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ABSTRACT
In this paper we propose an alternative for the study of local convergence radius
and the uniqueness radius for some third order methods for multiple roots whose
multiplicity is known. The main goal is to provide an alternative that avoids the use
of sophisticated properties of divided differences that are used in already published
papers about local convergence for multiple roots. We defined the local study by
using a technique taking into consideration a bounding condition for the (m + i)th
derivative of the function f(x) with i = 1, 2. In the case that the method uses first
and second derivative in its iterative expression and i = 1 in case the method only
uses first derivative.

Furthermore we implement a numerical analysis in the following sense. Since the
radius of local convergence for high-order methods decreases with the order, we must
take into account the analysis of ITS behavior when we introduce a new iterative
method. Finally, we have used these iterative methods for multiple roots for the
case where the multiplicity m is unknown, so we estimate this factor by different
strategies comparing the behavior of the corresponding estimations and how this
fact affect to the original method.

KEYWORDS
Nonlinear equations; Iterative methods; Multiple roots; Convergence Ball; Local
convergence.

1. Introduction

In the last years some of the studies concerning iterative methods for approximating
roots of nonlinear equations have focused on multiple roots. That is, to find a multiple
zero γ of multiplicity m of a nonlinear equation f(x) = 0, f : D ⊆: R −→: R, for
this particular case some special aspects must be taken into account. This happens in
the Van der Waals equation of state, in the compression of band-limited signals and
the multipactor effect in electronic devices among other phenomenons. In this sense
different iterative methods for this particular case have been recently published see
[1]-[6] and the references therein.

For an iterative method, we define r the radius of the local convergence ball if the
sequence xn generated by this iterative method, starting from any initial point in
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the open ball B(γ, r) converges to γ and remains in the ball. In these studies it is
interesting to obtain the largest possible value of r, but obviously, this depends on the
conditions that the nonlinear function verifies.

Specially interesting from a mathematical point of view is paper [1] where a complete
local convergence study has been performed, obtaining the convergence radius of the
well known modified Newtons method for multiple zeros,

xn+1 = xn −m
f(xn)

f ′(xn)
(1)

when the involved function satisfies Hölder continuity conditions, that is, ∀ x, y ∈ D,
p ∈]0, 1] and K0,Km positive real numbers.

∣∣∣f (m)(x∗)−1(f (m+1)(x)− f (m+1)(y))
∣∣∣ ≤ K0|x− y|p, (2)∣∣∣f (m)(x∗)−1f (m+1)(x)

∣∣∣ ≤ Km. (3)

For this purpose, different results involving divided differences have been used. The
same sophisticated properties have been used for obtaining the local convergence study
of the third order Halley’s method, [3], given by:

xn+1 = xn −
f(xn)

m+1
2m f ′(xn)− f ′(xn)f ′′(xn)

2f ′(xn)

, (4)

and Osada’s method, [13], whose function iteration is:

xn+1 = xn −
1

2
m(m+ 1)

f(xn)

f ′(xn)
+

1

2
(m− 1)2

f ′(xn)

f ′′(xn)
. (5)

In this paper we propose an alternative to obtain this local convergence radius for
iterative methods for nonlinear equations with roots with multiplicity m showing that
we can obtain similar results in a much more natural way. The bound conditions (6)
and (7) used for this work for a function f that defines the nonlinear problem are
shown below.

|f (m)(γ)−1f (m+1)(x)| ≤ k, ∀x ∈ D, k > 0. (6)

For the method that uses second derivative we need to add another assumption as
follows:

|f (m)(γ)−1f (m+2)(x)| ≤ p, ∀x ∈ D, p > 0. (7)

First of all we develop the whole study for the third order iterative method due to
Osada whose iterative expression is given by (5), we obtained similar results for local
radius that the ones obtained in precedent studies cited before.
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An analogous procedure can be applied in order to obtain the radius of other itera-
tive methods. Specifically we have also studied the third order method introduced by
Dong in [6], whose expression is given by:

yn = xn −
√
m
f(xn)

f ′(xn)
,

xn+1 = yn −m
(

1− 1√
m

)(1−m) f(yn)

f ′(xn)
,

(8)

this method has two steps and for this reason some variations must be taken into
account.

2. Preliminaries

In this study we use a simple form for studying the local convergence radius of some
iterative method for approximating multiple roots, for that we require the Taylor
expansion with integral form remainder, avoiding in this way the use of some intricate
properties of divided differences operator that were used in previous works with this
aim.

Lemma 2.1. If γ is a multiple zero of multiplicity m with m > 1, of a nonlinear
equation f(x) = 0, where f : D → R is a sufficiently differentiable function in a open
interval D, then the function f(x) can be expressed as

f(x) = (x− γ)mh(x), h(γ) 6= 0, (9)

where

h(x) =
f (m)(γ)

m!
+

1

(m− 1)!

∫ 1

0
[f (m)(γ + θ(x− γ))− f (m)(γ)](1− θ)m−1dθ, (10)

and it verifies

h(γ) =
f (m)(γ)

m!
, (11)

and their derivatives for i = 1, 2 are

h(i)(x) =
1

(m− 1)!

∫ 1

0
f (m+1)(γ + θ(x− γ))θi(1− θ)m−1dθ. (12)

Proof: It is well known that if the nonlinear equation f(x) = 0 has γ a zero of
multiplicity m and m > 1, then, it verifies f (j)(γ) = 0, j = 0, 1, · · · ,m − 1, and
f (m)(γ) 6= 0, and function f can be expressed as:

f(x) = (x− γ)mg(x), g(γ) 6= 0. (13)

Approximating the function f(x) by the Taylor expansion with integral form remainder
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around γ, [8] we obtain

f(x) =
f (m)(γ)

m!
(x− γ)m +

∫ x

γ

f (m+1)(t)

m!
(x− t)mdt

=
f (m)(γ)

m!
(x− γ)m +

1

(m− 1)!

∫ x

γ
[f (m)(t)− f (m)(γ)](x− t)m−1dt

=
f (m)(γ)

m!
(x− γ)m +

1

(m− 1)!

∫ 1

0
[f (m)(γ + θ(x− γ))− f (m)(γ)](x− γ)m(1− θ)m−1dθ

=

[
f (m)(γ)

m!
+

1

(m− 1)!

∫ 1

0
[f (m)(γ + θ(x− γ))− f (m)(γ)](1− θ)m−1dθ

]
(x− γ)m,

where one can check second equality by writing the last integral as
∫ x
γ udv with

u = f (n)(t)− fn(γ) and dv = (x− t)n−1dt .
Then, by comparing the zero γ of multiplicity m of function (13) with the one

of (9), we see that they have the same structure, therefore we can deduce (10).
Expressions, (11) and (12) follows obviously.

This property suggests that f satisfies the boundary conditions established in (6)
and (7), which allows establishing the following bounds that we will use in our study.

Lemma 2.2. Let f(x) be a function satisfying conditions (6) and (7) for all x0 ∈
]γ − r0, γ + r0[= I0 where r0 = m+1

k and e0 = x0 − γ. Then, function h(x) defined by
(10) verifies the following bounds:

(B1)
∣∣h(γ)−1h(x0)

∣∣ ≤ m+ 1 + k|e0|
m+ 1

(B2)
∣∣h(γ)−1h′(x0)

∣∣ ≤ k

m+ 1

(B3)
∣∣h(x0)

−1h(γ)
∣∣ ≤ m+ 1

m+ 1− k|e0|

(B4)
∣∣h(x0)

−1h′(x0)
∣∣ ≤ k

m+ 1− k|e0|

(B5)
∣∣h(x0)

−1h′′(x0)
∣∣ ≤ 2p

(m+ 2)(m+ 1− k|e0|)
.

Proof: Notice that by Lemma 2.1 it we can be deduced that h(γ)−1 6= 0 so by
using assumptions above defined, (6) and (7), and applying the Mean Value Theorem
we have (B1),

∣∣h(γ)−1h(x0)
∣∣ =

∣∣∣∣1 +m

∫ 1

0
f (m)(γ)−1[f (m)(γ + θ(x0 − γ))− f (m)(γ)](1− θ)m−1dθ

∣∣∣∣
≤
∣∣∣∣1 +m

∫ 1

0
f (m)(γ)−1f (m+1)(ξ)θ|e0|(1− θ)m−1dθ

∣∣∣∣ ≤ m+ 1 + k|e0|
m+ 1

,

where in the last inequality we have used that
∫ 1
0 θ(1− θ)

m−1dθ = 1
m(m+1) .
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Similar reasoning allow us to get (B2)

∣∣h(γ)−1h′(x0)
∣∣ =

∣∣∣∣m!f (m)(γ)−1
1

(m− 1)!

∫ 1

0
f (m+1)(γ + θ(x0 − γ))θ(1− θ)m−1dθ

∣∣∣∣ ≤ k

m+ 1
.

Now for getting (B3) we use the Mean Value Theorem having ξ between γ and x0
such as:∣∣1− h(γ)−1h(x0)

∣∣ =
∣∣h(γ)−1(h(γ)− h(x0))

∣∣ =
∣∣h(γ)−1h′(ξ)|e0|

∣∣ ≤ k|e0|
m+ 1

< 1,

so, we can apply Banach Lemma to establish the existence of h(x0)
−1 and moreover

it is verified that: ∣∣h(x0)
−1h(γ)

∣∣ ≤ m+ 1

m+ 1− k|e0|
.

Following bounds (B4) and (B5) can be achieved by using previous ones.

3. Local convergence results

3.1. Local convergence for a one step iterative method

In this section in order to obtain the local convergence radius for the third order
method defined by (5) we analyze it by taking an initial guess x0 ∈]γ − r, γ + r[= Ir
where r < r0. For this we obtain the error equation of this method for obtaining the
iteration x1 generating some more restrictions that will determine the final value for
r. In the process we use bounds obtained in Lemma 2.2 and after that we will follow
an induction procedure to complete the study.

So, the first iteration can be written as

x1 = x0 −
1

2
m(m+ 1)

f(x0)

f ′(x0)
+

1

2
(m− 1)2

f ′(x0)

f ′′(x0)
. (14)

Then, from Lemma 2.1 and being γ a zero of multiplicity m of equation f(x) = 0
and e0 = x0 − γ we obtain,

f(x0) = h(x0)e
m
0 ,

f ′(x0) = h′(x0)e
m
0 +mh(x0)e

m−1
0 ,

f ′′(x0) = h′′(x0)e
m
0 + 2mh′(x0)e

m−1
0 +m(m− 1)h(x0)e

m−2
0 .

(15)

So, by subtracting γ in both sides of (2) and using these expressions we have:

e1 = e0 −
1

2
m(m+ 1)

h(x0)e
m
0

h′(x0)em0 +mh(x0)e
m−1
0

+
1

2
(m− 1)2

h′(x0)e
m
0 +mh(x0)e

m−1
0

h′′(x0)em0 + 2mh′(x0)e
m−1
0 +m(m− 1)h(x0)e

m−2
0

,
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then we write the error equation as:

e1 =
A

B
e0, (16)

where

A = 2h′(x0)h
′′(x0)e

3
0 + (m+ 1)2h′(x0)

2e20 +m(1−m)h(x0)h
′′(x0)e

2
0,

and

B = 2h′(x0)h
′′(x0)e

3
0 + 4mh′(x0)

2e20 + 2m(3m− 1)h(x0)h
′(x0)e0

+ 2mh(x0)h
′′(x0)e

2
0 + 2m2(m− 1)h(x0)

2.

Now, by dividing both terms by the expression 2m2(m− 1)h(γ)h(x0) denoting new

terms Â and B̂, we have:

e1 =
Â

B̂
e0. (17)

Then, in order to bound the quotient |e1|, we bound upperly the numerator then,

|Â| =
∣∣∣∣h(γ)−1h′(x0)h(x0)

−1h′′(x0)e
3
0

m2(m+ 1)
+

(m+ 1)2h(γ)−1h′(x0)h(x0)
−1h′(x0)e

2
0

2m2(m+ 1)

−h(γ)−1h′′(x0)h(x0)
−1h(x0)e

2
0

2m

∣∣∣∣
by using bounds obtained in Lemma 2.2 we get

|Â| ≤ 2kp|e0|3

m2(m2 − 1)(m+ 2)(m+ 1− k|e0|)
+

(m+ 1)k2|e0|2

2m2(m− 1)(m+ 1− k|e0|)
+

p|e0|2

m(m+ 1)(m+ 2)
.

So, we have |Â| ≤ ϕ(|e0|) with ϕ : [0, r0[ → R, defined as:

ϕ(t) =
4kpt3 + [(m+ 1)2(m+ 2)k2 + 2m(m− 1)(m+ 1− kt)]t2

2m2(m2 − 1)(m+ 2)(m+ 1− kt)

and one can check that ϕ is a increasing function in [0, r0[ for being the quotient of
two positive functions, an increasing numerator and a decreasing denominator.

After that, we study the term B̂ of (17) as follows:

|B̂| =
∣∣∣∣h(γ)−1h′(x0)h(x0)

−1h′′(x0)e
3
0

m2(m− 1)
+

2h(γ)−1h′(x0)h(x0)
−1h′(x0)e

2
0

m(m− 1)

+
h(γ)−1h′′(x0)e

2
0

m(m− 1)
+

(3m− 1)h(γ)−1h′(x0)e0
m(m− 1)

+ h(γ)−1h(x0)

∣∣∣∣ .
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In order to apply Banach Lemma we have:

|I − B̂| ≤
∣∣∣∣h(γ)−1h(γ)− h(γ)−1h(x0)−

h(γ)−1h′(x0)h(x0)
−1h′′(x0)e

3
0

m2(m− 1)
− 2h(γ)−1h′(x0)h(x0)

−1h′(x0)e
2
0

m(m− 1)

−h(γ)−1h′′(x0)e
2
0

m(m− 1)
− (3m− 1)h(γ)−1h′(x0)e0

m(m− 1)

∣∣∣∣ .
So by using the Mean Value Theorem for the first term and bounds obtained in

Lemma 2.2 we get

|I − B̂| ≤ k|e0|
m+ 1

+
2kp|e0|3

m2(m2 − 1)(m+ 2)(m+ 1− k|e0|)
+

2k2|e0|2

m(m2 − 1)(m+ 1− k|e0|)

+
2p|e0|2

m(m2 − 1)(m+ 2)
+

(3m− 1)k|e0|
m(m2 − 1)

≤ g1(|e0|)

where g1 is defined as:

g1(t) =
2kp

m2(m2 − 1)(m+ 2)(m+ 1− kt)
t3 +

2[(m+ 2)k2 + (m+ 1− kt)p]
m(m2 − 1)(m+ 2)(m+ 1− kt)

t2

+
(m2 + 2m− 1)k

m(m2 − 1)
t.

Notice that, g1 is an increasing function in ]0, r0[, for being the quotient of two posi-
tive functions, increasing the numerator and decreasing the denominator, so, we take
h1(t) = g1(t) − 1, verifying, h1(0) = −1 and h1(r

−
0 ) → +∞. Then h1 has a unique a

root r1 between these values, where r1 ∈ ]0, r0[ / 0 ≤ g1(t) < 1, ∀ t ∈ ]0, r1[, therefore
by applying Banach’s Lemma it follows:

|B̂−1| ≤ 1

1− g1(|e0|)
.

Then, turning to (17) we get

|e1| ≤ |B̂−1Â||e0| ≤
ϕ(|e0|)

1− g1(|e0|)
|e0| = g2(|e0|)|e0| (18)

where

g2(t) =
ϕ(t)

1− g1(t)
,

is an increasing function in ]0, r1[. So if we take h2(t) = g2(t)− 1, it is verified
h2(0) = −1 < 0 and h2(r

−
1 )→ +∞. Therefore ∃ r2 ∈]0, r1[ / 0 ≤ g2(t) < 1 ∀ t ∈]0, r2[.

Now, as we have obtained the sequence r2 < r1 < r0 we take r = r2, concluding
that:
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e1 = |x1 − γ| ≤ g2(|x0 − γ|)|x0 − γ| < |x0 − γ| = e0, ∀x0 ∈]γ − r, γ + r[.

That is, x1 ∈]γ− r, γ+ r[= I. The same process holds starting from x1 and getting x2
and then it is obtained that for all k > 0 it follows:

ek+1 = |xk+1 − γ| ≤ g2(|xk − γ|)|xk − γ| < |xk − γ|.

So we have obtained that:

|ek+1| ≤ g2(r)|ek| ≤
(
g2(r)

)2
|ek−1| ≤ · · · ≤

(
g2(r)

)k+1
|e0|.

Then, we deduce that xk+1 ∈]γ − r, γ + r[= I and by taking limits in the last

expression and using that limk→+∞

(
g2(r)

)k+1
= 0, we get that limk→+∞ xk = γ so

we have proved the following

Theorem 3.1. Under the conditions of Lemma 2.2, let r0 = m+1
k and ri, i = 1, 2}

be the unique positive root of equation hi(t) = gi(t) − 1 , i = 1, 2, with functions gi
defined below. Then, by taking r = r2, for any initial guess x0 ∈]γ − r, γ + r[ the
sequence {xk} obtained by the iterative method defined in (5) is well defined verifying
that xk+1 ∈]γ− r, γ+ r[ for all k ≥ 0 and converges at a rate of order at least 3 to the
unique solution x∗ ∈]γ − r0, γ + r0[. Moreover, the following error bound holds for all
n ≥ 0

|ek+1| ≤
|ek|3

r32
. (19)

Proof: The first part of the proof follows from results of previous section. In order
to obtain the rate of convergence turning to (18) and by using definitions of function
ϕ, we have:

e1 ≤|e0|
4kp|e0|3+[(m+1)2(m+2)k2+2m(m−1)(m+1−k|e0|)]|e0|2

2m2(m2−1)(m+2)(m+1−k|e0|)

1− g1(|e0|)
.

Now, we multiply and divide by |e0|2

e1 ≤|e0|3
4kp|e0|+[(m+1)2(m+2)k2+2m(m−1)(m+1−k|e0|)]

2m2(m2−1)(m+2)(m+1−k|e0|)

1− g1(|e0|)

observe that the function that we obtain in the numerator is increasing in I0, so we
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have by the definition of r2 that:

e1 ≤
|e0|3

r22

(
4kpr2+[(m+1)2(m+2)k2+2m(m−1)(m+1−kr2)]

2m2(m2−1)(m+2)(m+1−kr2)

)
r22

1− g1(r2)

=
|e0|3

r22
g2(r2) =

|e0|3

r22
.

Then, by an induction procedure we have |ek+1| ≤ |ek|
3

r22
, that is, sequence xk converges

to γ with order at least 3.
To show the uniqueness, we assume that there exists a second solution y∗ ∈]γ −

r0, γ + r0[, by (9) we have

f(y∗) = h(y∗)(y∗ − γ)m. (20)

By using the Mean Value Theorem and Lemma 2.2 we have:

∣∣1− h(γ)−1h(y∗)
∣∣ =

∣∣h(γ)−1(h(γ)− h(y∗))
∣∣ =

∣∣h(γ)−1h′(ξ)|γ − y∗|
∣∣ ≤ k|γ − y∗|

m+ 1
< 1,

we deduce that h(y∗) 6= 0 and then by (20) we have that y∗ = γ.

3.2. Local convergence for a two steps iterative method

Now in order to obtain the local convergence radius for the third order method defined
by (8) we analyze their iterates by taking an initial guess x0 ∈]γ − r, γ + r[, where
r < r0. This value will be determinaded once the error equation of this method is
obtained and analyzed. In the process we use bounds obtained in Lemma 2.2 and
after that we will follow an induction procedure to complete the study in an analogous
was as it has been done with the previous method.

So, by taking an initial guess x0 ∈]γ − r, γ + r[, where r < r0 using expressions
obtained in (15) from the the first step of (8) we can write:

ê0 = x0 − γ −m
1

2
f(x0)

f ′(x0)
=
h′(x0)e0 +m

1

2 (m
1

2 − 1)h(x0)

h′(x0)e0 +mh(x0)
e0

Multiplying both terms by the expression m−1h(γ)−1 we have

ê0 =
Â0

B̂0

e0 (21)

with

Â0 = m−1h(γ)−1(h′(x0)e0 +m
1

2 (m
1

2 − 1)h(x0)),

B̂0 = m−1h(γ)−1(h′(x0)e0 +mh(x0)).

9



Now, applying bounds obtained in Lemma 2.2 and taking into account that
m

1

2 (m
1

2 − 1) > 0 it follows:

|Â0| ≤
k|e0|+m

1

2 (m
1

2 − 1)(m+ 1 + k|e0|)
m(m+ 1)

.

In order to use Banach’s Lemma we calculate

|I − B̂0| = |h(γ)−1(h(γ)− h(x0))−m−1h(γ)−1h′(x0)e0| ≤
k|e0|
m

,

then, we need k|e0|
m < 1, so we have to take now |e0| < m

k = r1 and being this

value minor than r0 = m+1
k defined in Lemma 2.2 we are in conditions of applying the

bounds established there. So we have:

|B̂−10 | =
m

m− k|e0|
, (22)

and so turning to (21) one has:

|ê0| ≤
k|e0|+m

1

2 (m
1

2 − 1)(m+ 1 + k|e0|)
(m+ 1)(m− k|e0|)

|e0| = g1(|e0|)|e0|,

where

g1(t) =
kt+m

1

2 (m
1

2 − 1)(m+ 1 + kt)

(m+ 1)(m− kt)

is an increasing function in ]0, r1[. Then by taking h1(t) = g1(t) − 1, it is verified

that h1(0) = −m−
1

2 and h1(r
−
1 ) → +∞. Therefore h1 has a unique root in ]0, r1[ let

it be r2, then we have that 0 < g1(t) < 1 ∀ t ∈]0, r2[ and so:

|y0 − γ| ≤ g1(|x0 − γ|)|x0 − γ| < |x0 − γ|.

Now, we proceed to analyze the second step of (8) by similar expressions to the ones
in (15) but now with ê0 = y0 − γ we have:

f(y0) = h(y0)ê
m
0 ,

f ′(y0) = h′(y0)ê
m
0 +mh(y0)ê

m−1
0 ,

(23)

substituting these in

x1 = y0 −mb
f(y0)

f ′(x0)
,
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and dividing numerator and denominator by em−10 we get:

e1 = x1 − γ = ê0 −
mbh(y0)

( ê0
e0

)
h′(x0)e0 +mh(x0)

e0

By doing some calculations and denoting N =
ê0
e0

we write the error equation as:

e1 =
A1

B0
e0 (24)

where B0 has been used in (21) for first step and

A1 = h′(x0)e0 +m
1

2 (m
1

2 − 1)h(x0)−mbh(y0)N
m,

so, by dividing both terms by the expression mh(γ) denoting new terms Â1 and B̂0,
we have:

e1 =
Â1

B̂0

e0. (25)

Now, we analyze |e1|, for this, we first bound the numerator given by:

|Â1| =
∣∣∣m−1h(γ)−1h′(x0)e0 +m−

1

2 (m
1

2 − 1)h(γ)−1h(x0)− bh(γ)−1h(y0)N
m
∣∣∣

and using bounds obtained in Lemma 2.2 we get

|Â1| ≤
k|e0|

m(m+ 1)
+

(m
1

2 − 1)(m+ 1 + k|e0|)
m

1

2 (m+ 1)
+
b(m+ 1 + kg1(|e0|)|e0|)g1(|e0|)m

m+ 1
.

So, we have obtained |Â1| ≤ ϕ(|e0|) with ϕ : [0, r1[ −→ R, defined as:

ϕ(t) =
kt+m

1

2 (m
1

2 − 1)(m+ 1 + kt) +mb(m+ 1 + kg1(t)t)g1(t)
m

m(m+ 1)

and one can check that ϕ is a increasing function because g1 is so.
Then, turning to (25) and using (22) we get:

|ê1| ≤
ϕ(|e0|)

(m+ 1)(m− k|e0|)
,

that is,

|ê1| ≤
k|e0|+m

1

2 (m
1

2 − 1)(m+ 1 + k|e0|) +mb(m+ 1 + kg1(|e0|)|e0|)g1(|e0|)m

(m+ 1)(m− k|e0|)
|e0|

≤ g2(|e0|)|e0|,

11



where

g2(t) =
kt+m

1

2 (m
1

2 − 1)(m+ 1 + kt) +mb(m+ 1 + kg1(t)t)g1(t)
m

(m+ 1)(m− kt)

and we take h2(t) = g2(t) − 1, verifying, h2(0) = m
1
2−1
m

1
2

+ b
(
m

1
2−1
m

1
2

)m
− 1 < 0 and

h2(r
−
1 ) → +∞. Then h2(t) has a unique root between these values, let it be r3.

Therefore ∃ r3 ∈]0, r1[ / 0 ≤ g2(t) < 1 ∀ t ∈]0, r3[.
Now, we take r = min{ri, i = 0, · · · , 3} for concluding that:

|y0 − γ| ≤ g1(|x0 − γ|)|x0 − γ| < |x0 − γ|,
|x1 − γ| ≤ g2(|x0 − γ|)|x0 − γ| < |x0 − γ|,

That is, y0, x1 ∈]γ− r, γ+ r[= I. The same process holds starting from x1 and getting
y1, x2 and then by and inductive procedure it is obtained that for all k > 0 it follows:

|yk − γ| ≤ |g1(|xk − γ|)|xk − γ| < |xk − γ|,
|xk+1 − γ| ≤ |g2(|xk − γ|)|xk − γ| < |xk − γ|,

(26)

So we have obtained that:

|êk| ≤ g1(r)|ek| ≤
(
g1(r)

)2
|ek−1| ≤ · · · ≤

(
g1(r)

)k+1
|e0|,

|ek+1| ≤ g2(r)|ek| ≤
(
g2(r)

)2
|ek−1| ≤ · · · ≤

(
g2(r)

)k+1
|e0|,

(27)

Then, we deduce that yk, xk+1 ∈]γ − r, γ + r[= I and by taking limits in the last

expression and using that limk→+∞

(
g2(t)

)k+1
= 0, we get that limk→+∞ xk = γ.

Then, we have proved a similar result than the one obtained in theorem 1 for the
iterative method due to Dong. The uniqueness proof follows in the same way that in
Theorem 3.1.

4. Numerical results

In this section, first we study the local convergence radius for the third order iterative
methods studied in previous sections for some particular examples and by following
the theoretical results of this study. For that, we use some equations taken from [3],
[7] and [5] to show the comparison of our results with theirs. In each example we give
the root, γ, its multiplicity m and the constants used in (6) and (7).

In table 2 we can see the different values of ri, i = 0, 1, 2, described in our theoretical
results for Osada’s iterative method (5). As it can be observed, the minimum value for
the radii is always r2. Similar behavior is presented on the two steps method due to
Dong, (8), where the sequence of radius is decreasing. Moreover we notice that in this
case the value of the local convergence radius is smaller than the one obtained for the
one step method due to Osada. This behavior was expected because in this case it is
normally used the first step error expression in the second step with the corresponding
restriction for finding good bounds.

12



Exercise γ m k1 = km k2 k0 p

f1(x) = cos(x)− 1 0 2 1 1 1 1

f2(x) = (x5/2 − 1)2 1 2 54
5 −

1
10

√
6 72

5 + 1
30

√
6 72

5 −
3
30

√
2 1

2
f3(x) = x2(x2 − 1) 0 2 12 12 12 1
f4(x) =

∫ x
0 G(x)dx,

0 2 1 + 2π 2π(1 + 2π) 2π 1
G(x) =

∫ x
0 (x+ cos(πx2))dx

f5(x) = ( 1
10x−

1
15x

3/2)2 9
4 2 2.56 0.43 6.32 1

2
f6(x) = x5 − 8x4 + 24x3

1 3 4 10 10 1−34x2 + 23x− 6

Table 1. Nonlinear examples.

Osada’s method
Examples r0 r1 r2 r

f1 3.0000 0.7418 0.6781 0.6781
f2 0.2842 0.0733 0.0676 0.0676
f3 0.2500 0.0646 0.0596 0.0596
f4 0.4119 0.1025 0.0938 0.0938
f5 1.1719 0.3033 0.2798 0.2798
f6 1.0000 0.3822 0.3469 0.3469

Table 2. Numerical values of local convergence radii for examples given in Tabla (1).

5. Comparative study

Now, in order to complete our study we apply the technique described in section 3
to different iterative methods with the aim of performing a numerical comparison by
using the different techniques that we mention in the introduction. Specifically, we
compare the local convergence radii for the second order modified Newton’s method
(1) and the third order methods due to Halley (4), whose local convergence study have
been performed in [1] and [3] by using the technique that involves divided differences
and the assumption conditions given by (2).

First of all, we give the results for obtaining the local convergence radius with the
study presented in this paper in the following theorem, whose proof is ommited by it
is similar structure with theorem developed in section 3.

Theorem 5.1. Under the conditions of Lemma 2.2, let r0 = m+1
k and r = min{ri, i =

0, 1, 2} where ri is the smallest positive root of equation hi(t) = gi(t) − 1 , i = 1, 2
where functions gi are defined below for different methods. Then, for any initial guess
x0 ∈]γ − r, γ + r[ the sequence {xk} obtained by each iterative method is well defined
and verifies that xk+1 ∈]γ − r, γ + r[ for all k ≥ 0. Moreover the root γ is unique in
the interval ]γ − r0, γ + r0[ and the following error bounds hold for all k ≥ 0,

|xk+1 − γ| ≤ |g2(|xk − γ|)|xk − γ| < |xk − γ|,

(1) Modified Newton’s method, (1), we have

g1(t) =
kt

m

13



Dong’s method
Examples r0 r1 r2 r3 r

f1 3 2.0000 0.9252 0.2167 0.2167
f2 0.2842 0.1895 0.0877 0.0205 0.0205
f3 0.2500 0.1667 0.0771 0.0181 0.0181
f4 0.4119 0.2746 0.1270 0.0298 0.0298
f5 1.1719 0.7813 0.3614 0.0846 0.0846
f6 1.0000 0.7500 0.2763 0.0230 0.0230

Table 3. Numerical values of local convergence radii for examples given in Tabla (1).

and

g2(t) =
kt

(m+ 1)(m− kt)

(2) Halley’s method, (4), we get

g1(t) =
k

m
t+

(
k2

2m2(m+ 1− kt)
+

p

m(m+ 1)(m+ 2)

)
t2

and

g2(t) =

(
k2

2m2(m+1−kt) + p
m(m+1)(m+2)

)
t2

1−
[
k
m t+

(
k2

2m2(m+1−kt) + p
m(m+1)(m+2)

)
t2
]

We will use numerical examples given in table 1 where it is shown the values of
constants needed in our study k, p and the constant values Km = k, k0 and p needed
with the technique that uses divided differences and Hölder conditions, (2).

Table 4 shows the radii of local convergence for different iterative methods. We
denote withDD when the local convergence study has been performed by using divided
differences and denote with OP our proposal that has been established in section 3.
Notice that the computed results are equal for cases where the Hölder’s constant p
is 1. But second an fourth examples where p is different from 1, there is a small
difference. In those examples, our proposal gets a bigger radius, a logical result since
our conditions are stricter.

It can be checked that Newton’s radius are always bigger than those of the methods
of higher order. However, in the case of the methods of order 3 and 4, the difference
is less accused. We have to point out the the good values obtained for the radii with
Halley’s method while Dong’s methods has always has reached the smallest radii.

6. Case of unknown multiplicity

Having studied the radius of local convergence for the different methods, the goal now
is to analyze the behavior of the iterative methods for multiple roots when the value
of the multiplicity, m is unknown. In fact, all the iterative methods studied include
the value of m in their iterative expression. However, in real problems one can have an

14



Radius Examples
Method Condition f1 f∗2 f3 f4 f∗5 f6

M. Newton
DD 1.5000 0.1421 0.1250 0.2060 0.5859 0.6000
OP 1.5000 0.1421 0.1250 0.2060 0.5859 0.6000

Osada
DD 0.6781 0.0644 0.0596 0.0938 0.2348 0.3469
OP 0.6781 0.0676 0.0596 0.0938 0.2798 0.3469

M. Halley
DD 1.2679 0.1235 0.1152 0.1762 0.4357 0.5091
OP 1.2679 0.1304 0.1152 0.1762 0.5411 0.5091

Table 4. Comparing results.

equation with unknown root and unknown multiplicity. How can we proceed in order
to apply the method? Our aim in this section is to check if the formulas proposed in [14]
for approximating the multiplicity tested in this paper with modified Newton’s method
are also working with different iterative methods for multiple roots. In this way it is
studied if the approximations of the multiplicity allow to give acceptable results with
different methods. Finally, some examples are shown to demonstrate their application.

For this section, we use the modified Newton method, Osada’s method and an
optimum method of fourth order (M4), see [2] defined as

yn = xn − b
f(xn)

f ′(xn)
,

xn+1 = xn −
(
s1 + s2h(yn, xn) + s3h(xn, yn) + s4h(yn, xn)2

) f(xn)

f ′(xn)
.

where

h(xn, yn) =
f ′(yn)

f ′(xn)
, b =

2m

2 +m
, µ = 1− b

m
,

s1 = −1

4
m(−4 + 2m+ 3m2 +m3),

s2 =
1

8
mµm(2 +m)3, s3 =

1

8
m4µ−m, s4 ∈ R.

Additionally, we used different procedures to estimate the multiplicity m of the root
given in [14]:

a) Schröder’s method [10]

ui =
f(xi)

f ′(xi)
,

u′i =
(f ′(xi))

2 − f(xi)f
′′(xi)

f ′(xi)2
,

mi =
1

u′i
.
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b) Ostrowsky’s method [9]

xi+1 = xi −
f(xi)

f ′(xi)
,

xi+2 = xi+1 −
f(xi+1)

f ′(xi+1)
,

mi =
xi − xi+1

xi − 2xi+1 + xi+2
.

c) Traub’s method [11]

mi = lim
n→∞

ln(|f(xi)|)

ln
(∣∣∣ f(xi)

f ′(xi)

∣∣∣) .
d) Straten’s method [12]

xi+1 = xi −mi
f(xi)

f ′(xi)
,

mi+1 =
mi

1− f(xi+1)f ′(xi)
f ′(xi+1)f(xi)

.

It is worth noting that the order of approximation of the multiplicity limits the
order of the iterative method to which it is applied. Therefore, using the estimations
provided by these methods, which are of second order, will limit the order of the
resulting iterative method to order 2. Working with integer multiplicity roots, one can
circumvent this difficulty, by rounding the estimation to the nearest integer. In this
case, the computational cost can be reduced if one stops estimating the multiplicity
after finding two consecutive equal estimations.

These 3 strategies have been applied to equations f2, f5 and f6 of Section 4. In the
tables, each method is identified by its author abbreviation followed by a digit: 1 if
the raw value of the estimated multiplicity is used, 2 if the estimation is rounded, and
3 if one stops estimating the multiplicity when it stabilizes. Additionally, the method
is run using the true value of the multiplicity from the beginning, in order to assess
the increase of cost due to the multiplicity estimation.

In order to compare the performance of the different strategies, we use the func-
tional evaluations that are used in each iteration. That is, the number of functional
evaluations used in the method plus the ones used in the estimation of the multiplicity
are taken. Table 5 shows the cost of one iteration on the analyzed method with or
without using a multiplicity estimation procedure.redThis aim was partially published
in [7].

Multiplicity estimation M. Newton Osada M4
known 2 3 3

Ostrowski 4 5 5
Schröder 3 3 3

Traub 2 3 3
Straten 4 5 5

Table 5. Number of functional evaluations per iteration according to the multiplicity estimation procedure
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Method Aprox. iter ρ incr f(xn) mul EF

M. Newton

Ost1 6 2.00 7.42e-36 2.66e-141 [1.03, 1.96, 1.99, 1.99, 1.99, 1.99] 24
Ost2 6 2.00 6.81e-26 7.58e-101 [ 1, 2, 2, 2, 2, 2] 24
Ost3 6 2.00 6.81e-26 7.58e-101 [ 1, 2, 2] 18
Scho1 7 2.00 3.88e-22 8.00e-86 [0.52, 1.21, 1.82, 1.99, 1.99, 1.99, 1.99] 21
Scho2 6 2.00 6.81e-26 7.58e-101 [ 1, 2, 2, 2, 2, 2] 18
Scho3 6 2.00 6.81e-26 7.58e-101 [ 1, 2, 2] 15
Trau1 24 1.02 6.03e-22 2.56e-45 [..., 1.93] 48
Trau2 9 2.00 4.06e-23 9.58e-90 [ 1, 1, 1, 1, 1, 2, 2, 2, 2] 18
Trau3 30 1.00 6.06e-11 2.29e-20 [1, 1] 60
Stra1 5 2.42 5.58e-35 4.80e-117 [1.03, 1.96, 1.99, 1.99, 1.99] 20
Stra2 6 2.00 6.81e-26 7.58e-101 [ 1, 2, 2, 2, 2, 2] 24
Stra3 5 2.00 6.54e-36 6.45e-141 [ 1, 2, 2] 16
known 8 2.00 1.95e-38 5.13e-151 2 16

Osada

Ost1 6 2.00 6.61e-40 3.78e-157 [1.03, 1.98, 1.99, 1.99, 1.99, 1.99] 30
Ost2 5 3.00 2.06e-35 2.18e-207 [ 1, 2, 2, 2, 2] 25
Ost3 5 3.00 2.06e-35 2.18e-207 [ 1, 2, 2] 21
Scho1 7 2.00 3.88e-22 8.01e-86 [0.52, 1.21, 1.82, 1.99, 1.99, 1.99, 1.99] 21
Scho2 5 3.00 2.06e-35 2.18e-207 [ 1, 2, 2, 2, 2] 15
Scho3 5 3.00 2.06e-35 2.18e-207 [ 1, 2, 2] 15
Trau1 21 1.03 7.82e-21 1.33e-43 [..., 1.93] 63
Trau2 8 3.00 1.28e-23 1.29e-136 [ 1, 1, 1, 1, 1, 2, 2, 2] 24
Trau3 30 1.00 6.06e-11 2.29e-20 [1, 1] 90
Stra1 5 2.43 3.13e-37 1.88e-125 [1.03, 1.96, 1.99, 1.99, 1.99] 25
Stra2 5 3.00 2.06e-35 2.18e-207 [ 1, 2, 2, 2, 2] 25
Stra3 4 2.39 3.15e-36 2.75e-212 [ 1, 2, 2] 21
known 7 2.99 4.83e-42 3.61e-247 2 21

M4

Ost1 6 2.00 1.92e-33 5.57e-132 [1.03, 1.93, 1.99, 1.99, 1.99, 1.99] 30
Ost2 4 4.01 1.10e-22 1.08e-175 [ 1, 2, 2, 2] 20
Ost3 4 4.01 1.10e-22 1.07e-175 [ 1, 2, 2] 18
Scho1 7 2.00 1.28e-36 1.95e-144 [0.52, 1.42, 1.95, 1.99, 1.99, 1.99, 1.99] 21
Scho2 4 4.01 1.10e-22 1.08e-175 [ 1, 2, 2, 2] 12
Scho3 4 4.01 1.10e-22 1.08e-175 [ 1, 2, 2] 12
Trau1 16 1.03 6.41e-22 1.63e-46 [..., 1.93] 48
Trau2 6 4.00 6.61e-41 1.80e-321 [ 1, 1, 1, 2, 2, 2] 18
Trau3 30 1.00 1.08e-17 1.13e-34 [1, 1] 90
Stra1 5 2.42 2.46e-45 6.00e-154 [1.03, 1.98, 1.99, 1.99, 1.99] 25
Stra2 4 4.01 1.10e-22 1.08e-175 [ 1, 2, 2, 2] 20
Stra3 4 3.43 2.43e-76 6.05e-605 [ 1, 2, 2] 18
known 6 3.99 7.51e-28 4.95e-217 2 18

Table 6. f2(x) = (x5/2 − 1)2, x0 = 0.5, γ = 1, m = 2

To be able to make a comparison between the different performances for each
method and procedure for multiplicity estimation, the tables 6, 7 and 8 show the
number of iterations needed to converge, the approximated computational order of
convergence (28), the error between the last two iterates, the absolute value of the
function evaluated in the last approximation, the multiplicity estimations used in each
iteration, and the total cost of the iterations, in terms of the total number of evalua-
tions of the function and its derivatives along the iterations of each method.

ρ =
log(|xn−1 − xn−2|/|xn − xn−1|
log(|xn−2 − xn−3|/|xn−1 − xn−2|

, (28)

In general, it can be seen that the order of convergence is limited to approximately
2 despite the order of theoretical convergence of the method (rows of tables where
the name of the method has subscript 1). It is important that the methods used to
estimate the multiplicity give a good approximation.

In the rows where the name of the method has subscripts 2 and 3, the rounding of
the approximation of the multiplicity has been made. On most of them, in the cases of
sub-index 3 they have a lower cost than sub-index 2 since in case of finding repeated
estimates it stops the estimation process and adopts this value as the multiplicity. The
Schröder method obtains the best results when estimating the multiplicity, while the
Traub method fails to estimate the multiplicity and converge. Also, the cost increment
due to the multiplicity estimation is quite moderated. In general, it is less than two
times the cost of the same method with known multiplicity.
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Method Aprox. iter ρ incr f(xn) mul EF

M. Newton

Ost1 5 2.00 8.59e-22 3.79e-89 [1.73, 1.99, 1.99, 1.99, 1.99] 20
Ost2 6 1.99 2.80e-33 1.71e-134 [ 2, 2, 2, 2, 2, 2] 24
Ost3 6 1.99 2.80e-33 1.71e-134 [2, 2] 16
Scho1 6 2.00 5.16e-33 1.96e-133 [1.62, 1.96, 1.99, 1.99, 1.99, 1.99] 18
Scho2 6 2.00 2.80e-33 1.71e-134 [2, 2, 2, 2, 2, 2] 18
Scho3 6 2.00 2.80e-33 1.71e-134 [2, 2] 14
Trau1 nc - - - - -
Trau2 nc - - - - -
Trau3 nc - - - - -
Stra1 5 2.41 1.53e-47 7.79e-164 [1.73, 1.99, 1.99, 1.99, 1.99] 20
Stra2 6 2.00 2.80e-33 1.71e-134 [2, 2, 2, 2, 2, 2] 24
Stra3 4 2.00 8.94e-23 1.78e-92 [2, 2] 12
known 6 1.99 2.80e-33 1.70e-134 2 12

Osada

Ost1 6 2.00 8.40e-37 7.78e-149 [1.73, 1.98, 1.99, 1.99, 1.99, 1.99] 30
Ost2 5 3.00 5.27e-53 1.18e-317 [ 2, 2, 2, 2, 2] 25
Ost3 5 3.00 5.27e-53 1.18e-317 [2, 2] 19
Scho1 6 2.00 5.16e-33 1.96e-133 [1.62, 1.96, 1.99, 1.99, 1.99, 1.99] 18
Scho2 5 3.00 5.27e-53 1.18e-317 [2, 2, 2, 2, 2] 15
Scho3 5 3.00 5.27e-53 1.18e-317 [2, 2] 15
Trau1 30 1.00 7.98e-09 1.47 [..., 0.39] 90
Trau2 30 1.32 5.74 4.2 [..., -1] 90
Trau3 11 3.00 1.1349e-58 1.75e-351 [5, -11, 2, 2] 33
Stra1 4 2.41 9.40e-22 1.59e-76 [1.73, 1.99, 1.99, 1.99] 20
Stra2 5 3.00 5.27e-53 1.18e-317 [2, 2, 2, 2, 2] 25
Stra3 3 2.40 9.36e-21 3.70e-124 [2, 2] 13
known 5 3.00 5.27e-53 1.18e-317 2 15

M4

Ost1 5 2.00 4.09e-24 9.04e-99 [1.73, 1.99, 1.99, 1.99, 1.99] 25
Ost2 4 3.99 2.16e-55 1.40e-442 [ 2, 2, 2, 2] 20
Ost3 4 3.99 2.16e-55 1.40e-442 [2, 2] 16
Scho1 5 2.00 1.48e-21 2.75e-88 [1.61, 1.98. 1.99, 1.99, 1.99] 15
Scho2 4 3.99 2.16e-55 1.41e-442 [2, 2, 2, 2] 12
Scho3 4 3.99 2.16e-55 1.41e-442 [2, 2] 12
Trau1 13 1.02 3.90e-21 2.27e-48 [..., 2.10] 39
Trau2 6 10.55 9.38e-22 1.75e-173 [5, 4, 3, 3, 2, 2] 18
Trau3 15 1.00 8.84e-21 1.79e-46 [5, 4, 3, 3] 45
Stra1 4 2.40 3.02e-25 2.77e-89 [1.73, 1.99, 1.99, 1.99] 20
Stra2 4 3.99 2.16e-55 1.41e-442 [2, 2, 2, 2] 20
Stra3 3 3.43 7.50e-41 1.78e-325 [2, 2] 16
known 4 3.99 2.16e-55 1.41e-442 2 8

Table 7. f5(x) = ( 1
10
x− 1

15
x3/2)2, x0 = 2, γ = 9

4
, m = 2

7. Conclusions

We obtain the local convergence for several iterative methods without using some
sophisticated properties of divided difference and apply the theoretical results to some
problems obtaining the local convergence radius, including a comparison with already
existing results. Moreover, we perform a study of the behavior of these methods when
m is unknown and we use an estimation.
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Method Aprox. iter ρ incr f(xn) mul EF

M. Newton

Ost1 6 2.00 1.95e-39 4.01e-234 [3.43, 2.98, 2.99, 2.99, 2.99, 2.99] 24
Ost2 6 1.99 3.95e-34 -9.48e-202 [ 3, 3, 3, 3, 3, 3] 24
Ost3 6 1.99 3.95e-34 -9.48e-202 [3, 3] 16
Scho1 6 2.00 1.57e-34 3.76e-204 [3.49, 2.95, 2.99, 2.99, 2.99, 2.99] 18
Scho2 6 2.00 3.95e-34 -9.48e-202 [3, 3, 3, 3, 3, 3] 18
Scho3 6 2.00 3.95e-34 -9.48e-202 [3, 3] 14
Trau1 21 1.02 5.10e-22 -5.37e-69 [..., 2.92] 42
Trau2 10 2.00 3.78e-28 -7.33e-166 [1, 2, 2, 2, 2, 2, 3, 3, 3, 3] 20
Trau3 30 1.00 4.85e-15 -2.87e-44 [1, 2, 2] 60
Stra1 5 2.43 4.61e-45 4.45e-228 [3.43, 2.98, 3.00, 2.99, 3.00] 20
Stra2 6 2.00 3.95e-34 -9.48e-202 [3, 3, 3, 3, 3, 3] 24
Stra3 5 2.00 9.88e-39 -2.32e-229 [3, 3] 14
known 6 1.99 3.95e-34 -9.48e-202 3 12

Osada

Ost1 6 2.00 8.67e-37 6.12e-218 [3.43, 2.98, 2.99, 2.99, 2.99, 2.99] 30
Ost2 4 2.99 5.05e-23 -2.47e-201 [ 3, 3, 3, 3] 20
Ost3 4 2.99 5.05e-23 -2.47e-201 [3, 3] 16
Scho1 6 2.00 1.57e-34 3.76e-204 [3.49, 2.95, 2.99, 2.99, 2.99, 2.99] 18
Scho2 4 2.99 5.05e-23 -2.47e-201 [3, 3, 3, 3] 12
Scho3 4 2.99 5.05e-23 -2.47e-201 [3, 3] 12
Trau1 17 1.03 4.99e-21 -7.86e-67 [..., 2.91] 51
Trau2 8 2.99 8.84e-30 -3.83e-262 [1, 2, 2, 2, 2, 3, 3, 3] 24
Trau3 30 1 1.71e-18 -3.71e-55 [1, 2, 2] 90
Stra1 4 2.36 9.39e-21 8.89e-105 [3.43, 2.99, 3.00, 2.99] 20
Stra2 4 2.99 5.05e-23 -2.47e-201 [3, 3, 3, 3] 20
Stra3 4 3.00 5.54e-55 -5.66e-489 [3, 3] 16
known 4 2.99 5.05e-23 -2.47e-201 3 12

M4

Ost1 5 2.00 9.27e-23 1.19e-134 [3.43, 2.99, 2.99, 2.99, 2.99] 25
Ost2 4 3.99 2.67e-57 2.63e-680 [3, 3, 3, 3] 20
Ost3 4 3.99 2.67e-57 2.63e-680 [3, 3] 16
Scho1 5 2.00 7.97e-22 8.34e-129 [3.50, 2.97, 2.99, 2.99, 2.99] 15
Scho2 4 3.99 2.67e-57 2.67e-57 [3, 3, 3, 3] 12
Scho3 4 3.99 2.67e-57 2.67e-57 [3, 3] 12
Trau1 14 1.03 5.08e-21 -1.09e-67 [..., 2.91] 42
Trau2 7 3.99 1.56e-57 -4.27e-683 [1, 2, 2, 2, 3, 3, 3] 42
Trau3 25 1 7.92e-21 -5.22e-63 [1, 2, 2] 75
Stra1 4 2.35 4.15e-24 -4.88e-123 [3.43, 2.99, 3.00, 2.99] 20
Stra2 4 3.99 2.67e-57 -2.62e-680 [3, 3, 3, 3] 20
Stra3 3 3.39 3.98e-34 -3.19e-402 [3, 3] 16
known 4 3.99 2.67e-57 -2.62e-680 3 12

Table 8. f6(x) = x5 − 8x4 + 24x3 − 34x2 + 23x− 6, x0 = 0.8, γ = 1, m = 3
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