
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/161203

Alpuente Frasnedo, M.; Cuenca-Ortega, A.; Escobar Román, S.; Meseguer, J. (2020).
Order-sorted Homeomorphic Embedding modulo Combinations of Associativity and/or
Commutativity Axioms. Fundamenta Informaticae. 177(3-4):297-329.
https://doi.org/10.3233/FI-2020-1991

https://doi.org/10.3233/FI-2020-1991

IOS Press



Order-sorted Homeomorphic Embedding modulo
Combinations of Associativity and/or Commutativity

Axioms?

María Alpuente1, Angel Cuenca-Ortega3, Santiago Escobar1, and José Meseguer2

1 VRAIN, Universitat Politècnica de València, Spain. {alpuente,sescobar}@upv.es
2 University of Illinois at Urbana-Champaign, USA. meseguer@illinois.edu

3 Universidad de Guayaquil, Ecuador. angel.cuencao@ug.edu.ec

Abstract. The Homeomorphic Embedding relation has been amply used for defining
termination criteria of symbolic methods for program analysis, transformation, and veri-
fication. However, homeomorphic embedding has never been investigated in the context
of order-sorted rewrite theories that support symbolic execution methods modulo equa-
tional axioms. This paper generalizes the symbolic homeomorphic embedding relation
to order–sorted rewrite theories that may contain various combinations of associativity
and/or commutativity axioms for different binary operators. We systematically measure
the performance of different, increasingly efficient formulations of the homeomorphic
embedding relation modulo axioms that we implement in Maude. Our experimental re-
sults show that the most efficient version indeed pays off in practice.

1 Introduction

Homeomorphic Embedding is a control mechanism that is commonly used to ensure termina-
tion of symbolic methods and program optimization techniques. Homeomorphic embedding is
a structural preorder relation under which a term t ′ is greater than (i.e., it embeds) another term
t represented by t E t ′ if t can be obtained from t ′ by deleting some symbols of t ′. For instance,
s(0+ s(X)) ∗ s(X +Y ) embeds s(X) ∗ s(Y ). The usefulness of homeomorphic embedding for
ensuring termination is given by the following well-known property of well-quasi-orderings
(see [18]): given a finite signature Σ , for every infinite sequence of terms t1, t2, . . . , there exist
i < j such that ti E t j. Therefore, if we iteratively compute a sequence t1, t2, . . . , tn, we can
guarantee finiteness of the sequence by using the embedding as a whistle: whenever a new
expression tn+1 is to be added to the sequence, we first check whether tn+1 embeds any of the
expressions ti, i = 1, . . . ,n that are already in the sequence. If that is the case, the computation
must be stopped because the whistle (E) signals (potential) non-termination. Otherwise, tn+1
can be safely added to the sequence and the computation proceeds.

Maude is a language and a system that efficiently implements rewriting logic [24], which
is a logic of change that seamlessly unifies a wide variety of models of concurrency. Recently,
an experimental open platform has been developed in [16] that allows the performance of
functional and algebraic programming languages to be compared, including CafeOBJ, Clean,
Haskell, LNT, LOTOS, Maude, mCRL2, OCaml, Opal, Rascal, Scala, SML, Stratego /
XT, and Tom (see references in [16]). In the top 5 of the more efficient tools, Maude ranks
second after Haskell. This is remarkable for at least two reasons: (i) Maude is not a compiled
language but runs under an interpreter; (ii) Maude has quite sophisticated features (subtype
polymorphism, pattern matching modulo associativity, commutativity and identity, reflection,
strategies, objects, etc.) that have no equivalent in Haskell or other functional languages. In

? This work has been partially supported by the EU (FEDER) and the Spanish MINECO under grant
TIN 2015-69175-C4-1-R, by Generalitat Valenciana under grant PROMETEO/2019/098, and by
NRL under contract number N00173-17-1-G002. Angel Cuenca-Ortega has been supported by the
SENESCYT, Ecuador (scholarship program 2013).



[2], an extension of homeomorphic embedding modulo equational axioms was defined as a
key component of Maude’s symbolic partial evaluator, Victoria, which is based on (variant)
narrowing4 [14]. Unfortunately, the formulation in [2] was done with a concern for simplicity
in mind and degrades the tool performance because the proposed implementation of equational
homeomorphic embedding did not scale well to realistic problems. This was not unexpected
since other equational problems (such as equational matching, equational unification, or equa-
tional least general generalization) are typically much more costly than their corresponding
“syntactic” counterparts and achieving efficient implementations has required years of signif-
icant investigation effort. Furthermore, the equational homeomorphic embedding relation EB
(modulo a set B of axioms) in [2] did not consider types so that an embedding test such as
X:Bool EB 0 + suc(N:Nat) succeeds.

Our contributions in this paper include the following. We present five different formulations
(one of which is totally novel to this paper and the other significantly improve [3]) of order-
sorted homeomorphic embedding modulo axioms in rewrite theories that may contain sorts,
subsort polymorphism, overloading, and rewriting with (conditional) rules and equations mod-
ulo a set B of equational axioms, and we compare their performance. In particular, we propose
an order-sorted, equational homeomorphic embedding formulation Ĕ

kosml
B that runs up to 6

orders of magnitude faster than the original definition of the homeomorphic embedding mod-
ulo equational axioms EB in [2]. For this improvement in performance, we take advantage
of Maude’s powerful capabilities such as the efficiency of deterministic computations with
equations versus non-deterministic computations with rewriting rules, or the use of non-strict
definitions of the Boolean operators versus more speculative standard Boolean definitions [7].

Comparison with [3]. The equational homeomorphic embedding relation EB of [2] was effi-
ciently implemented in the earlier conference paper [3]. The novel contributions with respect
to [3] are as follows:

1. A finer treatment of subtype hierarchies is provided that considers the connected compo-
nents of sorts so that two variables whose respective types (sorts) are not related in the
suptype hierarchy (e.g., Bool and Nat) are considered incomparable.

2. Extended definitions (and corresponding extended results) are formalized dealing with
sorts and subsorts in such a finer way.

3. Two novel optimizations are proposed that can achieve significant improvements in per-
formance. Each optimization is formulated as a pruning rule that anticipates failure by
considering Maude’s total order on terms and the compatibility of kinds for any possible
instance of all subterms.

4. A fuller treatment of all aspects is given, including more examples and detailed explana-
tions of the key notions, together with full formal proofs of all technical results.

5. The implementation and experimental section have been improved in two ways: (i) the
prototype implementation itself has been advanced with a new embedding test Ĕkosml

B that
implements the novel optimizations; and (ii) new examples that benchmark these opti-
mizations with increasingly larger terms are provided. One important difference with the
smaller set of benchmarks in [3] is that much bigger terms can be now handled by the tool.

Plan of the paper. After some preliminaries in Section 2. Section 3 recalls the pure, “syntacti-
cally simpler” homeomorphic embedding relation and extends it to deal with order-sorted non-
ground terms. An order-sorted equational extension of the symbolic homeomorphic embedding
relation is given in Section 4. Section 5 provides two goal-driven formulations for equational
homeomorphic embedding: first, a calculus for embeddability goals that directly handles the
algebraic axioms in the deduction system, and then a reachability-oriented characterization
that cuts down the search space by taking advantage of pattern matching modulo associativity

4 Narrowing is an extension of term rewriting where pattern matching is replaced with unification [15].

2



and commutativity axioms. Section 6 is concerned with an efficient meta-level formulation of
equational homeomorphic embedding that relies on the classical flattening transformation that
canonizes terms w.r.t. associativity and/or commutativity axioms (for instance, 1+(3+(2+0))
gets flattened to +(1,2,3)). This formulation is optimized by replacing the classical Boolean
operators by short-circuit, strategic versions of these operators. In Section 7, two new opti-
mizations of the algorithm are defined that can achieve significant speedup by anticipating
failure, which is done by considering Maude’s total order on terms and the compatibility of
kinds for any possible instance of all subterms. In Section 8, we provide an experimental per-
formance evaluation of the proposed formulations showing that we can efficiently deal with
realistic embedding problems modulo axioms.

2 Preliminaries

Let us recall some key concepts of order-sorted rewriting logic theories [24]. We consider an
order-sorted signature (Σ ,S,≤) that consists of a poset of sorts (S,≤) and an S∗×S-indexed
family of sets Σ = {Σs1...sn,s}(s1...sn,s)∈S∗×S of function symbols. The poset (S,≤) of sorts for Σ

is partitioned into equivalence classes C1, . . . ,Cn (called connected components) by the equiva-
lence relation (≤ ∪≥)+, which is the transitive closure of the union of ≤ with the symmetric,
supersort relation ≥. Throughout this paper, Σ is assumed to be preregular, so that each term
t has a least sort, denoted ls(t) (see [17]). Σ is also assumed to be kind-complete, that is, for
each sort s ∈ S, its connected component in the poset (S,≤) has a top sort under≤, denoted [s]
and called the connected component’s kind, and for each function symbol f ∈ Σs1...sn,s, there is
also an f ∈ Σ[s1]...[sn],[s]. An order-sorted signature can always be extended to be kind-complete
[25]. Maude automatically checks preregularity and adds a new “kind” sort [s] at the top of
the connected component of each sort s ∈ S specified by the user and automatically lifts each
operator to the kind level. Given a term t, by abuse we let dte denote the kind of t, i.e., [ls(t)].

For technical reasons, it is useful to assume that Σ has no ad-hoc overloading; i.e., that for
any two typings f : s1 . . .sn −→ s and f : s′1 . . .s

′
n −→ s′ ∈ Σ , the connected components of each

si and si
′, 1≤ i≤ n, and of s and s′ are always the same. However, this assumption entails no real

loss of generality: any Σ can be transformed into a semantically equivalent signature with no
ad-hoc overloading (by symbol renaming). Similarly, we assume that two different operators
f : s1 . . .sn −→ s and f : s′1 . . .s

′
m −→ s′ ∈ Σ , n 6= m, do not exist after the symbol renaming.

Finally, Σ is also assumed to be sensible, in the sense that for any two typings f : s1 . . .sn −→ s
and f : s′1 . . .s

′
n −→ s′ of an n-ary function symbol f , if si and s′i are in the same connected

component of (S,≤) for 1 ≤ i ≤ n, then s and s′ are also in the same connected component;
this provides the right notion of unambiguous signature at the order-sorted level.

We assume an S-sorted family X = {Xs}s∈S of disjoint variable sets. TΣ (X )s and TΣ s

denote the sets of terms and of ground terms of sorts s, respectively. We also write TΣ (X )
and TΣ for the corresponding term algebras.

A position p in a term t is represented by a sequence of natural numbers (Λ denotes the
empty sequence, i.e., the root position). Positions are ordered by the prefix ordering: p ≤ q
if there exists w such that p.w = q. Given a term t, we let Pos(t) and PosΣ (t) respectively
denote the set of positions and the set of non-variable positions of t (i.e., positions where a
variable does not occur). t|p denotes the subterm of t at position p, and t[u]p denotes the result
of replacing the subterm t|p by the term u. The set of variables occurring in a term t is denoted
by V ar(t).

A substitution σ is a sorted mapping from a finite subset of X to T
Σ
(X ). Substitutions

are written as σ = {X1 : s1 7→ t1 : s1, . . . ,Xn : sn 7→ tn : sn} where the domain of σ is Dom(σ) =
{X1, . . . ,Xn} and the set of variables introduced by terms t1, . . . , tn is written Ran(σ). The iden-
tity substitution is id. Substitutions are homomorphically extended to T

Σ
(X ). The application

of a substitution σ to a term t is called an instance of t and is denoted by tσ . We define the
relative generality ordering≤ between terms as t ≤ t ′ if there exists σ s.t. tσ = t ′, i.e., t is more
general than t ′. For simplicity, we assume that every substitution is idempotent, i.e., σ satisfies

3



Dom(σ)∩Ran(σ) = /0. Substitution idempotency ensures (tσ)σ = tσ . The restriction of σ to
a set of variables V is denoted σ |V . Composition of two substitutions is denoted by σσ ′ so that
t(σσ ′) = (tσ)σ ′.

A Σ -equation is an unoriented pair t = t ′, where t, t ′ ∈T
Σ
(X )s for some sort s ∈ S. Given

Σ and a set E of Σ -equations, order-sorted equational logic induces a congruence relation
=E on terms t, t ′ ∈ T

Σ
(X ) (see [5]). An equational theory (Σ ,E) is a pair with Σ being an

order-sorted signature and E a set of Σ -equations. We omit Σ when no confusion can arise.

A substitution θ is more (or equally) general than σ modulo B, denoted by θ ≤E σ , if
there is a substitution γ such that σ =E θγ , i.e., for all x ∈X ,xσ =E xθγ . A substitution σ is
called a renaming if σ = {X1 7→Y1, . . . ,Xn 7→Yn} and variables Y1, . . . ,Yn are pairwise distinct.
The renaming substitution σ is a renaming for expression E if (V ar(E)−{X1, . . . ,Xn})∩
{Y1, . . . ,Yn}= /0.

A rewrite theory is a triple R = (Σ ,B,R), where (Σ ,B) is the equational theory that is
used for rewriting in R modulo B, and R is a set of rewrite rules. Rules are of the form l→ r
where terms l,r ∈ T

Σ
(X )[s] for some kind [s] are respectively called the left-hand side (or

lhs) and the right-hand side (or rhs) of the rule and V ar(r) ⊆ V ar(l). The set R of rules is
sort-decreasing, i.e., for each t → t ′ in R, each s ∈ S, and each substitution σ , t ′σ ∈ T

Σ
(X )s

implies tσ ∈T
Σ
(X )s. Let→⊆ A×A be a binary relation on a set A. We denote its transitive

closure by→+, and its reflexive and transitive closure by→∗.

We define the one-step rewrite relation on TΣ (X ) for the set of rules R as follows: t→R t ′

iff there is a position p ∈Pos(t), a rule l → r in R, and a substitution σ such that t|p = lσ
and t ′ = t[rσ ]p. The relation →R/B for rewriting modulo B is defined as =B ◦ →R ◦ =B. A
term t is called R/B-irreducible iff there is no term u such that t →R/B u. A substitution σ is
R/B-irreducible if, for every x ∈X , xσ is R/B-irreducible. We say that the relation→R/B is
terminating if there is no infinite sequence t1→R/B t2→R/B · · · tn→R/B tn+1 · · · . We say that the
relation→R/B is confluent if, whenever t→∗R/B t ′ and t→∗R/B t ′′, there exists a term t ′′′ such that
t ′→∗R/B t ′′′ and t ′′→∗R/B t ′′′. A rewrite theory (Σ ,B,R) is convergent if R is sort-decreasing and
the relation→R/B is confluent and terminating. In a convergent order-sorted rewrite theory, for
each term t ∈T

Σ
(X ), there is a unique (up to B-equivalence) R/B-irreducible term t ′ that can

be obtained by rewriting t to R/B-irreducible or normal form, which is denoted by t →!
R/B t ′,

or t!R/B when t ′ is not relevant.

Since B-congruence classes can be infinite, →R/B-reducibility is undecidable in general.
Therefore, R/B-rewriting is usually implemented by R,B-rewriting. We define the relation
→R,B on T

Σ
(X ) by t →p,R,B t ′ (or simply t →R,B t ′) iff there is a non-variable position

p ∈ PosΣ (t), a rule l → r in R, and a substitution σ such that t|p =B lσ and t ′ = t[rσ ]p. To
ensure completeness of R,B-rewriting w.r.t. R/B-rewriting, we require strict coherence [26]
between the rules R and the equational theory B, ensuring that =B is a bisimulation for R,B-
rewriting: for any Σ -terms u,u′,v if u =B u′ and u→R,B v, then there exists a term v′ such
that u′ →R,B v′ and v =B v′. Note that, assuming B-matching is decidable, →R,B is decidable
and notions such as convergence, irreducible term, and normalized substitution, are defined
for→R,B straightforwardly. It is worth noting that Maude automatically provides B-coherence
completion for rules and equations.

Algebraic structures often involve axioms like associativity (A) and/or commutativity (C)
of function symbols, which cannot be handled by ordinary term rewriting but instead are han-
dled implicitly by working with congruence classes of terms. This is why often an equational
theory E is decomposed into a disjoint union E = E0]B, where B is a set of algebraic axioms
(which are implicitly expressed in Maude as attributes of their corresponding operator using
the assoc, comm, and id : keywords), and E0 consists of (possibly conditional) equations that
are implicitly oriented from left to right as a set

−→
E0 of rewrite rules (and operationally used as

simplification rules modulo B), i.e., a rewrite theory (Σ ,B,
−→
E0) is defined.

4



3 Pure homeomorphic embedding

The pure (syntactic) homeomorphic embedding relation known from term algebra [19] was
introduced by Dershowitz for variable-arity symbols in [10] and for fixed-arity symbols in [9].
In the following, we consider only fixed-arity symbols.

Definition 1 (Homeomorphic embedding, Dershowitz [9]). The homeomorphic embedding
relation J_ over TΣ is defined as follows:

∃i∈{1,...,n} : s J_ ti
s J_ f (t1,...,tn)

∀i∈{1,...,n} : si J_ ti
f (s1,...,sn) J_ f (t1,...,tn)

with n≥ 0.

Roughly speaking, the left inference rule deletes subterms, while the right inference rule
deletes context. We write s J_ t if s is derivable from t using the above rules. When s J_ t, we say
that s is (syntactically) embedded in t (or t syntactically embeds s). Note that ≡⊆ J_, where ≡
denotes syntactic identity.

A well-quasi ordering (wqo) � on terms is a transitive and reflexive binary relation such
that, for any infinite sequence of terms t1, t2, . . . with a finite number of operators, there exist
i, j with i < j and ti � t j.

Theorem 1 (Tree Theorem, Kruskal [19]). The embedding relation J_ is a well-quasi-ordering
on TΣ .

3.1 Mechanizing the Homeomorphic Embedding

The derivability relation given by t J_ t ′ is mechanized in [27] by introducing a term rewriting
system Emb(Σ) that is used to rewrite t ′ to t, i.e., t ′ →∗Emb(Σ) t. Similarly to Definition 1,
order-sorted signatures are not considered.

Definition 2 (Rewrite theory for J_, Middeldorp [27]). Let Σ be an unsorted signature.
Homeomorphic embedding can be decided by a rewrite theory Emb(Σ) = (Σ , /0,R) such that
R consists of rewrite rules of the form

f (x1, · · · ,xn)→ xi

where f ∈ Σ is a function symbol of arity n≥ 1 and i ∈ {1, · · · ,n}.

Lemma 1 ([27]). Given an unsorted signature Σ and two terms t1, t2 ∈ TΣ , we have t1 J_ t2 iff
t2→∗Emb(Σ) t1.

Definition 1 can be applied to terms of TΣ (X ) by simply regarding the variables in terms
as constants. However, this definition cannot be used when existentially quantified variables
are considered (as in logic programming or symbolic execution). The following definition from
[21, 28] adapts the pure (syntactic) homeomorphic embedding from [10] by adding a simple
treatment of logical variables where all variables are treated as if they were identical, which is
enough for many symbolic methods such as the partial evaluation of [2]. Some extensions of
E dealing with variadic symbols and infinite signatures are investigated in [22].

3.2 Symbolic Homeomorphic Embedding

The homeomorphic embedding is commonly applied not only to ground terms but also to terms
with variables. The extension to variables is given by Leuschel [21].

5



Variable Diving Coupling

xEy
∃i∈{1,...,n} : sE ti

sE f (t1,...,tn)
∀i∈{1,...,n} : siE ti

f (s1,...,sn)E f (t1,...,tn)

Fig. 1. Symbolic homeomorphic embedding

Definition 3 (Symbolic homeomorphic embedding, Leuschel [21]). The extended homeo-
morphic embedding relation E over TΣ (X ) is defined in Figure 1, where the Variable infer-
ence rule allows dealing with free (unsorted) variables in terms, while the Diving and Coupling
inference rules are similar to the pure (syntactic) homeomorphic embedding definition.

For instance, given variables X and Y , X E g(Y ), g(X) E f (g(Y )), and f (X) E f (g(X)) but
g(0) 6E g(X). Note that the embedding relation E does not subsume the relative generality
ordering ≤, e.g., f (X) 6E f (g(0)) even if f (g(0)) is an instance of f (X). Also note that the
embedding relation E is not closed under instantiation, e.g., the instance of g(X) E f (g(Y ))
with substitution {X 7→ 0,Y 7→ 0} holds, in symbols g(0) E f (g(0)), whereas the instance of
g(X)E f (g(Y )) with substitution {X 7→ g(Z)} does not hold, in symbols g(g(Z)) 6E f (g(Y )).

Theorem 2 ([21, 28]). The embedding relation E is a well-quasi-ordering on TΣ (X ).

3.3 Adding sorts and subsorts

When we are interested in adding sorts and subsorts, the extension of the homeomorphic em-
bedding to the order-sorted setting is not completely trivial. Let us provide a motivating exam-
ple.

a // A

g





a // B
h
TT

Fig. 2. Signature graph of Example 1

Example 1. Consider the order-sorted signature depicted in Figure 2 that defines two sorts A
and B, with B<A. Also, consider an overloaded constant a for sorts A and B, and two operators
g : A→ A and h : B→ B. Strictly speaking, the no ad-hoc overloading requirement would
rule out ad-hoc overloaded constants such as a. However, this requirement can be relaxed in
a natural and easy way by allowing constants to be qualified by their sort. For instance, in
Maude this is done by enclosing them in parentheses followed by a dot and the sort name. For
example, we can disambiguate the term a by writing either (a).A or (a).B.

In an unsorted setting, where sorts are simply disregarded, both the embedding goals a J_
g(a) and a J_ h(a) hold.

In a many-sorted setting, where sorts are considered but subsort hierarchies are disregarded,
it is immediate to extend the unsorted homeomorphic embedding relation J_ of Definition 1 to
the many-sorted case. On the one hand, two constants (a).A and (a).B that belong to different

6



sorts are distinct and hence incomparable by embedding. On the other hand, since we assume
there is no ad-hoc overloading (except for constants), no extra check must be added to the
Coupling rule because no two symbols f (of different sorts) exist, except for constants, while
the Diving rule should be applied regardless of sorts. Thus, by abusing notation, (a).A 6J_ (a).B
and (a).B 6J_ (a).A, and hence (a).A J_ g((a).A) and (a).B J_ h((a).B), whereas (a).B 6J_ g((a).A)
and (a).A 6J_ h((a).B).

Extending J_ to the order-sorted case is also easy in kind-complete signatures, where each
constant has a kind (and so does any ground term). Therefore, by lifting all symbol declaration
to the kind level, two constants (c).s1 and (c).s2 are only incomparable if the kinds [s1] and
[s2] are different. By abusing notation, this means that all of the four embedding goals (a).A J_
g((a).A), (a).B J_ h((a).B), (a).B J_ g((a).A), and (a).A J_ h((a).B) hold (because [A] = [B]),
whereas none of them would hold if we substitute A (resp. B) by a new sort C such that [A] 6= [C]
(resp. [B] 6= [C]).

Let us now consider the problem of extending Definition 3 to the order-sorted case, which
requires to reason about variables. Fortunately, in kind-complete signatures every variable has
a kind (and so does any term). Following Maude syntax, let us qualify any variable X by
appending its name with a colon (:) followed by the sort name, e.g. X :A. Then, given sorts A,
B, and C, with B < A, variables X :A and X :B are in the same kind, [A], whereas X :A and X :C
are in different kinds, [A] and [C], respectively.

Let us define the order-sorted symbolic homeomorphic embedding relation as follows.

Definition 4 (Order-sorted symbolic homeomorphic embedding). The order-sorted sym-
bolic homeomorphic embedding relation Ĕ over TΣ (X )s is defined in Figure 3, where the
Variable inference rule allows dealing with free order-sorted variables in terms while the Div-
ing and Coupling inference rules are similar to Definition 3.

Variable Diving Coupling

dxe=dye
xĔy

∃i∈{1,...,n} : sĔ ti
sĔ f (t1,...,tn)

∀i∈{1,...,n} : si Ĕ ti
f (s1,...,sn)Ĕ f (t1,...,tn)

Fig. 3. Order-sorted extended homeomorphic embedding

It is worth noting that, while it seems natural to consider that X:A Ĕ Y:B for the case when A
is a subsort of B (which holds because [A] = [B], hence dXe= dYe), the practical usefulness of
having X:A Ĕ Y:B is less evident for the case when B is a subsort of A (which holds for the very
same reason). However, consider an overloaded operator g, with g : A→ A and g : B→ B, with
A>B. In a context of symbolic execution where logical variables are considered, it could be the
case of having a computation sequence (t1, . . . ti, . . . , t j, t j+1 . . .), with ti = g(X :A), t j = g(Y :B),
and t j+1 = g(X ′:A), where t j+1 derives from t j by a symbolic execution step (e.g., think of a
narrowing step from g(Y :B) by using a program rule g(g(X ′:A))→ g(X ′:A)). Hence, the fact
that g(X :A) Ĕ g(Y :B) allows the risk of non-termination to be detected at t j, i.e., before gener-
ating t j+1; that is, this prevents an infinite sequence like g(X :A), . . . ,g(X ′:A), . . . ,g(X ′′:A), . . .
from being generated by applying the given rule.

Example 2. Consider the order-sorted signature depicted in Figure 4 which defines three sorts
A, B, and C, with B < A. Also, consider a constant a of sort A, an operator f : A→ B, an
operator d : B→ A, the (subsort) overloaded operator g for sorts A and B, with g : A→ A and
g : B→ B, a constant c of sort C, and an operator h : C→ A. Note that there are two different
kinds [A] and [C], where [A] contains sorts A and B,

Now consider three variables X :A, Y :B, and Z:C. By applying first the coupling rule and
then the diving rule, the embedding goal g(Y )Ĕg( f (X)) holds because variables X and Y are in

7



a // A

f

##

g




C

hoo coo

B

g
UU

d

WW

Fig. 4. Signature graph of Example 2

the same kind. However, g(Y )Ĕg(h(Z)) (resp. g(X)Ĕg(h(Z))) does not hold because Y (resp.
X) and Z are in different kinds.

Note that the embedding goal g(X)Ĕg(Y ) does also hold even though g(X) is of sort A,
g(Y ) is of sort B, and B < A. Similarly, the embedding goal Y Ĕd(X) does also hold even if
the term d(X) is not well-typed but admissible in Maude5; it belongs to the kind [A] but not to
sorts A and B. Actually, d(X) has well-typed instances such as d(Y ), with the sort-decreasing
substitution {X 7→ Y}. Furthermore, the embedding goal ZĔd(X) does not hold, which is
consistent with the fact that X cannot be instantiated with a term of sort C.

Similarly to E, it is immediate to see that the order-sorted symbolic embedding relation Ĕ
is a well-quasi-ordering on the set of terms TΣ (X ).

Theorem 3. The embedding relation Ĕ is a well-quasi-ordering on TΣ (X ).

Proof. The proof is similar to that of [20]. We need the following concept from [10] that we
adapt to fixed-arity symbols. Let <∼ be a relation on a set S of symbols. Then the embedding
extension of <∼ is a relation <∼emb on terms, constructed (only) from the symbols in S , which
is inductively defined as follows:

1. t <∼emb f (t1, ..., tn) if t <∼emb ti for some i;
2. f (s1, . . . ,sn)

<∼emb g(t1, . . . , tn) if f <∼ g and ∀i ∈ {1, . . . ,n} : si
<∼emb ti.

We define the relation <∼ on the set S =(Σ ∪X ) of symbols as the least relation satisfying:

1. x <∼ y if x ∈X , y ∈X , and dxe= dye;
2. f <∼ f if f ∈ Σ .

This relation is a wqo on S because Σ is finite. Therefore, by the Higman-Kruskal’s theorem
(see e.g., [10]), its embedding extension to terms, <∼emb, (which is by definition identical to Ĕ)
is a wqo on TΣ (X ). ut

3.4 Getting rid of Variables

In the following, we show how it is possible to reformulate the homeomorphic embedding
calculus for order-sorted terms with variables without the hassle of dealing with variables
explicitly, which is easier to formalize and more efficient to be checked.

We need the following notation. Given the set K = {[s] | s ∈ S} of all kinds in the equa-
tional theory (Σ ,E), for each kind k ∈K we consider a fresh constant symbol ]k. Let ΠK be

5 This is because we are assuming that, as in Maude, each signature is extended to a kind-complete one
(recall Section 2).

8



the set of all such symbols, ΠK = {]k | k ∈K }. Given an order-sorted signature Σ , we define
Σ ] as the extension of Σ with the constants in ΠK . For a term t ∈TΣ (X ), let t] ∈T

Σ ] denote
the (ground) instance of t where every variable x of sort s is replaced by the corresponding ]k,
with k = [s] being the kind of sort s.

The following result extends [3, Lemma 1] to the order-sorted case.

Lemma 2 (Variable-less characterization of Ĕ). Given two terms t1, t2 ∈ TΣ (X ), we have
t1Ĕt2 iff t]1 J_ t]2 where t]1, t

]
2 ∈T

Σ ] .

Proof. Immediate by structural induction. The only relevant case is the base case, i.e., when
the Variable inference rule dxe=dye

xĔy
is applied to the problem t1Ĕt2 and t1 and t2 are variables of

the same kind. In the corresponding grounded homeomorphic embedding problem t]1 J_ t]2, we
just have that t]1 = t]2 = ]k for the same kind k = dxe= dye. But then, the result follows directly
from the trivial problem ]k J_ ]k. ut

By abuse of notation, from now on, we sometimes consider terms with variables as ground
terms with corresponding ]k symbols, since they are equivalent in our formulation.

Example 3. Consider again the order-sorted signature of Example 2. Also consider the embed-
ding goals g(Y )Ĕg( f (X)) and g(Y )Ĕg(h(Z)), which were respectively proved to hold (because
variables X and Y are in the same kind, i.e., dXe= dYe= [A]) and not to hold (because Y and
Z are in different kinds). For the corresponding grounded goals, it is immediate to see that
g(][A]) J_ g( f (][A])) holds whereas g(][A]) J_ g(h(][C])) does not hold.

4 Homeomorphic embedding modulo equational axioms

Let us extend the order-sorted homeomorphic embedding relation on nonground terms Ĕ to
the case when we compare terms modulo a set of axioms B.

In [2], an equational extension of the “syntactically simpler” homeomorphic embedding
relation E on nonground terms, called the B–embedding relation EB (or embedding modulo
B), was defined as follows: EB≡ (

ren
=B).(E).(

ren
=B), where v ren

=Bv′ iff there is a renaming sub-
stitution σ for v′ such that v =B v′σ . We define the corresponding order-sorted extension ĔB
of EB in the natural way..

Definition 5 ((Order-sorted) homeomorphic embedding modulo B). The order-sorted B–
embedding relation ĔB is (ren

=B).(Ĕ).(
ren
=B).

Example 4. Consider the following rewrite theory (written in Maude syntax) that defines the
signature of natural numbers. The defined sort hierarchy has top sort Nat and (disjoint) subsorts
Zero and NzNat (for non-zero natural numbers). The sort Nat is generated from the constant 0
(of sort Zero) and the successor operator suc6 (of sort NzNat). We also define the associative
and commutative natural addition operator symbol _+_ for sort Nat but add two extra subsort-
overloaded definitions.

fmod NAT is
sorts Zero NzNat Nat .
subsorts Zero NzNat < Nat .
op 0 : -> Zero .
op suc : Nat -> NzNat .
op _+_ : Zero Zero -> Zero [assoc comm] .
op _+_ : NzNat Zero -> NzNat [assoc comm] .
op _+_ : Nat Nat -> Nat [assoc comm] .

endfm

6 For simplicity, we represent natural numbers in normal decimal notation; e.g., 2 for suc(suc((0)).

9



Then, we have 1+X :NatĔBY :Nat+(1+ 2) because Y :Nat+(1+ 2) is equal to 1+(2+
Y :Nat) modulo the associativity and commutativity of _+_, and 1 + X :Nat is homeomor-
phically embedded into 1 + (2 +Y :Nat). Similarly, 1 + X :ZeroĔBY :Nat + (1 + 2) and 1 +
X :NzNatĔBY :Nat+(1+ 2) hold. Note that suc(X :Nat)ĔBsuc(Y :Zero) holds despite the fact
that Zero < Nat; this is a deliberate decision as explained in Example 2.

The following result extends Kruskal’s Tree Theorem for the equational theories B consid-
ered in this paper, which we restrict to class–finite equational theories. B is called class-finite
if all of the B-equivalence classes of terms in the quotient term algebra T

Σ
(X )/=B are finite.

This includes the class of permutative equational theories: an equational theory E is permuta-
tive if for all terms t, t ′, the fact that t =E t ′ implies that the terms t and t ′ contain the same
symbols with the same number of occurrences [6]. Permutative theories include any theory
with any combination of symbols obeying any combination of associativity and commutativity
axioms.

Theorem 4. For class-finite theories, the embedding relation ĔB is a well-quasi-ordering on
the set TΣ (X ) for finite Σ .

Proof. A binary relation � is Noetherian (i.e., well-founded) on a set X if and only if its dual
relation � (defined as u � v iff u 6� v) is a well order7 on X : in every sequence (xi)i∈N of
elements of X , there exist i < j such that xi � x j. Since Ĕ is a wqo (by Theorem 3), the result
follows for class-finite theories from the fact that >B is well-founded [6], and Ĕ is compatible
with (

ren
=B). ut

Similarly to Lemma 2, in the equational case, we can also get rid of variables and consider
only ground terms.

Lemma 3. Given two terms t1, t2 ∈TΣ (X ), we have t1 ĔB t2 iff t]1 ĔB t]2 where t]1, t
]
2 ∈T

Σ ] .

Function symbols with variable arity are sometimes seen as associative operators. Let us
briefly discuss by means of an example the homeomorphic embedding modulo axioms ĔB of
Definition 5 when compared with the variadic extension J_v of Definition 1 as given in [10]:

Diving Coupling

∃i∈{1,...,n} : s J_v ti
s J_v f (t1,...,tn)

∀i∈{1,...,m} : si J_v t ji ,with 1≤ j1< j2<···< jm≤n
f (s1,...,sm) J_v f (t1,...,tn)

Example 5. Consider a variadic version of the addition symbol + of Example 4 that allows
any number of natural numbers to be used as arguments; for instance, +(1,2,3). On the one
hand, +(1) J_v +(1,2,3) whereas +(1) 6ĔB+(1,2,3), with B consisting of the associativity and
commutativity axioms for the operator + (actually, +(1) is ill-formed for our relation ĔB).
On the other hand, we have both +(1,2) J_v +(1,0,3,2) and +(1,2)ĔB +(1,0,3,2). This is
because any well-formed term that consists of the addition (in any order) of the constants 0,
1, 2, and 3 (for instance, +(+(1,0),+(3,2)) can be given a flat representation +(1,0,2,3).
Note that there are many other equivalent terms due to associativity and commutativity, e.g.,
+(+(1,2),+(3,0)) or +(+(1,+(3,2)),0), all of which are represented by the flattened term
+(0,1,2,3). Actually, because of the associativity and commutativity of symbol +, flattened
terms like +(1,0,2,3) can be further simplified into a single8 canonical representative +(0,1,2,3),
hence also +(1,2)ĔB +(0,1,2,3). A more detailed explanation of flat terms can be found in
Section 6. However, note that +(2,1)ĔB +(1,0,3,2) but +(2,1) 6J_v +(1,0,3,2) because the
relation J_v does not consider the commutativity of symbol +. In contrast, if + was associative
(and not commutative), then +(2,1) 6ĔB +(1,0,3,2).

7 A well order is a wqo that is a proper ordering relation, i.e., it is antisymmetric.
8 Maude uses a term lexicographic order for the arguments of flattened terms [11].

10



Roughly speaking, in the worst case, the homeomorphic embedding modulo axioms B of
Definition 5, t ĔB t ′, amounts to considering all of the elements in the B-equivalence classes
of t and t ′ and then checking for standard homeomorphic embedding, u Ĕ u′, every pair u and
u′ of such terms, one term from each class. Unfortunately, the enumeration of all terms in a
B-equivalence class is impractical, as shown in the following example.

Example 6. Consider the AC binary symbol + of Example 4 and the terms t =+(1,2) and t ′ =
+(2,+(3,1)). The AC-equivalence class of t contains two terms whereas the AC-equivalence
class of t ′ contains 12 terms. This implies checking 24 embedding problems u Ĕ u′ in order
to decide t ĔAC t ′, in the worst case. Moreover, we know a priori that half of these embedding
tests will fail (those in which 1 and 2 occur in different order in u′ and u; for instance u′ =
+(1,+(2,3)) and u =+(2,1).

A more effective rewriting characterization of ĔB can be achieved by lifting Definition
2 to both the order-sorted and the modulo case in a natural way. However, ill-formed terms
can be produced by naïvely applying the rules f (x1, . . . ,xn)→ xi of Definition 2 to typed (i.e.,
order-sorted) terms. For example, “(0≤ 1) or true”→ “0 or true”.

In the order-sorted context, we can overcome this drawback as follows. We extend Σ to
a new signature ΣU by adding a new top sort U that is bigger than all other sorts. Now, for
each f : A1, . . . ,An→ A in Σ , we add the rules f (x1:U , . . . ,xn:U )→ xi:U , 1 ≤ i ≤ n. In this
way, rewriting with→∗Emb(ΣU )/B becomes a relation between well-formed ΣU -terms, as first
proposed in [2].

The order-sorted homeomorphic embedding modulo B can be decided by the following
rewrite theory that extends the definition in [2] with sorts.

Definition 6 (Rewrite theory for ĔB). Let Σ be an order-sorted signature and B be a set of
axioms. Let us introduce the following signature transformation Σ 3 ( f : s1 . . .sn→ s) 7→ ( f :
U n... U →U ) ∈ ΣU , where U conceptually represents a universal supersort of all sorts in
Σ . Since there is no ad-hoc overloading, any term t ∈TΣ is well-typed for ΣU .

We define the rewrite theory Emb(Σ) = (ΣU ,B,R) such that R consists of all rewrite rules

f (x1:U , . . . ,xn:U )→ xi:U

for each f : A1, . . . ,An→ A in Σ and i ∈ {1, . . . ,n}.

Proposition 1. Given Σ , B, and terms t, t ′ ∈TΣ (X ), t ĔB t ′ iff t ′]→∗Emb(Σ ])/B t].

Proof. By Lemma 3, t ĔB t ′ iff t] ĔB t ′]. We prove t] ĔB t ′] iff
t ′]→∗Emb(Σ ])/B t].

(⇒) We prove that t] ĔB t ′] implies t ′]→∗Emb(Σ ])/B t]. By Definition 5, there are two terms

w,w′ such that t] =B w, t ′] =B w′, and w Ĕ w′. By Lemma 2 w Ĕ w′ iff w J_ w′. By Lemma 1,
w J_ w′ implies w′→∗Emb(Σ ])

w. And this implies t ′]→∗Emb(Σ ])/B t].

(⇐) We prove that t ′] →∗Emb(Σ ])/B t] implies t] ĔB t ′] by induction on the length k of the

rewriting sequence. If k = 0, then there is a constant a such that t ′] = a= t] and a→∗Emb(Σ ])/B a.

Thus, a ĔB a by using the Coupling inference rule of Figure 3 with n = 0. If k > 0, then
there exists w such that t ′]→k−1

Emb(Σ ])/B
w→Emb(Σ ])/B t]. Given the form f (x1:U , . . . ,xn:U )→

xi:U of the rewrite rules in Emb(Σ ]), we have that w =B C[ f (t1, . . . , tn)] and there exists
i∈ {1, . . . ,n} s.t. C[ti] =B t]. Hence, it is immediate to prove t] ĔB w by a straightforward com-
bination of several applications of the Coupling inference rule to remove the context C[ ] from
both terms, t] and w, one application of the Diving inference rule to extract ti from f (t1, . . . , tn)
in w, and the remaining applications of the Coupling inference rule that are needed to recog-
nize the embedding of ti inside t]. Now, by induction hypothesis we also have that w ĔB t ′],
which yields t] ĔB w ĔB t ′]. ut

11



Example 7. Consider the order-sorted signature for natural numbers of Example 4. Let us rep-
resent by sort U in Maude the unique (top) sort of the transformed signature:

fmod NAT-U is
sort U .
op 0 : -> U .
op suc : U -> U .
op _+_ : U U -> U [assoc comm] .

endfm

Since we have no ad-hoc overloading, there is no need to transform a ground term of module
NAT into a ground term of module NAT-U since any ground term of sorts Zero, NzNat, and Nat
is well typed in the transformed signature. The associated rewrite theory Emb(Σ ]) contains the
following two rules for the operator +:

+(x1:U,x2:U)→ x1:U
+(x1:U,x2:U)→ x2:U

However, when the rules of Emb(Σ ]) are used for rewriting modulo the commutativity of
symbol + (as in Maude), in practice, we can get rid of one of the two rules above since only
one of them is required.

Example 8. Following Example 6, instead of comparing pairwisely all terms in the equivalence
classes of t and t ′, we use the rewrite rule +(x1:U,x2:U)→ x2:U to prove the rewrite step
+(2,+(3,1))→Emb(Σ ])/B +(2,1), and finally, we check that +(2,1) =B +(1,2). Recall that
B contains associativity and commutativity of +. However, there are six alternative rewriting
steps stemming from the initial term +(2,+(3,1)). Five of these rewrite steps are useless for
proving the considered embedding (the selected redex is underlined):

+(2,+(3,1))→Emb(Σ ])/B +(2,1) +(2,+(3,1))→Emb(Σ ])/B 1

+(2,+(3,1))→Emb(Σ ])/B +(2,3) +(2,+(3,1))→Emb(Σ ])/B 2

+(2,+(3,1))→Emb(Σ ])/B +(3,1) +(2,+(3,1))→Emb(Σ ])/B 3

For a term with k addends, we have (2k)−2 rewriting steps. This leads to a huge combinatorial
explosion when considering the complete rewrite search tree.

In conclusion, there are three problems when trying to use Definition 6 to mechanize the
order-sorted homeomorphic embedding relation modulo axioms ĔB of Definition 5. First, the
intrinsic non-determinism of the rules may unnecessarily produce an extremely large search
space. Second, as shown in Example 8, this intrinsic non-determinism in the presence of ax-
ioms is intolerable, that is, unfeasible to handle. Third, the associated reachability problems
do not scale up to complex embedding problems so that a suitable search strategy must be
introduced. We address these problems stepwise in the sequel.

5 Goal-driven homeomorphic embedding modulo B

The formulation of homeomorphic embedding as a reachability problem by using the rewrite
rules of Definition 6 generates a blind search that does not take advantage of the actual terms t
and t ′ being compared for embedding. In this section, we provide a more refined formulation
of homeomorphic embedding modulo axioms that is goal driven in the sense that, given an
embedding problem for t and t ′, it inductively processes the terms t and t ′ in a top-down
manner.

First, in the following section, we introduce a calculus that extends the homeomorphic
embedding relation of Definition 3 to the order-sorted equational case.

12



5.1 An order-sorted homeomorphic embedding calculus modulo B

Let us introduce an order-sorted calculus for embeddability goals tĔgd
B t ′ that directly handles

the algebraic axioms of B in the deduction system, with B being any combination of A and/or
C axioms for the theory operators. Roughly speaking, this is achieved by specializing the Cou-
pling rule of Definition 3 w.r.t. B. This calculus extends with sorts (kinds) a similar definition
given in [2], where kinds were not considered in the Variable inference rule of [2].

Definition 7 (Goal-driven (order-sorted) homeomorphic embedding modulo B). The home-
omorphic embedding relation modulo B is defined as the smallest relation that satisfies the
inference rules of Definition 3 together with the new inference rules given in Figure 5. These
are:

1. the three inference rules (Variable, Diving, and Coupling) of Definition 3 for any function
symbol;

2. one extra coupling rule for the case of a commutative symbol with or without associativity
(CouplingC);

3. two extra coupling rules for the case of an associative symbol with or without commuta-
tivity (CouplingA); and

4. two extra coupling rules for the case of an associative-commutative symbol (CouplingAC).

CouplingC CouplingA CouplingAC

s0Ĕ
gd
B t1 ∧ s1Ĕ

gd
B t0

f (s0,s1)Ĕ
gd
B f (t0,t1)

f (s0,s1)Ĕ
gd
B t0 ∧ s2Ĕ

gd
B t1

f (s0, f (s1,s2))Ĕ
gd
B f (t0,t1)

f (s0,s1)Ĕ
gd
B t1 ∧ s2Ĕ

gd
B t0

f (s0, f (s1,s2))Ĕ
gd
B f (t0,t1)

s0Ĕ
gd
B f (t0,t1) ∧ s1Ĕ

gd
B t2

f (s0,s1)Ĕ
gd
B f (t0, f (t1,t2))

s1Ĕ
gd
B f (t0,t1) ∧ s0Ĕ

gd
B t2

f (s0,s1)Ĕ
gd
B f (t0, f (t1,t2))

Fig. 5. Extra coupling rules for A, C, and AC symbols

Proposition 2. Given Σ , B, and terms t, t ′ ∈TΣ (X ), t ĔB t ′ iff t] Ĕgd
B t ′] where t], t ′] ∈T

Σ ] .

Proof. Immediate by considering that each inference rule of Figure 5 explicitly combines the
Coupling inference rule with the corresponding A and/or C axioms. For example, the inference
rule CouplingC of Figure 5 is equivalent to the inference rule Coupling of Figure 3, but when
the former considers an embedding problem f (s0,s1)Ĕ

gd
B f (t0, t1), the latter considers both

f (s1,s0)Ĕ
gd
B f (t0, t1) and f (s0,s1)Ĕ

gd
B f (t1, t0). ut

Example 9. Consider the binary symbol + obeying associativity and commutativity axioms,
and the terms t =+(1,2) and t ′ =+(2,+(3,1)) of Example 8. We can prove tĔgd

B t ′ by

1Ĕgd
B 1

1Ĕgd
B +(3,1)

2Ĕgd
B 2

+(1,2)Ĕgd
B +(2,+(3,1))

We can also prove a more complex embedding goal by first using the right inference rule for
AC of Figure 5 and then the generic Coupling and Diving inference rules.

2Ĕgd
B 2

2Ĕgd
B +(4,2)

3Ĕgd
B 3

+(2,3)Ĕgd
B +(+(4,2),3)

1Ĕgd
B 1

+(1,+(2,3))Ĕgd
B +(+(4,2),+(3,1))

13



It is immediate to see that, when the size of the involved terms t and t ′ grows, the improve-
ment in performance of Ĕgd

B w.r.t. ĔB can be significant (just compare these two embedding
proofs with the corresponding search trees for ĔB).

5.2 Reachability-based, (order-sorted) goal-driven homeomorphic embedding
formulation

Let us provide a more operational goal-driven characterization of the order-sorted homeomor-
phic embedding modulo B by means of the relation Ĕ

rbgd
B . We formalize it in the reachability

style of Definition 6. The main challenge here is how to generate a suitable rewrite theory
Rrbgd(Σ ,B) that can decide embedding modulo B by running a reachability goal.

Definition 8 (Goal-driven homeomorphic embedding rewrite rules modulo B). Given Σ

and B, a rewrite theory Rrbgd(Σ ,B) = (Σ ,B,R) is defined as follows

1. For each particular instance of the inference rules of the form
uĔgd

B v
given in Definition 7

(e.g., the Variable Inference Rule from Definition 3 or the Coupling Inference Rule from
Definition 3, for the case of a constant symbol c), we include in R a rewrite rule of the form
uĔrbgd

B v→ true.

2. For each particular instance of the inference rules of the form u1Ĕ
gd
B v1∧···∧ukĔ

gd
B vk

uĔgd
B v

given

in Definition 7, we include in R a rewrite rule of the form uĔrbgd
B v→ u1Ĕ

rbgd
B v1 ∧ ·· · ∧

ukĔ
rbgd
B vk.

Proposition 3. Given Σ , B, and terms t, t ′ ∈T
Σ ] , t Ĕgd

B t ′ iff (tĔrbgd
B t ′)→∗Rrbgd(Σ ],B)/B true.

Proof. Immediate by a straightforward transformation of inference rules into rewrite rules. ut

Example 10. Consider the binary symbol + of Example 4. According to Definition 7 and the
use of only ground terms, there are eleven inference rules for Ĕgd

B :

Diving Coupling

t Ĕgd
B t ′

t Ĕgd
B suc(t ′)

0Ĕgd
B 0

t Ĕgd
B t1

t Ĕgd
B +(t1,t2)

t Ĕgd
B t ′

suc(t)Ĕgd
B suc(t ′)

t Ĕgd
B t2

t Ĕgd
B +(t1,t2)

t1 Ĕ
gd
B t ′1 ∧ t2 Ĕ

gd
B t ′2

+(t1,t2)Ĕ
gd
B +(t ′1,t

′
2)

CouplingC CouplingA CouplingAC

t1 Ĕ
gd
B t ′2 ∧ t2 Ĕ

gd
B t ′1

+(t1,t2)Ĕ
gd
B +(t ′1,t

′
2)

+(t0,t1)Ĕ
gd
B t ′1 ∧ t2 Ĕ

gd
B t ′2

+(t0,+(t1,t2))Ĕ
gd
B +(t ′1,t

′
2)

+(t0,t1)Ĕ
gd
B t ′2 ∧ t2 Ĕ

gd
B t ′1

+(t0,+(t1,t2))Ĕ
gd
B +(t ′1,t

′
2)

t1 Ĕ
gd
B +(t ′0,t

′
1) ∧ t2 Ĕ

gd
B t ′2

+(t1,t2)Ĕ
gd
B +(t ′0,+(t ′1,t

′
2))

t2 Ĕ
gd
B +(t ′0,t

′
1) ∧ t1 Ĕ

gd
B t ′2

+(t1,t2)Ĕ
gd
B +(t ′0,+(t ′1,t

′
2))

However, the corresponding TRS Rrbgd(Σ ,B) only contains seven rewrite rules because,
due to pattern matching modulo associativity and commutativity in rewriting logic, the other

14



rules are redundant:

(Diving) T Ĕ
rbgd
B suc(T ′) → T Ĕrbgd

B T ′

T Ĕ
rbgd
B +(T1,T2) → T Ĕrbgd

B T1

(Coupling) ] Ĕ
rbgd
B ] → true

0 Ĕ
rbgd
B 0 → true

suc(T ) Ĕrbgd
B suc(T ′) → T Ĕrbgd

B T ′

(Coupling /0,C,A,AC) +(T1,T2) Ĕ
rbgd
B +(T ′1 ,T

′
2)→ T1Ĕ

rbgd
B T ′1 ∧ T2Ĕ

rbgd
B T ′2

For example, the rewrite sequence proving +(1,+(2,3))Ĕrbgd
B +(+(4,2),+(3,1)) is:

+(1,+(2,3))Ĕrbgd
B +(+(4,2),+(3,1))→Rrbgd(Σ ],B)/B +(2,3))Ĕrbgd

B +(+(4,2),3)∧1Ĕrbgd
B 1

→Rrbgd(Σ ],B)/B 2Ĕrbgd
B +(4,2)∧3Ĕrbgd

B 3
→Rrbgd(Σ ],B)/B 2Ĕrbgd

B 2
→Rrbgd(Σ ],B)/B true

Although the improvement in performance achieved by using the rewriting relation→Rrbgd(Σ ],B)/B
versus the rewriting relation →∗Emb(Σ ])/B is important, the search space is still huge since the

expression +(1,+(2,3))Ĕgd
B + (+(4,2),+(3,1)) matches the left-hand side +(T1,T2)Ĕ

gd
B +

(T ′1 ,T
′

2) in many different ways (e.g., {T1 7→ 1,T2 7→+(2,3), . . .}, {T1 7→ 2,T2 7→+(1,3), . . .},
{T1 7→ 3,T2 7→+(1,2), . . .}).

In the following section, we provide a more efficient calculus of homeomorphic embedding
modulo axioms by considering equational (deterministic) normalization (thus avoiding search)
and by exploiting the meta-level features of Maude (thus avoiding any theory generation).

6 Meta-Level deterministic (order-sorted) goal-driven homeomorphic
embedding modulo B

The implementation of rewriting modulo equational axioms in high-performance languages
such as Maude relies on a meta-level, flattened representation of terms that is rooted by poly-
variadic versions of the associative (or associative-commutative) symbols of the term [7, Chap-
ter 14]. For instance, given an associative symbol f with n arguments and n≥ 2, flattened terms
rooted by f are canonical forms w.r.t. the set of rules given by the following rule schema

f (x1, . . . , f (t1, . . . , tn), . . . ,xm)→ f (x1, . . . , t1, . . . , tn, . . . ,xm) n,m≥ 2

The flattened version of a term t is represented by t
¯
. Given an associative symbol f and a term

f (t1, . . . , tn), those terms among the t1, . . . , tn that are not rooted by f are called f -alien terms
(or simply alien terms). In the following, we implicitly consider that all terms are in canonical
form.

Our first improvement for implementing the order-sorted homeomorphic embedding mod-
ulo equational axioms of Definition 7 is based on handling flattened terms explicitly. Roughly
speaking, for a homeomorphic problem of the form f (s1, . . . ,sn)Ĕ

ml
B f (t1, . . . , tm), with f be-

ing associative, we just search for an argument t j in the right-hand term that embeds s1 and
reduce the previous problem to the new problem f (s2, . . . ,sn)Ĕ

ml
B f

(
t j+1, . . . , tm

)
, since all the

arguments t1, . . . , t j−1 can be discarded. However, in the case when f is associative and com-
mutative, the arguments t1, . . . , t j−1 cannot be discarded and we reduce the original problem
f (s1, . . . ,sn)Ĕ

ml
B f (t1, . . . , tm) to the new problem f (s2, . . . ,sn)Ĕ

ml
B f

(
t1, . . . , t j−1, t j+1, . . . , tm

)
.

15



Definition 9 (Flattened homeomorphic embedding modulo B). The homeomorphic embed-
ding relation modulo B, Ĕml

B , for terms in flattened form is defined as the smallest relation that
satisfies the following inference rules:

1. the three inference rules (Variable, Diving, and Coupling) of Definition 3 for any function
symbol;

2. the extra coupling rule of Figure 5 for the case of a commutative symbol with or without
associativity (CouplingC);

3. the extra coupling rule of Figure 6 for the case of an associative symbol with or without
commutativity (CouplingA); and

4. the extra coupling rule of Figure 6 for the case of an associative-commutative symbol
(CouplingAC).

CouplingA
∃ j ∈ {1, . . . ,m−n+1} : s1Ĕ

ml
B t j ∧ f (s2, . . . ,sn)Ĕ

ml
B f

(
t j+1, . . . , tm

)
∧∀k < j : s1 6 Ĕ

ml
B tk

f (s1, . . . ,sn)Ĕ
ml
B f (t1, . . . , tm)

CouplingAC
∃ j ∈ {1, . . . ,m} : s1Ĕ

ml
B t j ∧ f (s2, . . . ,sn)Ĕ

ml
B f

(
t1, . . . , t j−1, t j+1, . . . , tm

)
f (s1, . . . ,sn)Ĕ

ml
B f (t1, . . . , tm)

Fig. 6. Coupling rules for flattened terms with associative and associative-commutative symbols

Proposition 4. Given Σ and B, for terms t and t ′ in TΣ (X ), tĔgd
B t ′ iff t

¯
Ĕ

ml
B t’

¯
.

Proof. Consider an embedding goal tĔgd
B t ′ where both t and t ′ are rooted by an associate

(resp. an associative-commutative) symbol f . Let us assume that the flattened versions are
t
¯
= f (t1, . . . , tn) and t’

¯
= f (t ′1, . . . , t

′
m), with m≥ n. For the embedding goal tĔgd

B t ′, the Coupling
inference rule of Figure 1 and the CouplingA (resp. CouplingAC) inference rule of Figure 5 can
be applied to all of the elements in the equivalence class of t, i.e., the terms resulting from
all possible rearrangements of t due to associativity (resp. associativity and commutativity).
However, after several applications of the inference rules of Ĕgd

B , all of them end up with the
form tiĔ

gd
B t ′j where i ≤ j (resp. 1 ≤ i ≤ n and 1 ≤ j ≤ m). For the embedding goal t

¯
Ĕ

ml
B t’

¯
,

the CouplingA (resp. CouplingAC) inference rule of Figure 6 can be applied and after several
applications of the inference rules, all of them end up with the same form. ut

Flattened terms are only accessible in Maude through its META-LEVEL functional mod-
ule. In the following, we provide a characterization of the order-sorted homeomorphic embed-
ding relation Ĕ

ml
B for flattened terms by (i) using a set of equations instead of rules and (ii)

using meta-representations of terms instead of explicit terms of the given signature Σ . Rewrit-
ing logic is reflective [8], in the sense that some commands of Maude at the user level can be
represented at the object level in a consistent way. In other words, the meta-level representa-
tion correctly simulates the relevant metatheoretic features of Maude such as loading a module,
evaluating a term, or computing the least sort of a term. Reflection is systematically used in
the design and implementation of the Maude language, making the metatheory of rewriting
logic accessible to the user in a clear, principled, and efficient way. In the sequel, a variable x
of sort s is meta-represented as x̄ = ’x:s and a non-variable term t = f (t1, . . . , tn), with n ≥ 0,
is meta-represented as t̄ = ’f [t̄1, . . . , t̄n]. See [7, Chapter 14] for further details.

Definition 10 (Meta-level (order-sorted) homeomorphic embedding modulo B). The meta-
level (order-sorted) homeomorphic embedding modulo B, Ĕml

B , of Definition 9 is defined for

16



term meta-representations by means of the equational theory Eml given in Figure 7, where
the auxiliary meta-level functions any and all implement the existential and universal tests in
the Diving and Coupling inference rules of Figure 1, and we introduce two new meta-level
functions all_A and all_AC that implement existential tests of Figure 6, which are specific to
A and AC symbols. Note that the function all_AC uses an auxiliary function all_AC_Aux to
search for an element in a list and we also introduce the function remove(U,L) that eliminates
the element U from the list L.

] Ĕ
ml
B ] = true for each ] in ΠK

F [TermList] Ĕml
B ] = false if F [TermList] 6= ], for ] ∈ΠK

T Ĕ
ml
B F [TermList] = any(T,TermList) if root(T ) 6= F

F [Term1] Ĕml
B F [Term2] = Term1Ĕml

B Term2
F [TermList1] Ĕml

B F [TermList2] = any(F [TermList1],TermList2)
or all(TermList1,TermList2) if length(TermListi) 6= 1,

i ∈ {1,2},Ax(F) = /0
F [U,V ] Ĕ

ml
B F [X ,Y ] = any(F [U,V ], [X ,Y ]) if Ax(F) = {C}

or( UĔ
ml
B X and V Ĕ

ml
B Y )

or ( UĔ
ml
B Y and V Ĕ

ml
B X )

F [TermList1] Ĕml
B F [TermList2] = any(F [TermList1],TermList2) if Ax(F) = {A}

or all_A(TermList1,TermList2)
F [TermList1] Ĕml

B F [TermList2] = any(F [TermList1],TermList2) if Ax(F) = {A,C}
or all_AC(TermList1,TermList2)

any(U,nil) = false
any(U,V : L) =UĔ

ml
B V or any(U,L)

all(nil,nil) = true
all(nil,U : L) = false
all(U : L,nil) = false

all(U : L1,V : L2) =UĔ
ml
B V and all(L1,L2)

all_A(nil,L) = true
all_A(U : L,nil) = false

all_A(U : L1,V : L2) = (UĔ
ml
B V and all_A(L1,L2)) or all_A(U : L1,L2))

all_AC(nil,L) = true
all_AC(U : L1,L2) = all_AC_Aux(U : L1,L2,L2)

all_AC_Aux(U : L1,nil,L3) = false
all_AC_Aux(U : L1,V : L2,L3) = (UĔ

ml
B V and all_AC(L1,remove(V,L3)))

or all_AC_Aux(U : L1,L2,L3))

remove(U,nil) = nil
remove(U,V : L) = if U =V then L else V : remove(U,L)

Fig. 7. Meta-level order-sorted homeomorphic embedding modulo axioms

Example 11. Given the embedding problem for terms +(1,+(2,3)) and +(+(4,2),+(3,1)),
the corresponding call to the meta-level homeomorphic embedding Ĕ

ml
B of Definition 10 is

’+[’1,’2,’3]Ĕml
B ’+[’4,’2,’3,’1] and its evaluation sequence is given in Figure 8, according

to the equational theory Eml of Figure 7.

Proposition 5. Given Σ and B, for terms t and t ′ in TΣ (X ), tĔgd
B t ′ iff (t̄Ĕml

B t̄ ′)!−−→
Eml/B

= true.

17



’+[’1,’2,’3]Ĕml
B ’+[’4,’2,’3,’1]→Eml/B any(’+[’1,’2,’3], [’4,’2,’3,’1])

or
all_AC([’1,’2,’3], [’4,’2,’3,’1])

→∗Eml/B false
or
all_AC([’1,’2,’3], [’4,’2,’3,’1])

→Eml/B all_AC([’1,’2,’3], [’4,’2,’3,’1])

→∗Eml/B all_AC_Aux([’1,’2,’3], [’1], [’4,’2,’3,’1])

→Eml/B ’1Ĕml
B ’1

and
all_AC([’2,’3],remove(’1, [’4,’2,’3,’1]))

or
all_AC_Aux([’1,’2,’3],nil, [’4,’2,’3,’1])

→∗Eml/B all_AC([’2,’3], [’4,’2,’3])
or
all_AC_Aux([’1,’2,’3],nil, [’4,’2,’3,’1])

→∗Eml/B all_AC_Aux([’2,’3], [’2,’3], [’4,’2,’3])
or
all_AC_Aux([’1,’2,’3],nil, [’4,’2,’3,’1])

→Eml/B ’2Ĕml
B ’2

and
all_AC([’3],remove(’2, [’4,’2,’3]))

or
all_AC_Aux([’2,’3], [’3], [’4,’2,’3])

or
all_AC_Aux([’1,’2,’3],nil, [’4,’2,’3,’1])

→∗Eml/B all_AC([’3], [’4,’3])
or
all_AC_Aux([’2,’3], [’3], [’4,’2,’3])
or
all_AC_Aux([’1,’2,’3],nil, [’4,’2,’3,’1])

→∗Eml/B ’3Ĕml
B ’3

and
all_AC(nil,remove(’3, [’4,’3]))

or
all_AC_Aux([’2,’3], [’3], [’4,’2,’3])
or
all_AC_Aux([’1,’2,’3],nil, [’4,’2,’3,’1])

→∗Eml/B true

Fig. 8. Evaluation sequence for ’+[’1,’2,’3]Ĕml
B ’+[’4,’2,’3,’1]

Proof. Immediate by realizing that the inference rules of Definition 9 can be easily transformed
into a rewrite theory Rml(Σ ,B), as we did in Definition 8 for the inference rules of Definition 7.
This rewrite theory is terminating and can be easily transformed into a set of rules that are con-
fluent, terminating, and coherent modulo associativity and commutativity axioms. And then
those rewrite rules can be straightforwardly translated into the equational theory Eml of Defi-
nition 10 which manipulates flattened terms at the meta-level. ut

18



A further optimized version of Definition 10 can be obtained by replacing the Boolean con-
junction (and) and disjunction (or) operators with the computationally more efficient Maude
Boolean operators and-then and or-else which avoid evaluating the second argument when
the result of evaluating the first one suffices to compute the result.

Definition 11 (Strategic meta-level deterministic embedding modulo B). We define Ĕ
sml
B

as the strategic version of relation Ĕ
ml
B that is obtained by replacing the Boolean operators

and and or with Maude’s and-then operator for the short-circuit version of the conjunction
and the or-else operator for the short-circuit version of the disjunction [7, Chapter 9.1],
respectively.

The optimization idea behind Definition 11 was first proposed in [3]. In the following sec-
tion, we propose two novel optimizations of order-sorted homeomorphic embedding modulo
equational axioms B that can achieve further speedups.

7 Optimizations based on the term B-ordering and reachable kinds

Typically hidden inside the B-matching algorithms, some pertinent term transformations al-
low terms that contain operators obeying equational axioms to be rewritten into convenient
B-normal forms that facilitate the matching modulo B. In the case of AC-theories, these trans-
formations not only include translating the term to flattened form (as shown in Section 6) but
also allowing terms to be reordered and suitably parenthesized in order to enable subsequent
rewrite steps. Basically, this is achieved by producing a single, auxiliary representative of their
AC congruence class (i.e., the AC-normal form). An AC-normal form is typically generated
by replacing nested occurrences of the same AC operator by a flattened argument list under
a variadic symbol, sorting these arguments under a fixed linear ordering and combining equal
arguments using multiplicity superscripts [12]. For example, the congruence class containing
f ( f (α, f (β ,α)), f ( f (γ,β ),β )) where f is an AC symbol and subterms α , β , and γ belong
to alien theories might be represented by f ∗(α2,β 3,γ), where f ∗ is a variadic symbol that re-
places nested occurrences of f . A more formal account of this transformation is given in [13,
12]. For any set B of axioms, Maude’s total ordering on terms is written �B. This ordering is
closed under context, i.e., t �B t ′⇒C[t] �B C[t ′] for any context C, and size-compatible, i.e.,
t �B t ′⇒ size(t)≤ size(t ′), where size(t) is the number of symbols in the unflattened version
of t.

Let us formulate a novel optimization Ĕ
order+sml
B of the order-sorted homeomorphic em-

bedding modulo B that takes advantage of Maude’s total order on terms �B. The optimization
is based on adding a pruning equation that negatively concludes the test whenever T ′ ≺B T
without actually running the call T Ĕsml

B T ′.

Definition 12 (Early pruning based on term order �B). We extend the equational theory
Eml of Figure 7 (but with the strategic optimization given in Definition 11) with the following
pruning equation that determines the (meta-level) embedding problem T Ĕorder+sml

B T ′ nega-
tively whenever T ′ ≺B T .

T Ĕorder+sml
B T ′ = if T ′ ≺B T then false else T Ĕsml

B T ′

The correctness of the above optimization derives from the following result.

Lemma 4. If T ′ ≺B T then T ĔBT ′ does not hold.

Proof. If T ′ ≺B T , then T 6= T ′. Since T ′ ≺B T is equivalent to T ′ �B T and T ′ 6=B T , and
since �B is size-compatible, then T ′ ≺B T implies T 6= T ′ and size(T ′) ≤ size(T ). Let us
consider the cases when size(T ′) = size(T ) and size(T ′) < size(T ) separately. If T 6= T ′ and
size(T ′) = size(T ), then there is at least one clash position, i.e., a position in t and t ′ whose

19



root symbol differ, hence the successive application of the coupling inference rule can never
succeed, which implies T 6ĔBT ′.

For the case when size(T ′) < size(T ), the proof follows directly from the following facts:
(i) B is any combination of associativity and commutativity axioms for the binary function
symbols in Σ ; (ii) every associativity or commutativity axiom l = r in B is size-preserving, i.e.,
size(l) = size(r); and (iii) E is size-compatible, i.e., T E T ′ implies that size(T ) ≤ size(T ′).
From (i), (ii) and (iii) it follows that ĔB is also size-compatible, i.e., T ĔBT ′ implies that
size(T )≤ size(T ′). Therefore, size(T ′)< size(T ) implies that T 6ĔBT ′ and the result follows.

ut

Example 12. Consider the (flattened) terms t =+(1,2,3) and t ′ =+(0,1,2) for the signature
of Example 4, and let T , T ′ be their corresponding meta-level representation. In Maude’s total
order for terms, +(0,1,2)≺B +(1,2,3) (and correspondingly T ′ ≺B T as well). According to
Definition 12, the embedding problem T Ĕorder+sml

B T ′ immediately fails.

Let us formalize a second optimization Ĕ
kinds+sml
B of Ĕsml

B that anticipates failure when-
ever there is a subterm of t whose kind is not in the set of all kinds that can be obtained (by
instantiation) from the subterms of t ′.

Definition 13 (Reachable kinds). Given a term t, we let kinds(t) denote the set of kinds of all
of the subterms of t. Given the signature Σ , we compute kinds(t) as the solution to a reacha-
bility problem using the following rewrite theory Kinds(Σ) = (Σ ′, /0,R), where Σ ′ contains the
kinds of Σ as constants of a universal sort U and R consists of all rewrite rules

k→ ki

where ( f : s1, . . . ,sn → s) in Σ , k = [s], ki = [si], k 6= ki and i ∈ {1, . . . ,n}. By using R =
Kinds(Σ), we define kinds(t) = {k | dte →∗R k}.

The intuition behind Definition 13 is that kinds(t) represents the set of kinds of the sub-
terms of any instance of t.

nil NatList NatPair

0 Nat

_|_

suc

_:_

Fig. 9. Signature graph of Example 13

Example 13. Consider the following order-sorted signature Σ (graphically depicted in Figure
9), which extends the signature of natural numbers with two new sorts NatPair and NatList,
which are aimed at representing pairs of natural numbers and sequences of natural numbers,
respectively. Pairs are constructed by using the pair concatenation operator _|_, whereas lists
are constructed by using nil and the (associative) list concatenation operator _:_. Note that
there are two different kinds, [NatPair] and [NatList], where [NatList] contains the
sorts Nat and NatList because Nat < NatList.

20



sorts Nat NatPair NatList .
subsort Nat < NatList .
op 0 : -> Nat .
op suc : Nat -> Nat .
op _|_ : Nat Nat -> NatPair .
op nil -> NatList .
op _:_ : NatList NatList -> NatList [assoc] .

The rewrite theory Kinds(Σ) consists of:

sort U .
ops [NatList] [NatPair] : -> U .
rl [NatPair] => [NatList] .

Now, given the term Z:NatList, we have kinds(Z:NatList) = {[NatList]}, whereas
given the term X :Nat | Y :Nat, we have kinds(X :Nat | Y :Nat) = {[NatPair],[NatList]}.

Definition 14 (Early pruning based on reachable kinds). We extend the equational theory
Eml of Figure 7 (with the strategic optimization given in Definition 11) with the following
pruning equation that decides the (meta-level) embedding problem T Ĕkinds+sml

B T ′ negatively
whenever the set of all reachable kinds from T ′ does not contain all of the reachable kinds from
T .

T Ĕkinds+sml
B T ′ = if kinds(T ) 6⊆ kinds(T ′) then false else T Ĕsml

B T ′

Example 14. Consider again the order-sorted signature Σ for pairs and sequences of natural
numbers of Example 13. The embedding goal (X :Nat | Y :Nat) ĔB Z:NatList does not hold
because the kind [NatPair] of the left term (X :Nat | Y :Nat) is not contained in the set
kinds(Z:NatList) of reachable kinds from the right term, which only contains [NatList].
However, for the inverse goal we cannot conclude Z:NatList 6 ĔB(X :Nat | Y :Nat) because the
set kinds(X :Nat | Y :Nat) = {[NatPair],[NatList]} does contain the only reachable kind
[NatList] for the left term Z:NatList. And actually, Z:NatList ĔB(X :Nat | Y :Nat) holds
according to Definition 5 because Z:NatList ĔB X:Nat.

The correctness of the above optimization derives from the following result.

Lemma 5. If kinds(T ) 6⊆ kinds(T ′), then T ĔBT ′ does not hold.

Proof. (By contradiction). Assume that there is a subterm t of T such that dte 6∈ kinds(T ′) and
that T ĔBT ′ holds. Since T ĔBT ′ then also tĔBT ′. Let us consider separately the case when t
is ground and when t is non-ground. By Definition of ĔB, if t is ground, then every symbol of
t must appear in T ′, hence it cannot happen that dte 6∈ kinds(T ′). If t is non-ground then every
non-variable symbol of t must appear in T ′ and for each variable X of t there must be a variable
Y in T ′ such that dXe= dYe; hence, it cannot happen that dte 6∈ kinds(T ′). ut

In the following section, we demonstrate that the two optimizations Ĕorder+sml
B and Ĕ

kinds+sml
B

pay off in practice. We consider the two optimizations Ĕorder+sml
B and Ĕ

kinds+sml
B separately as

well as their natural combination in our last optimal order-sorted equation embedding relation
Ĕ

kosml
B that (lazily) first checks the pruning condition based on reachable kinds of Definition

14 and then checks the pruning condition based on the term order�B of Definition 12. In other
words,

Definition 15 (Early pruning based on combining term order �B and reachable kinds).
We extend the equational theory Eml of Figure 7 (with the strategic optimization given in Defi-
nition 11) with the following pruning equation that combines the pruning based on term order
�B and the pruning based on reachable kinds.

T Ĕkosml
B T ′ = if kinds(T ) 6⊆ kinds(T ′) or-else T ′ ≺B T then false else T Ĕsml

B T ′

21



Benchmark ] Axioms ĔB Ĕ
rbgd
B Ĕ

ml
B , Ĕsml

B , Ĕkosml
B

/0 A C AC ]E ]R GT(ms) ]E ]R GT(ms) ]E ]R GT(ms)
Kmp 9 0 0 0 0 15 1 0 57 2 21 0 0
NatList 5 1 1 2 0 10 1 0 26 1 21 0 0
Maze 5 1 0 1 0 36 7 0 787 15 21 0 0
Dekker 16 1 0 2 0 59 8 0 823 18 21 0 0

Table 1. Size of generated theories for naïve and goal-driven definitions vs. meta-level definitions

Note that we do not implement a recursive optimization that tries to verify the pruning
conditions recursively within Ĕ

sml
B . The reason is that the recursive checking of the pruning

conditions would introduce a dramatic, exponential overhead so that the recursive optimization
would prove ineffective.

8 Experiments

We have implemented in Maude all five equational homeomorphic embedding formulations
ĔB (Definition 6), Ĕrbgd

B (Definition 8), Ĕml
B (Definition 10), Ĕsml

B (Definition 11), and Ĕ
kosml
B

(Definition 15) of the previous sections. The implementation consists of approximately 2.5K
lines of Maude source code and is publicly available9. In this section, we provide an experimen-
tal comparison of the five equational homeomorphic embedding implementations by running a
significant number of equational embedding goals. In order to compare the performance of the
different implementations in the worst possible scenario, all benchmarked goals return false,
which ensures that the whole search space for each goal has been completely explored, while
the execution times for succeeding goals whimsically depend on the particular node of the
search tree where success is found.

We tested our implementations on a 3.3GHz Intel Xeon E5-1660 with 64 GB of RAM
running Maude v2.7.1, and we considered the average of ten executions for each test. We have
chosen four representative programs: (i) KMP, the classical KMP string pattern matcher [4];
(ii) NatList, a Maude implementation of lists of natural numbers; (iii) Maze, a non-deterministic
Maude specification that defines a maze game in which multiple players must reach a given exit
point by walking or jumping, where colliding players are eliminated from the game [1]; and
(iv) Dekker, a Maude specification that models a faulty version of Dekker’s protocol, one of the
earliest solutions to the mutual exclusion problem that appeared in [7]. As testing benchmarks,
we considered a set of representative embeddability problems for the four programs that are
generated during the execution of Maude’s partial evaluator, Victoria [2].

Tables 1, 2, 3, and 4 below analyze different aspects of the implementation. In Table 1, we
compare the size of the generated rewrite theories for the naïve and the goal-driven definitions
versus the meta-level definitions. For Ĕml

B , Ĕsml
B , and Ĕ

kosml
B , there are the same number (21)

of generated equations (]E), whereas the number of generated rules (]R) is zero because both
definitions are purely equational (deterministic) and just differ in the version of the Boolean
operators being used. As for the generated rewrite theories for computing ĔB and Ĕ

rbgd
B , they

contain no equations, while the number of generated rules increases with the complexity of
the program (that heavily depends on the equational axioms that the function symbols obey).
The number of generated rules is much bigger for Ĕrbgd

B than for ĔB (for instance, Ĕrbgd
B is

encoded by 823 rules for the Dekker program versus the 59 rules of ĔB). Columns /0, A, C,
and AC summarize the number of free, associative, commutative, and associative-commutative
symbols, respectively, for each benchmark program. The generation times (GT) are negligible
for all rewrite theories.

9 At http://safe-tools.dsic.upv.es/victoria/jsp-pages/embedding.jsp.

22



To make the comparison on equal terms, in Tables 2 and 3, we compare the equational
embedding implementations ĔB, Ĕrbgd

B , Ĕml
B , and Ĕ

sml
B without adding the pruning conditions

of Section 7 as they could be applicable to any of them. Our figures demonstrate that the im-
plementation of Ĕsml

B is the most efficient one among the four formulations. The performance
improvement of the two optimizations of Section 7 w.r.t. Ĕsml

B is evaluated in Table 4 below.
For all benchmarks T 1 Eα

B T 2 in Table 2, we have fixed the size of T 1, which is measured
in the depth of (the non-flattened version of) the term, to five. As for T 2, we have considered
terms with increasing depths: 5, 10, 100, 500, 1000, and 5000. The ] Symbols column records
the number of A (resp. AC) symbols occurring in the benchmarked goals.

Benchmark ] Symbols Size ĔB Ĕ
rbgd
B Ĕ

ml
B Ĕ

sml
B

A AC T1 T2 Time(ms) Time(ms) Time(ms) Time(ms)

Kmp 0 0 5

5 10 6 1 1
10 150 125 4 1

100 TO TO 280 95
500 TO TO 714 460

1000 TO TO 2184 1324
5000 TO TO 7528 5152

NatList 1 2 5

5 2508 2892 1 1
10 840310 640540 1 1

100 TO TO 8 2
500 TO TO 60 5

1000 TO TO 102 10
5000 TO TO 210 85

Maze 1 1 5

5 40 25 1 1
10 TO 20790 4 1

100 TO TO 256 2
500 TO TO 1980 10

1000 TO TO 10148 20
5000 TO TO 1057912 46

Dekker 1 1 5

5 50 40 1 1
10 111468 110517 2 1

100 TO TO 5 3
500 TO TO 20 13

1000 TO TO 45 20
5000 TO TO 80 38

Table 2. Performance of equational homeomorphic embedding implementations w.r.t. problem size

The figures in Table 2 confirm our expectations regarding ĔB and Ĕ
rbgd
B that the search

space is huge and increases exponentially with the size of T 2 (discussed for ĔB in Exam-
ple 8 and for Ĕrbgd

B in Example 9). Actually, when the size of T 2 is 100 (and beyond), a given
timeout (represented by TO in the tables) is reached that is set for 3.6e+6 milliseconds (1 h).
The reader can also check that the more A,C, and AC symbols occur in the original program
signature, the bigger the execution times. An odd exception is the Maze example, where the
timeout is already reached for the size 10 of T 2 even if the number of equational axioms is
comparable to the other programs. This is because the AC-normalized, flattened version of the
terms is much smaller than the original term size for the NatList and Dekker benchmarks but
not for Maze, where the flattened and original terms have similar size. On the other hand, our
experiments demonstrate that both Ĕ

ml
B and Ĕ

sml
B bring impressive speedups, with Ĕ

sml
B work-

ing outstandingly well in practice even for really complex terms where, taking into account

23



T1 T2 ĔB Ĕ
rbgd
B Ĕ

ml
B Ĕ

sml
B

Size ] Symbols Size ] Symbols Time(ms) Time(ms) Time(ms) Time(ms)OT FT /0 C A AC OT FT /0 C A AC
5 5 5 0 0 0 100 100 100 0 0 0 165 70 1 1
5 5 3 2 0 0 100 100 50 50 0 0 TO TO 24 1
5 2 4 0 1 0 100 2 50 0 50 0 TO TO 108035 3
5 2 4 0 0 1 100 2 50 0 0 50 TO TO 42800 4
5 3 8 0 1 2 100 3 50 0 25 25 TO TO 22796 5

5 5 5 0 0 0 500 500 500 0 0 0 48339 34000 12 4
5 5 3 2 0 0 500 500 250 250 0 0 TO TO 1360 10
5 2 4 0 1 0 500 2 250 0 250 0 TO TO TO 30
5 2 4 0 0 1 500 2 250 0 0 250 TO TO TO 27
5 3 8 0 1 2 500 3 250 0 125 125 TO TO TO 50

5 5 5 0 0 0 1000 1000 1000 0 0 0 202224 88000 18 8
5 5 3 2 0 0 1000 1000 500 500 0 0 TO TO 10184 40
5 2 4 0 1 0 1000 2 500 0 500 0 TO TO TO 50
5 2 4 0 0 1 1000 2 500 0 0 500 TO TO TO 56
5 3 8 0 1 2 1000 3 500 0 250 250 TO TO TO 87

5 5 5 0 0 0 5000 5000 1000 0 0 0 TO TO 27 15
5 5 3 2 0 0 5000 5000 2500 2500 0 0 TO TO 1159236 80
5 2 4 0 1 0 5000 2 2500 0 2500 0 TO TO TO 114
5 2 4 0 0 1 5000 2 2500 0 0 2500 TO TO TO 240
5 3 8 0 1 2 5000 3 2500 0 1250 1250 TO TO TO 368

Table 3. Performance of equational homeomorphic embedding implementations w.r.t. axiom entangle-
ment for the NatList example

the generous one hour time-out, the achieved speedup is at least 105 (and in Table 4 is further
improved by one additional order of magnitude by enabling the optimizations of Section 7).

The reader may wonder how big is the impact of having A, C, or AC operators. In order
to compare the relevance of these symbols, in Table 3 we fix one single benchmark program
(NatList) that contains all three kinds of operators: two associative operators (list concatenation
; and natural division /), a commutative (natural pairing) operator (||), and two associative-
commutative arithmetic operators (+,∗). With regard to the size of the considered terms, we
compare the size of the original term (OT) with the size of its flattened version (FT); e.g.,
500 versus 2 for the size of T 2 in the last row. We have included the execution times of ĔB

and Ĕ
rbgd
B for completeness, but they do not reveal a dramatic improvement of Ĕ

rbgd
B with

respect to ĔB for the benchmarked (false) goals, contrary to what we initially expected. This
means that Ĕrbgd

B cannot be generally used in real applications due to the risk of intolerable
embedding test times, even if Ĕrbgd

B may be far less wasteful than ĔB for succeeding goals, as
discussed in Section 5. For Ĕml

B and Ĕ
sml
B , the figures show that the more A and AC operators

comparatively occur in the problem, the bigger the improvement achieved. This is due to the
following: (i) these two embedding definitions manipulate flattened meta-level terms; (ii) they
are equationally defined, which has a much better performance in Maude than doing search;
and (iii) our definitions are highly optimized for lists (that obey associativity) and sets (that
obey both associativity and commutativity).

Homeomorphic embedding has been extensively used in Prolog for different purposes,
such as termination analysis and partial deduction. In Figure 10, we have compared on a log-

24



102 103 104

101

102

103

104

105

302
432

1057

27938

92022

17 34
66

98

143

Term size

Ti
m

e
(m

s)

Prolog E

Maude Ĕ
kosml
/0

Fig. 10. Comparison of E in Prolog vs. Ĕkosml
/0 for the NatList example (no axioms in goals)

arithmic scale our best embedding definition10, Ĕkosml
B , with a standard meta-level Prolog11

implementation of the (syntactic) pure homeomorphic embedding E of Definition 3. We chose
the NatList example and terms T 1 and T 2 which do not contain symbols obeying equational
axioms as this is the only case that can be handled by the syntatic Prolog implementation.
Our experiments show that our refined deterministic formulation Ĕ

kosml
B (i.e. without search)

outperforms the Prolog version, so no penalty is incurred (actually, performance is increased)
when syntactic embeddability tests are run in our equational implementation.

T1 T2 Case Ĕ
sml
B Ĕ

kinds+sml
B Ĕ

order+sml
B Ĕ

kosml
B

Size Size Time(ms) Time(ms) Time(ms) Time(ms)
1000 1000 kinds(T 1) 6⊆ kinds(T 2) & (T 2 6≺B T 1) 12 2 15 2
5000 5000 kinds(T 1) 6⊆ kinds(T 2) & (T 2 6≺B T 1) 80 10 105 11

10000 10000 kinds(T 1) 6⊆ kinds(T 2) & (T 2 6≺B T 1) 240 15 270 18
50000 50000 kinds(T 1) 6⊆ kinds(T 2) & (T 2 6≺B T 1) 550 28 580 33

1000 1000 kinds(T 1)⊆ kinds(T 2) & (T 2≺B T 1) 10 12 4 6
5000 5000 kinds(T 1)⊆ kinds(T 2) & (T 2≺B T 1) 40 50 8 12

10000 10000 kinds(T 1)⊆ kinds(T 2) & (T 2≺B T 1) 140 160 14 20
50000 50000 kinds(T 1)⊆ kinds(T 2) & (T 2≺B T 1) 290 330 40 60

Table 4. Comparison of Ĕsml
B vs. the optimizations Ĕkinds+sml

B , Ĕorder+sml
B , and Ĕ

kosml
B

Finally, Table 4 evaluates the two optimizations Ĕ
order+sml
B and Ĕ

kinds+sml
B separately as

well as their combination with respect to our best implementation of order-sorted equational
embedding, Ĕkosml

B . In order to identify the optimization that achieves the best improvement,
we have chosen eight pairs of terms T 1 and T 2 of (increasingly) equal size (1000, 5000, 10000,
and 50000) and such that the embedding test fails because either (i) kinds(T 1) 6⊆ kinds(T 2)
although T 2 6≺B T 1 or (ii) kinds(T 1)⊆ kinds(T 2) but T 2≺B T 1. In case (i), the optimization
Ĕ

kinds+sml
B is enabled and the failure is anticipated without running Ĕ

sml
B , whereas Ĕ

order+sml
B

fruitlessly checks its pruning condition T 2 ≺B T 1 and then runs Ĕ
sml
B anyway. In case (ii),

the optimization Ĕ
kinds+sml
B fruitlessly checks its pruning condition kinds(T 1) 6⊆ kinds(T 2)

10 For this comparison, note that Ĕkosml
B boils down to Ĕ

sml
B since Prolog terms are unsorted and functors

obey no axioms, hence no optimization based on sorts or term order is applicable.
11 To avoid any bias, we took the Prolog code for the homeomorphic embedding of the ECCE system

[23] that is available at https://github.com/leuschel/ecce, and we run it in SWI-Prolog 7.6.3.

25



and then runs Ĕ
sml
B anyway, whereas the optimization Ĕ

order+sml
B is enabled and the failure

is anticipated without running Ĕ
sml
B . Our figures reveal that the penalty that is incurred by

checking the pruning condition of Ĕorder+sml
B is slightly worse than for Ĕkinds+sml

B , with the
difference being more evident as terms grow (e.g., it takes twice as long for the term size of
5000: 580 ms in Ĕ

order+sml
B versus 330 ms in Ĕ

kinds+sml
B ). This justifies our final choice to first

check kinds(T 1) 6⊆ kinds(T 2) and then eventually T 2 ≺B T 1 in the definition of the optimal
embedding relation formulation, Ĕkosml

B , which achieves the best overall speedup.

9 Concluding remarks

Homeomorphic embedding has been extensively used in Prolog, but it has never been investi-
gated in the context of expressive rule-based languages like Maude, CafeOBJ, OBJ, ASF+SDF,
and ELAN that support symbolic reasoning methods modulo equational axioms. We have in-
troduced a new equational and order-sorted definition of homeomorphic embedding with a
remarkably good performance for theories with symbols satisfying any combination of asso-
ciativity and/or commutativity axioms. We have also compared different definitions of embed-
ding, identifying some key conclusions: (i) definitions of equational homeomorphic embedding
based on (non-deterministic) search in Maude perform dramatically worse than their equational
counterparts and are not feasible in practice; (ii) definitions of equational homeomorphic em-
bedding based on generated theories perform dramatically worse than meta-level definitions;
and (iii) the flattened meta-representation of terms is crucial for homeomorphic embedding
definitions dealing with A and AC operators in order to pay off in practice. As future work, we
plan to extend our results to the case when the equational theory B may contain the identity
axiom, which is non-trivial since B is not class-finite.

References

1. M. Alpuente, D. Ballis, F. Frechina, and J. Sapiña. Exploring Conditional Rewriting Logic Compu-
tations. Journal of Symbolic Compututation, 69:3–39, 2015.

2. M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. Partial Evaluation of Order-Sorted
Equational Programs Modulo Axioms. In Proc. of 26th Int’l Symposium on Logic-Based Program
Synthesis and Transformation, LOPSTR 2016, volume 10184 of LNCS, pages 3–20. Springer, 2017.

3. M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. Homeomorphic embedding modulo
combinations of associativity and commutativity axioms. In Fred Mesnard and Peter J. Stuckey, edi-
tors, Logic-Based Program Synthesis and Transformation - 28th International Symposium, LOPSTR
2018, Frankfurt/Main, Germany, September 4-6, 2018, Revised Selected Papers, volume 11408 of
Lecture Notes in Computer Science, pages 38–55. Springer, 2018.

4. M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic Programs. ACM
TOPLAS, 20(4):768–844, 1998.

5. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and Proof in Membership Equational
Logic. Theor. Comput. Sci., 236(1-2):35–132, 2000.

6. H.J. Bürckert, A. Herold, and M. Schmidt-Schauß. On Equational Theories, Unification, and
(Un)decidability. Journal of Symbolic Computation, 8(1–2):3–49, 1989.

7. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Talcott. All About
Maude: A High-Performance Logical Framework, volume 4350 of LNCS. Springer-Verlag, 2007.

8. M. Clavel and J. Meseguer. Reflection in conditional rewriting logic. Theoretical Computer Science,
285(2):245–288, 2002.

9. N . Dershowitz. A Note on Simplification Orderings. Information Processing Letters, 9(5):212–215,
1979.

10. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B: Formal Models and Semantics, pages 243–320. Elsevier,
Amsterdam, 1990.

11. S. Eker. Single Elementary Associative-Commutative Matching. J. Autom. Reasoning, 28(1):35–51,
2002.

26



12. S. Eker. Associative-Commutative Rewriting on Large Terms. In Robert Nieuwenhuis, editor,
Rewriting Techniques and Applications, 14th International Conference, RTA 2003, Proceedings, vol-
ume 2706 of Lecture Notes in Computer Science, pages 14–29. Springer, 2003.

13. S. M. Eker. Associative-commutative matching via bipartite graph matching. The Computer Journal,
38(5):381, 1995.

14. S. Escobar, R. Sasse, and J. Meseguer. Folding variant narrowing and optimal variant termination.
J. Log. Algebr. Program., 81(7-8):898–928, 2012.

15. M. Fay. First Order Unification in an Equational Theory. In Proc of 4th Int’l Conf. on Automated
Deduction, CADE’79, pages 161–167, 1979.

16. H. Garavel, M. Tabikh, and I. Arrada. Benchmarking implementations of term rewriting and pattern
matching in algebraic, functional, and object-oriented languages - the 4th rewrite engines compe-
tition. In Vlad Rusu, editor, Rewriting Logic and Its Applications - 12th International Workshop,
WRLA 2018, Held as a Satellite Event of ETAPS, Thessaloniki, Greece, June 14-15, 2018, Proceed-
ings, volume 11152 of Lecture Notes in Computer Science, pages 1–25. Springer, 2018.

17. J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for multiple inheritance,
overloading, exceptions and partial operations. Theoretical Computer Science, 105:217–273, 1992.

18. J. B. Kruskal. The Theory of Well-Quasi-Ordering: A Frequently Discovered Concept. J. Comb.
Theory, Ser. A, 13(3):297–305, 1972.

19. J.B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Transactions of the
American Mathematical Society, 95:210–225, 1960.

20. M. Leuschel. Advanced Techniques for Logic Program Specialisation. PhD thesis, 1997.
21. M. Leuschel. On the Power of Homeomorphic Embedding for Online Termination. In G. Levi,

editor, Proc. of 5th International Symposium on Static Analysis, SAS’98, volume 1503 of LNCS,
pages 230–245. Springer, 1998.

22. M. Leuschel. Homeomorphic Embedding for Online Termination of Symbolic Methods. In T. Æ.
Mogensen, D. A. Schmidt, and I. Hal Sudborough, editors, The Essence of Computation, Complexity,
Analysis, Transformation. Essays Dedicated to Neil D. Jones on occasion of his 60th birthday),
volume 2566 of LNCS, pages 379–403. Springer, 2002.

23. M. Leuschel, B. Martens, and D. De Schreye. Controlling Generalization and Polyvariance in Partial
Deduction of Normal Logic Programs. ACM TOPLAS, 20(1):208–258, 1998.

24. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer
Science, 96(1):73–155, 1992.

25. J. Meseguer. Order-Sorted Rewriting and Congruence Closure. In Bart Jacobs and Christof Löding,
editors, Foundations of Software Science and Computation Structures - 19th International Confer-
ence, FOSSACS 2016, volume 9634 of Lecture Notes in Computer Science, pages 493–509. Springer,
2016.

26. J. Meseguer. Strict Coherence of Conditional Rewriting Modulo Axioms. Theor. Comput. Sci.,
672:1–35, 2017.

27. A. Middeldorp and B. Gramlich. Simple Termination is Difficult. Applicable Algebra in Engineering,
Communication and Computing, 6(2):115–128, 1995.

28. M.H. Sørensen and R. Glück. An Algorithm of Generalization in Positive Supercompilation. In J.W.
Lloyd, editor, Proc. of International Symposium on Logic Programming, ILPS’95, pages 465–479.
MIT Press, 1995.

27


