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In this paper we investigate the compensation loops, a DNA rearrangement in chromo-
somes due to unequal crossing over. We study the effect of compensation loops over the

gene duplication, and we formalize it as a restricted case of gene duplication in general.

We study this biological process under the point of view of formal languages, and we
provide some results about the languages defined in this way.
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1. Introduction

In the last years, it has been a common place for biology and computer science

the study of genomic processes in a mathematical and algorithmic way. Within

that approach, the formal language theory has been a fruitful framework to study

different genomic processes. We can refer to [2, 3, 4, 14, 16] for discussions on different

formalizations of the language of nucleic acids and related operations.

In this work, we will study a restricted way of duplication, that is the presence

of any part of genetic material, a single locus or a large piece of a chromosome,

more than once in the genome. As it is described in [8], duplications can arise as

the result of an error during genetic exchanges (referred to as unequal crossing over)

between synapsed chromosomes during meiosis, or through a replication error prior

to meiosis. A model of duplication has been considered in [5]. It is assumed that

every initial string is replicated so that two identical copies of every initial string

are available. The first copy is cut somewhere within it, say between the segments

α and β, and the other one is cut between γ and δ. Now, the last segment of the

second string gets attached to the first segment of the first string, and a new string

is obtained. This idea is schematically presented in the Figure 1.

Initially, Ehrenfeucht and Rozenberg [7] and Bovet and Varicchio [1] proposed

different results on copying systems that can be considered pioneering results related

to the following works on duplication languages considered here. Mart́ın-Vide and

Păun introduced in [12] a generative mechanism (similar to the one considered in

[3]) based only on duplication: one starts with a given finite set of strings and

produces new strings by copying specified substrings to certain places in a string,
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Fig. 1. A scheme for gene duplication

according to a finite set of duplication rules. This mechanism is studied in [12, 13]

from the generative power point of view.

In [6] one considers a string and constructs the language obtained by iteratively

duplicating any of its substrings. It has been proved that when starting from strings

over two-letter alphabets, the obtained languages are regular; an answer for the case

of arbitrary alphabets is given in [17], where it is proved that each string over a

three-letter alphabet generates a non-regular language by duplication. Finally, in

[11] it is studied several results concerning to bounded and unbounded duplica-

tion languages. The bounded duplication (i.e., the duplication where a predefined

maximum length in the duplicated segment is not exceeded), is studied in [9, 10].

In this work, we will consider duplication with (dynamic) compensation loops.

that is a DNA rearrangement to compensate erroneous crossing over, and we will

study the effect of this process over the duplication operations, in a formal lan-

guage setting. This work has the following structure: in Section 2, we provide basic

definitions on formal language theory, specially we provide the formal definition of

duplication operation over strings and languages. In Section 3, we formalize the

concept of (static) compensation loops, and we redefine the duplication operation

by introducing a variant of the shuffle operation over strings. We provide some

results of this operation that relate it to the duplication languages. In Section 4,

we introduce a new variant of duplication with compensation loops that models

the DNA rearrangement in a dynamic way. As in Section 3, we provide different

results that relate the languages obtained in this way with the languages previously

referred. Finally, in Section 5, we provide some conclusions and we enumerate some

open problems related to this work.

2. Basic concepts and duplication languages

We provide basic definitions and notations about formal language theory from [15].

An alphabet is any finite and non empty set of elements, named symbols. Given an
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alphabet V , a string over V is any finite and ordered sequence of symbols. The

length of a string x is denoted by |x|, the empty string is denoted by ε (with

|ε| = 0). Given two strings x and y, the product or concatenation of x and y is the

sequence x followed by the sequence y, and it will be denoted by xy. For sets X

and Y , X \ Y denotes the set-theoretic difference of X and Y . If X is a finite set,

then card(X) denotes its cardinality. The set of all strings over V is denoted by

V ∗, and V + = V ∗ \ {ε}. A language over V is any subset of V ∗. For any pair of

languages L1 and L2, the product L1L2 is defined as the set {xy : x ∈ L1, y ∈ L2}.
Given two alphabets V and W , a homomorphism is a mapping from V to W ∗ that

can be easily extended over strings as follows: for every x = x1x2 · · ·xn ∈ V +,

h(x) = h(x1)h(x2) · · ·h(xn), and h(ε) = ε.

For any alphabet V that does not contain the parentheses symbols ) and (, we

define regular expressions as follows:

(1) For every a ∈ V , a, ε and ∅ are regular expressions that denote the languages

{a}, {ε} and the empty set, respectively.

(2) If r is a regular expression, then so is (r). Both regular expressions define

a language denoted by L(r).

(3) For the regular expressions r and s, the following are regular expressions:

(a) r + s that denotes the language L(r) ∪ L(s).

(b) rs that denotes the language L(r)L(s).

(c) r∗ that denotes the language (L(r))∗.

Now we define the set of strings that can be obtained by duplication. Let V be

an alphabet. For a string w ∈ V +, we set

D(w) = {uxxv | w = uxv, u, x, v ∈ V ∗},
D0(w) = w,

Di(w) =
⋃

x∈Di−1(w)

D(x), i ≥ 1,

D∗(w) =
⋃
i≥0

Di(w).

From the previous definition, we can affirm that D∗(w) is the smallest language

L′ ⊆ V ∗ such that w ∈ L′ and whenever uxv ∈ L′, uxxv ∈ L′ holds for all

u, x, v ∈ V ∗. Any language D∗(w) will be referred as a duplication language.

It has been proved that for any string w, D∗(w) is regular iff w contains at most

two different symbols [6, 17].

3. Gene duplication with compensation loops

As referred before, the duplication language of a string defined over an arbitrary

alphabet is not regular [17]. In contrast, the duplication language of a string over a

two-letter alphabet is regular [6]. Here, we consider a case where duplication closure

over arbitrary alphabets is regular: gene duplication with compensation loops.
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Fig. 2. A schematic illustration of the formation of a compensation loop during duplication.

Gene duplication with compensation loops can be described as follows according

to [8]. We illustrate this process in Figure 2. Let us consider two pairs of homolo-

gous chromatids composed by a sequence of genes such as αβγδ. Then, after a gene

duplication, we obtain two different chromatids defined by the sequences αββγδ

(chromatid 2.(a)) and αγδ (chromatid 2.(b)). We center our attention to chromatid

2.(a). Here, a compensation loop can be arranged: chromatid 2.(a) makes a fold in

gene β in order to recover its initial alignment with the original sequence (Figure

2 (3) and (4)). Then, if other duplication succeeds, it will be again on the origi-

nal chromatid αβγδ. This situation can be summarized by saying that duplication

closure only takes into account the original sequence to repeat genes.

Obviously, the way in which duplication with compensation loops holds is a

restrictive way of general duplication. We formalize this kind of duplication with

an operation over strings and languages in a way similar to the general case.

First, let us consider an alphabet V such that the symbols [, ] /∈ V (V does not

contain bracket symbols). We define the shuffle with common segments operation

over strings (in short scs) as follows: Let w = x1[w1]x2[w2] · · ·xn[wn] and z =

x1[z1]x2[z2] · · ·xn[zn] with x1, · · · , xn ∈ V ∗, and for every integer value i, 1 ≤ i ≤ n,

wi, zi ∈ V ∗. Then, scs(w, z) = x1[w1z1]x2[w2z2] · · ·xn[wnzn]. Observe that, if w and

z do not have the substrings x1, x2, · · ·xn then the operation is undefined. Basically,

the substrings inside any bracket pair denote the gene folds in every chromatid, and

scs(w, z) denotes how a pair of sister chromatids with compensation loops can be

recombined with equal crossover. In the rest of this work, if wi or zi equals to ε

then the bracket symbols for them will be removed. The substrings x1, x2, . . . , xn
will be named common segments.
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We define the way in which any combination of duplicated strings with compen-

sation loops is carried out, as follows:

For a string w ∈ V +, we set

D0
cl(w) = {w},

D1
cl(w) = {ux[x]v | w = uxv, u, x, v ∈ V ∗},

Di
cl(w) = {scs(x, y) | x, y ∈ Di−1

cl (w)}, i ≥ 2,

D∗cl(w) =
⋃
i≥0

Di
cl(w).

The strings in D∗cl(w) contain bracket symbols, with the exception of w. We can

define a homomorphism that removes them from the string in the following way:

for every symbol a ∈ V h(a) = a and h( [ ) = h( ] ) = ε.

Example 1. Let w = abc. Then we have

D1
cl(abc) = {abc, a[a]bc, ab[b]c, abc[c], ab[ab]c, abc[bc], abc[abc]}

We can obtain scs(a[a]bc, ab[ab]c) = a[a]b[ab]c ∈ D2
cl(abc) given that the string

a[a]bc equals to a[a]b[ ]c[ ], and the string ab[ab]c equals to a[ ]b[ab]c[ ].

Now, we characterize the language class that defines the duplication with com-

pensation loops.

Property 1. For any arbitrary alphabet V and any string w ∈ V +, h(D∗cl(w)) is

regular.

Proof.
First, let w = w1w2 · · ·wn and wi ∈ V . We propose a regular expression r that

denotes h(D∗cl(w)). Let r be defined as follows

r = w1(w1)∗w2(w2 + w1w2)∗w3(w3 + w2w3 + w1w2w3)∗ · · ·wn(wn + · · · + w1w2 · · ·wn)∗

We will prove that r denotes h(D∗cl(w)). Obviously, w belongs to L(r). Also, any

string in h(D1
cl(w)) belongs to L(r) given that such string is defined as w1w2 · · ·wj−1

wj · · ·wj+kwj · · ·wj+kwj+k+1 · · ·wn which clearly belongs to L(r).

Let us suppose that for any string y ∈ Di−1
cl (w), h(y) belongs to L(r).

Now, we take two strings x and y that belong to Di−1
cl (w), with i ≥ 2. We

take z = scp(x, y) with x, y ∈ Di−1
cl (w). In such case, x = w1[x1]w2[x2] · · · wn[xn]

and y = w1[y1]w2[y2] · · ·wn[yn] with xi, yi ∈ ({wj · · ·wi : 1 ≤ j ≤ i})∗, given that

h(x) and h(y) belong to L(r). Then, z = scs(x, y) = w1[z1]w2[z2] · · ·wn[zn] with

zi = xiyi which again belongs to ({wj · · ·wi : 1 ≤ j ≤ i})∗ and, clearly, h(z) belongs

to r.

On the other hand, if we take any string y ∈ r, we can prove that there exists a

string z ∈ D∗cl(w) such that h(z) = y. The proof follows from the previous induction

process that we have carried out.

Observe that duplication with compensation loops is a restrictive way of general

duplication. In that case, any substring inside a compensation loop is blocked. It
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means that no substring into a compensation loop can be recombined to form a new

duplication substring. Anyway, in some cases, this restriction does not make the

duplication language smaller than in the general case. We enunciate the following

property that relates general duplication with duplication with compensation loops.

Property 2. The following two statements are true

(1) For any alphabet V with card(V ) = 1 and w ∈ V +, h(D∗cl(w)) = D∗(w)

(2) For any alphabet V with card(V ) ≥ 2 there exists w ∈ V + such that

h(D∗cl(w)) ( D∗(w).

Proof.

First let us take the alphabet V = {a}. Then, for any string in V + such as an

we have that D∗(an) = ana∗, and h(D∗cl(a
n)) = a(1)(a∗)a(2)(a + aa)∗ · · · a(n)(a +

aa + · · · + an)∗ which is equivalent to ana∗ (here a(i) denotes the ith a symbol of

an). So, the first statement of the property is true.

For the second statement, we will prove that h(D∗cl(w)) 6= D∗(w) (clearly,

h(D∗cl(w)) ⊂ D∗(w)). Let us take V = {a, b} and w = aba. We can ver-

ify that abaabbaaba belongs to D∗(w) (it is duplicated as aba, then abaaba to

obtain abaabbaaba). The expression for h(D∗cl(w)), according to Property 1, is

a(a)∗b(b + ab)∗a(a + ba + aba)∗ which clearly does not contain abaabbaaba, so

h(D∗cl(w)) 6= D∗(w) and h(D∗cl(w)) ( D∗(w).

4. Gene duplication with dynamic compensation loops

Once we have proved that duplication with compensation loops is regular, we will

study a situation different from the previous one. Observe that, while studying

duplication with compensation loops we have assumed that the gene folds occur

always in the original positions, (that was the reason why the original alignment

is preserved, and we were able to propose a regular expression in the proof of

Property 1). Now, we propose a different way of making compensation loops. We

consider that the original sequence is always preserved but the gene folds occur with

respect initial and non initial gene sequences. Figure 3 illustrates this idea: First, we

consider the original sequence (Figure 3.(1)) and a compensation loop is performed

by duplication (Figure 3.(2)). Then, the gene fold is considered in a position different

from the initial one (Figure 3.(3) and 3.(4)) and a new compensation loop holds

by applying duplication (Figure 3.(5)). Again, the initial gene folds are considered

(Figure 3.(6) and 3.(7)) and we can obtain a final configuration with an unique gene

fold (Figure 3.8).

Here we have considered that the original sequence is always recovered and the

gene folds occur in arbitrary ways by moving along the original sequence. That is

the reason why we call dynamic compensation loops to these folds.

Now we proceed to formalize the duplication with dynamic compensation loops

in a mathematical setting as we made in the previous section. First, we consider
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Fig. 3. Making dynamic compensation loops.

again that V is an alphabet that does not contain bracket symbols. We take two

arbitrary strings w = [w0]x1[w1]x2[w2] · · ·xn[wn] and z = [z0]x1[z1]x2[z2] · · ·xn[zn]

with wi, zi ∈ V ∗ for 0 ≤ i ≤ n, and xj ∈ V ∗ for 1 ≤ j ≤ n. Then, we define the

generalized shuffle with common segments (or gscs in short) as follows:

gscs(w, z) = {[η0]x1[η1] · · ·xn[ηn] | η0x1η1x2η2 · · ·xnηn = w0z0x1w1z1 · · ·xnwnzn}

As it was established in Section 3, if wi or zi equals to ε then their corresponding

bracket symbols can be removed.

We define the duplication language with dynamic compensation loops as follows:

For a string w ∈ V +, we set

D0
dcl(w) = {w},

D1
dcl(w) = {ux[x]v | w = uxv, u, x, v ∈ V ∗},

Di
dcl(w) =

⋃
x,y∈Di−1

dcl (w)

gscs(x, y) i ≥ 2,

D∗dcl(w) =
⋃
i≥0

Di
dcl(w).

Again, we will use the homomorphism h defined in the previous section in order

to remove the bracket symbols. Observe that, if x, y ∈ gscs(u, v) then h(x) = h(y).
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Example 2. Let w = ab[ab]b[bb]c[bc] and z = a[a]bbc[cc], then gscs(w, z) contains,

among others, the following strings:

x1 = a[a]b[ab]b[bb]c[bccc], x2 = [a]a[bab]bb[bcbcc]c, and x3 = a[aba]b[bbbc]b[cc]c

Then, h(x1) = h(x2) = h(x3) = aababbbbcbccc.

We will characterize the language D∗dcl(w) with respect to the language D∗cl(w)

through the following statement.

Property 3. Let V be an arbitrary alphabet with at least two symbols. Then there

exists w ∈ V + such that h(D∗cl(w)) ( h(D∗dcl(w)).

Proof.

Obviously, h(D∗cl(w)) ⊂ h(D∗dcl(w)). We will prove that the equality between

languages is not fulfilled. First, let us take V = {a, b} and w = ab. We can

obtain strings in h(D∗dcl(w)) that cannot be obtained in h(D∗cl(w)). According

to Property 1, h(D∗cl(ab)) = a(a)∗b(b + ab)∗. Then, for example, aabaabab /∈
h(D∗cl(ab)), and aabaabab ∈ h(D∗dcl(ab)). Observe that ab[ab] and a[a]b belong

to D1
dcl(ab). Hence, a[a]b[ab] ∈ gscs(a[a]b, ab[ab]), and, subsequently, a[aba]b ∈

gscs(a[a]b, ab[ab]), and a[aba]b ∈ D2
dcl(ab). In the following iteration, we have

that a[abaaba]b ∈ gsc(a[aba]b, a[aba]b), so a[abaaba]b ∈ D3
dcl(ab) and, subsequently,

aabaabab ∈ h(D∗dcl(ab)).

Finally, we provide the following property that relates the duplication language

with dynamic compensation loops with general duplication language.

Property 4. Let V be an arbitrary alphabet with at least three symbols. Then there

exist w ∈ V + such that h(D∗dcl(w)) ( D∗(w)

Proof.

Obviously, for every w ∈ V + h(D∗dcl(w)) is a subset of D∗(w), given that the

duplication with dynamic compensation loops is a restricted case of duplication.

Let us take w = abc and the string abcacabc ∈ D∗(abc) that can be obtained by

duplicating the underlined segments as abc and abcabc. Now we will try to obtain

abcacabc by duplication with dynamic compensation loops from abc. First we can

observe that abc[abc], abc[c] ∈ D1
dcl(abc). Then, by fixing the common segments

to a, b and c, we have ab[cab]c, ab[c]c ∈ D1
dcl(abc). We can obtain ab[ccab]c from

gscs(ab[c]c, ab[cab]c). Hence, ab[ccab]c ∈ D2
dcl(abc). It can be observed that a symbol

a cannot be inserted between the two consecutive symbols c and, subsequently,

abcacabc /∈ D∗dcl(abc). A dual case can be analyzed by obtaining the string abcaabc

from gscs([abc]abc, [a]abc), but in this case, a symbol c cannot be inserted between

the two consecutive symbols a. The rest of combinations leads to similar situations

as the described above.
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5. Conclusions and future works

We have proposed two new operations over strings inspired by a restricted case of

genome duplication. Our proposal is inspired by biological processes that happens

in nature. Hence, it is an approximation to systems biology from a formal language

point of view.

This work leaves two main open questions that should be explored and answered:

(1) For any string w ∈ V +, what is the language class for h(D∗dcl(w)) ? (i.e. is

it regular, context-free, ... ?)

(2) For any string w with only two different symbols, is h(D∗dcl(w)) = D∗(w) ?

We think that the first question should be investigated in detail given that

the proof proposed in [17] does not seem to work in this case. In addition, our

intuition is that the answer for the second question should be affirmative, given

that the reasoning in Property 4 proof does not work with an alphabet with only

two symbols.

Another field of study that should be explored is the case of considering not

only a word and its duplication languages, as in this work, but a set of words,

that is, a language, and all the combinations of duplication between its elements.

Subsequently, the generalization to families of languages should be the logical step

to complete a more detailed study of the languages of duplication proposed in this

work.
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