
mathematics

Article

Adaptive Iterative Splitting Methods for
Convection-Diffusion-Reaction Equations

Jürgen Geiser 1,* , Jose L. Hueso 2 and Eulalia Martínez 2

1 The Institute of Theoretical Electrical Engineering, Ruhr University of Bochum, Universitätsstrasse 150,
D-44801 Bochum, Germany

2 Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n,
46022 Valencia, Spain; jlhueso@mat.upv.es (J.L.H.); eumarti@mat.upv.es (E.M.)

* Correspondence: juergen.geiser@ruhr-uni-bochum.de

Received: 8 January 2020; Accepted: 20 February 2020; Published: 25 February 2020
����������
�������

Abstract: This article proposes adaptive iterative splitting methods to solve Multiphysics problems,
which are related to convection–diffusion–reaction equations. The splitting techniques are based on
iterative splitting approaches with adaptive ideas. Based on shifting the time-steps with additional
adaptive time-ranges, we could embedded the adaptive techniques into the splitting approach.
The numerical analysis of the adapted iterative splitting schemes is considered and we develop the
underlying error estimates for the application of the adaptive schemes. The performance of the method
with respect to the accuracy and the acceleration is evaluated in different numerical experiments. We test
the benefits of the adaptive splitting approach on highly nonlinear Burgers’ and Maxwell–Stefan diffusion
equations.

Keywords: time adaptive integration; adaptive iterative splitting; operator-splitting method; error
control; convection–diffusion–reaction equations; iterative solver method; nonlinear equations

MSC: 35K45; 35K90; 47D60; 65M06; 65M55

1. Introduction

In this paper, we propose adaptive splitting schemes to solve nonlinear differential equations.
We consider spatially discretized convection–diffusion–reaction equations, which we could apply as
semi-discretized nonlinear systems of ordinary differential equations. Based on the nonlinearities, it is
important to deal with adaptive schemes, whereas we can control the local errors of the underlying
schemes, see [1–4]. In general, the splitting methods have local splitting errors, which can be controlled
with the time- or spatial steps of the underlying schemes, see [1,2,5,6].

In this work, we consider time-splitting methods, and here, we distinguish between

• Non-iterative methods, e.g., Lie–Trotter, see [7]; Strang-splitting methods, see [8]; or exponential
splitting schemes, see [1,9].

• Iterative methods, e.g., iterative splitting methods, see [3,10], or Waveform-Relaxation methods, see,
e.g., [11,12]

For the non-iterative methods, e.g., Lie–Trotter and Strang-splitting schemes, first works exist and
discuss the ideas of the adaptive time splitting methods, see [6,8]. Although for the iterative methods only

Mathematics 2020, 8, 302; doi:10.3390/math8030302 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-1093-0001
https://orcid.org/0000-0003-2869-4334
http://dx.doi.org/10.3390/math8030302
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/3/302?type=check_update&version=2

Mathematics 2020, 8, 302 2 of 22

some first ideas exist, see [13], based on dealing with different time-step approaches, our new contributions
are based on the novel strategy of ε-shifting, see [14], of the underlying splitting method. We obtain
so-called shifted iterative splitting methods, which can be compared with the standard iterative splitting
methods, i.e., without the shifting. The local error estimate can be computed with the solution of the shifted
and non-shifted iterative splitting approaches. Then, the effective error control is given as a function of the
local error estimates and an error-tolerance parameter.

Such a novel adaptive splitting approach is important to reduce the computational time, while we
decompose into sub-operators, which can be simulated with faster and more accurate numerical schemes.
Further, the novel approach can be optimized with an effective and maximal splitting time step, see
also [5,14]. We combine these two ideas of adaptivity and splitting into a novel strategy to control and
reduce the local splitting error for the iterative splitting methods. Then, we can obtain more accurate
results with a maximal time step and reduce the computational cost.

In this paper, we present the novel adaptive splitting techniques as follows.

• In the first step, we consider the standard splitting techniques with the underlying error analysis,
see [3], and

• in the second step, we introduce the adaptive techniques, which is based on the ε-shift technique,
see [14], such that we can control the local splitting error.

Then, an error-estimate is computed, such that we are allowed to evaluate a maximum splitting
time-step with respect to the shifted and non-shifted iterative splitting approach. The analysis is based on
the standard iterative splitting approaches, see [13,15], and the additional adaptive techniques, see [5,6].
In the numerical applications, which are based on convection–diffusion–reaction equations, we present
the verification and the benefits of the novel adaptive iterative splitting approaches.

The paper is outlined as following. In Section 2, we explain the adaptive splitting approaches. Further,
in Section 3, we discuss the error analysis of the adaptive splitting schemes. The applications to different
convection–diffusion–reaction equations are done in Section 4. In Section 5, we discuss the theoretical and
practical results.

2. Adaptive Splitting Approaches

We take inspiration for our studies, which are presented below, from real-life simulations of nonlinear
convection–diffusion–reaction equations with the help of splitting approaches, see [3,16–18].

We deal with convection–diffusion–reaction equations, which can be written as

∂tu(t) + ∂xv(u)− ∂x(D(u)∂xu) = f (u(t)), x ∈ IRd, t > 0, (1)

u(x, 0) = u0(x), x ∈ IRd, t = 0, (2)

where f : IRn → IRn is the reaction term; u : IRd × IR→ IRn is the solution; and D(u) is the diffusion matrix,
which is a tensor of order d× d× n and the velocity vector, which is of order d× n.

In the present paper, we apply spatial discretization methods, such that we consider the spatial
discretized partial differential equations with the included boundary conditions, which are given as
ordinary differential equations:

∂tu(t) = A(u(t)) u(t) + B(u(t)) u(t) , t ∈ (0, T), (3)

where u(0) = u0 is the initial condition. A(u) and B(u) are operators, which are spatially discretized.
For example, A(u) is the discretized in space convection operator and B(u) is the discretized in space
diffusion operators. For convenience, the nonlinear operators are bounded, e.g., bounded matrices.

Mathematics 2020, 8, 302 3 of 22

In our proposed scheme, we embed the idea of the ε-shift, which is explained in [14], to the iterative
splitting methods, see [3]. Then, we obtain a new so called ε-shifted iterative splitting method, which is a
new contribution. Such shifted iterative splitting approach are used to design new adaptive time-splitting
methods, which can be applied with maximal time-steps and compute the error-controls of the local
splitting-errors.

In the following, we discuss the standard and the shifted splitting approaches.

2.1. Standard Splitting Approaches

In this section, we describe the standard splitting methods.
We deal with two splitting schemes:

• Non-iterative splitting scheme (Strang splitting), see [8].
• Iterative splitting scheme (fixpoint scheme), see [3].

2.1.1. Strang-Marchuk Splitting (SMS)

In the SMS method, in the first step, the operator A is solved in the left half of interval [tn, tn+1];
then, in the second step, the operator B is solved in the whole interval [tn, tn+1]; and in the third step,
the operator A is solved in the right half of the interval [tn, tn+1]. By the initial conditions, the three
subproblems are connected, see

dũ(t)
dt

= A(ũ(t))ũ(t), with ũ(tn) = u(tn), and t ∈ [tn, tn + τ/2],

d ˜̃u(t)
dt

= B(˜̃u(t)) ˜̃u(t), with ˜̃u(tn) = ũ(tn + τ/2), and t ∈ [tn, tn+1],

du(t)
dt

= A(u(t))u(t), with u(tn + τ/2) = ˜̃u(tn+1)and t ∈ [tn + τ/2, tn],

(4)

where τ = ∆(tn) = tn+1 − tn is the time step.

2.1.2. Iterative Splitting Methods

The iterative splitting method defined in [13] and extensively studied for ordinary and partial
differential equations in [3,10,15,19,20] are alternative operator splitting methods, which are based on
iterative techniques.

We apply two versions of the iterative splitting methods:

• Linear Iterative Splitting (LIS)

The LIS solves in the first equation the linear part of operator A with the given right hand side of
operator B. Then, it solves in the second equation the linear part of operator B with the right hand
side of operator A, using the solution of the first equation. The two solver steps are iterated m times
before we pass to the next interval.

dũi(t)
dt

= A(ui−1(t))ũi(t) + B(ui−1(t))ui−1(t), with ũi(tn) = u(tn),

dui(t)
dt

= A(ũi(t))ũi(t) + B(ũi(t))ui(t), with ui(tn) = u(tn),
(5)

where i = 1, 2, . . . , m. For the initialisation of the iteration, we start with function u0(t), which verifies
the initial condition u0(0) = u0. After, we have performed m iterations of the LIS, we apply the
approximated solution u(tn+1) = um(tn+1) for the next time-step, till the final step n + 1 = N.

Mathematics 2020, 8, 302 4 of 22

• Quasilinear Iterative Splitting (QIS)

The QIS solves in the first equation the nonlinear part of operator A with the given right hand side
of operator B. Then, it solves in the second equation the nonlinear part of operator B with the right
hand side of operator A, using the solution of the first equation. The two solver steps are iterated m
times before we pass to the next interval.

dũi(t)
dt

= A(ũi(t))ũi(t) + B(ui−1(t))ui−1(t), with ũi(tn) = u(tn),

dui(t)
dt

= A(ũi(t))ũi(t) + B(ui(t))ui(t), with ui(tn) = u(tn),

where i = 1, 2, . . . , m. For the initialisation of the iteration, we start with function u0(t), which verifies
the initial condition u0(0) = u0. After, we have performed m iterations of the QIS, we apply the
approximated solution u(tn+1) = um(tn+1) for the next time-step, till the final step n + 1 = N.

2.2. Shifted Splitting Approaches for Error Estimations

In this section, we describe the modified splitting methods to apply error-estimates. We propose
shifted splitting as a novel method to design error estimates, see [14].

We deal with two shifted splitting schemes:

• Non-iterative splitting scheme (Strang splitting), see [14].
• Iterative splitting scheme (fixpoint scheme), see [3].

2.2.1. Shifted Strang-Marchuk Splitting (SSMS)

In this method, in interval [tn, tn+1], we first solve for operator A with a half time step minus a small
ε, means τ/2− ε, then we solve B with the full time-step τ, and again for A with a half time step plus a
small ε, means τ/2 + ε. The three subproblems are connected by the initial conditions, according to

dũ(t)
dt

= A(ũ(t))ũ(t), with ũ(tn) = u(tn) and t ∈ [tn, tn + τ/2− ε], time-step τ/2− ε,

d ˜̃u(t)
dt

= B(˜̃u(t)) ˜̃u(t), with ˜̃u(tn) = ũ(tn + τ/2− ε), and t ∈ [tn, tn+1], time-step τ,

du(t)
dt

= A(u(t))u(t), with u(tn + τ/2− ε) = ˜̃u(tn+1) and t ∈ [tn + τ/2− ε, tn+1],

time-step τ/2 + ε.

(6)

The ε value is a small fraction of τ, for example ε = 0.005τ, so that the shifted interval is close to the
original one. The error estimate is given as

err = ||uStrang(tn+1)− uStrang,ε(tn+1)||. (7)

If the error estimate err is higher than a given tolerance η, we redo the computations with a smaller step
according to the refinement scheme

∆tnew = ν∆t
√

η

err
, (8)

Mathematics 2020, 8, 302 5 of 22

where we apply ν > 0, near 1 as a security factor. Otherwise, if err ≤ η, we accept the obtained
value uStrang(tn+1), and proceed with the next time interval. In this case, in order to avoid the usage of
unnecessary small time steps, we apply a coarsening scheme

∆tnew = (1 + κ)∆t, (9)

where κ is a small positive value depending on the tolerance η.
The Algorithm is given in Algorithm 1:

Algorithm 1.

1. Compute the local time-steps with the Strang and shifted Strang method, means ustrang(tn+1) and
ustrang,ε(tn+1).

2. Compute the error estimation according to (7).
3. If err > η, reject the time-step and restart the recent time-interval with the ∆tn = ∆tnew obtained from (8).

If err ≤ η, then we are in the error tolerance. Proceed with the next time interval with the increased time step
∆tn+1 = ∆tnew given by (9).

Remark 1. The theoretical results of the Algorithm 1, which is based on the ε-shifted Strang-splitting method, are
given in the literature [4,5]. Here, the authors applied the shifted Strang-splitting method and could apply a local
error estimate of the first and second splitting resolution, see [14].

In the Figure 1, we have the graphically introduction of the shifting ideas.

c(t)

nc(t)

c(t)

B

A (1/2+ε)

A(1/2−ε)

Shifted Strang

Splitting

Standard

Strang Splitting

B

A/2

n+1 n+1

nc(t)

Figure 1. Standard Strang splitting and shifted Strang splitting method.

2.2.2. Shifted Iterative Splitting Methods

In this section, we apply the shifting time-step ideas to the iterative splitting methods. First, we solve
for the first iterative step with time-step τ − ε, then we solve for the second iterative step with time-step
τ + ε.

We modify the two versions of the iterative splitting methods:

• Shifted Linear Iterative Splitting (SLIS)

The SLIS solves in the first equation the linearized part of operator A with the given right hand side
of operator B for a minus shift of ε in the time-step. Then, it solves the second equation the linearized
part of operator B with a given right hand side of operator A for a plus shift of ε in the time-step,

Mathematics 2020, 8, 302 6 of 22

using the solution of the first equation. The two solver steps are iterated m times before we pass to
the next interval.

dũi(t)
dt

= A(ui−1(t))ũi(t) + B(ui−1(t))ui−1(t), with ũi(tn) = u(tn), time-step τ − ε,

dui(t)
dt

= A(ũi(t))ũi(t) + B(ũi(t))ui(t), with ui(tn) = u(tn), time-step τ + ε,
(10)

where i = 1, 2, . . . , m. For the initialization of the iteration, we start with function u0(t), which verifies
the initial condition u0(0) = u0. After we have performed m iterations of the SLIS, we apply the
approximated solution u(tn+1) = um(tn+1) for the next time-step, until the final step n + 1 = N.

We apply the error-estimates as in Algorithm 2 and then we go to the next time-step.

Here, we decided i = 1, but the error estimates also work for i = 1, 2, . . . , m.
• Shifted Quasilinear Iterative Splitting (SQIS)

The SQIS solves in the first equation the nonlinear part of operator A with the given right hand side
of operator B for a minus shift of ε in the time-step. Then, it solves the second equation the nonlinear
part of operator B with a given right hand side of operator A for a plus shift of ε in the time-step,
using the solution of the first equation. The two solver steps are iterated m times before we pass to
the next interval.

dũi(t)
dt

= A(ũi(t))ũi(t) + B(ui−1(t))ui−1(t), with ũi(tn) = u(tn), time-step τ − ε,

dui(t)
dt

= A(ũi(t))ũi(t) + B(ui(t))ui(t), with ui(tn) = u(tn), time-step τ + ε,
(11)

where i = 1, 2, . . . , m. For the initialization of the iteration, we start with function u0(t), which verifies
the initial condition u0(0) = u0. After we have performed m iterations of the SQIS, we apply the
approximated solution u(tn+1) = um(tn+1) for the next time-step, till the final step n + 1 = N.

We apply the error-estimates as in Algorithm 2 and then we go to the next time-step.

Here we decided i = 1, but the error estimates also works for i = 1, 2, . . . , m.

The error estimate is given as

err = ||ui(tn+1)− ui,ε(tn+1)|| ≤ η, (12)

whereas η is a given error tolerance, e.g., η = 10−5.
Further the adaptive time-stepping is

∆tnew = ν∆t
(η

err

)1/(2i)
, (13)

where we apply ν > 0, near 1 as a security factor.
The Algorithm is given in Algorithm 2:

Algorithm 2.

1. We compute the local time-steps with the iterative and shifted iterative method, means ui(tn+1) and ui,ε(tn+1)

Mathematics 2020, 8, 302 7 of 22

2. We compute the error estimation

err = ||ui(tn+1)− ui,ε(tn+1)|| ≤ η, (14)

3. If err ≤ η, then we are in the error tolerance and we accept the time-step means u(tn+1) = ui(tn+1) and the
next time-step is ∆tn+1 = ∆tnew.

Otherwise, we reject the time-step and restarted the recent time-interval with ∆tn = ∆tnew

In the Figure 2, we have the graphically introduction of the shifting ideas.

n+1c (t)

c(t)n
c (t)

(convergence)

c(t)

A+B

n+1

A+B

c (t)

2

0

c (t)

n+1

n+1

m
n

m ~n+1

1

c (t)

~

~

~

Splitting

unshifted iterative

(A+B)
~

(1−ε)

~

1

c (t)

~mm
n

n+1

0

c (t)

n+1

2

c (t) n+1c(t)n n+1c (t)

(convergence)

c(t)

c (t)n+1

Splitting

shifted iterative

(A+B)
~ (1+ε)

Figure 2. Unshifted iterative splitting and shifted iterative splitting method.

3. Error Analysis

The error analysis of the methods are done in the following.
We deal with the following assumptions to the nonlinear operators:

Assumption 1.

• Estimation of the nonlinear operators:

||A(ei(t))|| ≤ ||Ã||, tn ≤ t ≤ tn+1, i = 0, 1, . . . , I, (15)

||B(ei(t))|| ≤ ||B̃||, tn ≤ t ≤ tn+1, i = 0, 1, . . . , I, (16)

where Ã and B̃ are bounded operators, such that the Taylor expansion of the operators can be applied.
• For the nonlinear operators A and B, we estimated the linearized parts as bounded operators Ã, B̃ : X → X,

where X is an appropriate Banach space. Further, we have a Banach-norm for the vector and the matrices, which
is given as ‖ · ‖.

In Theorem 1, we derive the consistency order of the shifted iterative operator-splitting.

Theorem 1. The operators A, B ∈ L(X) are nonlinear bounded operators with the Assumption 1. The abstract
Cauchy problem is given as

∂tc(t) = A(c(t))c(t) + B(c(t))c(t), 0 < t ≤ T,

c(0) = c0.
(17)

The abstract Cauchy problem (17) has an existent and unique solution. Then, the shifted iterative splitting
method (11) is consistent with the order of the consistency O(τ2i

n) with i = 1, . . . , m.

Mathematics 2020, 8, 302 8 of 22

Proof. We assume Ã + B̃ ∈ L(X) and we assume that the linear operators are generator of a uniformly
continuous semigroup, such that we have a unique solution c(t) = exp((Ã + B̃)t)c0.

In the following, we consider the local time-interval [tn, tn+1].
ei(t) = c(t)− c̃i(t) and ei+1(t) = c(t)− ci(t) are the local error functions.

The error functions for the shifted time-intervals are computed as

∂tei(t) = Ãei(t) + B̃ei−1(t), t ∈ (tn, tn+1 − ε],
ei(tn) = 0,

(18)

and
∂tei+1(t) = Ãei(t) + B̃ei+1(t), t ∈ (tn, tn+1 + ε],

ei+1(tn) = 0,
(19)

for i = 1, 3, 5, . . . , with e1(0) = 0 and e0(t) = c(t).
Based on the Assumptions 1, we can assume that the linearized operators Ã and B̃ are generators of

the one-parameter C0 semigroup, which are given as (exp(Ã(t))t≥0 and (exp(B̃(t))t≥0.
In the following, we can write the abstract Cauchy problem with homogeneous initial conditions as

ei(t) =
∫ t

tn exp(Ã(t− s))B̃ei−1(s)ds, t ∈ [tn, tn+1 − ε],
ei+1(t) =

∫ t
tn exp(B̃(t− s))Ãei+1(s)ds, t ∈ [tn, tn+1 + ε],

(20)

We apply the norms for the vectors and matrices and we can estimate

‖ei(t)‖ ≤ ‖B̃‖‖ei−1‖
∫ t

tn ‖ exp(Ã(t− s))‖ds, t ∈ [tn, tn+1 − ε],
‖ei+1(t)‖ ≤ ‖Ã‖‖ei‖

∫ t
tn ‖ exp(B̃(t− s))‖ds, t ∈ [tn, tn+1 + ε],

(21)

We assume, that (Ã(t))t≥0 and (B̃(t))t≥0 are generators of semigroups and we apply the so-called
growth estimation. Then, we can estimate

‖ exp(Ãt)‖ ≤ K exp(ωt); t ≥ 0,
‖ exp(Ãt)‖ ≤ K̃ exp(ω̃t); t ≥ 0,

(22)

where the estimations are held for some numbers K ≥ 0 and ω, ω̃ ∈ IR.
In the following, we distinguish between the following two operator-types.

• We assume (Ã(t))t≥0 and (B̃(t))t≥0 are bounded operators, which generates stable semigroups,
meaning ω, ω̃ ≤ 0, see [13,21], or

• We assume (Ã(t))t≥0 and (B̃(t))t≥0 are operators with exponential growth, which generates stable
semigroups, means ω, ω̃ > 0, see [13,21].

Then, we have the following two estimates of the two groups of operators:

• Bounded operators.
They are estimated as

‖ exp(Ãt)‖ ≤ K, t ≥ 0,
‖ exp(B̃t)‖ ≤ K̃, t ≥ 0,

(23)

and we apply the estimations to (21) and obtain the relation

‖ei‖(t) ≤ K‖B̃‖(τn − ε)‖ei−1‖, t ∈ [tn, tn+1 − ε],
‖ei+1‖(t) ≤ K̃‖Ã‖(τn + ε)‖ei‖, t ∈ [tn, tn+1 − ε].

(24)

Mathematics 2020, 8, 302 9 of 22

• Operators with exponential growth.
Here, we assume that (exp(Ãt))t≥0, (exp(B̃t))t≥0 are exponentially growing with some ω > 0, ω̃ > 0.
Therefore, we can estimate∫ t

tn
‖exp(Ã(t− s))‖ds ≤ Kω(t), t ∈ [tn, tn+1 − ε], (25)∫ t

tn
‖exp(B̃(t− s))‖ds ≤ K̃ω(t), t ∈ [tn, tn+1 + ε], (26)

where

Kω(t) =
K
ω

(exp(ω(t− tn))− 1) , t ∈ [tn, tn+1 − ε], (27)

K̃ω̃(t) =
K̃
ω̃

(exp(ω(t− tn))− 1) , t ∈ [tn, tn+1 + ε]. (28)

Further, we apply

Kω(t) ≤
K
ω

(exp(ωτn)− 1) = Kτn +O(τ2
n), (29)

K̃ω̃(t) ≤
K̃
ω̃

(exp(ω̃τn)− 1) = K̃τn +O(τ2
n). (30)

The estimations (24) and (30) result in

‖ei‖ ≤ (K‖B̃‖(τn − ε)‖ei−1‖+O((τn − ε)2), (31)

‖ei+1‖ ≤ (K̃‖Ã‖(τn + ε)‖ei‖+O((τn + ε)2), (32)

and we can apply recursively the error-estimation of Equations (31) and (32) and we obtain,

‖ei+1‖ ≤ K B̃‖Ã‖‖B̃‖||ei−1||(τ2
n − 2ετn) +O(τ3

n) +O(ετ2
n). (33)

Then, we recursively applied the Equation (33) and obtain the proved statement.

Remark 2. Based on the derivation of the error of the shifted iterative method, we obtain the error

err = ‖ui(tn+1)− ui,ε(tn+1)‖ ≤ η, (34)

whereas err = C(∆t2i−1) and also η = C(∆t2i−1
new), and we obtain

∆tnew = ν ∆t
(η

err

)2i−1
. (35)

Remark 3. In realistic applications, an optimal relation between the time-step τn and the number of iterative steps
2i− 1, see Equation (35), is necessary. In practical experiments, we saw that ν > 0, but near to 1 and i ≈ 3, 4, 5
iterations are sufficient, such that we obtain an optimal new time-step ∆tnew. To improve the criterion for stopping
the iterative processes, we can additionally define an error bound. For example |ci − ci−1| ≤ err with err = 10−4

can be used to restrict us to an appropriate low number of iterative steps.

The order of accuracy can be improved by the choice of the initial iteration function, e.g., additional
pre-steps with standard splitting approaches, see [13].

Mathematics 2020, 8, 302 10 of 22

Based on our assumption about the initial solutions, we initialize with exact solutions or we apply
higher order interpolated split solutions. This assumption allow to derive a theory for the exactness of the
iterative methods, see also [13].

4. Numerical Results

In this section, we present the numerical results based on our novel iterative splitting methods
for nonlinear ordinary and partial differential equation. We verified our theoretical results of the
error-estimates and applied the shifted iterative splitting methods as a new-solver class.

4.1. First Numerical Example: Bernoulli Equation

In the first example, we apply a nonlinear differential equation, which is given as the Bernoulli
equation, see

∂u(t)
∂t

= (λ1 + λ3)u(t) + (λ2 + λ4)(u(t))p, t ∈ [0, T], with u(0) = 1. (36)

For the Bernoulli equation, we can derive analytical solutions as reference solutions, see [15,22].
The analytical solutions are given as

u(t) = exp((λ1 + λ3)t)
[
−λ2 + λ4

λ1 + λ3
exp((λ1 + λ3)(p− 1)t) + c

]1/(1−p)
.

Using u(0) = 1 we find that c = 1 + λ2+λ4
λ1+λ3

, so

u(t) = exp((λ1 + λ3)t)
{

1 +
λ2 + λ4

λ1 + λ3
[1− exp((λ1 + λ3)(p− 1)t)]

}1/(1−p)
. (37)

For the applications, we apply the following parameters, p = 2 , λ1 = −1, λ2 = −0.5, λ3 = −100,
λ4 = −20 , T = 0.2, and u(0) = 1.

We apply the following operators for the splitting.

• operator A: A = (λ1 + λ3),
• operator B: B(u) = (λ2 + λ4)(u(t))p−1.

We apply backward Euler method to approximate the derivative in each subinterval [tn, tn+1],
n = 0, 1, . . . , N, and solve the resulting equation by using the fixed point method and Newton’s method
with tolerance 10−12 allowing a maximum of three iterations. The accuracy of the methods is assessed
by comparing the numerical result unum with the analytical solution u given by (37). We compute the
maximum and mean difference at the nodes tn, according to

emax = max
n
|unum(tn)− u(tn)|,

and
emean =

1
N ∑

n
|unum(tn)− u(tn)|.

For the Shifted Strang–Marchuk splitting, we analyze the accuracy (with respect to the analytic
solution) and the cost of the algorithm for different tolerances η and coarsening factors 1 + κ, where we
have set κ = 4η

1
4 . Taking larger values of κ reduces the number of time intervals, but increases the number

Mathematics 2020, 8, 302 11 of 22

of tentative steps, where the ∆tn must be reduced in order to satisfy the error tolerance criterion. The value
of κ has been experimentally chosen in order to minimize the total number of steps.

In each splitting step, the differential equation is approximated by back-Euler’s method and solved
using the fixed point (BEFP) or Newton’s (BEN) methods. The cost of the algorithm and the final accuracy
depend on the error tolerance η and the coarsening factor 1 + κ. We compare the shifted ABA-operator
splitting method with the shifted variants of the iterative splitting methods above considered.

Table 1 shows that the accuracy is roughly proportional to the square root of the tolerance η, and the
number of functional evaluations is inversely proportional to the same quantity. Newton’s method requires
less iterations to fulfill the tolerance; thus, if the number of time steps is similar to that of the fixed point
method, it needs less functional evaluations. Nevertheless, Newton’s method also evaluates the derivative,
which reduces its advantage over the fixed point method.

Table 1. Shifted Strang–Marchuk splitting method for Bernoulli’s equation.

Solver Tolerance Coarsening Time Tentative Total Functional Max Error Mean Error
η 1 + κ Steps Steps Steps Evaluations emax emean

BEFP

1.0 × 10−6 1.1265 47 16 63 1091 6.1055 × 10−3 2.5916 × 10−3

1.0 × 10−8 1.0400 344 80 424 7530 7.3088 × 10−4 3.2822 × 10−4

1.0 × 10−10 1.0126 3048 303 3351 59,938 9.4175 × 10−5 3.5575 × 10−5

1.0 × 10−12 1.0040 29,706 1055 30,761 550,518 1.2504 × 10−5 3.6420 × 10−6

BEN

1.0 × 10−6 1.1265 47 16 63 838 6.1709 × 10−3 2.6494 × 10−3

1.0 × 10−8 1.0400 341 79 420 5742 7.6231 × 10−4 3.2987 × 10−4

1.0 × 10−10 1.0126 3047 303 3350 40,100 9.4168 × 10−5 3.5588 × 10−5

1.0 × 10−12 1.0040 29,706 1055 30,761 368,648 1.2526 × 10−5 3.6422 × 10−6

For the Shifted Linear Iterative Splitting method, we take κ = 4
√

η. We obtain similar accuracies
to Strang–Marchuk’s algorithm working now with higher error tolerances η, as it is shown in Table 2.
The accuracy is of the same order as η, whereas the computational cost is slightly higher than the cost of
Strang–Marchuk’s algorithm.

Table 2. Shifted linear iterative splitting method for Bernoulli’s equation.

Solver Tolerance Coarsening Time Tentative Total Functional Max Error Mean Error
η 1 + κ Steps Steps Steps Evaluations emax emean

BEFP

1.0 × 10−4 1.0400 109 7 116 1358 7.0454 × 10−3 3.0242 × 10−3

1.0 × 10−5 1.0126 692 39 731 8656 8.4372 × 10−4 4.1488 × 10−4

1.0 × 10−6 1.0040 5752 164 5916 70,530 9.1785 × 10−5 4.7166 × 10−5

1.0 × 10−7 1.0013 54,105 585 54,690 654,195 9.5495 × 10−6 4.9235 × 10−6

BEN

1.0 × 10−4 1.0400 108 7 115 912 7.1531 × 10−3 3.0507 × 10−3

1.0 × 10−5 1.0126 690 39 729 5824 8.5046 × 10−4 4.1542 × 10−4

1.0 × 10−6 1.0040 5748 164 5912 47,288 9.2284 × 10−5 4.7179 × 10−5

1.0 × 10−7 1.0013 54,170 586 54,756 438,040 9.3885 × 10−6 4.9213 × 10−6

The results for the Shifted Quasilinear Iterative Splitting, see Table 3, are quite alike to the ones of the
linear splitting. Increasing the number of iterations, iter = 2, 3, . . ., results in a linear increment of the cost
without any accuracy improvement.

Mathematics 2020, 8, 302 12 of 22

Table 3. Shifted quasilinear iterative splitting method for Bernoulli’s equation.

Solver Tolerance Coarsening Time Tentative Total Functional Max Error Mean Error
η 1 + κ Steps Steps Steps Evaluations emax emean

BEF

1.0 × 10−4 1.0400 108 7 115 1350 7.1191 × 10−3 3.0513 × 10−3

1.0 × 10−5 1.0126 691 39 730 8652 8.4635 × 10−4 4.1525 × 10−4

1.0 × 10−6 1.0040 5750 164 5914 70,534 9.1939 × 10−5 4.7178 × 10−5

1.0 × 10−7 1.0013 54,179 586 54,765 655,207 9.4160 × 10−6 4.9210 × 10−6

BEN

1.0 × 10−4 1.0400 107 7 114 1108 7.2075 × 10−3 3.0781 × 10−3

1.0 × 10−5 1.0126 689 39 728 7146 8.5547 × 10−4 4.1556 × 10−4

1.0 × 10−6 1.0040 5747 164 5911 58,464 9.2240 × 10−5 4.7190 × 10−5

1.0 × 10−7 1.0013 54,168 586 54,754 438,030 9.3864 × 10−6 4.9214 × 10−6

4.2. Second Numerical Example: Mixed Convection–Diffusion and Burgers Equation

In the second numerical example, we apply coupled partial differential equation (PDE). We apply
a coupling of a convection–diffusion equation with a Burgers’ equation in 2D, which is called mixed
convection–diffusion and Burgers equation (MCDB), and given as

∂tu = −1
2

u(∂xu + ∂yu)− 1
2
(∂xu + ∂yu)

+ µ(∂xxu + ∂yyu) + f (x, y, t), (x, y, t) ∈ Ω× [0, T], (38)

u(x, y, 0) = uana(x, y, 0), (x, y) ∈ Ω,

u(x, y, t) = uana(x, y, t), (x, y, t) ∈ ∂Ω× [0, T],

where the domains are given as Ω = [0, 1]× [0, 1] and T = 1.25. The viscosity is µ.
For such an mixed PDE, we can derive an analytical solution, which is

uana(x, y, t) =
(

1 + exp
(

x + y− t
2µ

))−1
+ exp

(
x + y− t

2µ

)
,

where we can derive the right hand side f (x, y, t).
By considering the following operators

A(u)v = −1
2

u(∂xv + ∂yv) +
1
2

µ(∂xxv + ∂yyv),

Bv = −1
2
(∂xv + ∂yv) +

1
2

µ(∂xxv + ∂yyv) + f (x, y, t).

The MCDB Equation (38) is splitted into the Burgers’ term, A and the convection–diffusion term,
B and we obtain the operators:

∂tu = A(u)u + Bu.

We deal with different viscosities: low viscosity µ = 0.5, high viscosity, µ = 5. The spatial domain is
discretized taking a rectangular mesh with nx = ny = 16 intervals and applying standard second order
divided difference approximations. The resulting differential system is solved by the same methods as in
the previous example. The coarsening strategy applied here when err < η is

∆tnew = min(1 + η2/err, 2)∆t,

Mathematics 2020, 8, 302 13 of 22

where err = ‖ui,j‖ is the vector norm of the computed values in the nodes (xi, yj) at each time step.
For the shifted Strang–Marchuk splitting method we take ε = 0.05 and different values of η.
Table 4 shows the results of solving the equation with low viscosity µ = 0.5 using different tolerances.

The solutions of the differential equations are approximated by using back-Euler fixed point method
(BEFP) or back-Euler–Newton’s method (BEN). Both methods perform similarly in cost and accuracy in
this case.

The corresponding results for solving the equation with high viscosity, µ = 5, are shown in Table 5.
BEFP requires much more time steps then BEN, but reaches more accuracy.

Table 4. Solution of mixed convection–diffusion and Burgers (MCDB) equation for µ = 0.5 using the shifted
Strang–Marchuk splitting method.

Solver Tolerance Time Tentative Total Functional Max Error Mean Error
η Steps Steps Steps Evaluations emax emean

BEFP

1.0 × 10−1 336 211 547 8752 1.8537 × 10−2 1.5565 × 10−3

1.0 × 10−2 493 38 531 8496 7.7173 × 10−3 1.0212 × 10−3

1.0 × 10−3 1581 5 1586 25,376 2.8237 × 10−3 4.6368 × 10−4

1.0 × 10−4 6356 2 6358 101,728 9.6438 × 10−4 2.6878 × 10−4

BEN

1.0 × 10−1 65 28 93 1302 4.6585 × 10−2 6.1648 × 10−3

1.0 × 10−2 381 18 399 5586 9.8225 × 10−3 1.2524 × 10−3

1.0 × 10−3 1566 5 1571 21,994 2.8012 × 10−3 4.6639 × 10−4

1.0 × 10−4 6353 2 6355 88,970 9.6547 × 10−4 2.6882 × 10−4

Table 5. Solution of MCDB equation for µ = 5 using the shifted Strang–Marchuk splitting method.

Solver Tolerance Time Tentative Total Functional Max Error Mean Error
η Steps Steps Steps Evaluations emax emean

BEFP
1.0 × 10−1 4899 1077 5976 95,616 7.9463 × 10−3 1.0352 × 10−4

1.0 × 10−2 3375 977 4352 69,632 6.2542 × 10−4 1.4242 × 10−5

1.0 × 10−3 2980 159 3139 50,224 1.7561 × 10−5 8.0790 × 10−6

1.0 × 10−4 3382 4 3386 54,176 1.2602 × 10−5 6.7706 × 10−6

BEN

1.0 × 10−1 11 0 11 154 1.6393 × 10−3 4.0286 × 10−4

1.0 × 10−2 43 1 44 616 9.7024 × 10−4 3.0109 × 10−4

1.0 × 10−3 339 0 339 4746 1.4041 × 10−4 6.0483 × 10−5

1.0 × 10−4 1118 1 1119 15,662 2.3620 × 10−5 1.9871 × 10−5

For the linear and quasilinear shifted iterative splitting methods we take ε = 0.5 and the same
coarsening strategy. Tables 6–9 show the cost and the accuracy in the low and high viscosity cases for the
shifted linear and quasilinear iterative splitting methods using the back-Euler fixed point method and
back-Euler Newton’s method as solvers.

The shifted linear and quasilinear iterative splitting methods give similar results in all the considered
cases. The behavior of the back-Euler fixed point method is worse in the low viscosity case than in the
high viscosity case, as in the shifted Strang–Marchuk splitting method.

4.3. Third Numerical Example: Convection-Diffusion-Reaction Equation

In the third numerical example, we deal with a PDE, which is a convection–diffusion–reaction
equation in 3D (CDR), see the example in [23]:

Mathematics 2020, 8, 302 14 of 22

∂tu = −v · ∇u +∇D∇u− ku, (x, y, z, t) ∈ Ω× [t0, T], (39)

u(x, y, z, t0) = u0(x, y, z), (x, y, z) ∈ Ω,

u(x, y, z, t) = 0 ∈ ∂Ω× [t0, T],

where we have v = (vx, vy, vz)t, D ∈ IR3 × IR3 a diffusion matrix, u ∈ is the velocity field, k is a reaction
parameter, and Ω = [0, 4]3 × [t0, T], T = 10.0.

We can have a special analytical solution for an instantaneous point source, which is given as:

uana(x, y, z, t) =
M

4πt
√

D11D22D33t
exp

(
− ((x− x1)− vxt)2

4D11t
− (y− y1)

2

4D22t
− (z− z1)

2

4D22t

)
.

Table 6. Results of the shifted linear iterative splitting for the MCDB equation with µ = 0.5.

Solver Tolerance Time Tentative Total Functional Max Error Mean Error
η Steps Steps Steps Evaluations emax emean

BEFP

1.0 × 10−1 646 303 949 11,388 5.0943 × 10−3 9.7351 × 10−4

5.0 × 10−2 642 238 880 10,560 2.7441 × 10−3 3.9256 × 10−4

2.5 × 10−2 788 172 960 11,520 1.6284 × 10−3 1.5681 × 10−4

1.25 × 10−2 1343 152 1495 17,940 5.9673 × 10−4 1.5654 × 10−4

BEN

1.0 × 10−1 222 164 386 3860 1.4076 × 10−2 6.1344 × 10−4

5.0 × 10−2 388 157 545 5450 4.7347 × 10−3 2.0174 × 10−4

2.5 × 10−2 706 152 858 8580 1.5222 × 10−3 1.3188 × 10−4

1.25 × 10−2 1337 150 1487 14,870 2.6003 × 10−3 1.5871 × 10−4

Table 7. Results of the shifted linear iterative splitting for the MCDB equation with µ = 5.

Solver Tolerance Time Tentative Total Functional Max Error Mean Error
η Steps Steps Steps Evaluations emax emean

BEFP

1.0 × 10−1 6530 2962 9492 113,904 1.9099 × 10−2 1.0672 × 10−3

5.0 × 10−2 6458 2022 8480 101,760 1.9099 × 10−2 5.1457 × 10−4

2.5 × 10−2 6440 1250 7690 92,280 1.1951 × 10−3 2.2108 × 10−4

1.25 × 10−2 6407 807 7214 86,568 5.1211 × 10−4 8.9769 × 10−5

BEN

1.0 × 10−1 37 21 58 580 5.3262 × 10−2 6.0472 × 10−3

5.0 × 10−2 63 20 83 830 2.6259 × 10−2 2.5666 × 10−3

2.5 × 10−2 109 18 127 1270 9.7793 × 10−3 9.2603 × 10−4

1.25 × 10−2 188 15 203 2030 3.4315 × 10−3 3.1950 × 10−4

Table 8. Results of the shifted quasi linear iterative splitting for the MCDB equation with µ = 0.5.

Solver Tolerance Time Tentative Total Functional Max Error Mean Error
η Steps Steps Steps Evaluations emax emean

BEFP

1.0 × 10−1 647 321 968 11,616 5.2855 × 10−3 9.7675 × 10−4

5.0 × 10−2 643 238 881 10,572 2.4622 × 10−3 3.9273 × 10−4

2.5 × 10−2 788 173 961 11,532 1.7081 × 10−3 1.5881 × 10−4

1.25 × 10−2 6419 809 7228 86,736 7.2082 × 10−4 8.9011 × 10−5

BEN

1.0 × 10−1 221 163 384 3840 1.3667 × 10−2 5.5944 × 10−4

5.0 × 10−2 388 157 545 5450 4.6486 × 10−3 2.0269 × 10−4

2.5 × 10−2 706 152 858 8580 2.2658 × 10−3 1.3493 × 10−4

1.25 × 10−2 1343 152 1495 17,940 6.2250 × 10−4 1.5775 × 10−4

Mathematics 2020, 8, 302 15 of 22

Table 9. Results of the shifted quasi linear iterative splitting for the MCDB equation with µ = 5.

Solver Tolerance Time Tentative Total Functional Max Error Mean Error
η Steps Steps Steps Evaluations emax emean

BEFP

1.0 × 10−1 6525 2974 9499 113,988 1.9100 × 10−2 1.0647 × 10−3

5.0 × 10−2 6461 2024 8485 101,820 1.9100 × 10−2 5.1301 × 10−4

2.5 × 10−2 6445 1235 7680 92,160 1.1921 × 10−3 2.1909 × 10−4

1.25 × 10−2 6419 809 7228 86,736 7.2082 × 10−4 8.9011 × 10−5

BEN

1.0 × 10−1 37 21 58 580 5.3071 × 10−2 6.0407 × 10−3

5.0 × 10−2 63 20 83 830 2.6196 × 10−2 2.5650 × 10−3

2.5 × 10−2 109 18 127 1270 9.7690 × 10−3 9.2559 × 10−4

1.25 × 10−2 188 15 203 2030 3.4299 × 10−3 3.1941 × 10−4

We have the following parameters.

• instantaneous point source: (x1, y1, z1) = (1, 1, 1), M = 1.0,
• initial start at t0 = 1, where we initialise the equation with u0(x, y, z) = uana(x, y, z, t0),
• the diffusion parameters are given as D11 = 0.01, D22 = 0.02, D33 = 0.03 all other parameters are 0,
• the velocity is given as (vx, vy, vz) = (0.1, 0, 0),
• the reaction parameter is given as k = 0.1.

By considering the following operators, we decouple into the fast velocity–reaction part and the slow
diffusion parts:

A = ∇D∇,

B = −v · ∇ − k,

we split (50) in fast and slow parts

∂tu = Au + Bu.

The equation is spatially discretized taking a number, nx, ny, nz, of equal subintervals in each
direction in Ω, and approximating the spatial derivatives by standard second order divided differences,
resulting in a linear differential system.

We first check that the discretization error decreases with the size of the spatial subintervals by solving
the differential system using Heun’s method and Strang–Marchuk method with different number of spatial
subintervals. The numerical results unum in the node points (xi, yj, zk) are compared with the analytical
solution uana in the same points at the final time T = 10, computing the maximum and the mean absolute
differences as before. Table 10 shows that there is no significant difference between both methods.

Now we fix the number of spatial subintervals nx = ny = nz = 16, and analyze the performance of
the adaptive methods for the CDR example. To estimate the convergence of the methods, we compare
their results with the approximation obtained by integrating the differential equation by Heun’s method
using the same time steps. Table 11 shows the results of the shifted Strang–Marchuk splitting and the
shifted linear iterative splitting for different tolerances, η. Lower tolerances produce lower maximum and
mean errors but require more time steps. The relationship between the number of time steps and the mean
error is depicted in Figure 3.

Mathematics 2020, 8, 302 16 of 22

Table 10. Differences between the analytical solution of convection–diffusion–reaction (CDR) equation
and the numerical solutions obtained by direct (Heun) integration and by Strang–Marchuk method with
different number of spatial subintervals.

Spatial Time Heun Strang-Marchuk
Subintervals Steps emax emean emax emean

8 16 0.342564 0.019429 0.338664 0.019334
12 24 0.108504 0.006381 0.104289 0.006366
16 32 0.065986 0.002939 0.063730 0.002901
20 40 0.044801 0.001792 0.043494 0.001774

102 103

Time steps

10-6

10-5

10-4

10-3

M
e
a
n
 e

rr
o
r

SSMS

SLIS

Figure 3. Mean error emean of the shifted Strang-Marchuk splitting (SSMS) and the shifted linear iterative
splitting (SLIS) for the CDR equation for different tolerances, η.

Remark 4. In the Figure 3, we see the differences in the convergence behaviour between the shifted Strang–Marchuk
splitting (SSML) and the shifted linear iterative splitting (SLIS) method. We see in the figure, that the SSML method
has only a linear convergence order ≤ 1, the SLIS method has higher order of convergence, here we have at least an
order ≥ 2. Therefore the adaptive iterative scheme is much more effective and accurate than the noniterative splitting
scheme. The result verified the proposition, that the iterative splitting scheme is a higher order scheme, see [3,15],
and that we also conserve the higher order approach in the adaptive version.

4.4. Fourth Numerical Example: Nonlinear Diffusion Equation

Our fourth numerical example is a partial differential equation which is nonlinear diffusion equation
in 2D, see the example in [24].

The multicomponent diffusion equation is based on the idea of a Maxwell–Stefan diffusion equation,
which is highly nonlinear, see [20,24]:

∂tu = ∇A(u)∇u, (x, y, t) ∈ Ω× [t0, T], (40)

u(x, y, t0) = u0(x, y), (x, z) ∈ Ω,

u(x, y, t) = 0 ∈ ∂Ω× [t0, T],

Mathematics 2020, 8, 302 17 of 22

where we have A ∈ IR3 × IR3 × IR3 a nonlinear diffusion matrix and Ω = [0, 1]3 × [t0, T], t0 = 0, T = 1.0.
An application of such a nonlinear diffusion (NLD) is given by

∂tu1 = D12∇ · ∇u1, (x, y, t) ∈ Ω× [t0, T], (41)

∂tu2 = ∇ ·
(
(

1
D23

+ βu1)
−1(∇u2 + βD12u2∇u1)

)
, (x, y, t) ∈ Ω× [t0, T], (42)

u(x, y, t) = 0 ∈ ∂Ω× [t0, T],

where we have α =
(

1
D12
− 1

D13

)
and β =

(
1

D12
− 1

D23

)
.

Table 11. Results of the shifted Strang–Marchuk’s splitting, (SSMS), and the shifted linear iterative splitting,
SLIS, for the CDR equation for different tolerances.

Shifted Tolerance Time Tentative Functional Max Error Mean Error
Method η Steps Steps Evaluations emax emean

SSMS

1.0 × 10−4 28 4 372 4.1517 × 10−3 1.0990 × 10−4

2.5 × 10−5 54 11 768 9.1570 × 10−4 2.5527 × 10−5

6.25 × 10−6 107 24 1560 2.2147 × 10−4 6.2970 × 10−6

1.5625 × 10−6 211 52 3144 5.6628 × 10−5 1.6200 × 10−6

3.90625 × 10−7 416 103 6216 1.5064 × 10−5 4.3245 × 10−7

SLIS

6.4 × 10−2 33 3 280 1.1334 × 10−2 1.0145 × 10−3

1.6 × 10−2 68 4 568 1.2867 × 10−2 9.4605 × 10−4

4.0 × 10−3 150 17 1328 9.4607 × 10−3 6.7794 × 10−4

1.0 × 10−3 570 130 5592 6.1880 × 10−3 3.3441 × 10−4

2.5 × 10−4 2256 577 22,656 1.4651 × 10−3 8.0392 × 10−5

Further, we apply with the following parameters in the NLD Equations (41) and (42).
The parameters and the initial and boundary conditions are given as:

• Uphill example, which is known as semi-degenerated Duncan and Toor experiment, see [25]:
D12 = D13 = 0.833 and D23 = 0.168, where we have α = 0.

• Asymptotic example, which is known as asymptotic Duncan and Toor experiment, see [25]:
D12 = 0.0833, D13 = 0.680 and D23 = 0.168, where we have α 6= 0.

• We apply J = 140, where J is the number of spatial grid points.
• Based on the explicit discretization method, we have to fulfill the time-step-restriction, which is given

as CFL-condition:
∆t ≤ (∆x)2

2 max{D12,D13,D23}
.

• The computational domains are given with: Ω = [0, 1] is the spatial domain and [0, T] = [0, 1] is the
time domain.

• The initial conditions are as follows.

1. Uphill example

uin
1 (x) =


0.8 if 0 ≤ x < 0.25,
1.6(0.75− x) if 0.25 ≤ x < 0.75,
0.0 if 0.75 ≤ x ≤ 1.0,

(43)

uin
2 (x) = 0.2, for all x ∈ Ω = [0, 1]. (44)

Mathematics 2020, 8, 302 18 of 22

2. Asymptotic example

uin
1 (x) =

{
0.8 if 0 ≤ x ∈ 0.5,
0.0 else,

(45)

uin
2 (x) = 0.2, for all x ∈ Ω = [0, 1]. (46)

• For the boundary conditions, we apply no-flux type conditions:

u1 = u2 = 0, on ∂Ω× [0, 1]. (47)

We apply the following splitting of the operators with the one-dimensional spatial derivations:

∂tu = (A(u) + B(u))u, (48)

where we have the operators in the following decomposition of the u1 and u2 parts with ξ ∈ [0, 1]:

A(u) =

(
ξ D12

∂2

∂x2 0

ξ ∂
∂x

(
(1

D23
+ βu1)

−1βD12u2
∂

∂x

)
(1− ξ) ∂

∂x

(
(1

D23
+ βu1)

−1 ∂
∂x

)) (49)

B(u) =

(
(1− ξ)D12

∂2

∂x2 0

(1− ξ) ∂
∂x

(
(1

D23
+ βu1)

−1βD12u2
∂

∂x

)
ξ ∂

∂x

(
(1

D23
+ βu1)

−1 ∂
∂x

)) (50)

where we have ξ = 0.5 a symmetric decomposition.
We first check that the non adaptive methods require a very small time step to converge and estimate

its convergence by comparing the results doubling successively the number of time steps. The results are
shown in Table 12 for the direct integration and for the unshifted Strang–Marchuk method. The errors are
computed measuring the difference between the result obtained with a given number of time steps and
the result with twice that number at every shared temporal and spatial node. The error estimates for the
Strang–Marchuk splitting in the case of 40,000 time steps are not available because the method diverges
with 20,000 time steps.

Figure 4 illustrates the uphill phenomenon, where the solutions u1 and u2 increase before reaching
the stationary state.

The adaptive methods result in an important reduction of the number of time steps obtaining similar
error estimations. Tables 13 and 14 show the results for the uphill case and for the asymptotic case of
the nonlinear diffusion equation, respectively. Here, the errors are computed by comparing the solution
of the shifted methods with the ones obtained by direct integration, using the same time steps as the
adaptive method.

The shifted Strang-Marchuk method behaves better for ε = 0.03, whereas the shifted linear and
quasilinear splitting methods work well for ε = 0.03, except for in Table 15, where the behavior of the
considered splitting methods is studied for different splitting weights ξ.

Figure 5 depicts the regions in the space-time plane where the uphill phenomenon takes place, that is
where N2 and ∂xu2 have the same sign. The equation is solved by the shifted linear iterative splitting with
η = 1.0 × 10−5.

Mathematics 2020, 8, 302 19 of 22

Figure 4. Evolution of the magnitudes u1 and u2 in the uphill example.

Table 12. Cost and error estimates of the Heun integration (HI) and the Strang–Marchuk (SM) splitting for
the nonlinear diffusion equation.

Uphill Example Asymptotic Behavior
Solver Time Functional Max Error Mean Error Max Error Mean Error

Steps Evaluations emax emean emax emean

HI
120,000 240,000 1.2050 × 10−2 7.0883 × 10−7 1.0045 × 10−1 5.7176 × 10−7

240,000 480,000 2.1710 × 10−3 1.1072 × 10−7 1.8856 × 10−2 1.0060 × 10−7

480,000 960,000 4.5606 × 10−4 1.8113 × 10−8 4.1844 × 10−3 2.0626 × 10−8

SM
40,000 240,000 1.9853 × 10−2 7.3680 × 10−7 — —
80,000 480,000 4.3103 × 10−3 1.7807 × 10−7 2.2560 × 10−1 7.4157 × 10−7

160,000 960,000 8.2574 × 10−4 4.2266 × 10−8 3.3259 × 10−2 2.4397 × 10−7

Figure 5. Regions in the space-time domain where N2 and ∂xu2 have the same sign.

Mathematics 2020, 8, 302 20 of 22

Table 13. Results of the shifted Strang–Marchuk’s splitting (SSMS) the shifted linear iterative splitting
(SLIS), and the shifted quasilinear iterative splitting (SQIS), for the uphill case of the NLD equation.

Shifted Parameter Time Tentative Functional Max Error Mean Error
Method η Steps Steps Evaluations emax emean

SSMS 1.0 × 10−2 22,711 477 278,256 4.4092 × 10−1 5.4509 × 10−2

1.0 × 10−3 12,113 1297 160,920 8.4409 × 10−2 4.1336 × 10−3

ε = 0.03 1.0 × 10−4 12,105 1290 160,740 4.5592 × 10−3 1.6081 × 10−4

1.0 × 10−5 12,109 1314 161,076 6.9255 × 10−4 1.4140 × 10−5

SLIS 1.0 × 10−2 19,788 3177 183,720 9.3208 × 10−2 1.6424 × 10−2

1.0 × 10−3 19,787 3133 183,360 7.2316 × 10−3 9.9959 × 10−4

ε = 0.01 1.0 × 10−4 19,878 3158 184,288 1.1644 × 10−3 9.4958 × 10−5

1.0 × 10−5 25,126 4880 240,048 1.1369 × 10−4 8.2151 × 10−6

SQIS 1.0 × 10−2 20,021 3119 185,120 8.3612 × 10−1 1.5261 × 10−1

1.0 × 10−3 19,784 3194 183,824 7.0992 × 10−3 1.5841 × 10−3

ε = 0.01 1.0 × 10−4 19,879 3145 184,192 1.1644 × 10−3 9.5553 × 10−5

1.0 × 10−5 25,125 4895 240,160 1.1370 × 10−4 8.1793 × 10−6

Table 14. Results of the shifted Strang–Marchuk’s splitting (SSMS), the shifted linear iterative splitting
(SLIS), and the shifted quasilinear iterative splitting (SQIS), for the uphill case of the NLD equation with
η = 1 × 10−5 and different values of the weight parameter ξ.

Shifted Parameter Time Tentative Functional Max Error Mean Error
Method ξ Steps Steps Evaluations emax emean

SSMS
0 40,160 4775 539,220 2.2711 × 10−1 4.0969 × 10−2

0.25 21,036 3991 300,324 6.1904 × 10−2 1.2819 × 10−2

ε = 0.03
0.5 12,105 1290 160,740 4.5592 × 10−3 1.6081 × 10−4

0.75 12,094 527 151,452 3.8271 × 10−3 1.9800 × 10−5

1 16,435 1581 216,192 3.9292 × 10−3 1.4966 × 10−4

SLIS
0 39,313 7195 372,064 9.0557 × 10−4 1.5864 × 10−4

0.25 29,515 5859 282,992 9.5854 × 10−4 2.1259 × 10−4

ε = 0.01
0.5 19,878 3158 184,288 1.1644 × 10−3 9.4958 × 10−5

0.75 22,010 2272 194,256 1.8200 × 10−3 2.9126 × 10−5

1 30,867 2064 263,448 2.5255 × 10−3 2.4335 × 10−5

SQIS
0 39,313 7233 372,368 8.2133 × 10−4 1.6467 × 10−4

0.25 29,515 5933 283,584 1.0667 × 10−3 2.2256 × 10−4

ε = 0.01
0.5 19,879 3145 184,192 1.1644 × 10−3 9.5553 × 10−5

0.75 22,077 2384 195,688 1.8200 × 10−3 3.0349 × 10−5

1 30,906 2084 263,920 2.5255 × 10−3 2.5535 × 10−5

Mathematics 2020, 8, 302 21 of 22

Table 15. Results of the shifted Strang–Marchuk’s splitting (SSMS), the shifted linear iterative splitting
(SLIS), and the shifted quasilinear iterative splitting (SQIS) for the asymptotic case of the NLD equation.

Shifted Parameter Time Tentative Functional Max Error Mean Error
Method η Steps Steps Evaluations emax emean

SSMS 1.0 × 10−2 31,442 238 380,160 9.1699 × 10−1 1.2015 × 10−2

1.0 × 10−3 12,810 546 160,272 5.1000 × 10−1 4.5127 × 10−3

ε = 0.03 1.0 × 10−4 10,223 511 128,808 7.6494 × 10−2 1.6126 × 10−4

1.0 × 10−5 10,508 854 136,344 7.2481 × 10−3 8.4180 × 10−6

SLIS 1.0 × 10−2 15,087 1748 134,680 1.5719 × 10−1 2.7535 × 10−2

1.0 × 10−3 14,736 1702 131,504 1.2306 × 10−2 5.0463 × 10−4

ε = 0.01 1.0 × 10−4 15,047 1815 134,896 2.2724 × 10−3 3.9500 × 10−5

1.0 × 10−5 24,371 5071 235,536 2.2461 × 10−4 8.5634 × 10−6

SQIS 1.0 × 10−2 16,502 1509 144,088 2.7868 × 10−1 7.1696 × 10−2

1.0 × 10−3 14,709 1683 131,136 1.2001 × 10−2 2.1926 × 10−3

ε = 0.01 1.0 × 10−4 15,049 1819 134,944 1.9668 × 10−3 4.4380 × 10−5

1.0 × 10−5 24,381 5042 235,384 1.9277 × 10−4 6.6005 × 10−6

5. Conclusions and Discussion

We present a novel adaptive iterative splitting approach for partial differential equations of the type
convection–diffusion–reaction equation. The numerical analysis shows the convergence of the schemes,
while we could apply a shift in time of the methods. In the numerical experiments, we apply different
state-of-the-art nonlinear convection–diffusion equations, where we receive benefits in the computational
time and also in the accuracy of the methods. The adaptive splitting schemes allow to control the errors of
the scheme and reduce the computational time, while we could apply smaller and larger time-steps.

Author Contributions: The theory, the formal analysis and the methology presented in this paper was developped by
J.G. The software development and the numerical validation of the methods was done by J.L.H. and E.M. The paper
was written by J.G., J.L.H. and E.M. and was corrected and edited by J.G., J.L.H. and E.M. The writing—review was
done by J.G. The supervision and project administration was done by J.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by German Academic Exchange Service grant number 91588469.

Acknowledgments: We acknowledge support by the DFG Open Access Publication Funds of the Ruhr-Universität of
Bochum, Germany and by Ministerio de Economía y Competitividad, Spain, under grant PGC2018-095896-B-C21-C22.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Auzinger, W.; Herfort, W. Local error structures and order conditions in terms of Lie elements for exponential
splitting schemes. Opusc. Math. 2014, 34, 243–255. [CrossRef]

2. Auzinger, W.; Koch, O.; Quell, M. Adaptive high-order splitting methods for systems of nonlinear evolution
equations with periodic boundary conditions. Numer. Algor. 2017, 75, 261–283. [CrossRef]

3. Geiser, J. Iterative Splitting Methods for Differential Equations; Numerical Analysis and Scientific Computing Series;
Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2011.

4. Descombes, S.; Massot, M. Operator splitting for nonlinear reaction-diffusion systems with an entropic structure:
Singular perturbation and order reduction. Numer. Math. 2004, 97, 667–698. [CrossRef]

5. Descombes, S.; Dumont, T.; Louvet, V.; Massot, M. On the local and global errors of splitting approximations of
reaction-diffusion equations with high spatial gradients. Int. J. Comput. Math. 2007, 84, 749–765. [CrossRef]

6. McLachlan, R.I.; Quispel, G.R.W. Splitting methods. Acta Numer. 2002, 11, 341–434. [CrossRef]

http://dx.doi.org/10.7494/OpMath.2014.34.2.243
http://dx.doi.org/10.1007/s11075-016-0206-8
http://dx.doi.org/10.1007/s00211-003-0496-3
http://dx.doi.org/10.1080/00207160701458716
http://dx.doi.org/10.1017/S0962492902000053

Mathematics 2020, 8, 302 22 of 22

7. Trotter, H.F. On the product of semi-groups of operators. Proc. Am. Math. Soc. 1959, 10, 545–551. [CrossRef]
8. Strang, G. On the construction and comparision of difference schemes, SIAM J. Numer. Anal. 1968, 5, 506–517.

[CrossRef]
9. Jahnke, T.; Lubich, C. Error bounds for exponential operator splittings. BIT Numer. Math. 2000, 40, 735–745.

[CrossRef]
10. Geiser, J. Iterative Semi-implicit Splitting Methods for Stochastic Chemical Kinetics. In Finite Difference Methods:

Theory and Applications; Dimov, I., Faragó, I., Vulkov, L., Eds.; Springer International Publishing: Cham, Germany,
2019; pp. 35–47.

11. Nevanlinna, O. Remarks on Picard-Lindelöf Iteration, Part I. BIT 1989, 29, 328–346. [CrossRef]
12. Vandewalle, S. Parallel Multigrid Waveform Relaxation for Parabolic Problems; Teubner Skripten zur Numerik, B.G.

Teubner Stuttgart: Stuttgart, Germany, 1993.
13. Farago, I.; Geiser, J. Iterative Operator-Splitting Methods for Linear Problems. Int. J. Comput. Sci. Eng. 2007, 3,

255–263. [CrossRef]
14. Descombes, S.; Duarte, M.; Dumont, T.; Louvet, V.; Massot, M. Adaptive time splitting method for multi-scale

evolutionary partial differential equations. Confluentes Math. 2011, 3, 413–443. [CrossRef]
15. Geiser, J. Iterative Operator-Splitting Methods with higher order Time-Integration Methods and Applications

for Parabolic Partial Differential Equations. J. Comput. Appl. Math. 2008, 217, 227–242. [CrossRef]
16. Dimov, I.; Farago, I.; Havasi, A.; Zlatev, Z. Different splitting techniques with application to air pollution models.

Int. J. Environ. Pollut. 2008, 32, 174–199. [CrossRef]
17. Karlsen, K.H.; Lie, K.-A.; Natvig, J.R.; Nordhaug, H.F.; Dahle, H.K. Operator splitting methods for systems of

convection–diffusion equations: Nonlinear error mechanisms and correction strategies. J. Comput. Phys. 2001,
173, 636–663. [CrossRef]

18. Vabishchevich, P. Additive Operator-Difference Schemes: Splitting Schemes; De Gruyter: Berlin, Germany, 2014.
19. Geiser, J. Iterative operator-splitting methods for nonlinear differential equations and applications. Numer.

Methods Partial Differ. Equ. 2011, 27, 1026–1054. [CrossRef]
20. Geiser, J. Iterative solvers for the Maxwell–Stefan diffusion equations: Methods and applications in plasma and

particle transport. Cogent Math. 2015, 2, 1092913. [CrossRef]
21. Engel, K.-J.; Nagel, R. One-Parameter Semigroups for Linear Evolution Equations; Springer: New York, NY,

USA, 2000.
22. Geiser, J.; Hueso, J.L.; Martinez, E. New versions of iterative splitting methods for the momentum equation.

J. Comput. Appl. Math. 2017, 309, 359–370. [CrossRef]
23. Socolofsky, S.A.; Jirka, G.H. Environmental fluid mechanics. Part I: Mass transfer and diffusion.

In Engineering-Lectures, 2nd ed.; University of Karlsruhe, Institute of Hydromechanics: Karlsruhe, Germany, 2004.
24. Boudin, L.; Grec, B.; Salvarani, F. A mathematical and numerical analysis of the Maxwell–Stefan diffusion

equations. Discrete Contin. Dyn. Syst. Ser. B 2012, 17, 1427–1440. [CrossRef]
25. Duncan, J.B.; Toor, H.L. An experimental study of three component gas diffusion. AIChE J. 1962, 8, 38–41.

[CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1090/S0002-9939-1959-0108732-6
http://dx.doi.org/10.1137/0705041
http://dx.doi.org/10.1023/A:1022396519656
http://dx.doi.org/10.1007/BF01952687
http://dx.doi.org/10.1504/IJCSE.2007.018264
http://dx.doi.org/10.1142/S1793744211000412
http://dx.doi.org/10.1016/j.cam.2007.06.028
http://dx.doi.org/10.1504/IJEP.2008.017102
http://dx.doi.org/10.1006/jcph.2001.6901
http://dx.doi.org/10.1002/num.20568
http://dx.doi.org/10.1080/23311835.2015.1092913
http://dx.doi.org/10.1016/j.cam.2016.06.002
http://dx.doi.org/10.3934/dcdsb.2012.17.1427
http://dx.doi.org/10.1002/aic.690080112
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Adaptive Splitting Approaches
	Standard Splitting Approaches
	Strang-Marchuk Splitting (SMS)
	Iterative Splitting Methods

	Shifted Splitting Approaches for Error Estimations
	Shifted Strang-Marchuk Splitting (SSMS)
	Shifted Iterative Splitting Methods

	Error Analysis
	Numerical Results
	First Numerical Example: Bernoulli Equation
	Second Numerical Example: Mixed Convection–Diffusion and Burgers Equation
	Third Numerical Example: Convection-Diffusion-Reaction Equation
	Fourth Numerical Example: Nonlinear Diffusion Equation

	Conclusions and Discussion
	References

