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Abstract: A secant-type method is designed for approximating the inverse and some generalized
inverses of a complex matrix A. For a nonsingular matrix, the proposed method gives us
an approximation of the inverse and, when the matrix is singular, an approximation of the
Moore–Penrose inverse and Drazin inverse are obtained. The convergence and the order of
convergence is presented in each case. Some numerical tests allowed us to confirm the theoretical
results and to compare the performance of our method with other known ones. With these results,
the iterative methods with memory appear for the first time for estimating the solution of a nonlinear
matrix equations.

Keywords: nonlinear matrix equation; iterative method; secant method; convergence; singular value
decomposition

1. Introduction

Recently, many iterative methods without memory have been published for approximating the
inverse or some generalized inverse of a complex matrix A of arbitrary order (see, for example, [1–6]
and the references therein). This topic has a significant role to play in many areas in applied sciences
and engineering, such as multivariate analysis, image and signal processing, approximation theory,
cryptography, etc. (see [7]).

The discretization process of boundary problems or partial differential equations by means of
divided difference technique or finite elements yields to an important number of linear systems
being solved. This statement is applicable both in equations with integer derivatives and in the case
of fractional derivatives (see, for example, [8,9]). In these linear problems, usually the matrix of
coefficients is too big or ill-conditioned to be solved analytically. Thus, iterative methods can play a
key role.

The main purpose of this manuscript is to design a secant-type iterative scheme with memory,
free for inverse operators and efficient under the point of view of CPU-time, for estimating the inverse
of a non-singular complex matrix. We also argue the generalization of the proposed scheme for
approximating the Drazin inverse of singular square matrices and the Moore–Penrose inverse of
complex rectangular matrices. As far as we know, this is the first time that this kind of methods
with memory is applied to estimate generalized inverses. This might be the first step to develop
higher-order methods with memory in the future. This kind of schemes has proven to be very stable
for scalar equations; we expect a similar performance in the case of matrix equations.
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Let us consider a non-singular complex matrix A of size n× n. The extension of the iterative
methods for the real equation g(x) = ax − 1 = 0 to obtain the inverse of A, that is the zero of the
matrix function G(X) = X−1 − A, gives us the so-called Schulz-type schemes.

The most known of these schemes to estimate A−1 is the Newton–Schulz method [10],
whose iterative expression is

Xk+1 = Xk(2I − AXk), k = 0, 1, . . . , (1)

where I denotes the identity matrix of order n. Schulz [11] demonstrated that the eigenvalues of
matrix I − AX0 must be less than 1 to assure the convergence of the scheme in Equation (1). Taking
into account that the residuals Ek = I − AXk in each iteration of Equation (1) satisfy ‖Ek+1‖ ≤ ‖Ek‖2,
Newton–Schulz method has quadratic convergence. In general, it is known that this scheme converges
to A−1 with X0 = αA∗ or X0 = αA, where 0 < α < 2/ρ(A∗A), ρ(·) denotes the spectral radius, and A∗

is the conjugate transpose of A. Such schemes are also used for sensitivity analysis when accurate
approximate inverses are needed for both square and rectangular matrices.

On the other hand, for a nonsingular matrix A ∈ Cn×n, Li et al. [12] suggested the scheme

Xk+1 = Xk

(
mI − m(m− 1)

2
AXk +

m(m− 1)(m− 2)
3!

− · · ·+ (−1)m−1(AXk)
m−1

)
, m = 2, 2, . . . ,

with X0 = αA∗. They proved the convergence of m-order of {Xk} to the inverse of A. This result
was extended by Chen et al. [13] for computing the Moore–Penrose inverse. Other iterative schemes
without memory have been designed for approximating the inverse or some generalized inverses.

In this paper, we construct an iterative method with memory (that is, k + 1 iterate is obtained
not only from the iterate k but also from other previous iterates) for computing the inverse of a
nonsingular matrix. In the iterative expression of the designed method, inverse operators do not
appear. We prove the order of convergence of the proposed scheme and we extend it for approximating
the Moore–Penrose inverse of rectangular matrices and the Drazin inverse of singular square matrices.

For analyzing the order of convergence of an iterative method with memory, we use the concept
of R-order introduced in [14] by Ortega and Rheinboldt and the following result.

Let us consider an iterative method with memory (IM) that generates a sequence {Xk} of
estimations to the solution ξ, and let us also assume that this sequence converges to ξ. If there
exists a nonzero constant η and nonnegative numbers ti, 0 ≤ i ≤ m such that the inequality

|ek+1| ≤ η
m

∏
i=0
|ek−i|ti (2)

holds, where ek is the error of iterate Xk, then the R-order of convergence of (IM) satisfies

OR((IM), ξ) ≥ s∗, (3)

where s∗ is the unique positive root of the polynomial

sm+1 −
m

∑
i=0

tism−i = 0. (4)

The proof of this result can be found in [14].
From here, the work is organized as follows. In the next section, we describe how a secant-type

method, free of inverse operators, is constructed for estimating the inverse of a nonsingular complex
matrix, proving its order of convergence. In Sections 3 and 4, we study the generalization of the
proposed methods for computing the Moore–Penrose inverse of a rectangular complex matrix and the
Drazin inverse of a singular square matrix. Section 5 is devoted to the numerical test for analyzing
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the performance of the proposed schemes and to confirm the theoretical results. With a section of
conclusions, the paper is finished.

2. A Secant-Type Method for Matrix Inversion

Let us recall that, for an scalar nonlinear equation g(x) = 0, the secant method is an iterative
scheme with memory such that

xk+1 = xk −
g(xk)

αk
,

with αk satisfying g(xk)− g(xk−1) = αk(xk − xk−1), k ≥ 0, given x0 and x−1 as initial approximations.
For a nonlinear matrix equation G(X) = 0, where G : Cn×n → Cn×n, the secant method can be

described as
Xk+1 = Xk − A−1

k G(Xk), k ≥ 0,

where X0 and X−1 are initial estimations and being Ak a suitable linear operator satisfying

Ak+1(Xk+1 − Xk) = G(Xk+1)− G(Xk) ⇔ Ak+1Sk = Yk,

where Sk = Xk+1 − Xk and Yk = G(Xk+1)− G(Xk). Thus, it is necessary to solve, at each iteration, the
linear system Ak+1Sk = Yk. It is proven in [15] that, with this formulation, secant method converges to
the solution of G(X) = 0.

Let us consider an n× n nonsingular complex matrix A. We want to construct iterative schemes
for computing the inverse A−1 of A, that is, iterative methods for solving the matrix equation

G(X) = X−1 − A = 0. (5)

The secant method was adapted by Monsalve et al. [15] to estimate the solution of Equation (5), that is
the inverse of A, when the matrix is diagonalizable. The secant method applied to G(X) = X−1 − A
(see [15]) gives us:

Xk+1 = Xk − Sk−1 [G(Xk)− G(Xk−1)]
−1 G(Xk) (6)

= Xk − (Xk − Xk−1)
[

X−1
k − X−1

k−1

]−1
(X−1

k − A).

Now, we extend the result presented in [15] to any nonsingular matrix, not necessarily
diagonalizable. If A is a nonsingular complex matrix of size n× n, then there exist unitary matrices U
and V, of size n× n, such that

U∗AV = Σ = diag(σ1, σ2, . . . , σn), (7)

being σ1 ≥ σ2 ≥ . . . ≥ σn > 0 the singular values of A.
Let us define Dk = V∗XkU, that is Xk = VDkU∗. Then, from Equation (6),

VDk+1U∗ = VDkU∗ − (VDkU∗ −VDk−1U∗)(UD−1
k V∗ −UD−1

k−1V∗)−1(UD−1
k V∗ −UΣV∗).

Several algebraic manipulations allow us to assure that

Dk+1 = Dk − (Dk − Dk−1)(D−1
k − D−1

k−1)
−1(D−1

k − Σ). (8)

If we choose initial estimations, X−1 and X0, such that D−1 = V∗X−1U and D0 = V∗X0U are
diagonal matrices, then all matrices Dk are diagonal and therefore DiDj = DjDi, for all i, j. Thus,
from Equation (8), we assure

Dk+1 = Dk−1 + Dk − Dk−1ΣDk,
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and, from this expression, we propose the secant-type method:

Xk+1 = Xk−1 + Xk − Xk−1 AXk, k = 0, 1, 2, . . . (9)

being X0 and X−1 initial approximations given.
The analysis of the convergence of the iterative method with memory in Equation (9) is presented

in the following result.

Theorem 1. Let A ∈ Cnxn be a nonsingular matrix, with singular value decomposition U∗AV = Σ. Let X0

and X−1 be such that V∗X−1U and V∗X0U are diagonal matrices. Then, sequence {Xk}, obtained by
Equation (9), converges to A−1 with super-linear convergence.

Proof. Let us consider U and V unitary matrices such that the singular values decomposition in
Equation (7) is satisfied, where σ1 ≥ σ2 ≥ . . . ≥ σn > 0 are the singular values of A.

We define Dk = V∗XkU, that is Xk = VDkU∗, for k ≥ −1. From Equation (9), we have

VDk+1U∗ = VDk−1U∗ + VDkU∗ −VDk−1U∗UΣV∗VDkU∗,

then
VDk+1U∗ = V(Dk−1 + Dk − Dk−1ΣDk)U∗

and therefore
Dk+1 = Dk−1 + Dk − Dk−1ΣDk,

where Dk = diag(d1
k , d2

k , . . . , dn
k ).

Then, component by component, we obtain

dj
k+1 = dj

k−1 + dj
k − dj

k−1dj
kσj, j = 1, 2, . . . , n. (10)

By subtracting
1
σj

from both sides of Equation (10) and denoting ej
k = dj

k − 1/σj, we get

ej
k+1 = dj

k−1 + dj
k − dj

k−1dj
kσj −

1
σj

(11)

= −σje
j
kej

k−1

From Equation (11), we conclude that, for each value of j from 1 to n, dj
k+1 in Equation (10)

converges to
1
σj

with order of convergence of the unique positive root of λ2 − λ − 1 = 0, that is,

λ ≈ 1.618 (by using the result of Ortega–Rheinboldt mentioned in the Introduction).
Then, for each j, 1 ≤ j ≤ n, there exist a {cj

k}k satisfying cj
k > 0, ∀k and (cj

k)k tends to zero when k
tends to infinity. Moreover, ∣∣∣ej

k+1

∣∣∣ ≤ cj
k

∣∣∣ej
k

∣∣∣ , 1 ≤ j ≤ n.

Thus, ∥∥∥Dk+1 − Σ−1
∥∥∥2

2
=

n

∑
j=1

(ej
k+1)

2 ≤
n

∑
j=1

(cj
k)

2(ej
k)

2 ≤ nm2
k

∥∥∥Dk − Σ−1
∥∥∥2

2
,

where
mk = max

1≤j≤n
{cj

k}.
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Therefore,∥∥∥Xk+1 − A−1
∥∥∥

2
=

∥∥∥VDk+1U∗ −VΣ−1U∗
∥∥∥

2

=
∥∥∥V(Dk+1 − Σ−1)U

∥∥∥
2

≤ ‖V‖2

∥∥∥(Dk+1 − Σ−1)
∥∥∥

2
‖U∗‖2 =

∥∥∥(Dk+1 − Σ−1)
∥∥∥

2

≤
√

nmk

∥∥∥(Dk − Σ−1)
∥∥∥

2

≤
√

nmk

∥∥∥(Xk − A−1)
∥∥∥

2
,

which allows us to affirm that {Xk} converges to A−1.

On the other hand, Highan in [10] introduced the following definition for the stability of the
iterative process Zk+1 = H(Zk), with a fixed point Z∗. If we assume that H is Frechét differentiable
in Z∗, the iteration is stable in a neighborhood of Z∗ if the Frechét derivative H′(Z∗) has bounded
powers, that is, there exists a positive constant C such that

‖H′(Z∗)k‖ ≤ C, ∀k > 0.

Therefore, the following result can be stated for the secant method.

Theorem 2. The secant method in Equation (9) for the estimation of inverse matrix is a stable iterative scheme.

Proof. The proof is made demonstrating that H′(Z∗) is an idempotent matrix.
The secant-type method described as a fixed point scheme, can be written as

H(Zk) = H

(
Xk

Xk−1

)
=

(
Xk−1 + Xk − Xk−1 AXk

Xk

)
.

It is easy to deduce that

H′
(

Xk
Xk−1

)
Q =

(
Q1 + Q2 − Xk−1 AQ1 −Q2 AXk

Q1

)
,

where Q = (Q1, Q2)
T . Then, for Z = Z∗ = (A−1, A−1)T , we have

H′(Z∗)Q =

(
0

Q1

)
=

(
0 0
I 0

)(
Q1

Q2

)
.

Thus, H′(Z∗) is an idempotent matrix and the iteration is stable.

3. A Secant-Type Method for Approximating the Moore–Penrose Inverse

Now, we would like to extend the proposed iterative scheme for computing the Moore–Penrose
inverse [7] of a m× n complex matrix A, denoted by A†. It is the unique n×m matrix X satisfying
the equations

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

If rank(A) = r ≤ min{m, n}, by using the singular value decomposition of A, we obtain

A = U

[
Σ 0
0 0

]
V∗,



Mathematics 2020, 8, 2 6 of 13

being Σ = diag(σ1, σ2, . . . , σr), σ1 ≥ σ2, . . . ,≥ σr > 0. U and V are unitary matrices with U ∈ Cm×m

and V ∈ Cn×n. It is also known that

A† = V∗
[

Σ−1 0
0 0

]
U,

where Σ−1 = diag(1/σ1, 1/σ2, ..., 1/σr).
The convergence of the method in Equation (9) for Moore–Penrose inverse is established in the

following result.

Theorem 3. Let A ∈ Cm×n be a matrix with rank(A) = r, with singular value decomposition

U∗AV =

(
Σ 0
0 0

)
.

Let X−1 and X0 be initial estimations such that

V∗X−1U =

(
Σ−1 0

0 0

)
and V∗X0U =

(
Σ0 0
0 0

)
,

being Σ−1 and Σ0 diagonal matrices of size r× r. Then, sequence {Xk}, obtained by Equation (9), converges to
A† with super-linear order of convergence.

Proof. Given the singular value decomposition of A, for any fixed arbitrary value of k, we define
matrix Dk as

Dk = V∗XkU =

(
Σk 0
0 0

)
,

being Σk ∈ Cr×r. Thus, by using the iterative expression in Equation (9), we obtain(
Σk+1 0

0 0

)
=

(
Σk−1 + Σk − Σk−1ΣΣk 0

0 0

)
.

Therefore, as Σ−1 and Σ0 are diagonal matrices, so are all matrices Σk, and the expression

Σk+1 = Σk−1 + Σk − Σk−1ΣΣk

represents r scalar uncoupled iterations converging to
1
σi

, 1 ≤ i ≤ r with super-linear order, that is

to say,
‖Σk+1 − Σ−1‖2

2 ≤ rM2
k‖Σk − Σ−1‖2

2,

with Mk = max1≤i≤r{c2
k}, being ci

k > 0 such that sequence {ci
k} tends to zero for k tending to infinity.

With an analogous argument as in Theorem 1,

‖Xk+1 − A†‖2 ≤
√

rmk‖Xk − A†‖2,

which allows us to affirm that {Xk} converges to A†, with the desired order of convergence.

4. A Secant-Type Method for Approximating the Drazin Inverse

Drazin, in 1958 (see [10]), proposed a different kind of generalized inverse, in which some
conditions of the Moore–Penrose inverse and the index of the matrix appeared. The importance of this
inverse has motivated many researchers to propose algorithms for its calculation.
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It is known (see [10]) that the smallest nonnegative integer l, such that rank(Al+1) = rank(Al) is
called the index of A and it is denoted by ind(A). If A is a complex matrix of size n× n, the Drazin
inverse of A, denoted AD, is the unique matrix X satisfying

Al+1X = Al , XAX = X, (AX) = XA,

where l is the index of A.
If ind(A) = 1, then X is called the g-inverse or group inverse of A, and, if ind(A) = 0, then A is

nonsingular and AD = A−1. Let us observe that the idempotent matrix AAD is the projector onR(Al)

along N (Al), whereR(Al) and N (Al) denote the range and null spaces of Al , respectively.
In [16], the following result is presented, which is used in the proof of the main result.

Proposition 1. If PA,B is the projector on a space A along a space B, the following statements hold:

(a) PA,BC = C if and only ifR(C) ⊆ A.
(b) CPA,B = C if and only if N (C) ⊇ B.

Li and Wei [1] proved that the Newton–Schulz method in Equation (1) can be used for
approximating the Drazin inverse, using as initial estimation X0 = αAl , where parameter α is chosen
so that condition ‖I − AX0‖ < 1 is satisfied. One way for selecting the initial matrix used by different
authors is

X0 =
2

tr(Al+1)
Al ,

where tr(·) is the trace of a square matrix. Another fruitful initial matrix is

X0 =
2

2‖A‖l+1
2

Al .

Using two initial matrices of these form, αAl , with α a constant, we want to prove that the
sequence obtained by the secant-type method in Equation (9) converges to the Drazin inverse AD.
In this case, we use a different type of demonstration than those used in the previous cases.

Theorem 4. Let A ∈ Cn×n be a square nonsingular matrix. We choose as initial estimations X0 = α0 Al0 and
X1 = α1 Al1 , with l0, l1 ≥ ind(A). Then, sequence {Xk}k≥0 generated by Equation (9) satisfies the following
error equation

‖AD − Xk+1‖ ≤ ‖AD‖‖A‖2‖AD − Xk−1‖‖AD − Xk‖.

Thus, {Xk}k≥0 converges to AD with order of convergence 1.618, that is, with super-linear convergence.

Proof. Let us define Ek = I − AXk, k = 0, 1, . . .. Then,

Ek+1 = I − AXk+1 = I − A(Xk + Xk−1(I − AXk))

= I − AXk − AXk−1(I − AXk)

= (I − AXk−1)(I − AXk)

= Ek−1Ek.

Therefore, ‖Ek+1‖ ≤ ‖Ek−1‖‖Ek‖. In addition, it is easy to prove that, if we choose X0 and X1 such
that ‖E0‖ < 1 and ‖E1‖ < 1, then ‖Ek‖ < 1, ∀k ∈ N.

Now, we denote ek = AD − Xk the error of iterate k. From the selection of X0 and X1 and by
applying Proposition 1, we establish

AD AXk = Xk = Xk AAD, ∀k ≥ 0.
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Thus,
ek = AD − Xk = AD − AD AXk = AD(I − AXk) = ADEk.

From this identity, there exists k0 ∈ N such that

‖ek‖ ≤ ‖AD‖‖Ek‖ ≤ ‖AD‖‖E0‖k‖E1‖k, ∀k ≥ k0.

Thus, {‖ek‖}k≥0 tends to zero and therefore {Xk}k≥0 tends to AD.
On the other hand,

‖ek+1‖ = ‖Xk+1 − AD‖ = ‖AD AXk+1 − AD AAD‖
= ‖AD(AXk+1 − AAD)‖ ≤ ‖AD‖‖Aek+1‖ (12)

Now, we analyze Aek+1.

Aek+1 = A(AD − Xk+1) = AAD − I + I − AXk+1 = AAD − I + Ek+1 = AAD − I + Ek−1Ek,

but

Ek−1Ek + AAD − I = (I − AXk−1)(I − AXk) + AAD − I

= (I − AAD + AAD − AXk−1)(I − AAD + AAD − AXk) + AAD − I

= (I − AAD + Aek−1)(I − AAD + Aek) + AAD − I

= (I − AAD)2 + (I − AAD)Aek + Aek−1(I − AAD) + Aek−1 Aek + AAD − I

= Aek−1 Aek.

In the last equality, we use that (I − AAD)2 = I − AAD, in fact (I − AAD)m = I − AAD, ∀m ∈ N.
In addition, (I − AAD)Aek = 0 and Aek−1(I − AAD) = 0.

Therefore,

‖ek+1‖ ≤ ‖AD‖‖Aek+1‖ = ‖AD‖‖Ek−1Ek + AAD − I‖
≤ ‖AD‖‖A‖2‖ek−1‖‖ek‖.

Finally, by applying the theorem of convergence for iterative methods with memory, as mentioned in
the Introduction, we assure that the order of convergence of secant-type method is the unique positive
root of λ2 − λ− 1 = 0, that is λ = 1.618.

5. Numerical Experiments

In this section, we check the behavior for the calculation of the inverse, Moore–Penrose inverse
and Drazin inverse, of different test matrices A, using the secant method, which we compared with the
Newton–Schulz scheme in Equation (1). Numerical computations were carried out in Matlab R2018b
(MathWorks, Natick, USA) with a processor Intel(R) Xeon(R) CPU E5-2420 v2 at 2.20 GHz. As stopping
criterion, we used ‖Xk+1 − Xk‖2 < 10−6 or ‖F(Xk+1)‖2 < 10−6.

To numerically check the theoretical results, Jay [17] introduced the order of approximate
computational convergence (COC), defined as

order ≈ COC =
ln (‖F(Xk+1)‖2/‖F(Xk)‖2)

ln (‖F(Xk)‖2/‖F(Xk−1)‖2)
.
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In a similar way, the authors presented in [18] another numerical approximation of the theoretical
order, denoted by ACOC, and defined as

order ≈ ACOC =
ln (‖Xk+1 − Xk‖2/‖Xk − Xk−1‖2)

ln (‖Xk − Xk−1‖2/‖Xk−1 − Xk−2‖2)
.

We use indistinctly any of these computational order estimates, to show the accuracy of these
approximations on the proposed method. In the case of vector COC (or ACOC) is not stable, we write
“-” in the corresponding table.

Example 1. In this example, matrix A is a n × n random matrix with n = 10, 100, 200, 300, 400, 500.
The initial estimation used for the Newton–Schulz scheme is X0 = AT/‖A‖2 and for the secant method

X−1 =
AT

‖A‖2 and X0 = 0.5
AT

‖A‖2 .

In Table 1, we show the results obtained by Newton–Schulz and secant-type method for the
different random matrices, the number of iterations, the residuals, and the value of COC. The results
are in concordance with the order of convergence of each scheme. All obtained random matrices are
nonsingular and both methods give us an approximation of the inverse of A. Newton method needs
lower number of iterations than Secant scheme, as was expected, being the first one quadratic and the
latter one super-linear.

Table 1. Results for approximating the inverse of a random matrix (Example 1).

Method n Iter ‖Xk+1− Xk‖2 ‖F(Xk+1)‖2 COC

Newton–Schulz 10 19 5.2× 10−7 1.12× 10−14 2.0005
Secant 10 22 5.4× 10−5 9.8× 10−7 1.8660

Newton–Schulz 100 26 2.0× 10−8 5.4× 10−13 1.9988
Secant 100 36 1.3× 10−6 2.0× 10−7 1.6645

Newton–Schulz 200 32 2.5× 10−12 4.6× 10−12 2.0012
Secant 200 40 1.6× 10−6 1.8× 10−8 1.8866

Newton–Schulz 300 34 3.1× 10−12 5.9× 10−12 1.8888
Secant 300 40 3.7× 10−5 3.6× 10−7 1.8865

Newton–Schulz 400 36 2.2× 10−10 1.9× 10−11 2.0001
Secant 400 43 3.5× 10−7 1.1× 10−8 1.8222

Newton–Schulz 500 33 1.5× 10−7 1.2× 10−11 1.9999
Secant 500 36 9.0× 10−5 2.6× 10−7 1.6666

Example 2. In this example, matrix A is a m× n random matrix for different values of m and n. The initial
matrices are calculated in the same way as in the previous example.

In Table 2, we show the results obtained by Newton–Schulz and secant-type method for the
different random matrices, the number of iterations, the residuals, and the value of ACOC. The results
are in concordance with the order of convergence of each scheme, despite being non-square matrices.
Both methods give us an approximation of the Moore–Penrose inverse of A.
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Table 2. Results for approximating the Moore–Penrose inverse of a rectangular random matrix
(Example 2).

Method m n Iter ‖Xk+1− Xk‖2 ACOC

Newton–Schulz 20 10 14 9.7× 10−12 2.0005
Secant 20 10 13 9.9× 10−10 1.6199

Newton–Schulz 200 100 17 4.1× 10−10 2.0018
Secant 200 100 17 2.02× 10−9 1.6210

Newton–Schulz 300 400 21 2.03× 10−11 2.0007
Secant 300 400 27 1.4× 10−7 1.6267

Newton–Schulz 500 600 23 3.8× 10−9 2.0028
Secant 500 600 31 5.2× 10−10 1.6197

Newton–Schulz 1000 900 25 4.5× 10−8 2.0055
Secant 1000 900 36 2.5× 10−9 1.6205

Example 3. In this example, we want to analyze the performance of the secant method for computing the Drazin
inverse of the following matrix A of size 6× 6 with ind(A) = 2.

A =



1 −1 0 0 0 0
−1 1 0 0 0 0
−1 −1 1 −1 0 0
−1 −1 −1 1 0 0
−1 −1 −1 0 2 −1
−1 −1 0 −1 −1 2


Here, its Drazin inverse is expressed by

AD =



1/4 −1/4 0 0 0 0
−1/4 1/4 0 0 0 0

0 0 1/4 −1/4 0 0
0 0 −1/4 1/4 0 0
0 0 −5/12 −7/12 2/3 1/3
0 0 −7/12 −5/12 1/3 2/3


.

By using the initial matrix X0 =
0.5

tr(A3)
and the same stopping criterion as in the previous examples,

Newton–Schulz method gives us the following information:

• ACOC = 2.0009;
• iter = 11; and
• Exact error ‖AD − X11‖2 = 7.7716× 10−16.

On the other hand, secant method is used with X−1 =
1

tr(A3)
and X0 =

0.5
tr(A3)

, obtaining:

• ACOC = 1.6225;
• iter = 15; and
• Exact error ‖AD − X15‖2 = 1.8539× 10−13.
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Example 4. This is another example for computing the Drazin inverse of the following matrix B of size 12× 12
(see [1]) with ind(B) = 3.

B =



2 0.4 0 0 0 0 0 0 0 0 0 0
−2 0.4 0 0 0 0 0 0 0 0 0 0
−1 −1 1 −1 0 0 0 0 0 0 0 0
−1 −1 −1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 −1 −1 0 0 −1 0
0 0 0 0 1 1 −1 −1 0 0 0 0
0 0 0 −1 −2 0.4 0 0 0 0 0 0
0 0 0 0 2 0.4 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 1 −1 −1 −1
0 0 0 0 0 0 0 0 −1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0.4 −2
0 0 0 0 0 0 0 0 0 0 0.4 2



.

Now, its Drazin inverse is expressed by

AD =



0.25 −0.25 0 0 0 0 0 0 0 0 0 0
1.25 1.25 0 0 0 0 0 0 0 0 0 0
−1.6641 −0.9922 0.25 −0.25 0 0 0 0 −0.0625 −0.0625 0 0.1563
−1.1953 −0.6797 −0.25 0.25 0 0 0 0 −0.0625 0.1875 0.6875 1.3438
−2.7637 −1.0449 −1.875 −1.25 −1.25 −1.25 −1.25 −1.25 1.4844 2.5781 3.3203 6.6406
−2.7637 −1.0449 −1.875 −1.25 −1.25 −1.25 −1.25 −1.25 1.4844 2.5781 4.5703 8.5156
14.1094 6.3008 6.625 3.375 5 −3 −5 −5 −4.1875 −8.5 −10.5078 −22.4609
−19.3242 −8.5078 −9.75 −5.25 −7.5 4.5 7.5 7.5 6.375 12.5625 15.9766 33.7891
−0.625 −0.3125 0 0 0 0 0 0 0.25 −0.25 −0.875 −1.625
−1.25 −0.9375 0 0 0 0 0 0 −0.25 0.25 −0.875 −1.625

0 0 0 0 0 0 0 0 0 0 1.25 1.25
0 0 0 0 0 0 0 0 0 0 −0.25 0.25


.

By using the initial matrix X0 =
0.5

tr(A5)
and the same stoping criterion as in the previous examples,

Newton–Schulz method gives us the following information:

• ACOC = 2.0031;
• iter = 14; and
• Exact error ‖BD − X14‖ = 1.8354× 10−9.

On the other hand, secant method is used with X−1 =
1

tr(A5)
and X0 =

0.5
tr(A5)

, obtaining:

• ACOC = 1.6201;
• iter = 20; and
• Exact error ‖BD − X20‖ = 1.8453× 10−9.

Again, the numerical tests confirm the theoretical results.

Example 5. Finally, in this example, we test Newton–Schlutz and secant methods on several known square
matrices of size n× n, constructed by using different Matlab functions. Specifically, the test matrices are:

(a) A = gallery(′ris′, n). Hankel matrix of size n × n.
(b) A = gallery(′grcar′, n). Toeplitz matrix of size n × n.
(c) A = gallery(′lehmer′, n). Symmetric and positive definite matrix of size n × n, ai,j = i/j, ∀i, j.
(d) A = gallery(′leslie′, n). Leslie matrix of size n × n. This type of matrices appears in problems of

population models.
(e) A = gallery(′invo′, n). Matrix ill-conditioned of size n × n, such that A2 = I.



Mathematics 2020, 8, 2 12 of 13

By using the stopping criterion

‖Xk+1 − Xk‖2 < 10−10 or ‖F(Xk+1)‖2 < 10−10

and the initial matrix X−1 = AT

‖A‖2 and X0 = 0.5 AT

‖A‖2 , we obtain the numerical results that appear in
Table 3. In this cases, as in the previous ones, the proposed method shows good performance in terms
of stability, precision, and number of iterations needed. We must take into account that both schemes
have different orders of convergence, which is displayed in Table 3.

Table 3. Results for approximating the inverse of classical square matrices (Example 5)

Method Matrix n Iter ‖Xk+1− Xk‖2 ‖F(Xk+1)‖ COC

Newton–Schulz Lehmer 10 18 3.5× 10−7 6.3× 10−15 -
Secant Lehmer 10 20 3.9× 10−9 1.7× 10−11 1.6164

Newton–Schulz Hankel 100 8 1.1× 10−5 1.2× 10−11 1.9993
Secant Hankel 100 11 1.9× 10−12 4.4× 10−13 1.6180

Newton–Schulz Toeplitz 200 9 1.6× 10−9 3.2× 10−15 1.9976
Secant Toeplitz 200 11 6.3× 10−11 6.4× 10−11 1.6182

Newton–Schulz Toeplitz 300 9 1.7× 10−9 2.5× 10−15 1.9975
Secant Toeplitz 300 11 6.3× 10−11 6.4× 10−11 1.6182

Newton–Schulz Leslie 400 22 4.3× 10−5 2.3× 10−13 1.9995
Secant Leslie 400 33 4.2× 10−12 1.0× 10−14 1.6177

Newton–Schulz Leslie 500 23 1.6× 10−6 1.4× 10−16 2.0001
Secant Leslie 500 25 1.7× 10−12 3.8× 10−15 1.6070

6. Conclusions

An iterative method with memory for approximating the inverse of nonsingular square complex
matrices, the Moore–Penrose inverse of rectangular complex matrices, and the Drazin inverse of
square singular matrices is presented. As far as we know, it is the first time that a scheme with
memory is employed to approximate the solution of nonlinear matrix equations. The proposed scheme
is free of inverse operators and its iterative expression is simple; therefore, it is computationally
efficient. From particular initial approximations, the convergence is guaranteed for all matrices,
without conditions. Numerical tests allowed us to analyze the performance of the proposed scheme
and confirm the theoretical results.
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