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Abstract 

 
2’-Methoxyacetophenone (2M) presents improved UVA absorption as compared with other 

acetophenone derivatives. On the basis of transient infrared spectroscopy it has been previously 

claimed that 2M is an interesting photosensitiser for cyclobutane pyrimidine dimers (CPDs) 

formation. In the present paper, a complete UV-Vis transient absorption spectroscopic 

characterisation of this compound is provided, including triplet-triplet spectra, triplet lifetimes 

and rate constants for quenching of 2M by a dimeric thymine derivative. Furthermore, 

generation of singlet oxygen has been proven by time-resolved near IR phosphorescence 

measurements. Overall, the obtained results confirm the potential of 2M as a DNA 

photosensitiser, not only for CPDs formation, but also for oxidative damage.  
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1. Introduction 

 

The behaviour of aromatic ketones upon light absorption has been intensively investigated due 

to its particular features such as relatively long absorption wavelengths and high intersystem 

crossing quantum yields.1 The photoreactivity of these compounds depends on the nature (n* 

vs *) of the lowest triplet state; thus, Norrish I/II, hydrogen abstraction or Paterno-Büchi are 

typical n* photoreactions. In this context, variations in the aromatic substituents or the 

solvents have a marked influence on the relative energy of the n*/* triplet states and hence 

on the photoreactivity pattern.2  Aromatic ketones such as benzophenones and acetophenones 

have been often used as triplet photosensitisers;1 in particular, they have turned out to be very 

useful tools to investigate the photosensitisation mechanism responsible for the formation of 

DNA lesions like oxidative damage or cyclobutane pyrimidine dimers (CPDs).3-9 

While solar light is essential for life on Earth, its absorption by DNA is in the origin of a 

number of lesions that, if not properly repaired, may lead to mutagenicity and even to 

cancer.10-15 The most abundant DNA lesions formed upon direct irradiation are CPDs. 

They can also be generated through photosensitisat ion by endogenous or exogeno us 

agents and arise from a formal [2+2] photocycloaddition between two pyrimidin es 

located consecutively in the same DNA strand.16  

2’-Methoxyacetophenone (2M) presents enhanced UVA absorption as compared with 

other acetophenone derivatives.17 This allows selective excitation of 2M in the presence 

of pyrimidines, which is mandatory for an appropriate CPDs photosensitiser.16 Previous 

transient spectroscopic studies have made use of pico- and nanosecond IR detection to 

show formation of thymine dimers through a 2M-photosensitised pathway.17 Although 

valuable photophysical information was provided like the time constant of triplet  

formation (in the sub-ns region) and the intersystem crossing quantum yield (ISC, close 
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to unity) a more detailed investigat ion on 2M properties would be necessary to fully 

characterise this ketone as a potential DNA photosensitiser.  

With this background, the aim of the present work is to undertake a more complete 

investigation on 2M using UV-Vis transient absorption spectroscopy with special 

emphasis on the characterisat ion of the triplet state and the rate constant of its 

quenching by a dimeric thymine model, in connection with CPDs formation. Furthermor e, 

the capability of 2M to produce 1O2, as a key parameter related to oxidative DNA damage, 

is stablished by means of time-resolved near IR emission at 1270 nm.  

2. Experimental Section 

2.1 Materials and solvents  

S-Flurbiprofen (S-FB) and 2M were purchased from Sigma-Aldrich. The (HPLC)-gr ade 

solvents (ethanol and acetonitrile) were obtained from Scharlau and used without 

further purification. Water was purified through a Millipore MilliQ system. Solutions of 

PB 10 mM (pH = 7.6) were prepared by dissolving Na2HPO4 and NaH2PO4 in deionized water. 

The dimeric thymine model (Thy-C3-Thy) was synthesised and purified following the 

established procedure in the literature.18-20 

2.2 Irradiation procedures 

2M-Photosensitised irradiation of Thy-C3-Thy was performed by preparing a 0.043 mM solution 

of 2M in PB 10 mM. To 172 mL of this solution, Thy-C3-Thy (2.2 mg) was added in order to have 

the same concentration as 2M. The irradiation was performed in quartz cuvettes with lamps 

emitting in the 310–390 nm range (with a maximum at 350 nm), using a multilamp 

photoreactor (Luzchem LZC-4V). 

2.3 Steady state measurements 

UV-Vis absorption spectra were registered with a simple beam spectrophotometer (Varian Cary 

50 employing quartz cells of 1 cm path length. 
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2.4 Laser flash photolysis 

A pulsed Nd: YAG SL404G-10 Spectron Laser Systems, using 355 nm as the excitation wavelength 

and pulses duration of 10 ns x pulse-1, was employed to carry out the laser flash photolysis (LFP) 

experiments. The energy was set lower than 15 mJ x pulse-1. The apparatus consisted of the 

pulsed laser, a pulsed Lo255 Oriel Xenon lamp, a 77200 Oriel monochromator, an Oriel 

photomultiplier tube (PMT) housing, a 70705 PMT power supply and a TDS-640A Tektronix 

oscilloscope. The output signal from the oscilloscope was transferred to a personal computer. 

Lifetime of singlet oxygen in ACN was recorded at 1270 nm with a Hamamatsu NIR detector 

upon excitation with a 355 nm Nd: YAG laser and using acetophenone as a reference compound 

(absorbance ca. 0.6 at exc= 355 nm). Photophysical measurements in solution were recorded at 

room temperature (22ºC), employing 1 cm path length quartz cells with 3 mL capacity and were 

bubbled during 15 min with N2, air or O2 before acquisition.  

Transient absorption spectra were obtained from a deaerated solution of 2M in ACN, EtOH and 

aqueous medium (absorbance between 0.3 and 0.4 at exc = 355 nm). 

For quenching experiments S-FB (from 0 to 1.2 mM) and Thy-C3-Thy (from 0 to 1 mM) were 

added to a solution of 2M in PB 10 mM with an absorbance of 0.4 at 355 nm. Kinetic decays 

were monitored at 370 and 500 nm for the S-FB quenching and at 500 nm for Thy-C3-Thy.  

 

3. Results and discussion 

The ultraviolet (UV) spectrum of 2M displays two maxima centred ca 250 and 310 nm 

and a tail extending up to 360 nm (figure 1A). Accordingly, transient absorption spectra 

were recorded upon excitation at 355 nm in deaerated H2O, ACN and EtOH, with a Nd: 

YAG laser (figure 1B). A band with a broad maximum between 400 and 450 nm was found 

in every solvent immediately after excitation, being more intense and 10 nm red-shifted 

in aqueous solution. 
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Figure 1. A) 2M UV-Vis spectra in acetonitrile, ethanol and water. Inset) Magnification of the long-waveleng th absorption 

region of 2M (6.5 mM) in buffered aqueous solution, used in the transient absorption experiments . B) 2M transient 

absorption spectra in anaerobic ACN, EtOH and H2O immediately after laser excitation. Inset) Reciprocal of 32M* lifetime 

in ACN at 430 nm under N2, air and O2 against O2 concentration (Stern-Volmer plot).  

 

 

The temporal evolution of the observed transient species was monitored at 430 nm, and 

the lifetime was determined from the decay traces. In buffered aqueous solution the 

lifetime was 3.8 s (figure 2A, Inset). Based on the high ISC of 2M (ca. 1),17 this transient 

was tentatively assigned as the triplet excited state. Indeed, this is consistent with the 

quenching observed under air and O2 atmospheres (figure 1B, Inset). However, an 

unambiguous spectroscopic evidence for the nature of this transient species was needed. 

To confirm the assignment, a triplet-triplet energy transfer (TTET) experiment was carried 

out, in which the energy of the triplet excited state of 2M was transferred to S-FB, to 

A 

B 
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form unequivocally its triplet excited state. In the present case, S-FB does not absorb light  

beyond 300 nm,21 allowing for selective excitation of 2M at 355 nm. As a matter of fact , 

when a 1.2 mM S-FB solution was submitted to the LFP at exc = 355 nm no signal was 

observed. Moreover, although the triplet absorption spectrum of S-FB shows some 

overlap with that of 2M, it is possible to discriminate between the two species based on 

their differences in molar absorption coefficients and lifetimes.21 Thus, it is possible to 

monitor the increase of the signal corresponding to 3S-FB* at the expense of 32M*. As 

shown in figure 2B, the 32M* spectrum displayed immediately upon laser excitat ion 

disappeared with time; concomitant ly, a new spectrum built up presenting an intense 

band centred at 370 nm. Two microseconds after laser excitation, the observed spectrum 

was coincident with that of 3S-FB*,21 indicating that the TTET was complete. Furthermor e, 

the transient absorption at 370 nm increased with increasing concentration of S-FB 

(figure 2B inset). When 32M* was monitored at 500 nm in the presence of S-FB (figure 

2C), a faster decay was progressively observed. Plotting the reciprocal of 32M* lifetime 

against S-FB concentration, a kq of 3.3 x 109 M-1 s-1 was obtained (figure 2C Inset).   

 

 

A 
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Figure 2. A) Transient absorption spectra of 2M in neutral PB under deaerated conditions at different times after 355 nm 

laser excitation. Inset) Kinetic decay of 2M at 430 nm in PB under deaerated conditions . B) Transient absorption spectra  

of 2M in the presence of S-flurbiprofen (1.2 mM) immediately after the laser pulse, 0.1 and 1 s after laser excitation (355 

nm). Inset) Kinetic trace for the S-FB band at 370 nm. C) Kinetic decay of 2M at 500 nm after increasing amounts of S-

flurbiprofen (from 0 to 1.2 mM) were added. Inset) Stern-Volmer quenching of 2M triplet by S-flurbiprofen. 

 

To further characterise 2M as a DNA photosensitiser, its capability to induce oxidative 

photodamage through a type II mechanism was evaluated by measuring 1O2 productio n. 

Thus, time-resolved phosphorescence emission at 1270 nm upon 355 nm laser excitat ion 

of a 2M solution was monitored using acetonitrile as solvent and the parent 

acetophenone as a reference (figure 3). The decay traces were nearly superimposabl e, 

which indicates that the singlet oxygen quantum yield (of 2M equals that of 

B 

C 
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acetophenone (0.52 This indicates that 2M can indeed promote DNA oxidation 

via a type II photosensitisation.  

 

Figure 3. Time-resolved detection of singlet oxygen emission at 1270 nm for acetonitrile solutions of 2M and 

acetophenone. 

 

At this point, a more complete picture of 2M as a potential DNA photosensit iser was 

available. Since the singlet oxygen reactivity towards DNA is well known, attention was  

focused on triplet photosensit isation. In this pathway, thymine (Thy) should be involved 

in the process as it is the canonical DNA base with the lowest triplet energy.   

Irradiation of 2M in the presence of the dimeric thymine derivative Thy-C3-Thy was 

performed and monitored through UV-Vis spectroscopy in order to test the 

disappearance of the enone chromophore associated with CPDs formation. 

After 60 min under the employed irradiation conditions Thy-C3-Thy practically 

disappeared, (figure 4A and inset). The key steps involved in the overall process following 

irradiation of 2M are energy transfer from 32M* to a thymine unit leading to 3Thy* and 

the subsequent reaction of the excited base with another Thy in its ground state giving 

rise to the final CPD through a formal [2+2] photocycloaddition (Scheme 1). 
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Scheme 1. CPDs formation process through 2M photosensit isa tion. 

Under the employed conditions 2M was found to be photostable, as demonstrated by 

the fact that its absorption band with maximum at 310 nm remained unaltered along the 

irradiation. Conversely, a progressive decrease corresponding to the unaltered Thy unit  

was observed. It is noteworthy that as the photoreact ion proceeds, the absorpti on 

displayed by the reaction mixture resembles that of 2M as the CPDs formed do not 

absorb significantly above 240 nm (the absorption spectrum of the isolated CPD is shown 

in figure 4A, blue line). It is also noticeable that, in this experiment, 2M did not give rise 

to oxetane byproducts as a result of a Paterno-Büchi reaction, as it happens with 

benzophenone, widely used in pyrimidine photosensitisation experiments.5  
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Figure 4. A) 2’-Methoxya cetophenone photosensitised irradiation of Thy-C3-Thy in PB, under deaerated conditions . Spectra  

of 2M (red) and Thy-C3-Thy CPDs (blue) at the same concentration are shown for better comparison. Inset) Unreacted Thy-

C3-Thy (%) monitored at 270 nm. B) Kinetic decays of 2M in deaerated PB at 500 nm upon addition of increasing amounts  

of Thy-C3-Thy (from 0 M to 9.8 x10-4 M). Inset) Stern-Volmer quenching of 2M triplet by Thy-C3-Thy.  

 

After 60 min under the employed irradiation conditions Thy-C3-Thy practically 

disappeared, (figure 4A and inset).  

To confirm that an excited state reaction was actually taking place, quenching of 32M* by 

Thy-C3-Thy was examined. Indeed, addition of increasing concentrations of Thy-C3 -Thy 

(figure 4B) resulted in a consistent shortening of the 2M triplet lifetime. From the slope 

of the Stern-Volmer linear plot (figure 4B, inset) a kq value of 2.1 x 109 was obtained. 

In summary, the photophysical parameters determined for 2M as a potential DNA 

photosensit iser are given in table 1.  

 

Table 1. Triplet characterisation of 2’-methoxya cetophenone by transient UV-Vis transient absorption spectroscopy. 

 

 

 

 

 

 

 

  

kO2 1.7 x 107 mM-1 s-1 

 T 3.8 s 

   0.5 

kQ (S-FB) 3.3 x 109 M-1 s-1 

kQ (THY-C3-THY) 2.1 x 109 M-1 s-1 

B 
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4. Conclusions 
 

Overall, a complete UV-Vis transient spectroscopic characterisation of 2’-

methoxyacetophenone has been performed. The triplet state reactivity of this 

photosensit iser towards a Thy model has been determined based on the obtained 

photophysical parameters and on the rate of CPDs formation revealed by UV-Vis 

monitoring of the steady-state irradiation. These results confirm the potential of 2M as a 

convenient DNA photosensitiser for mechanist ic studies. 
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