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Abstract: The Holt–Winters models are one of the most popular forecasting algorithms. As well-
known, these models are recursive and thus, an initialization value is needed to feed the model, 
being that a proper initialization of the Holt–Winters models is crucial for obtaining a good accuracy 
of the predictions. Moreover, the introduction of multiple seasonal Holt–Winters models requires a 
new development of methods for seed initialization and obtaining initial values. This work proposes 
new initialization methods based on the adaptation of the traditional methods developed for a 
single seasonality in order to include multiple seasonalities. Thus, new methods to initialize the 
level, trend, and seasonality in multiple seasonal Holt–Winters models are presented. These new 
methods are tested with an application for electricity demand in Spain and analyzed for their impact 
on the accuracy of forecasts. As a consequence of the analysis carried out, which initialization 
method to use for the level, trend, and seasonality in multiple seasonal Holt–Winters models with 
an additive and multiplicative trend is provided. 

Keywords: forecasting; multiple seasonal periods; Holt–Winters, initialization 
 

1. Introduction 

Exponential smoothing methods are widely used worldwide in time series forecasting, 
especially in financial and energy forecasting [1,2]. These methods smooth the observed values of a 
time series, using an exponentially downward weighting strategy giving more weight to recent 
values compared to older values. Weights decrease geometrically over past observations. The most 
commonly used methods are: Simple exponential smoothing for the series that does not show any 
trend, or with a locally stable mean, having a single smoothing parameter 𝛼; double seasonal 
exponential smoothing (also known as Holt’s method [3]) for trend-having series with two smoothing 
parameters: 𝛼 and 𝛾; finally, triple exponential smoothing (also known as Holt–Winters [4]) for the 
series with a trend and seasonal component, with 𝛼, 𝛾, and 𝛿 as smoothing parameters. The smoothing 
parameters are bounded in the interval [0, 1], where the closer to 0 means the more weight of the old 
values against the newer ones. 

The multiple seasonal Holt–Winters models (nHWT) outperform former Holt–Winters methods 
by including several seasonalities nested in the model. This development has been driven by the 
necessity of improving forecasts, especially in energy planning, where system operators need 
accurate forecasts. Hong [5] determines how a 1% improvement in the forecast accuracy can save up 
to $600,000 per year in a 1 GW power station. 

However, these new forecasting methods are recursive and based on initial values, and the 
performance of the models highly depend on those initial values. Thus, new initialization methods 
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to include multiple seasonality must be developed. Another question is then raised: Is there any 
method that outperforms the rest? 

This article intends to provide answers to these questions. Hence, new initialization methods are 
proposed for nHWT models and their performance is analyzed for forecast accuracy by using the 
Spanish hourly electricity demand.  

Holt–Winters models were formerly introduced in the 1960s and have been very commonly used 
in forecasting techniques and signal processing. The Holt–Winters model (also known as triple 
exponential smoothing) introduced by Winters [4] consists of three smoothing equations and a 
forecasting equation as shown in Equations (1)–(4): 

Level: 𝑆௧ = 𝛼 ቀ ௑೟ூ೟షೞቁ + ሺ1 − 𝛼ሻሺ𝑆௧ିଵ + 𝑇௧ିଵሻ (1) 

Trend: 𝑇௧ = 𝛾(𝑆௧ − 𝑆௧ିଵ) + (1 − 𝛾)𝑇௧ିଵ (2) 

Seasonality: 𝐼௧ = 𝛿 ቀ௑೟ௌ೟ቁ + (1 − 𝛿)𝐼௧ିଵ (3) 

Forecasting: 𝑋෠௧(𝑘) = (𝑆௧ + 𝑘 𝑇௧)𝐼௧ି௦ା௞ (4) 

where 𝛼, γ, and 𝛿 are the smoothing parameters, and 𝑆௧ , 𝑇௧ , and 𝐼௧  are the smoothing equations 
known as level, trend, and seasonality. The information from the observed values (𝑋௧) is projected 
through a forecasting Equation (4) k steps ahead to obtain predictions (𝑋෠௧ (𝑘)).  

Taylor [6,7] introduced the double and triple seasonal Holt–Winters models (HWT). These 
models are characterized by capturing the information contained in the seasonal component, split 
into several seasonalities of different lengths, as well as including an adjustment of the forecast 
including the first autocorrelation error. García-Díaz and Trull [8] generalized these models to adapt 
to an indeterminate number of seasonalities, proposing the multiple seasonal Holt–Winters models 
(nHWT).  

The trend and seasonal equations can be expressed in an additive or multiplicative form. The 
way the equations are combined allow a total of 30 possible combinations. The nomenclature used to 
name the models is based on three letters: The first to indicate the trend method, the second to 
indicate the seasonality method, and a third to indicate if the model has an adjustment using the first 
order autocorrelation error, as shown in Table 1. Additionally, the seasonalities used are indicated 
by adding subscripts with period lengths. 

Table 1. Multiple seasonal Holt–Winters models’ nomenclature according to the trend and seasonal 
method. 

Trend 
Seasonal 

AR (1) Adjusted Non-Adjusted 
None Additive Multiplicative None Additive Multiplicative 

None NNC NAC NMC NNL NAL NML 
Additive ANC AAC AMC ANL AAL AML 

Damped Additive dNC dAC dMC dNL dAL dML 
Multiplicative MNC MAC MMC MNL MAL MML 

Damped Multiplicative DNC DAC DMC DNL DAL DML 

The notation used is based on the following criteria: The first letter stands for the trend method 
(N: None, A: Additive, M: Multiplicative, d: Damped Additive, and D: Damped Multiplicative). The 
second letter stands for the seasonality method (N: None, A: Additive, and M: Multiplicative). The 
third letter is used to designate if the model has an AR (1) adjustment (C: Adjusted, L: Not adjusted). 

As an example, the AMC24,168 model is a model with an additive trend and multiplicative 
seasonality; the model is adjusted by using the first-order autocorrelation error, and it has two 
seasonalities: One daily (subscript 24) and one weekly (subscript 168). The equations defining the 
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AMC24,168 model are described in Equations (5)–(9). The general formulae of all possible models 
depending on the trend and seasonal type can be found in Appendix A: 

𝑆௧ = 𝛼 ൭ 𝑋௧𝐼௧ିଶସ(ଶସ) 𝐼௧ିଵ଺଼(ଵ଺଼) ൱ + (1 − 𝛼)(𝑆௧ିଵ + 𝑇௧ିଵ) (5)

𝑇௧ = 𝛾(𝑆௧ − 𝑆௧ିଵ) + (1 − 𝛾)𝑇௧ିଵ (6)

𝐼௧(ଶସ) = 𝛿(ଶସ) ൬ ௑೟ௌ೟ூ೟షభలఴ(భలఴ) ൰ + ൫1 − 𝛿(ଶସ)൯𝐼௧ିଵ(ଶସ)  (7)

𝐼௧(ଵ଺଼) = 𝛿(ଵ଺଼) ൭ 𝑋௧𝑆௧𝐼௧ିଶସ(ଶସ) ൱ + ൫1 − 𝛿(ଵ଺଼)൯𝐼௧ିଵ(ଵ଺଼) (8)

𝑋෠௧(𝑘) = (𝑆௧ + 𝑘 𝑇௧)𝐼௧ିଶସା௞(ଶସ) 𝐼௧ିଵ଺଼ା௞(ଵ଺଼) + 𝜑஺ோ௞ 𝜀௧ (9)

where the former seasonal equation 𝐼௧  now splits into 𝐼௧(௦೔)  and 𝛿 splits into 𝛿(௦೔) , 𝑠௜  being the 
seasonal periods considered, 𝑠ଵ = 24 and 𝑠ଶ = 168. Here, the value 𝜑஺ோ is the adjustment factor to 
include the first-order autocorrelation error (𝜀௧). 

The rest of the paper is organized as follows: In Section 2, the previous literature is analyzed; in 
Section 3 the initialization methods are described; in Section 4, an analysis is carried out and the 
results obtained are described; and in Section 5, these results are discussed. Section 6 lists the 
conclusions reached. 

2. Related Work 

The Holt–Winters models are recursive, and thus an initialization value is needed to feed the 
model. With the development of new models, it is mandatory to define new initialization methods 
for obtaining the initial values of the smoothing equations, considering that the older methods were 
defined only for single seasonal models. These initialization methods also depend on the method 
used for trend and seasonality.  

The first methods of obtaining initial values date back to the proposal made by Winters [4] with 
the definition of triple exponential smoothing models. (Do not confuse triple exponential smoothing, 
with triple seasonal exponential smoothing, the former being a reference to the use of three equations, 
while the latter refers to the use of three seasonalities). In [4], the initial value of the trend (T0) is 
calculated as the slope between the average of the last available full period q and the first, as indicated 
by Equation (10), where the only seasonality is of length s. 𝑇଴ = ஽ഥ೜ି ஽ഥభ(௤ିଵ)௦  (10)

Here, the value of 𝐷ഥଵ  indicates the average value for the first period and 𝐷ഥ௤  indicates the 
average value for the last period considered q. In many cases, using the first two periods (that is, q = 
2) is sufficient [9]. Granger and Newbold [10] proposed leaving the trend in values of 0 for additive 
trend methods and 1 for multiplicative trend methods. In this way, the slope adjusts itself to the trend 
value. 

The previous work of Holt [3,11] and Brown [12] in single and double exponential smoothing 
did not require calculations of initial values external to the model. Makridakis, Wheelright, and 
Hyndman [9] proposed a new method of calculating the trend and seasonality. Bowerman, O’Connell 
and Pack [13], and Bowerman, O’Connell, and Köhler [14] proposed a regression method where they 
consider that the intercept is the level and the slope is the trend. This method is criticized by 
Hyndman [15] for the bias it introduces. Rasmussen [16] proposed obtaining initial values through 
minimization. With the emergence of multiple seasonal models, new initialization methods were 
introduced [6,7], although some authors prefer not to use them [17]. Taylor introduced a new 
initialization method of the level and trend applied to double seasonal Holt–Winters in [6]. In 
particular, the seasonality is initialized as the division of the simple values over the moving average 
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of the period (called the “simple” method), and the level (S0) is obtained once the series trend has 
been eliminated. It consists in first obtaining the trend of the series and then the level, as seen in 
Equation (11): 𝑆଴ =  𝐷ഥଵ − 𝑠௠ + 12 𝑇଴ (11)

where 𝑠௠ is the longest seasonality. This scheme to initialize the level was also adopted by Hyndman 
et al. [18]. Hyndman introduced new initialization methods incorporated in the exponential 
smoothing methodology based on state spaces and included them in the “forecast” package of the 
statistical software R. Trull, García-Díaz, and Troncoso [19] also used a series decomposition using 
STL methods of various seasonality, in order to obtain initial values in discrete seasonality. 

Some papers [20–22] analyze the initial values but very succinctly. Segura and Vercher [23] 
collect the information about the initialization methods and perform an analysis similar to that 
carried out by Makridakis and Hibon [24]. They conclude that when the parameters are optimized, it 
is not possible to determine significant differences between the different initialization methods. 

After an exhaustive review of these previously published works, it can be concluded that the 
analysis of the initialization methods is not very extensive in the literature. This fact justifies the need 
for research in the topic described in this paper.  

3. Materials and Methods  

The way to obtain the initial values must match the trend and seasonal method, as it would 
impact later on the accuracy of the model. The addition of more seasonal patterns in the model 
requires newer methods of obtaining the initial values or seeds. Therefore, several methods 
depending on the trend and seasonal method have been implemented. This paper proposes new 
initialization methods for multiple seasonalities based on the previous methods, which were defined 
for a single seasonal pattern. 

The proposed methods for the initialization of the Holt–Winters models are separated into three 
groups. The first ones calculate the seeds for the level and trend separately. The last one implements 
each seasonality separately. The latter first obtains a seed, as the trend, and then obtains another one 
on a recurring basis, such as that of the level. 

3.1. Level Methods 

The level initialization basically consists in determining the longest period, or the longest 
seasonality (𝑠௠) and determining the initial values around that point, by using the moving average 
(adapted from Holt [3]) or the average (adapted from Winters [4]). Williams and Miller [25] used the 
first value of the series for the level. This method is included although it remains unchanged for the 
further comparative analysis in Section 4. Table 2 shows the adapted methods to obtain the initial 
value of the level (𝑆଴). 

Table 2. Proposed methods and the method published in [25] for obtaining the initial value of the 
level in multiple-seasonal methods. 

Denomination Calculation 

Moving average adapted from Holt 
[3] 

𝑆଴ = 1𝑆௠ ൤𝑋ଵା௦೘ − 𝑋ଵ𝑠௠ + 𝑋ଶା௦೘ − 𝑋ଶ𝑠௠ + ⋯++ 𝑋ଶ௦೘ − 𝑋௦೘𝑠௠ ൨ 
First value [25] S଴ = Xଵ 

First period’s average adapted from 
Winters [4] 𝑆଴ = ∑ 𝑋௜௦೘ଵ𝑠௠  

3.2. Trend Methods 
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Based on Winters’ method [4], a new initialization method has been developed to be able to 
include more than one seasonality in the model, according to the contribution to the trend of smaller 
seasonality, as indicated [24]. These proposals (methods overall and two periods) are shown in Table 
3 along with the methods published in [26,6] for the further comparative analysis in Section 4. 𝑇଴௜ᇱ  is 
an intermediate step where individual contributions are calculated in each period of length 𝑠௜. 
The average of all of them will be taken into account, counting the maximum number of periods 
q for the overall case, and only two periods for that special case (𝑞 = 2). The seasonality of 
greater length is used as the basis of calculation. The value of 𝑠௠ indicates the length of the 
longest seasonal period considered in the model. The rest is calculated in the form of differences. 
The value 𝑠௣  indicates the length of the minor of the periods considered. ∇𝐷ଵଶ indicates 
differences in values for the first two periods, while ∇𝐷௜  refers to differences in the period 
considered. Finally, the average of the contributions is calculated to obtain the value of 𝑇଴. 

Table 3. Proposed methods and methods published in [25] and [6] for obtaining the initial value of 
the trend in multiple-seasonal methods. 

Denomination Calculation 

Newbold [26] 
𝑇଴ = 0 (additive) 𝑇଴ = 1 (multiplicative) 

Taylor [6]  𝑇଴ = ቆ𝐷ഥଵ − 𝐷ഥଶ𝑠௠ + ∑ ∇𝐷ଵଶଶ௦೘ଵ 2𝑠௣ ቇ2  

Overall and two periods method. 
Multiplicative. 

𝑇଴ = ∑ బ்೔ᇲ೔సభ,..,೜௤ , 

with 𝑇଴௜ᇱ = ൞஽ഥ೜ି஽ഥభ௤ if 𝑠௜ = 𝑠௠∑ ∇஽೔ೞ೔భ௦೔ if 𝑟𝑒𝑠𝑡  

 

Overall and two periods method. 
Multiplicative. 

𝑇଴ = ∏ 𝑇଴௜ᇱ௡ೞଵ ,  

with 𝑇଴௜ᇱ = ൞஽ഥ೜ି஽ഥభ௤ if 𝑠௜ = 𝑠௠∑ ∇஽೔ೞ೔భ௦೔ if 𝑟𝑒𝑠𝑡  

3.3. Seasonality Calculation Methods 

The first methods determined for the calculation were developed by Winters [4]. The calculation 
of seasonality consists in calculating the series averages over the series without a trend. When it 
comes to more than one seasonality that are modeled annually, as in nHWT, it is necessary to avoid 
duplication of the effects of seasonality. Thus, based on Winters’ method [4], we propose to obtain 
the seasonal indices 𝐼௧ି௦೔(௦೔)  for each seasonality (𝑖) of length 𝑠௜ as described in Equations (12)–(16): 

𝐼௧ି௦೔(௜) = ⎩⎪⎨
⎪⎧𝐼∗௧ି௦భ(௜) , 𝑖 = 1𝐼௧ି௦೔∗(௜)∏ 𝐼௧ି௦ೕ∗(௜)௜ିଵ௝ୀଵ , 𝑖 > 1 (12)

with the individual seasonal indices, 𝐼∗௧ି௦೔(௜) = 1𝑞௜෍𝐼௧ି௦೔ᇱ (௜) , 𝑡 = 1, … , 𝑠௜ (13)

𝐼௧ି௦೔ᇱ(௜) = 1𝑠௜෍𝐼௧,௝ᇱ (௝) , 𝑗 = 1, … , 𝑞௜ (14)
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𝐼௧,௝ᇱ(௜) = 𝑋௧𝐷ഥ௝௜) − ቀ𝑠௜ + 12 − 𝑖ቁ 𝑇଴ , 𝑗 = 1, … , 𝑠௜ , 𝑡 = 𝑗, 𝑗 + 𝑠௜ , … , (𝑞௜ − 1)𝑠௜ (15)

𝐷ഥ௝(௜) = ଵ௤೔ ∑ 𝑋௧௤೔௞ୀଵ ,  𝑗 = 1, … , 𝑠௜;  𝑡 = 𝑗, 𝑗 + 𝑠௜ , … , 𝑗 + (𝑞௜ − 1)𝑠௜  (16)

where 𝑞௜ is the maximum number of complete cycles of length 𝑠௜ that exist in the series. 𝑖 refers to 
the seasonality considered, so that 𝑖 =  1, … ,𝑛௦. 

Brockwell and Davis [27] proposed another method, in which the calculation of seasonality is 
done by obtaining the weights of the series against the average values of the cyclic pattern. This 
methodology is adopted by the National Institute of Standards and Technology (NIST) [28]. This 
method has also been adapted to multiple seasonality, and the proposed method is described in the 
following steps: 

Step 1: 
For each seasonality, it is necessary to reorganize the data and obtain the means in each internal 

position within the seasonality as the average of the values obtained. In this way, the values 𝐴௠(𝑖) are 
obtained, for each seasonality of length 𝑠௜ and that occurs 𝑛௤ times in the data series, as shown in 
Equation (17): 

𝐴௠(𝑖) = ∑ 𝑋(௠ିଵ)∗௦೔ା௝௦೔௝ୀଵ 𝑠௜ ,𝑚 = 1, … ,𝑛௤ (17)

Step 2: 
For each seasonality, the proportion of the series over the average is obtained. There are 𝑚௜ 

occurrences of seasonal cycles in the range considered of length 𝑠௜. 
 1 2 … q 
1 𝑋ଵ/𝐴ଵ(௜) 𝑋௦೔ାଵ/𝐴ଶ(௜)  𝑋௦೔ାଵ/𝐴ଶ(௜) 

…     𝑠௜ 𝑋௦೔/𝐴ଵ(௜) 𝑋ଶ௦೔/𝐴ଶ(௜)  𝑋௠భ௦೔ାଵ/𝐴௠೔(௜)  

Step 3: 
The provisional seasonal indices of each seasonality on the series are obtained as follows: 

𝐼ଵି௦೔∗(௜) = 𝑋ଵ𝐴ଵ(𝑖) + 𝑋௦೔ାଵ𝐴ଶ(𝑖) + ⋯+ 𝑋(𝑚𝑖ିଵ)௦೔ାଵ𝐴௠೔(𝑖)𝑚௜  
 

𝐼଴∗(௜) = 𝑋௦೔𝐴ଵ(𝑖) + 𝑋ଶ௦೔𝐴ଶ(𝑖) + ⋯+ 𝑋௠೔௦೔ାଵ𝐴௠೔(𝑖)𝑚௜  
 

Step 4: 
The definitive seasonal indices, shown in Equation (18) are obtained taking into account that 

they are nested, and therefore the seasonal indices by removing the first one, need to compensate for 
the effect produced in the indices considered prior to the one calculated. 

𝐼௧ି௦೔(௜) = ⎩⎪⎨
⎪⎧𝐼∗௧ି௦భ(௜) , 𝑖 = 1, 𝑡 = 1, … 𝑠௜𝐼௧ି௦೔∗(௜)∏ 𝐼௧ି௦ೕ∗(௜)௜ିଵ௝ୀଵ , 𝑖 > 1, 𝑡 = 1, … 𝑠௜ (18)
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Finally, the initialization method proposed by Granger and Newbold [26], named the “normal” 
method, has been adapted, where the values of the first cycle are divided by their average. This 
proposal is described by Equations (19) and (20): 𝐼∗௧ି௦೔(𝑖) = 𝐷௧𝐷ഥ௦೔ , 𝑡 = 1, … , 𝑠௜ (19)

𝐼௧ି௦೔(௜) = ⎩⎪⎨
⎪⎧𝐼∗௧ି௦భ(𝑖) , 𝑖 = 1

𝐼௧ି௦೔∗(𝑖)∏ 𝐼௧ି௦ೕ∗(௝)௜ିଵ௝ୀଵ , 𝑖 > 1 (20)

4. Results 

The proposed new methods and older methods published in [6,25,26] were applied to the hourly 
electricity demand series in Spain in the period 1999 to 2004. Figure 1 shows the time series worked. 
This period is characterized by strong continued growth and marked seasonality. This will allow 
working with models with clear seasonality and trend. 

 

Figure 1. Spanish hourly electricity demand in the period 1998 to 2004. 

The analysis has been raised in the form of an experimental design. The main factors to analyze 
are the different methods to estimate the initial values of level, trend, and seasonality. It has been 
used as two seasonal patterns. It is important to note that, when performing this analysis, the 
influence of the meteorological variables has been considered as a noise factor, so that windows have 
been created in the four seasons of the year where the analysis was performed. Within the same 
context, several replicas of the analysis have been included, using the different years.  

The response variables used were the MAPE (see Equation (20)), an indicator of forecast 
accuracy widely used in the time series analysis [29]. To obtain the response variable, the seven-week 
series have been used randomly extracted from the series, although always taking into account that 
they belong to a specific season of the year—having at least six series in each seasonal period and 
each year. 𝑀𝐴𝑃𝐸(%) = 100 1ℎ෍ห𝑋෠௧ − 𝑋௧ห|𝑋௧|௛  (20)
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The process of comparing the initial values needs a specific methodology, since once the 
parameter optimization is performed, the differences between them are lost [9,24]. This situation can 
be avoided by performing the analysis based on the forecasts directly from the initial values and 
without adjusting. It is also necessary that the model does not cushion the results, which implies that 
the parameters used must be 𝛼 = 0, 𝛾 = 0, and 𝛿(௜) = 0 for all seasons. Table 4 shows all methods 
both proposed and published in the literature that will be used to initialize the level, trend, and 
seasonality factors of nHWT models. 

Table 4. The factors and initialization methods analyzed. 

Factor Type 
Initialization Methods 

New Methods Older 
Level Controllable Moving average, average  First value [25], Taylor [6]  
Trend Controllable Overall, two periods  Newbold [26], Taylor [6] 

Seasonality Controllable Normal, Winters, NIST  Simple [6] 

The names used are consistent with the methods presented in the previous section. In addition, 
they have been carried out in four different years, which is an additional factor to consider. The 
models studied have been 𝐴𝑀𝐶ଶସ,ଵ଺଼, 𝐴𝐴𝐶ଶସ,ଵ଺଼, 𝑀𝐴𝐶ଶସ,ଵ଺଼, and 𝑀𝑀𝐶ଶସ,ଵ଺଼. 

The design of experiments includes 4096 tests, three controllable multilevel factors, and a noise 
factor that is the period of the year replicated for four different years. This study is shown in Table 5. 

Table 5. Analysis of the variance for the factors studied using the models with multiplicative trend. 

 Source Sum of Squares df Mean Square F-Ratio p-Value 
 Main effects    

A Level 283.89 3 94.63 6.66 0.0002 
B Trend 2.96E6 3 984124. 69240.76 0.0000 
C Seasonality 1099.63 3 366.52 25.79 0.0000 
D Model 19.36 1 19.36 1.36 0.2432 
E Season 91.29 3 30.43 2.14 0.0931 
 Interactions     
 AB 876.46 9 97.3843 6.85 0.0000 
 BC 300.32 9 33.3691 2.35 0.0124 
 BE 296.07 9 32.8968 2.31 0.0138 
 CD 189.57 3 63.1903 4.45 0.0040 
 Residuals 28483.0 2004 14.2131   
 Total  2.98E6 2047    

The first action taken, regardless of the design, was to be clear if there are significant differences 
between the models and from there determine which options to use. The result is shown in Figure 2, 
where you can see how the groups with additive trend differ significantly from the groups with 
multiplicative trend. Thus, the design will be separated in two to address each trend by its side. 
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Figure 2. Means and Fisher’s LSD (least significant differences) diagram of the MAPE obtained 
against the nHWT models considered. 

Table 5 shows the results of the ANOVA (analysis of variance) obtained during the design. Only 
those significant factors and interactions are shown. This ANOVA has been carried out using the 
models with multiplicative trend and in response to the MAPE. 

It is appreciated how the use of different seasonal methods is not significant, while the rest of 
the factors are. This model is also able to minimize the effect of the seasons of the year, becoming a 
nonsignificant factor, due to the influence of the trend being superior to that of the other parameters. 

The same analysis performed on the models with additive trend offers slightly different results. 
Table 6 shows the ANOVA of this analysis. Only the significant factors and interactions are shown. 
The behavior is similar, although the additive trend methods are more sensitive to the annual period 
considered and the seasonality method considered. 

Table 6. Analysis of the variance for the factors studied using the models with additive trend, without 
adjustment. 

 Source 
Sum of 
Squares 

df 
Mean 

Square 
F-ratio 

p-
Value 

 Main effects    
A Level 0.8485 3 0.282849 5.59 0.0008 
B Trend 1.3228 3 0.440938 8.71 0.0000 

C Seasonality 1864.54 3 621.514 12276.0
7 

0.0000 

D Model 73.2721 1 73.2721 1447.26 0.0000 
E Season 1.1902 3 0.396725 7.84 0.0000 
 Interactions     
 AE 1.19074 9 0.132305 2.61 0.0053 
 BD 1.1674 3 0.389135 7.59 0.0000 
 CD 299.458 3 99.8192 1971.62 0.0000 

 Residuals 102.218 201
9 

0.0506281   

 Total  2345.21 204
7 

   

The analysis for each factor is shown in the graphs of Figure 3. This figure shows the average 
graphs of the different factors separated by the trend method. MAPE (%) is displayed before 
optimizing. You can see how the behaviors are different depending on the trend. For those with 
multiplicative trend only the method proposed by Taylor is significantly different, both for the level 
and for the trend, but not for the seasonality. However, for additive trend methods, there are 
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differences in all cases. Seasonal values in additive trend methods show differences between them, 
with the simple method and NIST being the best results. 

 

Figure 3. Mean graphs for the MAPE according to the initialization methods analyzed. Left column: 
Additive trend methods, right column: Multiplicative. From top to bottom: Level, trend, and 
seasonality. The levels used are those described in Table 4. 

Following these results, the values obtained during the experiment were analyzed, and each of 
the analyzed factors was studied separately. 

4.1. Trend Analysis 

The trend determines the behavior of the series in the long term. Using the seven-week series, 
this influence is remarkable. The models that include multiplicative trend obtain results for the trend 
close to 1. It is difficult to assess this situation. However, with the additive trend models, more 
information can be obtained. The distribution of the initial values for the additive trend is shown in 
Figure 4. It should be noted that the initial value of the Newbold method is always 0, and that the 
overall method has little variability. This is not the case with the two-period method. This tells us 
that the larger the set of data we take for the calculation of initial values, the more the variability is 
reduced. 
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Figure 4. Distribution of initial values obtained for the trend in additive trend models 𝐴𝑀𝐶ଶସ,ଵ଺଼ and 𝐴𝐴𝐶ଶସ,ଵ଺଼. 

Taylor’s method has a different behavior. Its variability is much greater than the rest. This is in 
contrast to using only the first two periods, in addition to introducing the contribution of the minor 
seasonality to obtain the overall trend. 

4.2. Level Analysis 

The analysis on the level shown in Figure 5 reveals that the level values in the additive trend 
models are close. However, following what has been verified in the ANOVA, they are clearly 
significant when determining the accuracy of the model. The fact that Taylor’s method for the level 
is mixed, and that the trend has been previously calculated, causes this method to decrease 
variability, transferring it to the trend. For cases of multiplicative trend, the results are very similar 
to those obtained in this analysis. 

 
Figure 5. Distribution of the initial values obtained for the level in the additive trend models 𝐴𝑀𝐶ଶସ,ଵ଺଼ y 𝐴𝐴𝐶ଶସ,ଵ଺଼. 

4.3. Seasonality Analysis 

The ANOVA indicates that there are significant differences only in the additive trend models. 
Therefore, this analysis focuses on these models. There are two large groups between which you can 
include the original adapted Winters method: The NIST method and the simple adapted one. The 
analysis focuses on these two methods—simple and Winters—and the results obtained with the 
AMC24,168 model have been used. Therefore, the initial values for the 24- and 168-hour length 
seasonality are shown. Figure 6 shows the distribution of the initial values for these seasonalities 
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using the simple method. Similarly, Figure 7 reflects this same distribution but using the Winters 
method. 

 
Figure 6. Distribution of the initial seasonal indices for the AMC24,168 model using the simple method. 
In the left part, the seasonality of 24 hours is used, and in the right part the seasonality of 168 hours 
is used. The central line represents the average of the values, regardless of the time of the year, while 
the shaded area represents the variability with ± standard deviation. 

 

Figure 7. Distribution of the initial seasonal indices for the AMC24,168 model using the Winters method. 
In the left part, the seasonality of 24 hours is used, and in the right part the seasonality of 168 hours 
is used. The central line represents the average of the values, regardless of the time of the year, while 
the shaded area represents the variability with ± standard deviation. 

It can be seen how the simple method has a lower variability in obtaining the seasonal indices 
of 24 hours, which is accompanied by a lower variability in the seasonal index of 168 hours. This 
indicates that the simple method ensures that the initial values are better suited to the seasonal 
patterns shown in the series. That is why it shows a smaller MAPE series. Moreover, you can see how 
the daily seasonal index is the primary index, and the weekly index has to be adapted according to 
the series. You might think that this situation occurs by the method of obtaining the initial values, 
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where the first seasonality is considered the daily seasonality. However, we have performed tests 
where the first seasonality considered is the weekly one, and the results are the same. 

5. Discussion 

As a result of the analyses carried out in the study, it can be seen how the use of one or another 
method of obtaining initial values can greatly affect the accuracy of the forecasts. Although once the 
values of the parameters are optimized, these differences can be minimal (as other authors already 
describe), their influence on accuracy is clear. As a consequence, the parameters may not be optimal 
starting from unsuitable initial values, which complicates the optimization of the model in the 
adjustment, and later, in the forecasts. 

The first impression is to see how multiplicative trend models start with a much higher MAPE 
than additive trend models do. In principle, it could be thought that it is due to the trend method 
used, but if the MAPE values are observed in Figure 3b, it is observed how this is not the case, but 
the accuracy is worsened by the rest of the equations with the trend. Clearly, the work of the 
parameters in this case is to mitigate the effect of the initial seasonal and level values. It has also been 
observed that the result of the MAPE depends a lot on the trend and seasonality methods used. This 
does not mean that one method is better than another method, but there are differences between them 
at the initial state that the model must deal with. For each group of methods, we tried to locate 
differences within the trend, level, and seasonal methods, looking for the MAPE of the model without 
optimizing. The cases of multiplicative trend, for example, do not show large differences between 
initialization methods. On the contrary, the methods that use the additive trend do show a great 
dependence on how to obtain the initial values. Another factor to highlight is the behavior of seasonal 
indices. Depending on the method, a greater or lesser variability can be observed. 

Thus, for the multiple seasonal methods of additive trend it is proposed to use the Taylor method 
for the level, the overall method for the trend, and the simple method or that of the NIST for 
seasonality. For models with a multiplicative trend, the use of the average method for the level, the 
Granger and Newbold method for the trend, and any of the methods proposed for seasonality are 
proposed. 

6. Conclusions 

In this article, we have presented new methods of obtaining initial values for multiple seasonal 
Holt–Winters models. These methods are based on the adaptation of existing methods for models 
with a single seasonality. In addition, a comparative analysis between our proposals and well-known 
methods published in the literature has been carried out in order to determine their influence on the 
accuracy of the models. All these initialization methods have been applied to the prediction of the 
electricity demand time series in Spain, in a period between 1999 and 2004. The characteristics of the 
series allow all methods to be analyzed effectively. An experimental design has been performed in 
which MAPE has been analyzed as a response variable, using the different initialization methods of 
the smoothing equations as factors to influence the response variable. The results show that the 
influence of the methods of obtaining initial values is greater on multiple seasonal Holt–Winters 
models with an additive trend. Finally, and based on the results obtained, a proposal on which 
method of initialization to use has been made. 
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Appendix A 

The multiple seasonal Holt–Winters formulae are shown in Table A1. They are organized 
according to the trend (rows) and seasonal method (columns), as described in [8]. 

Table A1. Multiple seasonal methods equations. 

Seasonality 

  

M
ultipli-

cative 

A
dditive 

N
one 

  

𝑆௧ = 𝛼𝑋௧∏𝐼௧ି௦೔ (௜)௜ + (1−𝛼 )𝑆௧ିଵ 
𝐼௧ (௜)=𝛿 (௜ ) 𝑋௧𝑆௧ ∏𝐼௧ି௦ೕ (௝ )

௝ஷ௜  +(1−
−𝛿 (௜ ))𝐼௧ି௦೔ (௜)

 
𝑋 ෠௧ (𝑘 )= 𝑆௧ ෑ𝐼௧ି௦೔ ା௞ (௜)

௜
+𝜑஺ோ ௞𝜀௧  

𝑆௧ = 𝛼(𝑋௧ −෍𝐼௧ି௦೔ (௜ )௜ )++ (1−𝛼 )𝑆௧ିଵ  
𝐼௧ (௜)=𝛿 (௜ )ቌ𝑋௧ −𝑆௧ −෍𝐼௧ି௦ೕ (௝ )

௝ஷ௜ ቍ+
+(1−𝛿 (௜ ))𝐼௧ି௦೔ (௜)

 
𝑋 ෠௧ (𝑘 )= 𝑆௧ +෍𝐼௧ି௦೔ ା௞ (௜)௜

+𝜑஺ோ ௞𝜀௧  

𝑆௧ = 𝛼𝑋௧ + (1−𝛼 )𝑆௧ିଵ 
𝑋 ෠௧ (𝑘 )= 𝑆௧ +𝜑஺ோ ௞𝜀௧  

N
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Trend 𝑆௧ = 𝛼𝑋௧∏𝐼௧ି௦೔ (௜)௜ + (1−𝛼 )(𝑆௧ିଵ +𝑇௧ିଵ ) 
𝑇௧ =𝛾 (𝑆௧ −𝑆௧ିଵ )+ (1−𝛾 )𝑇௧ିଵ  

𝐼௧ (௜)=𝛿 (௜ ) 𝑋௧𝑆௧ ∏𝐼௧ି௦ೕ (௝ )
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𝑆௧ = 𝛼(𝑋௧ −෍𝐼௧ି௦೔ (௜ )௜
)++ (1−𝛼 )(𝑆௧ିଵ +𝑇௧ିଵ ) 

𝑇௧ =𝛾 (𝑆௧ −𝑆௧ିଵ )+ (1−𝛾 )𝑇௧ିଵ  
𝐼௧ (௜)=𝛿 (௜ )ቌ𝑋௧ −𝑆௧ −෍𝐼௧ି௦ೕ (௝ )

௝ஷ௜ ቍ+(1−
−𝛿 (௜ ))𝐼௧ି௦೔ (௜)

 
𝑋 ෠௧ (𝑘 )= 𝑆௧ +𝑘𝑇௧ +෍𝐼௧ି௦೔ ା௞ (௜)௜

+𝜑஺ோ ௞𝜀௧  

𝑆௧ = 𝛼𝑋௧ + (1−𝛼 )(𝑆௧ିଵ +𝑇௧ିଵ ) 
𝑇௧ =𝛾 (𝑆௧ −𝑆௧ିଵ )+ (1−𝛾 )𝑇௧ିଵ 
𝑋 ෠௧ (𝑘 )= 𝑆௧ +𝑘𝑇௧ +𝜑஺ோ ௞𝜀௧  
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Table A1 (cont.). Multiple seasonal methods equations 
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Although they share a common underlaying structure, differences are notable in the equations. 𝑆௧ stands for the level equation. 𝑇௧ stands for an additive trend smoothing equation, whereas 𝑅௧ 
stands for a multiplicative one. This name has been chosen according to Pegels’ classification. 𝐼௧(௜) are 
the seasonal indices; there are as many indices as seasonalities considered. The superscript (𝑖) stands 
for the seasonality of length 𝑠௜ considered. 𝛼, 𝛽, and 𝛿(௜) are the smoothing parameters. 𝑋௧ are the 
observed values and 𝑋෠௧(𝑘) are the k-ahead forecasted values. The factor 𝜙 stands for the damping 
factor when using a damping trend, regardless of it being additive or multiplicative. 𝜑஺ோ is the factor 
of the adjustment with the first autocorrelation error. When the factor is null, the model does not 
include this adjustment. 𝜀௧ is the one-step-ahead forecasting error. 
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