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Abstract

A quasi-total Roman dominating function on a graph G = (V,E) is a function f :
V → {0, 1, 2} satisfying the following:

• every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which
f(v) = 2, and

• if x is an isolated vertex in the subgraph induced by the set of vertices labeled with
1 and 2, then f(x) = 1.

The weight of a quasi-total Roman dominating function is the value ω(f) = f(V ) =
∑

u∈V
f(u). The minimum weight of a quasi-total Roman dominating function on a

graph G is called the quasi-total Roman domination number of G. We introduce the
quasi-total Roman domination number of graphs in this article, and begin the study of
its combinatorial and computational properties.

Keywords: quasi-total Roman domination number; Roman domination number; total
Roman domination number.

2000 Mathematical Subject Classification : 05C69

1 Introduction

Domination in graphs is a classical topic, and nowadays one of the most active areas of
research in graph theory. This fact can be seen for instance through more than 1600 articles
published in the topic (more than 1000 of them in the last 10 years), according to the
MathSciNet database with the queries: “domination number” or “dominating sets”. A high
number of concepts, open problem, research lines are nowadays open and being dealt with.

∗Corresponding author.
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The two books [8, 9], although a little not updated by now, contain a large number of the
most important and classical results in the topic before this new century. One of the topics
which is intensively studied concern the so-called Roman domination, which is a domination
version arising from some historical roots coming from the ancient Roman Empire. This
article deals precisely with this style of domination.

We consider G as a non directed graph with vertex set V (G) having neither loops nor
multiple edges. A dominating set of G is a subset D ⊆ V (G) of vertices such that every
vertex not in D is adjacent to at least one vertex in D. The minimum cardinality of a
dominating set is called the domination number of G and is denoted by γ(G). This concept
has many applications to several fields, since it naturally arises in facility location problems,
in monitoring communication, or in electrical networks. A first variant of it is as follows.
A total dominating set of G (whether it has no isolated vertex) is a set S of vertices of G
such that every vertex is adjacent to a vertex in S. Every graph without isolated vertices
has a total dominating set, since S = V (G) is such a set. The total domination number of
G, denoted by γt(G), is the minimum cardinality of a total dominating set. Many variants
(like the total domination for instance) of the basic concepts of domination have appeared in
the literature. We refer to [8, 9] for a survey of the area. Moreover, for more information on
total domination, we suggest the recent book [11] or the latest survey [10].

A variation of domination called Roman domination was formally introduced in graph
theory, by Cockayne et al. in [6], based on some works from ReVelle [14, 15] and Stewart
[17]. Also see ReVelle and Rosing [16] for an integer programming formulation of the problem.
The concept of Roman domination can be formulated in terms of graphs as follows. A Roman

dominating function (RDF for short) on a graph G is a vertex labeling f : V (G) → {0, 1, 2}

such that every vertex with label 0 has a neighbor with label 2. For a RDF f , let V f
i = {v ∈

V (G) : f(v) = i} for i = 0, 1, 2. Since this three sets determine f , we can equivalently write

f = (V f
0 , V f

1 , V f
2 ) (or simply f = (V0, V1, V2) if there is no confusion). The weight f(V (G))

of a RDF f on G is the value ω(f) =
∑

v∈V (G) f(v), which equals |V f
1 |+ 2|V f

2 |. The Roman

domination number γR(G) of G is the minimum weight of a RDF on G. A RDF on a graph
G with minimum weight will be referred to as a γR(G)-function.

As a variation of Roman domination (and also as another variation of domination), Liu
and Chang [12] have introduced the concept of total Roman domination in graphs although
in a more general setting. In a more specific style, the total Roman domination number was
first presented and deeply studied in [1]. A total Roman dominating function (TRDF) on a
graph G with no isolated vertex, is a Roman dominating function f = (V0, V1, V2) on G such
that the set {v ∈ V (G) : f(v) 6= 0} induces a subgraph without isolated vertices. The total

Roman domination number γtR(G) is the minimum weight of a TRDF on G. A TRDF with
minimum weight in a graph G is a γtR(G)-function.

Although the concept of total Roman domination number (as stated above) is very natural
and several works has been already done on it, there is a fact which makes that its “defensive”
features (according to the historical arising point of view) are notably increased to just achieve
the “total domination” property. Consider for instance the graph drawn in Figure 1.

In the graph given in Figure 1, the “defensive” features of both labelings are increased in
order to have the “total domination property” of the function. That is, in one side, vertices
labeled with one are not exactly “in a dangerous” situation since they have label one, and no
other “attacking” vertex “around”, or in second hand, there are two adjacent vertices labeled
with two, and one of them has only one other neighbor. Thus, in some sense, one might
consider allowing some not totally dominated vertices in a labeling whether the situation
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Figure 1: Two different labelings generating TRDFs on the drawn graph.

would be appropriate. For instance, a possible efficient (with respect to the sum of the
weights assigned to the vertices) labeling having some partial total domination features of
the graph of Figure 1 is shown in Figure 2. In connection with this situation, in this work
we center our attention into some kind of a weaker version of the total Roman domination
parameter, or a stronger version of the standard Roman domination one.

2
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Figure 2: An efficient labeling preserving some total dominating properties as well as allowing
some other ones not totally dominated.

A quasi-total Roman dominating function (QTRDF) on a graph G is a function f :
V (G) → {0, 1, 2} satisfying the following:

• every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2,
and

• if x is an isolated vertex in the subgraph induced by the set of vertices labeled with 1
and 2, then f(x) = 1.

The weight of a QTRDF f is the value ω(f) = f(V (G)) =
∑

u∈V (G) f(u). The minimum
weight of a QTRDF on G is called the quasi-total Roman domination number of G and is
denoted by γqtR(G).

In this work we introduce the concept above and begin with the study of its combinatorial
and computational properties. In this sense, we next describe some basic terminology and
notation that we shall need throughout our exposition and for the remaining basic terminology
and notation on graph theory not given here, the reader is referred to [18].

We denote the vertex set and the edge set of a graph G by V (G) and E(G), respectively.
The subgraph induced by S ⊆ V (G) is denoted by G[S]. The complement of a graph G is
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denoted by G. For any vertex x of a graph G, NG(x) denotes the set of all neighbors of x in G,
NG[x] = NG(x) ∪ {x} and the degree of x is dG(x) = |NG(x)|. The minimum and maximum
degree of a graph G are denoted by δ(G) and ∆(G), respectively. For a subset A ⊆ V (G), let
NG(A) = ∪x∈ANG(x) and NG[A] = NG(A)∪A. For a graph G, let x ∈ X ⊆ V (G). A vertex
y ∈ V (G) is a X-private neighbor of x if NG[y] ∩X = {x}. The X-private neighborhood of
x, denoted pnG(x,X), is the set of all X-private neighbors of x. The distance between two
vertices x, y ∈ V (G) is denoted by dG(x, y).

If G is a non-connected graph with connected components C1, . . . , Cs, I1, . . . , Ir, where
each component Ci has order at least two and each component Ij is a singleton, then it is
not difficult to observe that

γqtR(G) = r +
s

∑

i=1

γqtR(G[Ci]).

In view of this fact, from now we only consider connected graphs, although we will not
explicitly mention it, unless the state of the situation will require to involved not connected
graphs.

2 Primary combinatorial and computational results

It is not difficult to see that any TRDF is also a QTRDF, as well as, a QTRDF is also a
RDF. In concordance, the following chain of inequalities directly follows.

γR(G) ≤ γqtR(G) ≤ γtR(G) (1)

We first observe that the differences γqtR(G)−γR(G) and γtR(G)−γqtR(G) can be as large
as possible. To this end, we consider the graph G1, which is obtained as follows. We begin
with a singleton vertex u. Next we add, t copies of the graph H drawn in Figure 3, and join
with an edge the vertex u with the vertex w of each added copy of H.

w

w1 w3

w2

xx
′

Figure 3: The graph H with the labeling used in proofs.

We consider the following functions defined on the graph G1.

• f1: it assigns two to each vertex wi, i ∈ {1, 2, 3}, of every copy of H, one to the vertex
x of every copy of H and to the central vertex u, and zero otherwise.

• f2: it assigns two to each vertex wi, i ∈ {1, 2, 3}, of every copy of H, one to the vertices
x, x′, w of every copy of H and to the central vertex u, and zero otherwise.

• f3: it assigns two to each vertex wi, i ∈ {1, 2, 3}, of every copy of H, one to the vertices
x,w of every copy of H and to the central vertex u, and zero otherwise.
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Observe that f1 is a RDF, f2 is a TRDF and f3 is a QTRDF, and so, γR(G1) ≤ ω(f1) = 7t+1,
γtR(G1) ≤ ω(f2) = 9t + 1 and γqtR(G1) ≤ ω(f3) = 8t + 1. On the other hand, by making
some observation on the construction, we deduce that such functions above are of minimum
weight, which means we have equalities in these stated bounds. As a consequence, one can
check that the differences γqtR(G1)− γR(G1) = t and γtR(G1)− γqtR(G1) = t can be as large
as possible.

The inequalities given in (1) show lower and upper bounds for γqtR(G) in terms of γR(G)
and γtR(G), respectively. We next show that also lower and upper bounds for γqtR(G) can
be given, now in terms of γtR(G) and γR(G), respectively.

Proposition 1. Let G be a graph without isolated vertices.

(i) If f = (V0, V1, V2) is any γR(G)-function, then γqtR(G) ≤ γR(G) + |V2|.

(ii) If f ′ = (V ′

0 , V
′

1 , V
′

2) is any γqtR(G)-function, then γtR(G) ≤ γqtR(G) + |V ′

1 |.

Proof. Clearly, if we choose one neighbor with minimum weight of each vertex v ∈ V2 and
label it with one, then we obtain a QTRDF of G with weight at most γR(G)+ |V2|. Similarly,
if we take one neighbor with minimum weight of each vertex v ∈ V ′

1 and label it with one,
then we obtain a TRDF of G with weight at most γqtR(G) + |V ′

1 |.

We next give some families of graphs where the bounds above are achieved. Consider a
graph G without isolated vertices. We next add k ≥ 3 pendant vertices to each vertex of G
and we also multisubdivide each edge of G with two vertices (by multisubdividing an edge
uv we mean removing the edge uv and adding a path P2 = xz and the edges ux, zv). We
denote by G2,k the graph obtained in this way. Now, to obtain a graph G′

k from G, we add
k ≥ 3 pendant vertices to each vertex of G and subdivide (with only one vertex) exactly one
the pendant edges of every vertex of G.

Remark 2. Let G be any graph with minimum degree at least two.

(i) There exists a γR(G2,k)-function f = (V0, V1, V2) such that γqtR(G2,k) = γR(G2,k)+ |V2|.

(ii) There exists a γqtR(G
′

k)-function f ′ = (V ′

0 , V
′

1 , V
′

2) such that γtR(G
′

k) = γqtR(G
′

k) + |V ′

1 |.

Proof. (i) We first observe that G2,k has a unique γR(G2,k)-function f = (V0, V1, V2) of weight
2n, where n is the order of the graph G, such that V2 = V (G), V1 = ∅ and V0 = V (G2,k) \V2.
Clearly, such described function is a RDF on G2,k, which means γR(G2,k) ≤ 2n. On the other
hand, let f ′ be any γR(G2,k)-function. If any pendant vertex v of G2,k is labeled with one or
two under f ′, then the vertex u ∈ V (G) adjacent to v must have label 0 or 1, otherwise we
can easily construct a RDF on G2,k with weight smaller than that of f ′, which is not possible.
Consequently, we consider all k pendant vertices adjacent to u have label one or two also.
Since k ≥ 3, by relabeling u with two and its adjacent pendant vertices with zero, we obtain
a new RDF with weight smaller than γR(G2,k), a contradiction. Thus, all pendant vertices
of G2,k are labeled zero under f ′. As a consequence, every vertex u ∈ V (G) must have label
two, which leads to claim that all the vertices used in the multisubdivision process have label
zero also. Since f ′ is arbitrarily taken, because of its forced structure, we deduce that it must
be unique and must have weight 2n.

Now, by labeling with one, exactly one neighbor of each vertex u ∈ V2 = V (G), from
f we obtain a QTRDF of weight 3n and so, γqtR(G2,k) ≤ 3n = γR(G2,k) + |V2|. Suppose
now that γqtR(G2,k) < 3n and let g be any γqtR(G2,k)-function. Consider the partition of
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the vertex set of G2,k given by the closed neighborhoods of vertices of G, that is, the set
{N [u] : u ∈ V (G)}. Since there are n sets in this partition, there must exist a vertex
w ∈ V (G) such that g(N [w]) ≤ 2. Since there are k ≥ 3 pendant vertices in N [w], at least
one of them must have label zero, which means g(w) = 2 and, in addition, all vertices in
N(w) must have label zero. Thus, w is a vertex with label two under g and has no neighbor
with label one or two under g, which contradicts the fact that g is a QTRDF. Therefore,
γqtR(G2,k) = 3n = γR(G2,k) + |V2|.

(ii) By using somehow similar ideas to the proof of (i), we can deduce that γqtR(G
′

k) = 3n
with a unique γqtR(G

′

k)-function f ′ = (V ′

0 , V
′

1 , V
′

2) given by V ′

2 = V (G), V ′

1 = {v ∈ V (G′

k) :
v has degree one and distance at least two to every vertex in V (G)} and V ′

0 = V (G′

k)\ (V
′

1 ∪
V ′

2). Observe that the vertices labeled with one have no neighbors labeled with one or two.
Thus, by labeling with one the unique neighbor of every vertex in V ′

1 , we obtain a TRDF of
weight 4n, and so, γtR(G

′

k) ≤ 4n = γqtR(G
′

k) + |V ′

1 |.
On the other hand, if we suppose that γtR(G

′

k) < 4n, then again some relatively similar
procedure as in item (i) will lead to a contradiction. Thus, γtR(G

′

k) = 4n = γqtR(G
′

k) + |V ′

1 |,
which completes the proof.

It is natural to think that γqtR(G) is related to other domination parameters of the graphs
G. In this sense, we now present some bounds for γqtR(G) in terms of γ(G) and γt(G), and
for this, we need two known results from [5] and [1] and a new terminology. Given a set S
and a vertex v of a graph G, the external private neighborhood epnG(v, S) consists of those
S-private neighbors of v in V (G) \ S.

Theorem 3. [5] If G is a graph without isolated vertices, then γt(G) ≤ γR(G).

Theorem 4. [1] If G is a graph with no isolated vertex, then γt(G) ≤ γtR(G) ≤ 2γt(G).

Theorem 5. For any nontrivial connected graph G,

γt(G) ≤ γqtR(G) ≤ 2γt(G).

Furthermore,

(i) γqtR(G) = γt(G) if and only if G ∼= P2,

(ii) γqtR(G) = γt(G) + 1 if and only if γqtR(G) = 3, and

(iii) γqtR(G) = 2γt(G) if and only if γqtR(G) = γtR(G) and γtR(G) = 2γt(G).

Proof. By Theorem 3 and inequality (1), we get γt(G) ≤ γqtR(G) and from inequality (1)
and Theorem 4, we have γqtR(G) ≤ 2γt(G).

Now, let f = (V0, V1, V2) be a γqtR(G)-function such that |V2| is maximum. We consider
V1,2 = {v ∈ V1 : N(v) ∩ (V1 ∪ V2) 6= ∅} and let V1,0 = V1 \ V1,2. Notice that epn(z, V1,0) 6= ∅
for every z ∈ V1,0. Otherwise, if there exists a vertex z ∈ V1,0 such that epn(z, V1,0) = ∅,
then there exist two vertices y ∈ V1,0 and x ∈ V0 such that x ∈ N(z) ∩ N(y). Notice that
x is adjacent to a vertex of V2. Hence, the function f ′ = (V ′

0 , V
′

1 , V
′

2), defined by f ′(x) = 2,
f ′(y) = f ′(z) = 0 and f ′(u) = f(u) if u ∈ V (G) \ {x, y, z}, is a QTRDF on G satisfying
|V ′

2 | > |V2|, which is a contradiction.
Now, let A be a subset of ∪z∈V1,0

epn(z, V1,0) such that A contains exactly one vertex of
epn(z, V1,0) for every z ∈ V1,0. Observe that |A| = |V1,0|, and that A ∪ V1,2 ∪ V2 is a total
dominating set of G. Thus

γt(G) ≤ |A|+ |V1,2|+ |V2| = |V1|+ |V2| ≤ |V1|+ 2|V2| = γqtR(G).
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(i) If γqtR(G) = γt(G), then V2 = ∅, which implies that V0 = ∅ and γqtR(G) = γt(G) = n.
Therefore G ∼= P2. The other implication is straightforward to see.

(ii) If γqtR(G) = γt(G) + 1, then |V2| = 1 and |A| = |V1,0| = 0. Hence γqtR(G) = 3. The
other implication is straightforward to see.

(iii) The proof of this item is straightforward to observe, and therefore, omitted.

Since γt(G) ≤ 2γ(G) for any graph G (see [11]), the theorem above leads to γqtR(G) ≤
4γ(G). However, this bound can be improved as we next show.

Theorem 6. Let G be any graph without isolated vertices. If f = (V0, V1, V2) is a γqtR(G)-
function and V ∗

1,2 = {v ∈ V1 : N(v) ∩ V2 6= ∅}, then

γ(G) + |V2|+ |V ∗

1,2| ≤ γqtR(G) ≤ 3γ(G).

Proof. We consider a dominating set S. Now, we construct a set S′ in the following way. For
any vertex v ∈ S such that N(v) ∩ S = ∅, we choose one neighbor v′ of v (which exists since
G has no isolated vertices), and add it to S′. Now, the function f = (V (G) \ (S ∪ S′), S′, S)
is a QTRDF on G of weight at most 3γ(G), and we are done for the upper bound.

Now, we prove the lower bound. Observe that V2 ∪ (V1 \ V
∗

1,2) is a dominating set in G.
Thus,

γ(G) ≤ |V2|+|V1\V
∗

1,2| = |V2|+|V1|−|V ∗

1,2| = 2|V2|+|V1|−|V2|−|V ∗

1,2| = γqtR(G)−|V2|−|V ∗

1,2|,

which completes the proof.

For the tightness of the upper bound above we consider for instance any star graph, or
any path or cycle graph of order 3k for some integer k ≥ 1.

As we can may guess, the problem of computing the quasi-total Roman domination number
of graphs is as hard as its related predecessors. The NP-completeness of the decision problem
concerning γR(G) was proved in [7], while a similar result was obtained in [12] for the case
of γtR(G). At next we prove also the NP-completeness of the decision problem related to
γqtR(G), that is, of the next problem.

QUASI-TOTAL ROMAN DOMINATION problem (QTRD problem)
INSTANCE: A non trivial graph G without isolated vertices and a positive integer r.
PROBLEM: Deciding whether γqtR(G) is less than r.

In order to study the problem above from a complexity point of view, we shall make a
reduction from the NP-complete decision problem concerning computing the Roman domi-
nation number of graphs, i.e., the next problem.

ROMAN DOMINATION problem
INSTANCE: A non trivial graph G and a positive integer r.
PROBLEM: Deciding whether the Roman domination number of G is larger than r.

We next introduce a graph G′ to be used in the reduction. Consider a graph H as shown
in Figure 3. Now, given any graph G of order n, a graph G′ is constructed as follows. For any
vertex z ∈ V (G), we add a copy of the graph H and the edge zw. By using this construction
and the ROMAN DOMINATION problem, we are able to prove the NP-completeness of the
QTRD problem.

7



Theorem 7. The QTRD problem is NP-complete.

Proof. Consider any graph G of order n, and the graph G′ as described above. Let f be any
γR(G)-function, and let f ′ be a function on G′ defined as follows. For any vertex v ∈ V (G),
f ′(v) = f(v). For any vertex v ∈ V (H) of any copy of H used to generate G′, if v = w
or v = x, then f(v) = 1; if v = wi, for some i ∈ {1, 2, 3}, then f(wi) = 2; and f(v) = 0
otherwise. We observe that every vertex labeled with zero is adjacent to a vertex labeled
with two, and that any vertex labeled with two has one neighbor labeled with one or two.
Thus, f ′ is a QTRDF on G′, which leads to γqtR(G

′) ≤ ω(f ′) = 8n+ γR(G).
On the other hand, assume g = (V0, V1, V2) is a γqtR(G

′)-function. According to the
structure of G′, we can readily seen that g(wi) = 2 for every wi ∈ V (H) of any copy ofH, used
to generate G′. In order to have the partial total domination property in the set V1∪V2, it must
happen that each vertex wi labeled two will have a neighbor labeled one or two. In this sense,
it must also be g(w) = 1 for any copy ofH. Moreover, g(x) ≥ 1 also occurs. As a consequence,
any vertex u ∈ V (G) for which g(u) = 0 is adjacent to a vertex u′ ∈ V (G) for which g(u′) = 2,
which means that the function g restricted to V (G) is a RDF on G, and so, γR(G) ≤ g(V (G)).
Thus, γqtR(G

′) = ω(g) = g(V (G)) +
∑n

i=1 g(V (H)) ≥ γR(G) +
∑n

i=1 8 = 8n + γR(G), and
therefore, the equality γqtR(G

′) = 8n+γR(G) follows. Now, by taking j = 8n+k, it is readily
seen that γqtR(G

′) ≤ j if and only if γR(G) ≤ k, which completes the reduction.

According to the result above, it clearly happens that computing the quasi-total Roman
domination number of graphs is an NP-hard problem. In this sense, it is desirable to bound
its value or compute the exact value for several non trivial families of graphs. We next center
our attention on these goals. To this end, one first consider some algorithmic technique for
finding a QTRDF of a graph. Despite it does not behave so “efficiently”, it has a positive
value while giving some bounds or proving some results concerning the quasi-total Roman
domination number of graphs.

Algorithm 1 Finding a QTRDF of a graph

Input: A graph G of order n ≥ 2
Output: a QTRDF

V0 = ∅, V1 = ∅, V2 = ∅
order V (G) with respect to the degree of the vertices in decreasing order
L is the list of ordered vertices
while |L| ≥ 1 and the first element of L has degree at least one do

take first vertex v ∈ L
add v to V2

add a neighbor v′ of v to V1

add N(v)− {v′} to V0

remove N [v] from L
update G as the graph induced by V (G)−N [v]
order V (G) with respect to the degree of the vertices in decreasing order
update L

end while

add remaining vertices to V1 (vertices with degree zero)

In each step of Algorithm 1, the contribution of the weights assigned to the vertices
over the weight of the constructed function f is three. Moreover, the algorithm creates a
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partition Π = {A1, A2, . . . , Aq, I} of the vertex set V (G) such that Ai = N [vi], for some
vertex vi ∈ V (G) and |Ai| ≥ 2 for every i ∈ {1, . . . , q}; and I induces a set of isolated
vertices. In consequence, γqtR(G) ≤ ω(f) = 3q + |I|. We next find some specific cases where
such bound gives some interesting consequences.

Proposition 8. If a graph G of order n has q ≥ 1 vertices v1, v2, . . . , vq of degree larger

than two such that the distance between any two of them is at least three, and the set of

vertices not adjacent to a vertex vi, i ∈ {1, . . . , q}, form an independent set, then γqtR(G) ≤
n+ 3q −

∑q
i=1(dG(vi) + 1).

Proof. By running Algorithm 1 over such graph, we notice the following facts.

• The algorithm makes q steps.

• In each step, the closed neighborhood of a vertex of degree larger than two is removed.

• At the end of a running time, a set of isolated vertices I remains (these ones not adjacent
to a vertex of degree larger than two).

In consequence, we deduce that the weight of the function created by the algorithm has
weight 3q + |I|. Now, since |I| = n−

∑q
i=1(dG(vi) + 1), we deduce the upper bound.

A trivial example which shows the tightness of the bound above can be easily noticed by
taking any graph G of order n and maximum degree n−1. In this case, we obtain γqtR(G) ≤ 3
which is exact as we know from Proposition 11 (i). We next present another family of graphs
for which the bound above is tight.

Similarly to the graphG2,k previously defined, we define the graphG3,k as a graph obtained
from a graph G, but now the multisubdivision process is made with 3 vertices. In this sense,
we observe that G3,k has order n+ 3m+ nk = n(k + 1) + 3m, where n and m are the order
and size of the graph G used to generate G3,k.

Remark 9. If G is a graph of minimum degree at least three, order n and size m, then
γqtR(G3,k) = 3n+m.

Proof. Since G3,k has order n+3m+nk = n(k+1)+3m, the vertices corresponding to that
ones of the original graph G has degree at least three (and can be taken as the set of q vertices
of Proposition 8), and those vertices not adjacent to the vertices of G form an independent
set in G3,k, from Proposition 8 we have that

γqtR(G3,k) ≤ n+3m+nk+3n−
∑

v∈V (G)

(dG3,k
(v)+1) = n+3m+nk+3n−2m−n−nk = 3n+m.

On the other hand, let f be any γqtR(G3,k)-function such the set of vertices labeled with
two is of minimum cardinality. If there exists a vertex v ∈ V (G) for which f(v) 6= 2, then
every pendant vertex adjacent to v must have label at least one. Since there are at least
three pendant vertices adjacent to v, by some simple case analysis, we observe that one can
always find a QTRDF of weight smaller than that of f , which is a contradiction. Thus,
every vertex v ∈ V (G) satisfies f(v) = 2. Since every vertex labeled with two needs a
neighbor with label one or two, there should be at least one neighbor v′ ∈ N(v) for every
v ∈ V (G) such that f(v′) ≥ 1. Thus, since the distance in G3,k between any two vertices
of G is at least four, it follows f(NG3,k

[v]) ≥ 3 for every vertex v ∈ V (G), which leads to
f(V (G3,k) \

⋃

v∈V (G)NG3,k
[v]) = f(V (G3,k))− f(

⋃

v∈V (G)NG3,k
[v]) ≤ γqtR(G3,k)− 3n ≤ m.
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If f(V (G3,k) \
⋃

v∈V (G)NG3,k
[v]) < m, then since |V (G3,k) \

⋃

v∈V (G)NG3,k
[v]| = m, there

exists a vertex (a central vertex of one path used to multisubdivide one edge of G) x such
that f(x) = 0. This means that one of its two neighbors, say x′ satisfies f(x′) = 2. Now,
notice that x′ ∈ N(u) for some u ∈ V (G), and that f(u) = 2. Now, by relabeling the
vertices x and x′ with one, we obtain a new γqtR(G3,k)-function with a smaller number
of vertices labeled with two, which is a contradiction with our assumption. Consequently,
f(V (G3,k) \

⋃

v∈V (G)NG3,k
[v]) = m, and so

γqtR(G3,k) = f(V (G3,k) \
⋃

v∈V (G)

NG3,k
[v]) + f(

⋃

v∈V (G)

NG3,k
[v]) ≥ m+ 3n,

and the equality follows.

We next continue with some other bounds for γqtR(G) in terms of other parameters.

Theorem 10. For any graph G of order n and maximum degree ∆(G) ≥ 2,

⌈

2n

∆

⌉

≤ γqtR(G) ≤ n−∆(G) + 2.

Proof. We first prove the lower bound. Let f = (V0, V1, V2) be a γqtR(G)-function. By
definition, each vertex v ∈ V0 is adjacent to at least one vertex u ∈ V2, and since every vertex
in V2 has a neighbor labeled with positive weight under f , we must have |V0| ≤ (∆− 1)|V2|.
So, it follows

∆γqtR(G) = ∆(|V1|+ 2|V2|)

≥ ∆|V1|+ 2|V0|+ 2|V2|

≥ 2|V1|+ 2|V0|+ 2|V2|

≥ 2n.

Therefore, γqtR(G) ≥
⌈

2n
∆

⌉

.
To prove the upper bound, we observe that, if v is a vertex of maximum degree in G and v′

is a neighbor of v, then the function g = (N(v) \ {v′}, (V (G) \N [v])∪{v′}, {v}) is a QTRDF
on G with weight n−∆(G) + 2.

For the particular case in which ∆(G) = 2, Theorem 10 leads to γqtR(G) = n, and we next
prove that the only case in which γqtR(G) = n is precisely whether ∆(G) = 2. Moreover,
since every vertex labeled with two in a QTRD must have a neighbor labeled one or two, we
can readily seen that γqtR(G) ≥ 3 for any graph G, unless G is the graph K2.

Proposition 11. For any graph G of order n ≥ 3, 3 ≤ γqtR(G) ≤ n. Moreover,

(i) γqtR(G) = 3 if and only if G is a graph of maximum degree n− 1,

(ii) γqtR(G) = 4 if and only if γ(G) = γt(G) = 2, and

(iii) γqtR(G) = n if and only if G is a path or a cycle of order at least three.

Proof. (i) If G is a graph of maximum degree n− 1, then we can easily see that γqtR(G) = 3.
On the contrary, assume γqtR(G) = 3 and let g = (V0, V1, V2) be a γqtR(G)-function. Hence,
it must happen one of the following situations.
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• |V1| = 3 and |V2| = 0. Thus, V0 = ∅, which means n = 3 and so G is a path P3 or a
cycle C3, and both of them have degree n− 1.

• |V1| = 1 and |V2| = 1. Thus, the two vertices in V1 ∪ V2 are adjacent, and every other
vertex not in V1∪V2 has label zero, and so it is adjacent to the vertex in V2. Therefore,
the vertex in V2 has degree n− 1.

(ii) First, we assume that γqtR(G) = 4 and let f = (V0, V1, V2) be a γqtR(G)-function.
Thus, one of the following situations occurs.

• |V1| = 4 and |V2| = 0. In this case, V0 = ∅ and so, G is a graph of order n = 4, and by
item (i), G is the path P4 or the cycle C4, which satisfy that γ(P4) = γt(P4) = γ(C4) =
γt(C4) = 2.

• |V1| = 2 and |V2| = 1. Hence, exactly one vertex of the two vertices in the set V1 is
adjacent to the vertex in V2, and every other vertex x /∈ V1 ∪ V2 (x ∈ V0) is adjacent to
the vertex in V2. Thus, the vertex in V2, say v, together with a neighbor of the vertex
in V1 not adjacent to v form a total dominating set, which means γt(G) = 2. Also,
since γqtR(G) > 3, we have that γ(G) ≥ 2. Therefore, γ(G) = γt(G) = 2.

• |V1| = 0 and |V2| = 2. Clearly, every vertex in V (G) \ V2 is adjacent to a vertex
of V2, and the two vertices in V2 must be adjacent. Thus, V2 is a total dominating
set, which means γt(G) = 2. Since γqtR(G) > 3, we have that γ(G) ≥ 2. Therefore,
γ(G) = γt(G) = 2.

On the other hand, let γ(G) = γt(G) = 2. Notice that G must have maximum degree at
most n− 2. Hence, by item (i), we have that γqtR(G) ≥ 4. Notice that γqtR(G) ≤ γtR(G) ≤
2γt(G) = 4 (which is known from [1]). Therefore, γqtR(G) = 4, which completes the proof of
(ii).

(iii) Assume G is a path or a cycle of order at least three. By Theorem 10 we obtain the
equality. On the other hand, let G be a graph of order n ≥ 3 satisfying γqtR(G) = n. If
G has maximum degree larger than two, then by Theorem 10, we obtain γqtR(G) ≤ n − 1,
a contradiction. Thus, G has maximum degree two, which means G is a path or a cycle of
order at least three.

Another bound for the quasi-total Roman domination number of a graph G can be given
in terms of the packing number of G. To this end, it is said that a subset B ⊆ V (G) is a
packing in G if for every pair of vertices u, v ∈ B, N [u]∩N [v] = ∅. The packing number ρ(G)
is the maximum cardinality of a packing in G.

Proposition 12. For any graph G of order n, γqtR(G) ≤ n− ρ(G)(δ(G) − 2).

Proof. Let S be a packing in G. We now consider a function f = (V0, V1, V2) such that
V2 = S, V1 is formed by exactly one neighbor of each vertex of S together with that vertices
not adjacent to any vertex in S, and V0 the remaining vertices. We can easily observe that
f is a QTRDF on G. Since f has weight 3ρ(G) + n−

∑

v∈S(dG(v) + 1), we directly deduce
the bound.

Clearly, the bound above is only useful whether G has degree at least two. Note that
precisely, if G has minimum degree two, then we get γqtR(G) ≤ n, which is tight for the case
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of cycles. Moreover, if G is a complete graph of order at least three, then ρ(G) = 1 and
δ(G) = n− 1, which leads to γqtR(G) ≤ 3, that is also a sharp value.

An special class of graphs G for which its packing number equals its domination number
is known as efficient domination graphs. Notice that in such case, the closed neighborhood
centered in vertices belonging to a ρ(G)-set partitions the vertex set of G. Thus, the next
result can be deduced from the proof of Proposition 12.

Proposition 13. For any efficient domination graph G, γqtR(G) ≤ 3ρ(G).

3 A Nordhaus-Gaddum bound

In 1956 (see [13]), Nordhaus and Gaddum began some research idea, which has further
became very useful and popular in the investigation concerning graph theory, and probably
more intensively, in the area of domination in graphs. They gave lower and upper bounds
on the sum and product of the chromatic numbers of a graph and its complement in terms
of the order of the graph. From this seminal work, several results concerning Ψ(G) + Ψ(G)
or Ψ(G)Ψ(G) for some given parameter Ψ of graphs have been appeared. In consequence,
searching Nordhaus-Gaddum type inequalities has centered the attention of a large number
of investigations. For interested readers, we suggest the fairly complete survey [3]. For the
specific case of Roman domination parameters, we suggest for example the works [2, 4].

By using Theorem 10, we can deduce a Nordhaus-Gaddum bound for the quasi-total
Roman domination number (only for the sum version). To this end, we first notice the
following. Since it cannot happen that a graph G of order n, and its complement G, will
both have maximum degree n−1, the sum γqtR(G)+γqtR(G) will be equal to six only whether
G has order three. Note that by Proposition 11, γqtR(G) ≥ 3 for any graph G of order n ≥ 3,
and the equality is attained only for graphs of maximum degree n−1. In consequence, in our
next result we just consider graphs of order at least four. Moreover, not connected graphs
are considered (in contrast with our comment from the introductory section). From now on,
we use the following families of graphs.

• F1: All the graphs of order n and maximum degree n− 1, that have exactly one vertex
of degree n− 1 and at least one vertex of degree one.

• F ′

1: All the graphs which are obtained as the complement of a graph in F1.

We also remark that in this section we involve the study of not connected graphs as well.

Theorem 14. If G is a graph of order n ≥ 4, then 7 ≤ γqtR(G)+γqtR(G) ≤ n+5. Moreover,

(i) γqtR(G) + γqtR(G) = 7 if and only if G,G ∈ {K4,K4,K4 − e,K4 − e,F1,F
′

1}, and

(ii) γqtR(G) + γqtR(G) = n+ 5 if and only if G is C5.

Proof. Since γqtR(G) ≥ 3 for any graph G of order at least three and it cannot happen that
G and its complement G, will both have maximum degree n − 1, by using Proposition 11,
the lower bound trivially follows. On the other hand, if G has maximum degree zero, then
G is a complete graph, and so γqtR(G) + γqtR(G) = n+3 < n+5. If G has maximum degree
one (which means γqtR(G) = n), then G has maximum degree at least n − 2. In such case,
we can readily observe that γqtR(G) ≤ 4. Thus γqtR(G) + γqtR(G) ≤ n+ 4 < n+ 5. Since G
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and G can be exchanged without loss of generality, from now on we may assume that both
G and G have maximum degree at least two. Hence, from Theorem 10, we have that

γqtR(G) + γqtR(G) ≤ n−∆(G) + 2 + n−∆(G) + 2 = n−∆(G) + δ(G) + 5 ≤ n+ 5, (2)

and the proof of the upper bound is completed.
(i) If G,G ∈ {K4,K4,K4 − e,K4 − e,F1,F

′

1}, then it is straightforward to observe that
γqtR(G) + γqtR(G) = 7.

On the contrary, we assume now that γqtR(G) + γqtR(G) = 7. If G has maximum degree
zero, then G is a complete graph, which means 7 = γqtR(G)+ γqtR(G) = n+3, and so, n = 4
(or equivalently G,G ∈ {K4,K4}). If G has maximum degree one, then its complement has
maximum degree at least n−2. If G has maximum degree n−2, then 7 = γqtR(G)+γqtR(G) =
n + 4, which means n = 3 and this is not possible. If G has maximum degree n − 1, then
7 = γqtR(G)+γqtR(G) = n+3, which means n = 4 (or equivalently G,G ∈ {K4,K4}). Hence,
without loss of generality, we may assume that both G and G have maximum degree at least
two.

If G has maximum degree n − 1, then γqtR(G) = 3. Thus, 7 = γqtR(G) + γqtR(G) =
γqtR(G) + 3, and so γqtR(G) = 4. Since G has at least one isolated vertex (a vertex of degree
n − 1 in G), say u, it must happen that V (G) \ {u} induces a graph of maximum degree
n − 2, which means there must be a vertex of degree one in G (note that u must have label
one under any QTRDF on G and so, the quasi-total Roman domination number of the graph
induced by V (G) \ {u} is three). If G has only one vertex of degree n− 1, then G ∈ F1. If G
has exactly two vertices, say x, y, of degree n−1, then again γqtR(G) = 4 and x, y are isolated
vertices in G, which means they must have label one under any QTRDF on G. Thus, the
subgraph induced by V (G)\{x, y} must have only two vertices, and they should be adjacent,
since G has only two vertices of degree n− 1. Consequently, G is a complete graph of order
four minus one edge, and G (its complement), is given by the union of two isolated vertices
and P2. If G has three vertices, say x1, x2, x3, of degree n − 1, then as before γqtR(G) = 4
and x1, x2, x3 are isolated vertices in G, and they should have label one under any QTRDF
on G. Thus, we can deduce that V (G) \ {x1, x2, x3} has only one vertex, and consequently,
G is K4 and G is an edgeless graph of order four. If G has more than three vertices of degree
n− 1, then we obtain a contradiction.

Finally, without loss of generality we may assume that bothG and G have maximum degree
smaller than n−1. But then, by using Proposition 11, we obtain that γqtR(G)+γqtR(G) ≥ 8,
which is not possible, and this completes the proof of (i).

(ii) It is clear that γqtR(C5) + γqtR(C5) = 10 = n + 5. On the other hand, assume that
γqtR(G) + γqtR(G) = n+5. Hence, there should be equalities in the chain of inequalities (2),
which leads to ∆(G) = δ(G), or equivalently that G is a k-regular graph for some integer
k. Also, without loss of generality, we may assume that k ≤ (n − 1)/2. If k = 0, then
γqtR(G) = n and γqtR(G) = 3 (G is a complete graph), and so γqtR(G) + γqtR(G) = n + 3,
a contradiction. If k = 1, then we can readily see that γqtR(G) = n and γqtR(G) = 4 (G is
an (n− 2)-regular graph). Thus, γqtR(G) + γqtR(G) = n+ 4, which is again a contradiction.
If k = 2, then G is a cycle, and by Proposition 11 (iii), γqtR(G) = n. If G is C4, then
γqtR(G) + γqtR(G) = 7 < n + 5, which is not possible. If G is C5, then G is also C5, and
we get the equality γqtR(G) + γqtR(G) = 10 = n + 5. If n ≥ 6, then G always contains two
adjacent vertices that dominates the vertex set of G. Consequently, γqtR(G) ≤ 4, which leads
to γqtR(G) + γqtR(G) ≤ n+ 4, by also using Proposition 11 (iii), and this is a contradiction.
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From now on we assume k ≥ 3. We now consider G has diameter at least three. In
this sense, there are two vertices, say z1, z2, such that N [z1] ∩ N [z2] = ∅. Let z′1 ∈ N(z1)
and z′2 ∈ N(z2). Hence, we observe that the function f = (N({z1, z2}) \ {z′1, z

′

2}, (V (G) \
N [{z1, z2}]) ∪ {z′1, z

′

2}, {z1, z2}) is a QTRDF of weight n − 2(k + 1) + 6 = n − 2k + 4. Thus
γqtR(G) ≤ n− 2k + 4. On the other hand, since G has diameter at least three, there are two
adjacent vertices in G that dominates G, and this means γqtR(G) ≤ 4. As a consequence,
γqtR(G) + γqtR(G) ≤ n− 2k + 8, and since k ≥ 3, we obtain that γqtR(G) + γqtR(G) ≤ n+ 2,
which is not possible.

Accordingly, it must happen G has diameter two, and by the symmetry of the proving
process, we may assume also G has diameter two. Let a be any vertex of G. We now
consider any vertex b at distance two from a (such vertex exists because G has maximum
degree smaller than n− 1), and let r be the number of neighbors in common between a and
b. Clearly 1 ≤ r ≤ k. Let R = N(a) ∩ N(b) and let c ∈ R. We observe that the function
f1 = (NG({a, b})\{c}, V (G)\NG[{a, b}]∪{c}, {a, b}) is a QTRDF of weight n−(2(k+1)−r)+
5 = n−2k+r+3 on G. Now, the function f2 = (V (G)\(R∪{a, b}), R, {a, b}) is a QTRDF of
weight r+4 on G. Thus, n+5 = γqtR(G)+γqtR(G) ≤ n−2k+ r+3+ r+4 = n−2k+2r+7,
which leads to k ≤ r+1. Consequently, we obtain that any vertex b not in N [a] has at least
k − 1 neighbors in N(a).

Consider now a vertex d ∈ N(a). Let t be the number of neighbors in common between
a and d. Clearly 0 ≤ t ≤ k − 1. Let T = N(a) ∩ N(d). We observe that the function
f3 = (NG({a, d}), V (G)\NG[{a, d}], {a, d}) is a QTRDF of weight n−(2k−t)+4 = n−2k+t+4
on G. If n ≤ 2k, then NG[{a, d}] = V (G) and the function f3 has weight four and we can
construct a QTRDF of weight six on G. Thus, n+5 = γqtR(G)+ γqtR(G) ≤ 10, which means
n ≤ 5 but there are no graphs of order at most five satisfying the requirements at this point.
Hence, we may assume n ≥ 2k + 1 and consider a vertex d′ /∈ NG(a, d).

Now, the function f4 = (V (G) \ (T ∪ {a, d, d′}), T ∪ {d′}, {a, d}) is a QTRDF of weight
t + 5 on G. Thus, n + 5 = γqtR(G) + γqtR(G) ≤ n − 2k + t + 4 + t + 5 = n − 2k + 2t + 9,
which leads to k ≤ t+2. Consequently, we obtain that any vertex d ∈ N [a] has at least k− 2
neighbors in N [a], which is equivalent to say that d has at most two neighbors outside N [a].

By using the conclusions above, we shall now count the edges between vertices in N [a]
and outside N(a) in two directions. That is, it must happen (k − 1)(n − k − 1) ≤ 2k, which

leads to n ≤ k2+2k−1
k−1 . Since n ≥ 2k + 1, we finally deduce that k ≤ 3 and, as a consequence,

k = 3 (G is 3-regular). Since 2k + 1 ≤ n ≤ k2+2k−1
k−1 , it must be n = 7, but there are not

3-regular graphs of order n = 7, and this completes the proof of item (ii).
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