 1. Location of the city of València in Spain (North towards top of figure). 747 

Figure 2. Early triangulation draft by J. Muñoz on the Valencian coast (Navarro 2004). 748 

Note the use of latin words for the cardinal points (septentrio [north], auster [south], 749 

oriens [east], and occidens [west]) as usual at the time (North towards top of figure). 750 

Figure 3. Scketch of the network used to connect the 1929 urban network with the 751 

Spanish national geodetic network. North is upwards. The distance from ‘Cantera’ to 752 

‘Faro de Valencia’ is about 15 km. 753 

Figure 4. Original plan of the urban primary triangulation of 1929 (North-South: 13.4 754 

km, East-West: 7.7km). Note the strategic locations of the baselines AB and CD at the 755 

limits (S, N) of the surveyed area (North upwards). 756 

Figure 5. Point description of the station Almácera. The recovery scketches at the 757 

bottom of the form allow the relocation of the point, if necessary. 758 

Figure 6. Original mark of the station Benimàmet (a) and the GNSS antenna during our 759 

resurvey (b). 760 

Figure 7. Sample of the 1929 map with the location of the points Miguelete (upper left, 761 

red triangle), Miguelete I (bottom left, empty triangle with central dot) and Miguelete II 762 

(upper right, red triangle). Note that the unlabelled grid line in the upper-right area (over 763 

the ‘r’ in ‘Metropolitana’) that corresponds to the X coordinate 23950. 764 


