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Abstract: In the recent literature, some fractional one-point Newton-type methods have been
proposed in order to find roots of nonlinear equations using fractional derivatives. In this paper,
we introduce a new fractional Newton-type method with order of convergence α + 1 and compare it
with the existing fractional Newton method with order 2α. Moreover, we also introduce a multipoint
fractional Traub-type method with order 2α + 1 and compare its performance with that of its first step.
Some numerical tests and analysis of the dependence on the initial estimations are made for each
case, including a comparison with classical Newton (α = 1 of the first step of the class) and classical
Traub’s scheme (α = 1 of fractional proposed multipoint method). In this comparison, some cases are
found where classical Newton and Traub’s methods do not converge and the proposed methods do,
among other advantages.

Keywords: nonlinear equations; fractional derivatives; multistep methods; convergence; stability

1. Introduction

Fractional and classical calculations appeared simultaneously around 1695, when Leibniz
and L’Höpital defined the semi-derivative. Additionally, Riemann, Liouville and Euler were interested
in this idea. Since then, fractional calculus has suffered an evolution from theory to the real-world
applications in medicine, economics and engineering, among others, as they can be modeled by means
of differential equations with fractional order derivatives (see, [1–4], for example).

Fractional derivatives or partial derivatives are very suitable procedures for those problems
whose hereditary properties must be preserved. Often, these kind of problems are related to systems of
equations that are nonlinear if the differential equation is nonlinear also. Therefore, the idea of adapting
iterative techniques to solve nonlinear equations by means of fractional derivatives is interesting. It was
the aim of a recent manuscript by Brambila et al. [5], who used the iterative expression of Newton’s,
avoiding the proof of the order of convergence.

We deduced in [6] a Newton-type fractional method for approximating the solution x̄ of
a nonlinear equation f (x) = 0, to achieve the order of convergence 2α and show good numerical
performance. However, it is known (see for example Traub’s book [7]) that in point-to-point methods,
increasing their order implies adding functional evaluations of those derived from the higher orders of
the nonlinear functions. Our initial question is: how does replacing derivatives with fractional ones
affect the convergence order of the iterative method? At this point, we are interested in answering
this question for both point-to-point and multipoint methods. A first result in this direction has
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been published in [8], where a Chebyshev-type scheme is designed using fractional derivatives
and the convergence order is demonstrated 3α. However, there are families of iterative methods of
orders superior to two that use whole derivatives of second or greater order, on which we intend to
work to achieve its extension to the fractional field.

In this section, we introduce some concepts related with fractional calculus. To deepen in this
area, please refer to [2,9] and inside citations.

Given a function f : R −→ R, f ∈ C+∞([a, x]), −∞ < a < x < +∞) being, α ≥ 0, m = [α] + 1,
where [α] is the integer part of α, the fractional derivative of f (x), of Caputo-type, of order α is

(cDα
a ) f (x) =


1

Γ(m− α)

∫ x

a

dm f (t)
dtm

dt
(x− t)α−m+1 , α /∈ N,

dm−1 f (x)
dxm−1 , α = m− 1 ∈ N∪ {0},

(1)

where Γ(x) is a gamma function with x > 0.
The Caputo derivative holds the property of integer derivatives, cDα

a C = 0, C being a constant,
as we can see in [9]. We will use m = 1 in this paper. To prove the convergence results in this paper,
it is necessary to use Taylor power series expansion of a nonlinear function f (x) by using Caputo
derivatives. This is constructed in the following result.

Theorem 1 (Theorem 3, [10]). Let us suppose that cDjα
a f (x) ∈ C([a, b]) for j = 1, 2, . . . , n + 1 where

α ∈ (0, 1], then we have

f (x) =
n

∑
i=0

cDiα
a f (a)

(x− a)iα

Γ(iα + 1)
+ cD(n+1)α f (ξ)

(x− a)(n+1)α

Γ((n + 1)α + 1)
, (2)

with a ≤ ξ ≤ x, for all x ∈ (a, b] where cDnα
a = cDα

a · cDα
a · · · cDα

a (n times composition).

On the other hand, Riemann–Liouville fractional derivative of first kind of f (x), being f : R→ R
an element of L1([a, x]) (−∞ < a < x < +∞) with α ≥ 0, is defined as

Dα
a+ f (x) =


1

Γ(1− α)

d
dx

∫ x

a

f (t)
(x− t)α

dt, 0 < α < 1,

d f (t)
dt

, α = 1.

(3)

It is interesting to notice that Riemann–Liouville derivative satisfies Dα
a+k 6= 0, k being a constant.

For the same reasons than in the case of Caputo fractional derivatives, a Taylor power series of function
f (x) by means of Riemann–Liouville derivatives must be provided (see [11]).

Theorem 2 (Proposition 3.1, [12]). Let us assume the continuous function f : R −→ R has fractional
derivatives of order kα, for any positive integer k and any α, 0 < α ≤ 1; then the following equality holds,

f (x + h) =
+∞

∑
k=0

hαk

Γ(αk + 1)
Dαk

a+ f (x), (4)

where Dαk
a+ f (x) is the Riemann–Liouville derivative of order αk of f (x).
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Recently, two fractional variants of Newton’s method whose order of convergence was 2α

were proposed in [6]. They were designed by using Caputo and Riemann–Liouville derivatives.
In the following iterative expression, we can see the Caputo-fractional Newton’s method

xk+1 = xk − Γ(α + 1)
f (xk)

cDα
a f (xk)

, k = 0, 1, 2, . . . (5)

with Γ(α + 1) as a damping parameter. Let us denote this method by CFN1. Let us remark that,
if α < 1/2, the linear convergence of CFN1 method is not guaranteed. Our first aim is to design a new
fractional Newton-type method with Caputo or Riemann–Liouville derivatives that will be the seed
for higher-order multipoint fractional iterative schemes discussed later on. These new methods will
converge with, at least, linear convergence for any α ∈ (0, 1].

In this manuscript, Section 2 is devoted to the design and convergence analysis of the new
point-to-point and multipoint methods, both using Caputo and Riemann–Liouville fractional
derivatives. The numerical performance and dependence on initial estimations is analyzed in Section 3,
for all the iterative schemes. Finally, some conclusions are stated in Section 4.

2. Design and Convergence Analysis

In order to construct a new fractional version of Newton’s method, we are going to use the Taylor
development of the nonlinear function whose root we are looking for. Therefore, let f : R −→ R be
a continuous function having a Caputo-type fractional derivative of order α, for any α, 0 < α ≤ 1.
Then, by using Theorem 1, f (x) can be estimated by a first-degree Taylor polynomial around its root x̄,

f (x) ≈ f (x̄) + cDx̄
α f (x̄)

(x− x̄)α

Γ(α + 1)
= cDx̄

α f (x̄)
(x− x̄)α

Γ(α + 1)
.

Therefore, the term x− x̄ can be isolated as

x− x̄ ≈
(

Γ(α + 1)
f (x)

cDα
x̄ f (x̄)

)1/α

and a new estimation xk+1 of x̄ can be obtained, assuming x = xk and cDx̄
α f (x̄) ≈ cDa

α f (xk), for any
a ∈ R, by means of the iterative scheme

xk+1 = xk −
(

Γ(α + 1)
f (xk)

cDa
α f (xk)

)1/α

.

Let us denote this method by CFN2. The following result states the conditions that assure
its convergence.

Theorem 3. Let f : D ⊆ R −→ R be a the continuous function with fractional derivatives of order kα, for any
positive integer k and α ∈ (0, 1], in the open interval D holding the zero of f (x), denoted by x̄. Let us suppose
cDα

a f (x) is continuous and not null at x̄. Additionally, let us consider an initial estimation x0, close enough to
x̄. Therefore, the local convergence order of the fractional Newton method of Caputo type

xk+1 = xk −
(

Γ(α + 1)
f (xk)

cDα
a f (xk)

)1/α

, k = 0, 1, 2, . . . (6)

is at least α + 1, that being α ∈ (0, 1], and the error equation is

ek+1 =
Γ(2α + 1)− Γ2(α + 1)

αΓ2(α + 1)
C2eα+1

k + O
(

e2α+1
k

)
,
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being (Γ(·))n denoted by Γn(·), where ek = xk − x̄ and Cj =
Γ(α + 1)
Γ(jα + 1)

cDjα
x̄ f (x̄)

cDα
x̄ f (x̄)

, j ≥ 2.

Proof. By means of Theorem 1, the Taylor expansion of f (x) and its Caputo-derivative cDx̄
α f (xk)

around x̄ can be expressed by

f (xk) =
cDα

x̄ f (x̄)
Γ(α + 1)

[
eα

k + C2e2α
k + C3e3α

k

]
+ O

(
e4α

k

)
and

cDα
a f (xk) =

cDα
x̄ f (x̄)

Γ(α + 1)

[
Γ(α + 1) +

Γ(2α + 1)
Γ(α + 1)

C2eα
k +

Γ(3α + 1)
Γ(2α + 1)

C3e2α
k

]
+ O

(
e3α

k

)
respectively, being Cj =

Γ(α + 1)
Γ(jα + 1)

cDjα
x̄ f (x̄)

cDα
x̄ f (x̄)

for j ≥ 2.

Therefore,

f (xk)

cDα
a f (xk)

=
1

Γ(α + 1)
eα

k +
Γ2(α + 1)− Γ(2α + 1)

Γ3(α + 1)
C2e2α

k + O
(

e3α
k

)
,

that results, by the parameter Γ(α + 1), in

Γ(α + 1)
f (xk)

cDα
x̄ f (xk)

= eα
k +

Γ2(α + 1)− Γ(2α + 1)
Γ2(α + 1)

C2e2α
k + O

(
e3α

k

)
.

Newton’s generalized binomial Theorem states that

(x + y)r =
+∞

∑
k=0

(
r
k

)
xr−kyk, k ∈ {0} ∪N, r ∈ R,

where the generalized binomial coefficient is (see [13])(
r
k

)
=

Γ(r + 1)
k!Γ(r− k + 1)

.

Thus,(
Γ(α + 1)

f (xk)

cDα
a f (xk)

)1/α

=

(
eα

k +
Γ2(α + 1)− Γ(2α + 1)

Γ2(α + 1)
C2e2α

k + O
(

e3α
k

))1/α

= ek +
Γ(α + 1)
1!Γ(α)

e1−α
k

Γ2(α + 1)− Γ(2α + 1)
Γ2(α + 1)

C2e2α
k + O

(
e2α+1

k

)
.

Γ(1/α + 1) =
1
α

Γ(1/α), so simplifying:

(
Γ(α + 1)

f (xk)

cDα
a f (xk)

)1/α

= ek +
Γ2(α + 1)− Γ(2α + 1)

αΓ2(α + 1)
C2eα+1

k + O
(

e2α+1
k

)
.

Let xk+1 = ek+1 + x̄ and xk = ek + x̄,

ek+1 + x̄ = ek + x̄− ek +
Γ(2α + 1)− (Γ(α + 1))2

αΓ2(α + 1)
C2eα+1

k + O
(

e2α+1
k

)
.

Therefore,

ek+1 =
Γ(2α + 1)− Γ2(α + 1)

αΓ2(α + 1)
C2eα+1

k + O
(

e2α+1
k

)
.
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Now, the design of a fractional Newton method using Riemann–Liouville derivatives can be done
in a similar way.

Theorem 4. Let f : D ⊆ R −→ R be a the continuous function with fractional derivatives of order kα,
for any positive integer k and α ∈ (0, 1], in the open interval D holding the zero of f (x), denoted by x̄. Let us
suppose Dαk

a+ f (x) is continuous and not null at x̄. Additionally, let us consider an initial estimation x0,
close enough to x̄. Therefore, the local convergence order of the fractional Newton method of Riemann–Liouville
type (denoted by R-LFN2),

xk+1 = xk −
(

Γ(α + 1)
f (xk)

Dαk
a+ f (xk)

)1/α

, k = 0, 1, 2, . . . (7)

is at least α + 1, where α ∈]0, 1], and again the error equation is

ek+1 =
Γ(2α + 1)− Γ2(α + 1)

αΓ2(α + 1)
C2eα+1

k + O
(

e2α+1
k

)
.

It is then concluded that, not only both new fractional methods of Newton-type have the same
order of convergence, α + 1, but also their error equations coincide. Moreover, as α ∈ (0, 1], it can be
concluded that its order of convergence is at least linear and reaches quadratic convergence for α = 1
(as then it coincides with classical Newton’s method).

Traub-Type Methods with Fractional Derivatives

Now, we introduce the design of a fractional multipoint method with Caputo derivative using
CFN2 as first step. The underlying idea is to adapt to the fractional context a common tool of the design
of iterative methods: the composition. Traub proves in [7] that the direct composition of two iterative
methods whose orders of convergence are p and q, respectively, is another iterative scheme with order
pq. Therefore, by composing Newton’s method with itself,

yk = xk −
f (xk)

f ′(xk)
,

xk+1 = yk −
f (yk)

f ′(yk)
, k = 0, 1, 2, . . .

that is fourth-order convergent. However, it is not an efficient procedure as it has four functional
evaluations per iteration. Moreover, Traub shows that using the derivative of the first step at
the second one, the order results to be incremented in one unit regarding Newton’s step and, therefore,
its efficiency increases.

Our aim now is to apply this idea to proposed fractional Newton-type method CFN2, in order to
measure the increasing of the convergence with the composition (and later reduction of the number
of functional evaluations) in the case of iterative schemes that use fractional derivatives. We call
the resulting scheme fractional Traub-type method and denote it by CFT when Caputo fractional
derivative is used.

Theorem 5. Let f : D ⊆ R −→ R be a the continuous function with fractional derivatives of order kα, for any
positive integer k and α ∈ (0, 1], in the open interval D holding the zero of f (x), denoted by x̄. Let us suppose
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cDα
a f (x) is continuous and not null at x̄. Additionally, let us consider an initial estimation x0, close enough to x̄.

Therefore, the local convergence order of the fractional Traub-type method with Caputo derivatives

xk+1 = yk −
(

Γ(α + 1)
f (yk)

cDα
a f (xk)

)1/α

, k = 0, 1, 2, . . . , (8)

being

yk = xk −
(

Γ(α + 1)
f (xk)

cDα
a f (xk)

)1/α

, k = 0, 1, 2, . . .

is at least 2α + 1, where 0 < α ≤ 1, and the error equation is

ek+1 = − Γ(2α + 1)
α2Γ2(α + 1)

AC2
2e2α+1

k + O
(

eα2+2α+1
k

)
,

being α2 + 2α + 1 < 3α + 1 for α ∈ (0, 1] and

A =
Γ2(α + 1)− Γ(2α + 1)

Γ2(α + 1)
.

Proof. As the first step yk of scheme (8) is CFN2, whose order of convergence has been proven in
Theorem 3, we omit the calculations and give the result with enough error terms to be used in this proof:

yk − x̄ = − 1
α

AC2eα+1
k +

1
α

[(
Γ(2α + 1)
Γ2(α + 1)

+
α− 1

2α
A
)

AC2
2 − BC3

]
e2α+1

k + O
(

e3α+1
k

)
,

where A has been already defined and

B =
Γ(α + 1)Γ(2α + 1)− Γ(3α + 1)

Γ(α + 1)Γ(2α + 1)
.

Let us develop f (yk):

f (yk) =
cDα

x̄ f (x̄)
Γ(α + 1)

[
(yk − x̄)α + C2 (yk − x̄)2α

]
+ O

(
e3α+1

k

)
,

where Newton’s generalized binomial Theorem must be used to obtain the expansion of

(yk − x̄)α =

(
− 1

α

)α

AαCα
2 eα2+α

k +

(
− 1

α

)α−1
Aα−1Cα−1

2

[(
Γ(2α + 1)
Γ2(α + 1)

+
α− 1

2α
A
)

AC2
2 − BC3

]
eα2+2α

k

+
α2 − α

2

(
− 1

α

)α

Aα−2Cα−2
2

[(
Γ(2α + 1)
Γ2(α + 1)

+
α− 1

2α
A
)

AC2
2 − BC3

]2
eα2+3α

k + O
(

e3α+1
k

)
and

(yk − x̄)2α =

(
− 1

α

)2α

A2αC2α
2 e2α2+2α

k + O
(

e3α+1
k

)
.

Let us remark that, for all α ∈ (0, 1), α2 + 3α < 3α + 1 and 2α2 + 2α < 3α + 1 but α2 + 4α > 3α + 1
and 2α2 + 3α > 3α + 1.
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Therefore,

f (yk) =
cDα

x̄ f (x̄)
Γ(α + 1)

[(
−1
α

)α

AαCα
2 eα2+α

k +

(
−1
α

)α−1
Deα2+2α

k

+

(
−1
α

)2α

A2αC2α+1
2 e2α2+2α

k +
α− 1

2

(
− 1

α

)α−2
Eeα2+3α

k

]
+ O

(
e3α+1

k

)
,

being

D =

(
Γ(2α + 1)
Γ2(α + 1)

+
α− 1

2α
A
)

AαCα+1
2 − Aα−1BC3Cα−1

2

and

E =
1
α

(
Γ(2α + 1)
Γ2(α + 1)

+
α− 1

2α
A
)2

AαCα+2
2 +

1
α

Aα−2B2Cα−2
2 C2

3 −
2
α

(
Γ(2α + 1)
Γ2(α + 1)

+
α− 1

2α
A
)

Aα−1BCα
2 C3.

Then, the Taylor development of quotient
f (yk)

cDα
a f (xk)

results

f (yk)

cDα
a f (xk)

=
1

Γ(α + 1)

[(
−1
α

)α

AαCα
2 eα2+α

k +

(
−1
α

)α−1 (
D +

Γ(2α + 1)
Γ(α + 1)

1
α

AαCα+1
2

)
eα2+2α

k

+

(
−1
α

)2α

A2αC2α+1
2 e2α2+2α

k +

(
−1
α

)α−2 (α− 1
2

E− Γ(3α + 1)
Γ(α + 1)Γ(2α + 1)

1
α2 AαCα

2 C3

+
1
α

Γ(2α + 1)
Γ2(α + 1)

DC2 +
Γ2(2α + 1)
Γ4(α + 1)

1
α2 AαCα+2

2

)
eα2+3α

k

]
+ O

(
e3α+1

k

)
.

Furthermore, applying again Newton’s generalized binomial Theorem, we get(
Γ(α + 1)

f (yk)

cDα
a f (xk)

)1/α

=

(
−1
α

) [
AC2eα+1

k +

(
−Γ(2α + 1)

Γ(α + 1)

(
1 +

1
α

)
AC2

2 −
α− 1

2α
A2C2

2 + BC3

)
e2α+1

k

−
(
−1
α

)α+1
Aα+1Cα+2

2 eα2+2α+1
k

]
+ O

(
e3α+1

k

)
.

As xk+1 = ek+1 + x̄, after some algebraic manipulations, the error equation results in

ek+1 = − Γ(2α + 1)
α2Γ2(α + 1)

AC2
2e2α+1

k + O
(

eα2+2α+1
k

)
,

In what follows, we introduce the design of a fractional Traub method with Riemann–Liouville
derivative using R-LFN2 as first step. Let us denote this method R-LFT. In the following results,
the convergence conditions are stated and the resulting order is obtained to be the same as in case of
Caputo fractional derivative.

Theorem 6. Let f : D ⊆ R −→ R be a the continuous function with fractional derivatives of order kα, for any
positive integer k and α ∈ (0, 1], in the open interval D holding the zero of f (x), denoted by x̄. Let us suppose
Dαk

a+ f (x) is continuous and non zero at x̄. Additionally, let us consider an initial estimation x0, close enough to
x̄. Therefore, the local convergence order of the fractional Traub method with Riemann–Liouville derivatives

xk+1 = yk −
(

Γ(α + 1)
f (yk)

Dαk
a+ f (xk)

)1/α

, k = 0, 1, 2, . . . (9)
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being

yk = xk −
(

Γ(α + 1)
f (xk)

Dαk
a+ f (xk)

)1/α

, k = 0, 1, 2, . . .

is at least 2α + 1, being 0 < α ≤ 1, and again the error equation is

ek+1 = − Γ(2α + 1)
α2Γ2(α + 1)

AC2
2e2α+1

k + O
(

eα2+2α+1
k

)
,

being

A =
Γ2(α + 1)− Γ(2α + 1)

Γ2(α + 1)
.

In the next section, we are going to test the Newton and Traub-type methods shown before on
some nonlinear functions. Moreover, we also analyze their dependence on the initial estimations used.

3. Numerical Stability

To get the results shown in this section, we have used Matlab R2018b with double precision
arithmetics, |xk+1 − xk| < 10−8 or | f (xk+1)| < 10−8 as stopping criteria, and a maximum of
500 iterations. For calculation of the gamma function, Γ(x), we use the program made in [14].
For the Mittag–Leffler function, Eα,β(x), we use the program provided by Igor Podlubny in Mathworks.
Regarding the precision of these functions, gamma function is calculated with 15 digits of accuracy
along the real axis and 13 elsewhere in C; and ml f for computing the Mittag–Lefler function has
9 significant digits of precision. Moreover, in all the numerical tests, we used a = 0, as in Caputo
and as in Riemann–Liouville derivatives.

We are going to test three standard nonlinear functions in order to make a comparison between the designed
methods. Our first function is f1(x) = −12.84x6 − 25.6x5 + 16.55x4 − 2.21x3 + 26.71x2 − 4.29x− 15.21
with roots x̄1 = 0.82366 + 0.24769i, x̄2 = 0.82366 − 0.24769i, x̄3 = −2.62297, x̄4 = −0.584, x̄5 =

−0.21705 + 0.99911i and x̄6 = −0.21705− 0.99911i. The fractional derivatives used are:

cDα
0 f1(x) = −12.84

Γ(7)
Γ(7− x)

x6−α − 25.6
Γ(6)

Γ(6− x)
x5−α + 16.55

Γ(5)
Γ(5− x)

x4−α

−2.21
Γ(4)

Γ(4− x)
x3−α + 26.71

Γ(3)
Γ(3− x)

x2−α − 4.29
Γ(2)

Γ(2− x)
x1−α,

Dαk
0+ f1(xk) = cDα

0 f1(x)− 15.21
1

Γ(1− x)
x−α.

In Table 1, we can see that CFN1 requires fewer iterations to converge than CFN2, for the same
real value of x0 and the same values of α.

Table 1. Results of fractional Newton and Traub-type methods for f1(x) with Caputo derivative
and initial estimation x0 = −1.5.

CFN1 Method CFN2 Method CFT Method

α x̄ |xk+1− xk| | f (xk+1)| Iter x̄ |xk+1− xk| | f (xk+1)| Iter x̄ |xk+1− xk| | f (xk+1)| Iter

0.6 - 0.29821 28.343 500 - 1.76 × 10−7 0.00356 500 - 6.29 × 10−8 0.0013 500
0.65 - 0.17488 11.329 500 - 4.12 × 10−8 6.75 × 10−4 500 - 1.16 × 10−8 1.89 × 10−4 500
0.7 - 0.05850 2.9893 500 x̄4 9.99 × 10−9 1.13 × 10−4 432 x̄4 9.96 × 10−9 6.95 × 10−5 268

0.75 x̄4 9.65 × 10−9 4.16 × 10−7 151 x̄4 9.85 × 10−9 4.68 × 10−5 230 x̄4 9.99 × 10−9 2.80 × 10−5 138
0.8 x̄4 8.55 × 10−9 3.05 × 10−7 50 x̄4 9.66 × 10−9 1.89 × 10−5 124 x̄4 9.56 × 10−9 1.07 × 10−5 73

0.85 x̄4 9.47 × 10−9 2.60 × 10−7 28 x̄4 9.94 × 10−9 7.75 × 10−6 67 x̄4 9.47 × 10−9 4.02 × 10−6 39
0.9 x̄4 3.92 × 10−9 7.39 × 10−8 19 x̄4 9.11 × 10−9 2.67 × 10−6 37 x̄4 6.81 × 10−9 1.03 × 10−6 22
0.95 x̄4 2.58 × 10−9 2.49 × 10−8 13 x̄4 7.36 × 10−9 6.45 × 10−7 20 x̄4 5.21 × 10−9 1.89 × 10−7 12

1 x̄4 3.09 × 10−6 8.87 × 10−10 6 x̄4 3.09 × 10−6 8.87 × 10−10 6 x̄4 2.20 × 10−10 5.33 × 10−15 5
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In the case of R-LFN1 and R-LFN2, the same behavior as in the Caputo case can be observed.
In Table 2, R-LFN1 requires fewer iterations than R-LFN2 for a real value of x0, while R-LFN2 requires
fewer iterations than R-LFN1 for pure imaginary initial estimations with a large value for their
imaginary part (see Tables 3 and 4). Moreover, if we compare the Traub-type methods CFT and R-LFT
with their first steps CFN2 and R-LFN2 respectively (for f1(x)), we can see that Traub method R-LFT
requires fewer iterations than its first step. Indeed, it can be observed that, with the same initial
estimation, to change the value of α, suppose a different root found.

Table 2. Fractional Newton and Traub-type results for f1(x) with Riemann–Liouville derivative
and initial estimation. x0 = −1.5.

R-LFN1 Method R-LFN2 Method R-LFT Method

α x̄ |xk+1− xk| | f (xk+1)| Iter x̄ |xk+1− xk| | f (xk+1)| Iter x̄ |xk+1− xk| | f (xk+1)| Iter

0.6 - 0.31207 24.999 500 - 8.23 × 10−8 0.0017 500 - 2.94 × 10−8 5.92 × 10−4 500
0.65 - 0.21206 12.298 500 - 2.03 × 10−8 3.33 × 10−4 500 x̄4 9.97 × 10−9 1.34 × 10−4 411
0.7 - 0.11720 5.6486 500 x̄4 9.97 × 10−9 9.26 × 10−5 354 x̄4 9.93 × 10−9 5.68 × 10−5 220

0.75 - 0.01799 0.7643 500 x̄4 9.99 × 10−9 4.04 × 10−5 196 x̄4 9.75 × 10−9 2.35 × 10−5 119
0.8 x̄4 9.87 × 10−9 3.54 × 10−7 72 x̄4 9.70 × 10−9 1.69 × 10−5 110 x̄4 9.56 × 10−9 9.49 × 10−6 65
0.85 x̄4 8.86 × 10−9 2.48 × 10−7 32 x̄4 9.43 × 10−9 6.85 × 10−6 62 x̄4 9.31 × 10−9 3.63 × 10−6 36
0.9 x̄4 4.13 × 10−9 7.97 × 10−8 20 x̄4 8.92 × 10−9 2.47 × 10−6 35 x̄4 9.62 × 10−9 1.30 × 10−6 20
0.95 x̄4 3.98 × 10−9 3.97 × 10−8 13 x̄4 9.03 × 10−9 7.47 × 10−7 19 x̄4 3.62 × 10−9 1.30 × 10−7 12

1 x̄4 3.09 × 10−6 8.87 × 10−10 6 x̄4 3.09 × 10−6 8.87 × 10−10 6 x̄4 2.20 × 10−10 5.33 × 10−15 5

Table 3. Fractional Newton and Traub-type results for f1(x) with Caputo derivative and initial
estimation x0 = 104i.

CFN1 Method CFN2 Method R-LFT method

α x̄ |xk+1− xk| | f (xk+1)| Iter x̄ |xk+1− xk| | f (xk+1)| Iter x̄ |xk+1− xk| | f (xk+1)| Iter

0.6 - 15.571 1.82 × 1018 500 - 1.21 × 10−7 0.0053 500 - 4.04 × 10−8 0.0018 500
0.65 - 0.2028 4.26 × 102 500 - 2.96 × 10−8 0.0011 500 x̄5 9.99 × 10−9 3.30 × 10−4 460
0.7 - 0.10812 1.85 × 102 500 x̄5 9.92 × 10−9 2.25 × 10−4 410 x̄5 9.92 × 10−9 1.38 × 10−4 263

0.75 - 0.0125 18.71 500 x̄5 9.93 × 10−9 9.73 × 10−5 249 x̄5 9.90 × 10−9 5.75 × 10−5 159
0.8 x̄3 8.14 × 10−9 1.02 × 10−5 203 x̄5 9.96 × 10−9 4.15 × 10−5 161 x̄5 9.66 × 10−9 2.30 × 10−5 104

0.85 x̄3 8.54 × 10−9 8.35 × 10−6 128 x̄5 9.21 × 10−9 1.61 × 10−5 113 x̄5 9.31 × 10−9 8.73 × 10−6 74
0.9 x̄3 5.05 × 10−9 3.41 × 10−6 92 x̄5 8.56 × 10−9 5.73 × 10−6 85 x̄5 9.06 × 10−9 2.97 × 10−6 57

0.95 x̄4 1.73 × 10−9 1.67 × 10−8 73 x̄5 7.81 × 10−9 1.58 × 10−6 68 x̄5 7.68 × 10−9 6.15 × 10−7 47
1 x̄5 2.85 × 10−7 2.99 × 10−11 54 x̄5 2.85 × 10−7 2.99 × 10−11 54 x̄5 6.71 × 10−6 5.50 × 10−13 39

Table 4. Fractional Newton and Traub-type results for f1(x) with Riemann–Liouville derivative
and initial estimation x0 = 104i.

R-LFN1 Method R-LFN2 Method R-LFT Method

α x̄ |xk+1− xk| | f (xk+1)| Iter x̄ |xk+1− xk| | f (xk+1)| Iter x̄ |xk+1− xk| | f (xk+1)| Iter

0.6 - 15.571 1.82 × 1018 500 - 9.39 × 10−8 0.0041 500 - 3.13 × 10−8 0.0014 500
0.65 - 0.2023 4.26 × 102 500 - 2.37 × 10−8 8.38 × 10−4 500 x̄5 9.96 × 10−9 3.05 × 10−4 429
0.7 - 0.1075 1.85 × 102 500 x̄5 9.95 × 10−9 2.12 × 10−4 389 x̄5 9.96 × 10−9 1.31 × 10−4 250

0.75 - 0.0119 17.82 500 x̄5 9.82 × 10−9 9.23 × 10−5 241 x̄5 9.88 × 10−9 5.49 × 10−5 154
0.8 x̄3 9.58 × 10−9 1.20 × 10−5 202 x̄5 9.76 × 10−9 3.96 × 10−5 158 x̄5 9.67 × 10−9 2.23 × 10−5 102

0.85 x̄3 8.35 × 10−9 8.17 × 10−6 128 x̄5 9.82 × 10−9 1.66 × 10−5 111 x̄5 9.73 × 10−9 8.85 × 10−6 73
0.9 x̄3 5.00 × 10−9 3.38 × 10−6 92 x̄5 9.61 × 10−9 6.25 × 10−6 84 x̄5 8.11 × 10−9 2.66 × 10−6 57

0.95 x̄4 2.66 × 10−9 2.65 × 10−8 73 x̄5 7.16 × 10−9 1.44 × 10−6 68 x̄5 7.05 × 10−9 5.64 × 10−7 47
1 x̄5 2.85 × 10−7 2.99 × 10−11 54 x̄5 2.85 × 10−7 2.99 × 10−11 54 x̄5 6.71 × 10−6 5.50 × 10−13 39

Now, we are going to analyze the dependence on the initial estimation of the Newton and Traub-type
methods by using convergence planes defined in [15]. In them (see, for example, Figure 1) the abscissa
axis corresponds to the starting guess and the fractional index α appears in the ordinate axis. A mesh
of 400× 400 points is used. Points that are not painted in black color correspond to those pairs of initial
estimations and values of α that converge to one of the roots with a tolerance of 10−3. Different colors
mean convergence to different roots. Therefore, when a point is painted in black, this shows that no root is
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found in a maximum of 500 iterations. Moreover, for all convergence planes, the percentage of convergent
pairs (x0, α) is calculated, in order to compare the performance of the methods.
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Figure 1. Convergence planes of fractional Newton and Traub-type methods on f1(x) with−3 ≤ x0 ≤ 3.
(a) CFN1, 49.54% convergence; (b) CFN2, 27.15% convergence; (c) CFT, 41.5% convergence;
(d) R-LFN1, 47.08% convergence; (e) R-LFN2, 28.85% convergence; (f) R-LFT, 44% convergence.

In Figures 1 and 2, we see that CFN1 and R-LFN1 have a higher percentage of convergence
than CFN2 and R-LFN2 respectively, not only with real or imaginary initial estimations, but also
with Caputo or Riemann–Liouville derivatives. It can be also observed that Traub-type methods have
a higher percentage of convergence than their first steps, with independence of the fractional derivative
used. Moreover, the rate of convergent pairs (x0, α) is almost the same in Traub-type and CFN1 or
R-LFN1, with higher convergence order.

Our second test function is f2(x) = ex − 1, which has an only real root, x̄1 = 0. The fractional
derivatives used in this case are:

cDα
0 f2(x) = x1−αE1,2−α(x),

Dαk
0+ f2(xk) = cDα

0 f2(x)− 1
Γ(1− x)

x−α.

In this case, is necessary to use a value of α closer to 1 to ensure the convergence. Now, there were
no imaginary values used for the initial estimations due to erratic behavior of the results. For the real
initial estimation used, see in Table 5 that CFN2 requires far fewer iterations than CFN1. However,
methods using Riemann–Liouville fractional derivatives do not converge, in general. This is the reason
why there is not a table for this case.
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Figure 2. Convergence planes of fractional Newton and Traub-type on f1(x) with Re(x0) = 0
and −105 ≤ Im(x0) ≤ 105. (a) CFN1, 47.47% convergence; (b) CFN2, 29% convergence;
(c) CFT, 44.25% convergence; (d) R-LFN1, 47.54% convergence; (e) R-LFN2, 29.84% convergence;
(f) R-LFT, 45.56% convergence.

Table 5. Fractional Newton and Traub-type results for f2(x) with Caputo derivative and initial
estimation x0 = 0.2.

CFN1 Method CFN2 Method CFT Method

α x̄ |xk+1− xk| | f (xk+1)| Iter x̄ |xk+1− xk| | f (xk+1)| Iter x̄ |xk+1− xk| | f (xk+1)| Iter

0.9 - 9.22 × 10−4 4.68 × 10−4 500 x̄1 2.52 × 10−8 2.61 × 10−9 8 x̄1 3.16 × 10−7 9.29 × 10−9 5
0.91 - 4.16 × 10−4 2.10 × 10−4 500 x̄1 1.35 × 10−8 1.26 × 10−9 8 x̄1 1.75 × 10−7 4.33 × 10−9 5
0.92 - 1.55 × 10−4 7.81 × 10−5 500 x̄1 8.85 × 10−8 7.29 × 10−9 7 x̄1 9.06 × 10−8 1.84 × 10−9 5
0.93 - 4.37 × 10−5 2.20 × 10−5 500 x̄1 4.56 × 10−8 3.27 × 10−9 7 x̄1 4.27 × 10−8 6.94 × 10−10 5
0.94 - 8.19 × 10−6 4.11 × 10−6 500 x̄1 2.12 × 10−8 1.30 × 10−9 7 x̄1 1.79 × 10−8 2.25 × 10−10 5
0.95 - 7.92 × 10−7 3.98 × 10−7 500 x̄1 1.78 × 10−7 9.05 × 10−9 6 x̄1 7.00 × 10−7 6.46 × 10−9 4
0.96 - 2.42 × 10−8 1.21 × 10−8 500 x̄1 7.37 × 10−8 2.99 × 10−9 6 x̄1 2.90 × 10−7 1.83 × 10−9 4
0.97 x̄1 2.14 × 10−8 8.69 × 10−9 17 x̄1 2.40 × 10−8 7.28 × 10−10 6 x̄1 9.45 × 10−8 3.62 × 10−10 4
0.98 x̄1 2.23 × 10−8 6.46 × 10−9 11 x̄1 2.58 × 10−7 5.20 × 10−9 5 x̄1 1.20 × 10−8 3.76 × 10−11 4
0.99 x̄1 6.65 × 10−8 9.78 × 10−9 7 x̄1 4.03 × 10−8 4.05 × 10−10 5 x̄1 2.77 × 10−6 1.51 × 10−9 3

1 x̄1 1.52 × 10−8 0 4 x̄1 1.52 × 10−8 0 4 x̄1 1.71 × 10−8 0 3

By changing the initial estimation, we see for test function f2(x), different performances in
the convergence planes than in the polynomial function f1(x). In Figure 3, we can see that CFN2

highly improves the percentage of convergence of CFN1 for real values of initial estimations.
Moreover, the percentage of convergence of fractional methods using Riemann–Liouville derivative is
lower than 2%, so they are omitted in the figure; meanwhile, there is convergence rate lower than 1%
with both methods for imaginary values of initial estimations in Caputo-type methods and the low
percentage, convergence holds for both Riemann–Liouville fractional methods.
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Figure 3. Convergence planes of fractional Newton-type methods on f2(x) with −10 ≤ x0 ≤ 10.
(a) CFN1, 13.83% convergence; (b) CFN2, 99.62% convergence; (c) CFT, 57.78% convergence.

Regarding Traub-type methods, it can be observed in Figure 3 that it improves the percentage
convergence of CFN1. This is not the case regarding CFN2, but it still has a high percentage of
convergent points and a higher order of convergence than its first step.

Our last test function is f3(x) = sin(10x)− 0.5x + 0.2; some real roots are x̄1 = −1.4523,
x̄2 = −1.3647, x̄3 = −0.87345, x̄4 = −0.6857, x̄5 = −0.27949, x̄6 = −0.021219, x̄7 = 0.31824,
x̄8 = 0.64036, x̄9 = 0.91636, x̄10 = 1.3035, x̄11 = 1.5118, x̄12 = 1.9756 and x̄13 = 2.0977. The fractional
derivatives used in this case are:

cDα
0 f3(x) = 5x1−α (E1,2−α(10ix) + E1,2−α(−10ix))− 0.5Γ(2)

Γ(2− x)
x1−α,

Dαk
0+ f3(xk) = cDα

0 f3(x) + 0.2
1

Γ(1− x)
x−α.

In some cases, the methods can converge to the root x̄14 = 22.146 + 0.30774i or
x̄15 = 20.89 + 0.30176i, that is far from the initial estimation used. It is observed in Table 6 that
the number of different roots that are reached by CFN2 and CFT methods is higher than that of CFN1.
This is a usual fact that has been observed in general in the numerical tests and can be considered as
an advantage of these new methods. On the other hand, tests with pure imaginary initial estimations
have not been included because there is no convergence for these cases with f3(x).

Table 6. Fractional Newton and Traub-type results for f3(x) with Caputo derivative and initial
estimation x0 = 3.

CFN1 Method CFN2 Method CFT Method

α x̄ |xk+1− xk| | f (xk+1)| Iter x̄ |xk+1− xk| | f (xk+1)| Iter x̄ |xk+1− xk| | f (xk+1)| Iter

0.6 x̄12 8.41 × 10−9 1.86 × 10−8 36 x̄12 1.43 × 10−7 2.69 × 10−4 500 - 5.36 × 10−8 9.84 × 10−5 500
0.65 x̄12 9.13 × 10−9 1.65 × 10−8 24 x̄13 9.89 × 10−9 5.28 × 10−6 169 - - - -
0.7 x̄10 8.42 × 10−9 3.02 × 10−8 63 x̄13 9.91 × 10−9 3.05 × 10−6 121 x̄4 9.92 × 10−9 7.47 × 10−6 224

0.75 x̄12 4.07 × 10−9 4.28 × 10−9 10 x̄12 9.87 × 10−9 4.51 × 10−6 235 x̄12 9.76 × 10−9 2.65 × 10−6 142
0.8 x̄10 9.98 × 10−9 2.35 × 10−8 22 x̄11 9.54 × 10−9 1.77 × 10−6 76 x̄9 9.74 × 10−9 1.33 × 10−6 52
0.85 x̄10 4.76 × 10−9 8.25 × 10−9 18 x̄9 9.14 × 10−9 9.58 × 10−7 51 x̄7 8.35 × 10−9 5.32 × 10−7 32
0.9 x̄4 4.37 × 10−9 1.09 × 10−8 18 x̄2 9.59 × 10−9 2.28 × 10−7 42 x̄9 8.53 × 10−9 1.76 × 10−7 23
0.95 - 0.1703 0.8308 500 x̄15 9.96 × 10−9 1.30 × 10−6 81 - - - -

1 - 0.2204 2.0846 500 - 0.2204 2.0846 500 - 0.2578 1.8154 500

We can also see that the number of iterations does not necessarily reduce when α increases,
and also that all the methods converge to different roots. Additionally, in Table 7 the observed
performance is similar but the convergence in general is slower than in Caputo-type methods,
the number of iterations required for satisfying the stopping criterion being higher.
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Table 7. Fractional Newton1 and Newton2 results for f3(x) with Riemann–Liouville derivative
and initial estimation x0 = 3.

R-LFN1 Method R-LFN2 Method R-LFT Method

α x̄ |xk+1− xk| | f (xk+1)| Iter x̄ |xk+1− xk| | f (xk+1)| Iter x̄ |xk+1− xk| | f (xk+1)| Iter

0.6 x̄12 7.72 × 10−9 1.66 × 10−8 33 - 1.42 × 10−7 2.73 × 10−4 500 - 1.42 × 10−7 2.73 × 10−4 500
0.65 x̄12 7.33 × 10−9 1.29 × 10−8 23 x̄13 9.85 × 10−9 4.93 × 10−6 158 x̄13 9.85 × 10−9 4.93 × 10−6 158
0.7 - 0.1813 6.97 × 107 500 x̄13 9.96 × 10−9 2.95 × 10−6 116 x̄13 9.96 × 10−9 2.95 × 10−6 116

0.75 x̄12 3.75 × 10−9 3.80 × 10−9 12 x̄12 9.86 × 10−9 4.54 × 10−6 238 x̄12 9.86 × 10−9 4.54 × 10−6 238
0.8 - 0.0310 0.1512 500 x̄11 9.95 × 10−9 1.82 × 10−6 77 x̄11 9.95 × 10−9 1.82 × 10−6 77

0.85 x̄11 6.08 × 10−9 1.91 × 10−8 32 x̄9 9.29 × 10−9 9.66 × 10−7 51 x̄9 9.29 × 10−9 9.66 × 10−7 51
0.9 x̄4 4.98 × 10−9 1.24 × 10−8 15 x̄2 9.09 × 10−9 2.16 × 10−7 42 x̄2 9.09 × 10−9 2.16 × 10−7 42
0.95 - 0.2854 2.397 500 x̄14 6.55 × 10−9 9.45 × 10−7 51 x̄14 6.55 × 10−9 9.45 × 10−7 51

1 - 0.2204 2.0846 500 - 0.2204 2.0846 500 - 0.2204 2.0846 500

Let us also remark that, in Tables 6 and 7, the classical Newton and Traub’s methods (α = 1) show
the worst performances, as they do not converge to any of the solutions in the maximum number of
iterations. On the contrary, proposed methods for α < 1 are able to reach different solutions within
a reasonable number of iterations.

Regarding the wideness of the basins of attraction of the roots, in Figures 4 and 5 we can see
the convergence planes corresponding to all the methods applied on f3(x) for real and pure imaginary
initial estimations. We notice that the percentage of converging initial pairs (x0, α) is higher in case of
imaginary initial guesses and is slightly better in case of methods using Riemann–Liouville fractional
derivatives. Moreover, although many roots are found by using all the iterative schemes with real
initial estimations, there is a clear difference when pure imaginary x0 is employed: only one root can
be found by the proposed methods and several ones are obtained by scheme CFN1. Indeed, it can be
stated that the wideness of the basins of attraction of the roots is higher when Traub-type methods
are employed, compared with their first step. The rates of convergence are also higher or similar to
Newton-type ones.
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Figure 4. Convergence planes of fractional Newton and Traub-type methods on f3(x) with−5 ≤ x0 ≤ 5.
(a) CFN1, 30.39% convergence; (b) CFN2, 16.46% convergence; (c) CFT, 24.29% convergence;
(d) R-LFN1, 30.06% convergence; (e) R-LFN2, 16.88% convergence; (f) R-LFT, 25.04% convergence.
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Figure 5. Convergence planes of fractional Newton and Traub-type methods on f3(x) with
Re(x0) = 0 and −5 ≤ Im(x0) ≤ 5. (a) CFN1, 45.2% convergence; (b) CFN2, 39.85% convergence;
(c) CFT, 58.78% convergence; (d) R-LFN1, 44.28% convergence; (e) R-LFN2, 55.66% convergence;
(f) R-LFT, 80.97% convergence.

4. Concluding Remarks

Two new fractional Newton-type methods and two fractional Traub-type schemes have been
designed by using Caputo and Riemann–Liouville derivatives. Improving the existing ones,
the convergence properties of these procedures imply always (at least) linear convergence, reaching
order 1 + α and 1 + 2α, respectively. Although the interest in this kind of method is mainly theoretical,
some numerical tests have been done, and the dependence on the initial estimation has been analyzed.

It can be concluded that Traub-type procedures improve Newton-type ones, not only because
they require fewer iterations, but also because they have higher percentages of convergence.
Additionally, a better performance of iterative methods based on Caputo derivatives, with respect to
Riemann–Liouville based schemes, has been observed.

The test made shows that, for some problems, the methods using fractional derivatives reach
different solutions with the same initial approximation. In addition, in the case of example f3(x),
the fractional iterative schemes work better than the classical Newton and Traub’s methods (α = 1),
which do not converge within 500 iterations.
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