
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/160762

Cecilia-Canales, JM.; García Carrasco, JM. (2020). Re-engineering the ant colony
optimization for CMP architectures. The Journal of Supercomputing  (Online). 76(6):4581-
4602. https://doi.org/10.1007/s11227-019-02869-8

https://doi.org/10.1007/s11227-019-02869-8

Springer-Verlag



Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Reenginering the Ant Colony Optimization for CMP
Architectures
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Abstract The Ant Colony Optimization (ACO) is inspired by the behav-
ior of real ants and, as a bioinspired method; its underlying computation is
massively parallel by definition. This paper shows re-engineering strategies
to migrate the ACO algorithm applied to the Traveling Salesman Problem
(TSP) to modern Intel-based multi-and-many-core architectures in a step-by-
step methodology. The paper provides detailed guidelines on how to optimize
the algorithm for the intra-node (thread and vector) parallelization, showing
the performance scalability along with the number of cores on different Intel
architectures, reporting up to 5.5x speed-up factor between the Intel Xeon Phi
Knights Landing (KNL) and Intel Xeon v2. Moreover, parallel efficiency is pro-
vided for all targeted architectures, finding that core load imbalance, memory
bandwidth limitations, and NUMA effects on data placement are some of the
key factors limiting performance. Finally, a distributed implementation is also
presented, reaching up to 2.96x speed-up factor when running the code on 3
nodes over the single-node counterpart version. In the latter case, the parallel
efficiency is affected by the synchronization frequency, which also affects the
quality of the solution found by the distributed implementation.
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José M. Cecilia
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1 Introduction

Many real-world problems, such as route scheduling, goods dispatching, pro-
tein folding, etc., may benefit from the use of computers to find their solution.
They result in NP-hard optimization problems, which are easy to define but
really difficult to solve, from a computational point of view.

Metaheuristics have emerged as a novel solution to provide approximate
solutions in a reduced time frame [1] for these types of challenging problems.
Among them, bioinspired metaheuristics (i.e., those methods inspired by nat-
ural procedures) are gaining special interest within the research community.
Examples of bioinspired methods include ant colony optimization (ACO), par-
ticle swarm optimization (PSO), or genetic algorithms (GAs) [32]. Although
they offer very good solutions for optimization problems, they still require too
much execution time to generate optimal solutions. However, they are inher-
ently parallel by their own definition and they are therefore well-suited for
parallelization on the current massively parallel architectures.

Of particular interest to us is the ACO algorithm [2] which is inspired in
the ants foraging process. ACO uses ants as artificial agents to explore a graph
where a complete trajectory is a solution to a given problem. All the solutions
found by the ants are evaluated depending on their quality. Thus, ants can
deposit “pheromone” in the paths of each solution, according to its quality.
ACO is based on two main stages: tour construction and pheromone update.
In the first stage, each ant builds a path choosing the next action to perform
among those that have not yet been taken. Then, the pheromone update is
performed which consists of two phases: pheromone evaporation to gradually
forget unpromising solutions and pheromone deposit to reinforce high quality
solutions.

The first problem solved by ACO was the Traveling Salesman Problem
(TSP) [2]. TSP is computationally expensive (i.e. O(n3) at each iteration,
where n is the size of the problem) but massively parallel by its definition.
Therefore, the research community has provided several ways to optimize the
ACO algorithm for TSP (ACO-TSP) in High Performance Computing (HPC)
architectures. The first attempts were carried out on NVIDIA GPUs using
CUDA [4–7], and more recently on the first generation of Intel Xeon Phi
(Knights Corner) [8–10]. Intel architectures offer several advantages compared
to Nvidia architectures. These include code portability across all high-end
architectures, which allow you to scale across a large number of cores and
nodes. Besides, Intel architectures can be programmed using a popular high
level programming language such as OpenMP, which shows a smaller learning
curve compared to CUDA.

In this work, we provide detailed guidelines on how to redesign the ACO-
TSP algorithm to leverage multi-and-many-core Intel-based architectures. A
systematic approach is performed by starting the optimization process in a sin-
gle node, fine-tuning both thread and vectorization parallelism. An additional
level of parallelism is then introduced by providing a distributed implemen-
tation of ACO-TSP for multiple nodes. Our work focuses only on the tour
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construction stage, as this phase takes 95% of the runtime of the sequential
version of ACO-TSP, and it is common to all ACO variants.

The main novelties of this paper include the following:

– We provide the re-engineering process to migrate ACO-TSP to Intel archi-
tectures in a step-by-step methodology, giving detailed guidelines on how
to optimize the algorithm for the intra-node (thread and vector) paral-
lelization.

– We also introduce a distributed implementation for a different number of
computing nodes, distributing the iterations among all the nodes. To avoid
the degradation of the solution quality, our implementation relies on a
synchronization mechanism to exchange and combine pheromone matrices.

– Evaluation results are carried out by targeting Intel Xeon processors, rang-
ing from few cores (Xeon E5-2650 v2 and E5-2698 v4) to high-end many-
core (7120P Knights Corner and 7250 Knights Landing) processors. In
terms of performance, the Intel Xeon Phi KNL (68 cores) version is the
fastest architecture in our study, defeating by all other architectures by
a wide margin (up to 5.5x speed-up factor). In addition, the distributed
implementation running on 3 nodes reaches a speedup factor of up to 2.96x
compared to its counterpart version executed in 1-node with only a final
synchronization.

– Finally, parallel efficiency is analyzed by running the largest benchmark
(up to 7397 cities) in all the architectures under study, which have differ-
ent number of cores. For parallel efficiency on a single platform, the main
problems detected are the core load imbalance, memory bandwidth limita-
tions and the effects of NUMA on data placement. In the case of parallel
efficiency between nodes, the main problem is related to the frequency of
synchronization between nodes that also affects the quality of the solution
found by the distributed implementation.

The rest of the paper is organized as follows. Section 2 briefly introduces
the ACO metaheuristic and its application for the TSP problem, Intel Xeon
Phi main features and the code modernization process. Extensive guidelines
on porting ACO-TSP to CMP architectures are given in Section 3. Our exper-
imental results are presented in Section 4. Section 5 gives an overview of the
related work on implementing ACO-TSP in GPUs and CMP architectures.
Finally, we summarize our findings and give some suggestions for future work
in Section 6.

2 Background

2.1 ACO Foundations

In this paper, we use ACO for solving the Traveling Salesman Problem (TSP).
The Traveling Salesman Problem (TSP) [11] involves finding the shortest (or
cheapest) round-trip route that visits each city exactly once. The symmetric
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TSP on n cities may be represented as a complete weighted graph, G, of n
nodes, with each weighted edge, ei,j , representing the inter-city distance di,j
= dj,i between cities i and j. The general structure of the ACO, when it is
applied to a combinatorial optimization problem such as the TSP, is based on
performing a number of iterations until some end criteria is met. Each iteration
is composed of two main stages: tour construction and pheromone update. The
tour construction stage is the same for all ACO variants. At the start of this
stage, each ant is placed on a randomly chosen initial city. Then, each ant
makes use of a probabilistic rule in order to choose its next city to visit, until
it builds a complete tour. The probability for ant k, currently placed at city i,
of selecting city j is specified in Equation (1).

pkij =
[τij ]

α[ηij ]
β∑

l∈Nk
i

[τij ]α[ηij ]β
, if j ∈ Nk

i , (1)

τij is the amount of pheromone associated with edge (i, j), ηij = 1/dij (dij
is the length of edge (i, j)) is the reciprocal of the distance value computed a
priori, α and β are two input parameters, which determine the influence of the
pheromone trail and the heuristic information, and Nk

i is the set of cities that
have not been visited yet by ant k, currently placed at city i. The probability
of choosing a city outside this set is 0, thus preventing an ant from visiting
a city more than once. According to this probabilistic rule, the probability of
selecting an edge (i, j) increases with the amount of pheromone on that edge
(τij) and the distance information value (ηij).

Once the probabilities have been computed, a selection function is used for
choosing the next city to visit taking into account these probabilities. Roulette
Wheel (RW) selection was first suggested as the default selection function [2],
but other selection procedures have been proposed in the literature, which are
better suited for parallelization [4,5]. In this paper, we use I-Roulette [4], a
selection mechanism that is fully parallel [10,13]. Moreover, this function accel-
erates convergence to a solution without affecting the quality of the solutions
achieved [12]. In I-Roulette, the probability of visiting each city is multiplied
by a random number between 0 and 1, obtaining a weight for each city. The
city with the highest weight is selected as the next city to visit.

Once ants have finished their tours, pheromone update is performed by
applying of two phases: pheromone evaporation, in order to gradually evapo-
rate the pheromone trails to avoid stalling in a local optimum and pheromone
deposit to reinforce good quality solutions. Firstly, pheromone trails are evap-
orated by means of lowering the pheromone value on all edges by a constant
factor (ρ). Then, each ant deposits pheromone on each edge from its tour pro-
portionally to the tour’s quality. The pheromone update process previously
described is used in Ant System [15], the first ACO algorithm proposed, but
each ACO variant introduces some changes to this stage.
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2.2 Intel many-core (Xeon Phi) Features

The Intel Xeon Phi is based on the Many Integrated Core (MIC) architecture
[16]. The first generation of this many-core architecture, also known as Knight’s
Corner (KNC), was launched in 2012, and the second generation, code-named
Knight’s Landing (KNL), in 2016. They have a high number of cores (57-61 for
KNC and 64-72 for KNL) and four hardware threads per core, allowing the use
of up to 244 (KNC) and 288 (KNL) threads. Each core is provided with one (in
KNC) or two (in KNL) vector processing units (VPU), which can operate on
512-bit wide registers. KNC cores have in-order instruction execution, while
KNL has out-of-order cores. They both run at a low base clock frequency (less
than 1.3 GHz for KNC and 1.5 for KNL). Despite having single cores, Intel’s
multi-core architectures have a better performance/power ratio than Intel’s
multi-core processors. However, it is necessary to make use of both thread
parallelism and vectorization to exploit all the hardware capabilities of these
architectures.

Xeon Phi KNC and KNL are programmed using C, C++ or Fortran, with
OpenMP extensions [17] for thread parallelism, MPI extensions [18] for dis-
tributed memory parallelism, and compiler directives and hints for vectoriza-
tion. Moreover, the same code is able to run on Xeon Phi1 and Xeon.

Two additional new features included in the Xeon Phi KNL are (1) its
high bandwidth memory (HBM) and (2) its clustering modes. KNL has up
to 16 GiB of MCDRAM based on-package HBM, which can be used either as
a last-level cache or as addressable memory. It also provides different cache
organization modes, called clustering modes [31]. In contrast to the Xeon Phi
KNC, which has a single socket, the Xeon Phi KNL can be configured as sub-
NUMA (i.e., Non-Uniform Memory Access) cluster modes (SNC-2 or SNC-4)
that divide the chip into two or four clusters, having these clusters as NUMA
nodes. NUMA architectures have a different memory latency depending on
the NUMA node accessing the data, and may also vary depending on the
consistency state of the accessed data.

2.3 Code Reengineering Process

Code Reengineering or Code modernization2 is a process that consists on re-
designing and tuning applications to take advantage of all hardware resources
they are running on in order to achieve peak performance for a particular plat-
form. As an initial step, the programmer must perform some scalar or core
optimizations, such as choosing the correct numerical accuracy (single or dou-
ble for floats, etc.), and avoiding type conversions and repetitive calculations,
to name just a few. Typically, the reengineering process includes the following
stages:

1 In the case of Xeon Phi KNC, the code needs to be recompiled with the -mmic option.
2 As it is named by Intel [19,20].
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1. Thread parallelism: It divides the work among different threads that may
share information via shared memory. The programmer should profile the
thread scaling, making sure they are mapped to different cores (thread
affinity) to avoid thread synchronization or inefficient memory utilization.

2. Vectorization: It identifies parts of the code in which the same instruc-
tions are performed on different data. The programmer shall use compiler
directives to ease vectorization and data layout optimizations.

3. Distributed memory parallelism (cluster computing): It distributes the work
among different computing nodes via some message passage system (e.g.,
MPI).

It is worth highlighting that all the optimizations are orthogonal to the
memory traffic optimization, which must always be taken into account at all
stages.

3 ACO-TSP re-engineering for multi and many-core Architectures

This Section shows the code reengineering process applied to the ACO-TSP
algorithm. The code obtained as a result of these optimizations is adapted to
both, Intel Xeon and Xeon Phi processors. Firstly, some scalar optimizations
are made to enhance the performance of each parallel task. This is particularly
important on the Intel Xeon Phi KNC architecture, as its cores are quite simple
compared to the cores available on the Intel multi-core architecture. For the
ACO-TSP, we replaced pow() by powf()), avoiding static and runtime type
conversion, and also avoiding repetitive computations using results previously
calculated for the numerator of Equation (1).

3.1 Thread Parallelism

The tour construction stage is inherently parallel as ants run in parallel build-
ing their own solutions. Thus, we map ants to threads using the OpenMP
pragma #pragma omp parallel for (see Algorithm 1). The computation of
the numerator of Equation (1), performed before the ants build their solutions,
is also parallelized using the same pragma.

3.2 Vectorization

Vectorization is particularly well-suited to fully leverage the current high per-
formance processors, which are equipped with width vector units. There are
several ways to develop vectorized codes, beyond the use of low level instruc-
tions, such as assembly language or intrinsics, that may introduce portability
issues between different architectures. All of them rely on the compiler’s capa-
bilities to automatically vectorize some loops (enabled with the -O2 optimiza-
tion level or higher). However, programmers have to facilitate the compiler’s
task by rearranging and adding some hints into the source code.
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Algorithm 1 Parallel tour construction
1: #pragma omp parallel for
2: for a = 1 to m do
3: {Place ant on initial city}
4: initial city ← choose initial city()
5: tour[a][1]← initial city
6: visited[a][initial city]← true
7: {Construct tour}
8: for step = 2 to n do
9: current city = tour[a][step− 1]

10: tour[a][step] = choose next(a, current city, thread id)
11: end for
12: tour[a][n + 1]← tour[a][1]
13: tour length[a]← compute tour length(tour[a])
14: end for

Within the tour construction stage, over 99% of the time is spent on the
selection function (choose next() in the Algorithm 1). Thus, we focus our ef-
forts on vectorizing this procedure taking the following actions to ease the
vectorization process3.

– Data alignment : Use mm malloc(size, 64) instead of malloc() for data
alignment on the heap (to a multiple of 64 bytes).

– Align padding : Pad the inner dimension of multi-dimensional arrays to
guarantee alignment for each row of the matrix. This is required to avoid
misalignment between rows, as the memory of a structure is allocated using
a single call to mm malloc().

– Data alignment hints: Give the compiler data alignment hints to prevent
it from implementing runtime checks for alignment. Concretely, we use
__assume_aligned(ptr, 64) for pointers. These clues are provided in the
region of the code where the data structure is used within a loop.

– Pointer disambiguation: Use #pragma ivdep before a loop for telling the
compiler to ignore vector dependencies, avoiding loop multiversioning.

– Data structure changes: Precisely, as ants are mapped to threads, and each
thread (simulating an ant) generates n random numbers in a vectorized
way, the seed for generating random numbers needs to be replicated to a
matrix of seeds, having a row for each thread and as many columns as the
number of cities (n).

Algorithm 2 shows our vectorized implementation of I-Roulette (see Section
2.1). This is actually the selection procedure used in this work. The choice info
matrix stores the probabilities of choosing each city without taking into ac-
count whether the cities are visited or not. This latter information is stored in
the visited matrix. A position (a, i) in this matrix has the value 0 if the ant a
has already visited city i, or the value 1, otherwise. In this way, the weights
associated with already visited cities have the value 0. From the 17.0 Intel
compiler version, the loop (lines 3-9) is fully vectorized by the compiler. Note
the use of the pragma ivdep before the loop for pointer disambiguation.

3 Notice that we have used the Intel C++ compiler in this work.
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Algorithm 2 Vectorized I-Roulette
Input: Ant identifier (a), current city (current city), thread identifier (thread id).
Output: Selected city.
1: city ← −1
2: max weight← −1

#pragma ivdep
3: for i = 1 to n do
4: w ← choice info[current city][i] ∗ visited[a][i] ∗ random01(seeds[thread id][i])
5: if w > max weight then
6: city ← i
7: max weight← w
8: end if
9: end for

10: return city

3.3 Distributed-Memory Parallelism

This Section shows the parallelization strategy for the ACO-TSP in multiple
nodes to enhance its computation. There are several ways for distributing
the work among the computing nodes (e.g., an island-model which divides the
colony into smaller subcolonies, divide the number of ants, etc.). Our approach
is basically to replicate the parallel ACO implementation developed for a single
node to all the computing nodes. An MPI process is created in each node for
each copy and then, the thread and vector parallelism is enabled in each node.
Every copy has the same meta-parameters, the same number of ants, and they
face the same problem (with the total number of cities), but each node have
its own copy of the pheromone matrix. In this way, each copy of the ACO
implementation can explore the entire search space.

The number of iterations of each ACO-TSP instance is obtained by di-
viding the total number of iterations among all the computing nodes4. In
this way, a lineal speedup close to the number of distributed nodes could be
achieved, considering negligible the time for the replication and distribution of
the copies. However, the downside of this approach is that the solution quality
could be degraded in each ACO-TSP replicated solution. This is due to the
total number of iterations is split among the nodes, and the actual number of
iterations on each node might not be enough for ensuring the convergence to
a solution.

Our proposal overcomes this problem by letting the different ACO-TSP
instances exchange and combine their pheromone matrices among them at a
certain frequency. This is what we call synchronization point. Then, each copy
runs a given number of iterations (num it bt synch) between each synchro-
nization point, being the number of synchronizations (num synchs) a design
parameter of the distributed implementation. There are some possibilities to
implement the synchronization mechanism. In this paper, we have used a cen-

4 If the total number of iterations is not a multiple of the number of nodes, the number of
iterations per node is increased by one unit to ensure the addition of the iterations carried
out by all the nodes is greater than or equals to the total number of iterations.



Reenginering the Ant Colony Optimization for CMP Architectures 9

tralized one, that is, a master copy is in charged to receive, combine and send
each pheromone matrix, but distributed mechanisms are also possible. Note
that the number of synchronizations is a relevant parameter that affects both
the speedup and the solution quality of the distributed implementation.

The synchronization mechanism comprises three steps:

1. The master ACO-TSP instance receives the pheromone matrix from other
instances.

2. The master instance generates a new pheromone matrix as a result of
the other pheromone matrices received from the other instances. There
are several alternatives for combining the matrices; i.e. mean, maximum,
minimum, etc. In particular, we compute the resulting matrix as the mean
of the individual pheromone matrices.

3. The master instance sends the new pheromone matrix to the other in-
stances. Each instance uses this updated matrix as its pheromone matrix
for the following iterations.

Let’s give an example to make clearer our proposal. Let’s assume that
the parallel ACO-TSP, running in a single node, uses 100 ants (the original
colony) and 1000 iterations to converge to a optimal solution. Then, following
our approach, we replicate four times (assuming there are 4 nodes in the
cluster) the original colony (100 ants in each node but with its own pheromone
matrix), and each node performs 250 iterations. With only one synchronization
performed at the end of the execution, we would obtain the best speedup
(almost 4 in this example), but the worst solution quality. Setting the number
of synchronizations to 5, each copy will run 50 iterations in isolation and then
a synchronization point will be reach to exchange and update the pheromone
matrix. In this case, the speedup obtained will be worse than before, but the
quality of solution found would be better. The objective is to choose a value
for the number of synchronizations (synchronization frequency) that gives a
good speedup for the distributed implementation while improving the quality
of the solution found over the single-node implementation.

Algorithm 3 shows the structure for the distributed ACO metaheuristic.

Algorithm 3 Distributed ACO metaheuristic
1: Initialization()
2: for s = 1 to num synchs do
3: for i = 1 to num it bt synch do
4: TourConstruction()
5: PheromoneUpdate()
6: end for
7: SynchronizePheromoneMatrix()
8: end for
9: GatherSolutions()

First, in addition to allocating and initializing the data structures (distance
matrix, pheromone matrix, ant colony, etc.), the ACO-TSP master instance
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sends the required parameters (number of iterations, number of cities, number
of ants, α, β, ρ, initial amount of pheromone on all edges of the first pheromone
matrix, number of synchronizations, etc.) and the structures (distance matrix)
for executing the different iterations. Next, blocks of num it bt synch iterations
(consisting of building tours and updating pheromone) are run within the
nested loop. Note that, we have exploited thread parallelism and vectorization
in the single node implementation. At the end of each block of iterations,
pheromone matrices are synchronized as described previously. At a final step,
the master instance receives the best solution (quality of the solution and its
associated tour) from each of the other processes, and computes the best of
the received solutions.

4 Evaluation

This section answers three different questions: a) How good are the perfor-
mance results (runtime and acceleration) of our parallel implementation for
each of the architectures? b) How much is the parallel efficiency in each of the
architectures? and, c) How good is the distributed implementation running on
multiple nodes? In the following sub-sections we give a detailed explanation
of these issues.

4.1 Test Bed

Hardware Platform: The evaluation platform is equipped with an Ivy Bridge
EP Intel Xeon E5-2650 v2 CPU (16 cores), a Broadwell Intel Xeon E5-2698
v4 CPU (40 cores), three Intel Xeon Phi 7120P Knights Corner coprocessors
(61 cores) and an Intel Xeon Phi 7250 Knights Landing processor (68 cores),
whose main features are shown in Table 1. In our results, we refer to the Intel
Xeon E5-2650 v2 chip as Xeon v2, to the Intel Xeon E5-2698 v4 as Xeon v4, to
the Intel Xeon Phi 7120P as Xeon Phi KNC and to the Intel Xeon Phi 7250 as
Xeon Phi KNL. Note that, Xeon Phi KNL has an additional MCDRAM-based
on-package high bandwidth memory.

Table 1 Hardware features.

Xeon v2 Xeon v4 Xeon Phi KNC Xeon Phi KNL

Sockets 2 2 1 1
Clock Frequency 2.6 GHz 2.2 GHz 1.238 GHz 1.4 GHz
Cores/socket 8 out-of-order 20 out-of-order 61 in-order 68 out-of-order
Threads/core 2 2 4 4
VPU Width 256 bits 256 bits 512 bits 512 bits
Peak Performance 665.6 GFLOPs SP 1408 GFLOPs SP 2020 GFLOPs SP 3046.4 GFLOPs SP
Peak Memory Bandwidth 59.7 GB/s 76.8 GB/s 352 GB/s 76.8 GB/s
L1d-cache size/core 32 KB 32 KB 32 KB 32 KB
L2-cache size/core 256 KB 256 KB 512 KB 512 KB
L2-cache size (total) 4 MB 10 MB 30.5 MB 34 MB
L3-cache 20 MB 50 MB — —
MCDRAM size — — — 16 GB
MCDRAM Peak Bandwidth — — — 400 GB/s
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The system runs on a Linux CentOS 7.2 with kernel 3.10.0, and Intel MPSS
3.7.2. Codes are built using Intel C++ compiler (version 17.0.6 for Xeon Phi
KNC, and 18.0.1 for the other platforms) with the optimization level -O3. In
addition, the compiler option -mmic is used when the code is compiled for
Xeon Phi KNC.

Software Application and Experimental Methodology: Our baseline implemen-
tation is based on Stützle’s implementation [14] of ACO. Particularly, we use
the Ant System algorithm with I-Roulette as selection procedure (see Section
2.1). We do not use nearest neighbor lists nor local search. Regarding the ran-
dom number generator, the function proposed by Stützle [14] is included in
our code.

The implementations are tested using a set of instances from the TSPLIB
benchmark library [21]: lin318, rat783, pr1002, rl1889, pr2392, fl3795, rl5934
and pla7397 5. We set ACO parameters as recommended in [2]; i.e. m = n,
where m is the number of ants and n is the number of cities 6, α = 1, β = 5
and ρ = 0.5.

The performance evaluation is based on single-precision numbers. Each
experiment is repeated 10 times, and the values shown are the averages over
these 10 independent runs, where each run is composed of 100 iterations.
The standard deviation is not provided, as it is negligible. The number of
threads per core is empirically selected to get the highest performance on each
architecture: 2 on Intel Xeon v2 and v4, 4 on Xeon Phi KNC, and 3 on Xeon
Phi KNL. As for the CPU affinity scheduling parameter, evaluations performed
on Intel Xeon Phi KNC and KNL are carried out with balanced affinity, while
on compact is set on Intel Xeon v2 and v4, as they provide the best results in
terms of performance.

The Intel Xeon Phi KNC is used in native mode, that is, the application is
run completely on Xeon Phi KNC as an independent node. On Xeon Phi KNL,
the MCDRAM is set to flat mode and execute the application in two configu-
rations: 1) on DDR4 (without using the MCDRAM) and 2) on MCDRAM as
the main memory (this memory is exposed as an independent NUMA node,
so we use numactl for placing the memory of the application on this node).
Moreover, the clustering mode of Intel Xeon Phi KNL is set to SNC-4, a sub-
NUMA cluster mode that partitions the chip into four quadrants exposing
these quadrants as NUMA nodes (see Section 2.2).

4.2 Single Node Evaluation

Our first experiment evaluates the execution time for the tour construction
stage on each architecture when the optimizations detailed in Sections 3.1

5 The name of the instance includes an acronym of the problem and the number of cities,
that is, the problem size.

6 Although setting m=n might be a good choice for a sequential implementation, for a
parallel implementation other choices could be better. This is proposed as future work.
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and 3.2 are applied. Table 2 shows the wall-clock time of this stage for a single
iteration averaged over 100 iterations. For Intel Xeon Phi KNL, the application
is executed on MCDRAM.

Table 2 Execution time (miliseconds) for the tour construction stage on different architec-
tures.

Instance Wall-clock time (ms)

Xeon v2 Xeon v4 Phi KNC Phi KNL

(16 cores) (40 cores) (61 cores) (68 cores)

lin318 2 1 2 1

rat783 26 8 18 11

pr1002 50 15 30 20

rl1889 336 101 170 186

pr2392 680 200 330 330

fl3795 4,230 850 1,640 1,220

rl5934 20,800 9,210 6,900 3,660

pla7397 40,900 20,230 16,050 7,100

Table 2 shows that Intel Xeon v4 outperforms the other architectures when
it runs instances of up to 3795 cities. However, both KNC and KNL Intel Xeon
Phi outperform Intel Xeon v4, achieving a speedup factor between 1.3x and
2.5x respectively for the largest instances (i.e. 5934 and 7397 cities). Finally,
the Intel Xeon Phi KNL obtains the best execution time with a speedup factor
of up to 5.7x against Xeon v2 (for the largest problem size). Note that, Intel
Xeon processors (v2 and v4) have high-end cores, but Intel Xeon Phi proces-
sors have more but simpler cores, each of them doubling Xeon’s VPU width
(256 bits), so both, Intel Xeon Phi (KNC and KNL) are benefit from vector-
ization strategies. Then, we conclude here that our implementation shows a
good behaviour for all the different architectures, even if they have a different
number of cores.

4.3 Parallel Efficiency

This section analyzes the parallel efficiency for each architecture. Parallel effi-
ciency is defined as the ratio of speedup (sequential execution time divided by
parallel execution time) to the number of cores. Parallel efficiency is an inter-
esting measurement on every architecture as it gives the point of diminishing
returns, i.e. the optimal number of cores to use in the parallel implementation
for a fixed problem size.

Figures 1 and 2 show the parallel efficiency obtained on each architecture7.
The affinity has been set to compact in all the architectures to fully leverage
all the cores.

Figure 1 shows that Xeon v2 obtains good parallel efficiency for small
and medium-sized problem instances (around 80%), but it decreases for larger

7 We have omitted the curve for lin318 to ease the visualization of every plot.
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Fig. 1 Parallel efficiency of tour construction on Xeon multicore architectures.

problem sizes (around 40%). The Xeon v4 shows worse scalability, ranging
from 62% to only 20% for large problem sizes. Moreover, there are flat regions
in both plots (for large problem sizes), meaning that from a certain number
of cores, the speed (or runtime) is not improved regardless of the number of
cores actually used by the architecture, so the decreasing return point has been
reached.

Figure 2 shows the Xeon Phi KNC achieves the best parallel efficiency,
ranging from near 100% for small problems to 70% for larger problem sizes,
although it drops to 33% for the largest size. As for Xeon Phi KNL with DDR4
memory, the parallel efficiency ratio ranges from 41% to 10%, while using high
bandwidth memory (MCDRAM) helps to obtain a better ratio, varying be-
tween 44% to 26%. Again, there are some flat regions in these plots, especially
for large-sized problem instances. We have identified three problems that could
explain these results: 1) core load unbalance, 2) memory bandwidth limitations
and 3) effects of NUMA on data placement. In the following sections, we show
other experiments and give some ways or clues to mitigate these causes and
improve efficiency in parallel.
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Fig. 2 Parallel efficiency of tour construction on Xeon Phi KNC and KNL architectures.

4.3.1 Core load imbalance

Uneven load among cores affects the parallel efficiency of our implementation.
Core load imbalance is directly proportional to the number of cores (number of
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processing elements), and inversely proportional to the amount of work (prob-
lem size), assuming that the work is evenly distributed among the processing
elements. Therefore, load imbalance has a lower impact on Xeon v2 and v4
than on both Xeon Phi KNC and KNL. Besides, for all architectures, the core
load imbalance has less impact in larger instances, as the ratio between the
maximum load of a thread and the average load of all threads is lower. Figure
2 shows some examples of this issue for the Xeon Phi KNC architecture. For
the problem instances lin318, rat783 and pr1002 (indicated with the number
1 in this Figure), there are flat regions in which the speedup remains constant
as the number of cores increases, and then suddenly rises to the theoretical
limit before a new flat region begins.

Fig. 3 Load imbalance on Xeon Phi KNC.

To confirm our assumptions, the Figure 3 shows the percentage of load
imbalance vs. the number of cores for different TSP instances on the Intel
Xeon Phi KNC architecture. The load imbalance is greater than or equal to
20% for smaller cases, but it falls below 10% for larger problems (more than
2,392 cities), regardless of the number of running cores.

We try to reduce the effects of core load imbalance by using the dynamic

and guided scheduling policies included in OpenMP. However, these schedul-
ing policies did not improve performance as the ants (i.e. threads ) take the
same amount of time to complete. Therefore, load imbalance is a factor to
be taken into account for the ACO-TSP parallel implementation, as it could
damage the parallel efficiency depending on the actual number of cores of the
architecture and the size of the chosen problem.
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4.3.2 Memory bandwidth limitations

Memory bandwidth affects parallel efficiency, especially in memory-bounded
algorithms. For the ACO-TSP implementation, memory bandwidth is an issue
to increase the parallel efficiency especially for larger instances. This problem
affects our CPU context (multi- and many-core architectures) more deeply
than in GPUs due to their different memory bandwidth capabilities. Therefore,
we have carefully evaluated this issue.

Firstly, the static memory usage of the application was evaluated depending
on the problem size and the number of threads8 (see Table 3). Then, the table 4
shows the place of the memory hierarchy in which each instance fits according
to their static memory usage.

Table 3 Static memory usage (MiB) depending on the problem size (n) and the total
number of threads: 32 for Xeon v2, 80 for Xeon v4, 244 for Xeon Phi KNC and 272 for Xeon
Phi KNL.

Number of threads
Instance n 32 80 244 272

lin318 318 2.36 2.42 2.61 2.65
rat783 783 14.14 14.28 14.77 14.85
pr1002 1002 23.11 23.30 23.92 24.03
rl1889 1889 81.92 82.27 83.45 83.65
pr2392 2392 131.28 131.72 133.21 133.47
fl3795 3795 330.14 330.84 333.21 333.62
rl5934 5934 806.74 807.83 811.54 812.17

pla7397 7397 1257.49 1258.37 1261.67 1262.38

These tables shows that the parallel efficiency is worse in those instances
that do not fit in the caches of each architecture. On Xeon v2, the parallel
efficiency starts decreasing from 3795 cities onwards; on Xeon v4, from 5934
(see Figure 1); on Xeon Phi KNC, from 5934; and on Xeon Phi KNL (DDR4),
from 3795 (see Figure 2). This issue is shown in these figures with the number
2.

Table 4 Place of the memory hierarchy in which each instance fits.

Memory Xeon v2 Xeon v4 Phi KNC Phi KNL

L2 lin318 lin318 lin318 - pr1002 lin318 - pr1002
L3 rat783 rat783 - pr1002 — —

Main Memory pr1002 - pla7397 rl1889 - pla7397 rl1889 - pla7397 rl1889 - pla7397

Larger instances that do not fit in the caches are continuously accessing
the main memory, and the memory bandwidth of each architecture is not
able to cope with the dynamic memory bandwidth the application requires.

8 Although the actual number of threads has a little effect, it slightly affects the size of
several memory structures.
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Previous statement is confirmed for the Xeon Phi KNC, which has a high
bandwidth memory (GDDR-5 with 352 GB/s) and it is the least affected by
this issue. Again, this is confirmed when the application was run on MCDRAM
of the Xeon Phi KNL. Comparing the parallel efficiency charts for Xeon Phi
KNL on DDR4 and MCDRAM9, the bandwidth problems are quite alleviate
when the application is run on the KNL’s MCDRAM. It seems that when
the application requires a higher bandwidth (because of a greater problem
size) than the one indicated by the architecture, the performance decreases.
Therefore, memory bandwidth is another important factor for the ACO-TSP
parallel implementation as it could damage the parallel efficiency depending
on the actual problem size. To cope with this issue, other versions of the ACO
algorithm could be used with smaller memory footprints.

4.3.3 NUMA effects

The NUMA effects are the third problem that prevents parallel efficiency from
reaching the theoretical linear limit. In NUMA architectures, the location of
data plays a fundamental role, since the memory access time depends on the
memory location in relation to the. Under NUMA, a core accesses its own local
memory (memory attached to its socket) faster than non-local memory (local
memory to another socket(s) on the chip). With the exception of the Xeon
Phi KNC architecture (it has a single socket), all other test-bed platforms
(Xeon v2, Xeon v4 and Xeon Phi KNL) are NUMA architectures. The NUMA
effects appear on architectures with more than one socket, as Xeon v2 and v4
(with two sockets), and Xeon Phi KNL (four sockets). The Xeon Phi KNL is
an advanced architecture that can be configured either as non-NUMA or as
different NUMA modes. As already mentioned, the experiments are performed
using the Xeon Phi KNL as SNC-4 mode (four NUMA sockets).

In our ACO-TSP parallel implementation, we identified that the cause of
the performance loss is because each thread writes a portion of the choice info

matrix when it calculates the selection probabilities in parallel, and then all
threads access this matrix in parallel for reading, which implies many accesses
to other NUMA nodes that may have the dirty copies. Two main features of
NUMA effects are observed: (1) They occur equally with the problem instances
that fit either into the caches or the main memory, and b) they are greater
with the actual number of cores in the architecture. We have tagged Figures
1 and 2 with the number 3 to indicate the effects of this problem. Therefore,
NUMA effects is the last important factor affecting parallel efficiency for the
ACO-TSP parallel implementation. To address this problem, the application
requires fine-tuning and an exhaustive analysis of the memory traffic and data
placement.

9 These memories have quite different bandwidths (see Table 1), being MCDRAM the
one with the highest bandwidth (400 GB/s).
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4.4 Multiple Node Evaluation

Our second experimental scenario refers to the distributed implementation
presented in Section 3.3. This experiment uses 1000 iterations and three Intel
Xeon Phi KNC (in native mode) as (homogeneous) nodes. The first part of the
experiment consists of the speedup obtained by the ACO-TSP code when it
is executed on 3 nodes compared to 1-node counterpart version. For 3 nodes,
only a final final synchronization is performed, that is, 1000 iterations are
divided among the three nodes (334 iterations per node) and, the master node
eventually gathers the best global solution. The table 5 shows the execution
time and the speedup factor, varying the number of threads per core (2, 3
and 4 threads per core correspond to 122, 183 and 244 threads per process,
respectively). The table 5 shows the speedup factors achieved are between
2.78 and 2.96x, i.e. a parallel efficiency is in the range of 92 and 98%. Thus,
our distributed implementation scales well along with the number of nodes,
showing good results for all the combinations of threads per core, being slightly
better the ones obtained for 2 threads per core.

Table 5 Execution time (s) and speedup for distributed ACO on 1 and 3 nodes. Only one
synchronization is carried out at the end of the computation

Threads per core

Instance 2 3 4

Time (s) Speedup Time (s) Speedup Time (s) Speedup

1 node 3 nodes 1 node 3 nodes 1 node 3 nodes

lin318 7.87 2.66 2.96 7.52 2.63 2.86 7.92 2.74 2.89

pr1002 123.34 42.66 2.89 111.82 42.71 2.62 110.20 38.58 2.86

pr2392 957.25 331.52 2.89 811.35 279.99 2.90 759.34 272.74 2.78

As mentioned in the Section 3.3, there is a trade-off between obtaining good
performance and scalability in the distributed implementation, and the quality
of the solution found. Although a detailed study of the quality of solution
is left for future work, it is clear that the solution quality is improved by
increasing the number of synchronizations done. Next, we analyze the relation
between the number of synchronizations and the speedup factor achieved by
the distributed implementation. This analysis attempts to show the margin
for increasing the number of synchronizations without losing the performance
benefit of running the code on multiple nodes.

Figure 4 shows the speedup factor obtained by varying the number of syn-
chronizations for different problem sizes. As previously mentioned, the number
of iterations is fixed at 1000, which are equally distributed into the three nodes,
meaning each node performs 334 iterations. Therefore, the experimental re-
sults shown in Figure 4 are obtained ranging from 1 to 300 synchronizations.
Note that it makes no sense to carry out more synchronizations than iterations
per process.

As expected, the speedup factor (and, consequently, the efficiency) de-
creases as the number of synchronizations increases. However, if the problem
size (number of cities) increases, the reduction of the speedup is less significant.
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Fig. 4 Speedup factor for the distributed ACO on three nodes when the number of syn-
chronizations is varied.

This is because the tour construction stage is O(n3), while a synchronization
is O(p · n2), where n is the problem size and p is the number of processes or
nodes. Let’s us remind the reader that m = n ants choose n − 1 cities, being
each of this selections O(n). Besides, a synchronization consists of 3 steps. In
the first and third steps, p − 1 processes (or nodes) send and receive n2 data
(the pheromone matrix) each, so they are O(p · n2). However, as in our case p
is set to 3, we have O(n2) for the communications. In step 2, the computation
of the mean of the pheromone matrices is also O(p · n2).

Moreover, the tour construction is performed at each iteration, while a
synchronization is performed only every num it bt synch iterations. The larger
the problem size, the higher the percentage of time spent on tour construction
and the lower the percentage spent on synchronization. Note that for the
smallest instance (318 cities), there is only performance loss (compared to the
code running on a node) when the number of synchronizations increases above
250. For larger instances, we still benefit from running the code on multiple
nodes, even when the communication takes place in almost every iteration.

5 Related Work

The Ant Colony Optimization is computationally expensive and, therefore, it
has been object of different parallelization studies. After noticing that data
parallelism and vectorization are essential for obtaining high performance for
this metaheuristic on GPUs [4,22,5] and Intel Xeon Phi [8], respectively, sev-
eral strategies and implementations were proposed following this approach.
Firstly, two main alternative selection functions (for the tour construction)
were introduced for exploiting parallelism on GPUs: I-Roulette (Independent
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Roulette) [4] and DS-Roulette (Double-Spin Roulette) [5], both of them ob-
taining good performance against the CPU sequential counterpart versions.
A data-parallel version of Roulette Wheel selection was also proposed [4], but
still preserving an important sequential portion. Recently, Cecilia et al. [7] have
shown how to parallelize this latter sequential part using two parallel patterns
(prefix-scan and stencil), achieving a speedup factor of up to 6x compared
to I-Roulette. Finally, Skinderowicz [23] presents a parallel implementation
for the Ant Colony System algorithm, as an alternative to the ACO and the
MAX-MIN Ant System.

Regarding ACO on CMP Architectures, several parallel and vectorized im-
plementations of Roulette Wheel, I-Roulette and DS-Roulette have been pro-
posed targeting Intel multi-core processors and the first generation of the Intel
Xeon Phi (KNC) coprocessor [9,8,10,24]. Tirado et al. [9] presented a vari-
ant of Roulette Wheel, called UV-Roulette (Unique random Value Roulette),
which generates the same random number for all the ants. Zhou et al. [24]
introduced a new selection approach named Vector-based Roulette Wheel to
properly exploit SIMD units. Montesinos and Garćıa [10] showed how to com-
pletely parallelize and vectorize I-Roulette for Intel architectures using strip-
mining. Recently, Peake at. al [25] proposed a vectorized candidate set selec-
tion for ACO Systems which use candidate sets. [24] has already noted that
bandwidth limitation affects the scalability (and performance) of the ACO
implementation.

Concerning distributed ACO, Stützle [26] introduced the first and most
simple strategy, in which parallel independent runs of the algorithm were ex-
ecuted, and the best solution of the runs was taken as the final solution. This
parallelization scheme, with no communication overhead, was followed in [27,
6] targeting GPU-based clusters. Approaches based on the island-model, in
which the nodes (colonies) exchange information after every certain number
of iterations, have also been proposed [28,29]. Other work [30] divides the
problem into subcomponents (subgraphs), assigning each of them to a differ-
ent process. In order to build a complete solution, ants are migrated from one
process to another. Finally, Llanes et al. [6] presented an MPI implementation
of ACO for GPU-based heterogeneous clusters. They dynamically estimated
the execution time of the slowest GPU and, based on this measurement, the
other GPUs performed a deeper search (running additional iterations) or re-
duce its power consumption (by decreasing the clock rate).

6 Conclusions and Future Work

Ant Colony Optimization (ACO) and other bioinspired metaheuristics emerged
as a novel solution to provide approximate solutions in a reduced time frame-
work for many real-world problems. When accelerators came to the HPC world,
the research community started to migrate the ACO algorithm to NVIDIA
GPUs using CUDA. Only recently there have appeared some works that mi-
grate ACO to Intel Xeon Phi. This paper gives detailed guidelines of the reengi-
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neering process of migrating ACO-TSP to Intel architectures, discussing how
to optimize ACO for the intra-node (thread and vector) parallelization. Our
single-node implementation is portable and works perfectly in four different
Intel architectures. It also scales well with the number of cores, ranging from
an Intel Xeon E5-2650 v2 (16 cores) multi-core to an Intel Xeon Phi 7250 KNL
(68 cores) many-core processor, obtaining an speedup factor of up to 5.7X be-
tween these two computing architectures. Moreover, the paper discusses an
ACO-TSP distributed implementation, using the MPI library. We have tested
it over three Intel Xeon Phi 7120P KNC processors obtaining a speedup factor
of up to 2.96x compared to its 1-node counterpart version (with only one final
synchronization). Finally, the paper studies the parallel efficiency of the ACO-
TSP implementation in both a single and multiple nodes. We found that core
load imbalance, memory bandwidth limitations, and NUMA effects on data
placement are the key players in the parallel efficiency in a single node, while
frequency among synchronizations is the main issue in the multiple node en-
vironment.

As the new Xeon scalable architectures are NUMA, our goal is to study how
our implementation is affected by different memory placement policies. We also
intend to implement other Ant Systems versions with less memory footprints
to study the memory bandwidth limitation. The other line we are interested
in is for distributed implementation the synchronization frequency, taking into
account not only the speedup factor but also the quality of the solution. In
addition, we are developing and comparing other distributed implementations,
allowing the number of ants to be different from the number of cities, aimed
at a heterogeneous environment.
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14. Stützle, T.: ACOTSP v1.03. Last accessed 2018-02-15. [Online]. URL: iridia.ulb.ac.be/∼
mdorigo/ACO/downloads/ACOTSP-1.03.tgz

15. Dorigo, M.: Optimization, Learning and Natural Algorithms. PhD Thesis, Politecnico
di Milano, Italy, 1992.

16. Duran, A., Klemm, M.: The Intel Many Integrated Core Architecture. Int. Conf. on
High Performance Computing and Simulation (HPCS), pp. 365-366, 2012.

17. The OpenMP API specification for parallel programming. [Online]. URL:https://www.
openmp.org [Last accessed: 14 June 2018].

18. The Message Passing Interface (MPI) standard. [Online]. URL:http://www.mcs.anl.
gov/research/projects/mpi/ [Last accessed: 15 June 2018].

19. Intel Developer Zone. [Online]. URL: https://software.intel.com/en-us/

modern-code [Last accessed 2018-10-02].
20. Pearce, M. What is Code Modernization? Intel Developer Zone. [Online]. URL:

http://software.intel.com/en-us/articles/what-is-code-modernization [Last ac-
cessed 2018-02-15].

21. Reinelt, G.: TSPLIB - A traveling salesman problem library. ORSA Journal on Com-
puting, 3 (1991) 376-384.
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