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Abstract: In the recent literature, very few high-order Jacobian-free methods with memory for
solving nonlinear systems appear. In this paper, we introduce a new variant of King’s family with
order four to solve nonlinear systems along with its convergence analysis. The proposed family
requires two divided difference operators and to compute only one inverse of a matrix per iteration.
Furthermore, we have extended the proposed scheme up to the sixth-order of convergence with
two additional functional evaluations. In addition, these schemes are further extended to methods
with memory. We illustrate their applicability by performing numerical experiments on a wide variety
of practical problems, even big-sized. It is observed that these methods produce approximations of
greater accuracy and are more efficient in practice, compared with the existing methods.

Keywords: nonlinear systems; convergence order; multi-point methods; schemes with memory

1. Introduction

Nonlinear systems of equations, Ψ(x) = 0, Ψ : D ⊆ Rn → Rn, appear very frequently in
many areas of Engineering and Science. Therefore, it is a very challenging task to find solutions of
nonlinear systems of equations. Finding their solutions by analytical methods is very hard or rarely
possible. Many authors have attempted to estimate the solutions of nonlinear systems of equations
using iterative techniques. One of the oldest and simplest iterative method is Newton’s method [1,2]
defined as

x(j+1) = x(j) −
[
Ψ′(x(j))

]−1
Ψ(x(j)), j = 0, 1, 2, . . . (1)

where Ψ′(x(j)) denotes the Jacobian matrix of Ψ evaluated in x(j). This method has quadratic
convergence by choosing an initial guess close to the solution. There are many higher-order techniques
available in the literature [3–5], which have Newton’s method as a predictor step. In many realistic
situations, the first-order Fréchet derivative Ψ′(x) fails to exist or it is time consuming. For such
situations, Traub [2] introduced a Jacobian-free method, with order two, defined by

x(j+1) = x(j) − [w(j), x(j); Ψ]−1Ψ(x(j)), j = 0, 1, 2, . . . (2)

where [w(j), x(j); Ψ] is the divided difference of Ψ of first-order and w(j) = x(j) + βΨ(x(j)) and β 6= 0 is
an arbitrary constant. For β = 1, method (2) reduces to the multidimensional extension of Steffensen’s
method, presented by Samanskii in [6].

After that, many researchers started developing higher-order Jacobian-free methods [7–10].
On the other side, to accelerate the order of convergence of iterative schemes with same number
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of computations, leads to be a popular aspect. That is known as “with memory”, i.e., an iterative
method with memory uses data from more than one previous iteration. Also, there is very little
literature [11–14] with methods with the memory for solving nonlinear systems. with this motivation,
we develop new iterative schemes to attain convergence order as high as possible keeping the number
of function evaluations per iteration as minimum as possible.

This manuscript is organized as follows. In Section 2, we construct new methods of the fourth- and
sixth-order and proceed to their convergence analysis. The construction and study of the convergence
of their corresponding iterative families with memory is presented in Section 3. In Section 4, various
numerical tests has been made to check theoretical results and to compare the properties of the
presented algorithms with some similar existing methods. Some conclusions are stated to finish
the paper.

2. Design of the New Class

For constructing the new methods, we consider the known King’s family [15] of iterative schemes
to solve ψ(x) = 0, as in expression{

x(j+1) = z(j) − τ
(

x(j), z(j)
) ψ(z(j))

ψ′(x(j))
, j = 0, 1, . . . (3)

where z(j) = x(j) − ψ(x(j))

ψ′(x(j))
, τ
(

x(j), z(j)
)

=
ψ(x(j)) + αψ(z(j))

ψ(x(j)) + (α− 2)ψ(z(j))
and α ∈ R. If α = 0,

the well-known Ostrowski’s method is obtained [2]. By dividing numerator and denominator of
τ
(

x(j), z(j)
)

by ψ(x(j)). Then, we get

τ
(

x(j), z(j)
)
=

1 + αu(j)

1 + (α− 2)u(j)
, (4)

where u(j) = ψ(z(j))

ψ(x(j))
. Now, re-writing

u(j) =
ψ(z(j))

ψ(x(j))
=

ψ(z(j))− ψ(x(j)) + ψ(x(j))

ψ(x(j))
= 1 +

ψ(z(j))− ψ(x(j))

ψ(x(j))
. (5)

By using first step of Equation (3) and the operator of divided difference, we have

u(j) = 1− 1
ψ′(x(j))

[z(j), x(j); ψ]. (6)

This idea allows the generalization of the family to the multidimensional case and it was firstly
used in [16]. Now, using binomial expansion up to two terms τ

(
x(j), z(j)

)
in (4), it can be expressed as:

τ
(

x(j), z(j)
)
≈ 1 + 2u(j) − 2(α− 2)(u(j))2. (7)

Finally, using Equations (5)–(7) in (3), we get

x(j+1) = z(j) −
(

1 + 2u(j) − 2(α− 2)(u(j))2
) ψ(z(j))

ψ′(x(j))
, j = 0, 1, . . . (8)

where z(j) = x(j) − ψ(x(j))

ψ′(x(j))
.
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Finally, we replace ψ′(x(j)) with central divided difference
[w(j)

1 , w(j)
2 ; ψ] = [x(j) − γψ(x(j)), x(j) + δψ(x(j)); ψ] in (8) and considering two more step with

two additional functional evaluations of ψ, we propose the following new variant of King’s family in
multidimensional case: 

z(j)
1 = x(j) − [w(j)

1 , w(j)
2 ; Ψ]−1Ψ(x(j)),

z(j)
2 = z(j)

1 −Q(j)Ψ(z(j)
1 ),

x(j+1) = z(j)
2 −Q(j)Ψ(z(j)

2 ), j = 0, 1, . . .

(9)

being u(j) = I − [w(j)
1 , w(j)

2 ; Ψ]−1[z(j)
1 , x(j); Ψ], Q(j) =

(
I + 2u(j) − 2(α− 2)(u(j))2)[w(k)

1 , w(k)
2 ; Ψ]−1 and

γ, δ, α ∈ R. Let us observe that all the linear systems solved per iteration have the same coefficient
matrix, that yields better efficiency.

2.1. Analysis of the Convergence

To explore the convergence of (9), let us recall the results appearing in [1] about Taylor’s series
expression on vectorial functions. Let Ψ : D ⊆ Rn → Rn be d-times differentiable Fréchet in D ⊆ Rn,
convex set. Then the following expression holds, for any x, h ∈ Rn:

Ψ(x + h) =Ψ(x) + Ψ′(x)h +
1
2!

Ψ′′(x)h2 +
1
3!

Ψ′′′(x)h3 + · · ·+ 1
(d− 1)!

Ψ(d−1)(x)h(d−1) + Rd, (10)

where
‖Rd‖ ≤ sup

0≤u≤1

1
d!
‖Ψ(d)(x + uh)‖‖h‖d and hd = (h, h, d

······, h).

Consider the mapping [·, ·; Ψ] : D×D ⊆ Rn ×Rn → L(Rn), i.e., the first-order divided difference
operator of Ψ on Rn, which can be expressed by Gennochi-Hermite formula [17],

[
x(j) + h, x(j); Ψ

]
=
∫

0

1
Ψ′(x(j) + uh)du, ∀(x(j), h) ∈ Rn ×Rn. (11)

By developing Ψ′(x(j) + uh) in Taylor’s series expansion at x(j) and integrating, we get

∫
0

1
Ψ′(x(j) + uh)du = Ψ′(x(j)) +

1
2

Ψ′′(x(j))h +
1
6

Ψ′′′(x(j))h2 + O(h3). (12)

If we define e(j) = x(j) − x∗, we develop Ψ(x(j)) and its derivatives in a neighbourhood of x∗,
where x∗ ∈ Rn satisfies Ψ(x∗) = 0. Assuming that [Ψ′(x∗)]−1 exists, we get

Ψ(x(j)) = Ψ′(x∗)
[
e(j) + C2e(j)2

+ C3e(j)3
+ C4e(j)4

+ C5e(j)5
+ O

(
e(j)6)]

, (13)

being Ci =
1
i!

ΓΨ(i)(x∗) ∈ Li(Rn,Rn), i = 2, 3, . . . , with Γ = [Ψ′(x∗)]−1.

From Equation (13), the derivatives of Ψ(x(j)) can be written as

Ψ′(x(j)) = Ψ′(x∗)
[

I + 2C2e(j) + 3C3e(j)2
+ 4C4e(j)3

+ 5C5e(j)4]
+ O

(
e(j)5)

, (14)

Ψ′′(x(j)) = Ψ′(x∗)
[
2C2 + 6C3e(j) + 12C4e(j)2

+ 20C5e(j)3]
+ O

(
e(j)4)

, (15)

and
Ψ′′′(x(j)) = Ψ′(x∗)

[
6C3 + 24C4e(j)

]
+ O

(
e(j)2)

, (16)

being I the identity matrix of order n.
Now, the order of convergence of (9) can be demonstrated through the following result.
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Theorem 1. Let x∗ ∈ Rn be a solution of system Ψ(x) = 0 and Ψ : D ⊆ Rn → Rn, being Ψ differentiable
enough in D open neighborhood of x∗ at which Ψ′(x∗) is non-singular. Then, for x(0) initial guess sufficiently
close to x∗ and α ∈ R, iterative scheme (9) has, at least, fourth-order of convergence, provided γ 6= δ.

Proof. Let e(j) = x(j)− x∗ be the error in the approximation x(j). Thus, we denote by e(j)
1 = w(j)

1 − x∗ =

e(j) − γΨ(x(j)), and e(j)
2 = w(j)

2 − x∗ = e(j) + δΨ(x(j)).
Using (13), we have

e(j)
1 = (I −Ψ′(x∗)γ)e(j) −Ψ′(x∗)γC2e(j)2

−Ψ′(x∗)γC3e(j)3
−Ψ′(x∗)γC4e(j)4

+ O
(

e(j)5)
, (17)

and

e(j)
2 = (I + Ψ′(x∗)δ)e(j) + Ψ′(x∗)δC2e(j)2

+ Ψ′(x∗)δC3e(j)3
+ Ψ′(x∗)δC4e(j)4

+ O
(

e(j)5)
. (18)

In view of Equations (11), (12), (14)–(16), and setting x(j) + h = e(j)
1 + x∗, x(j) = e(j)

2 + x∗, we have

h = e(j)
1 − e(j)

2 , and

[w(j)
1 , w(j)

2 ; Ψ] = Ψ′(x∗)
(

I + (e(j)
1 + e(j)

2 )C2 + O
(

e(j)2) )
. (19)

[w(j)
1 , w(j)

2 ; Ψ]−1 = Γ
(

I − (e(j)
1 + e(j)

2 )C2 + O
(

e(j)2) )
, (20)

where Γ = [Ψ′(x∗)]−1.
Employing Equations (13) and (20), the error equation of first step of scheme (9), one gets

e(j)
z1 = z(j)

1 − x∗ =
(
(−γ + δ)Ψ′(x∗) + I

)
C2e(j)2

(21)

+
[(
−(γ− δ)2Ψ′(x∗)2 + 2(γ− δ)Ψ′(x∗)− 2I

)
C2

2 − C3

]
e(j)3

+ O
(

e(j)4)
.

Also, we have

[z(j)
1 , x(j); Ψ] = Ψ′(x∗)

[
I + C2e(j) +

(
C2

2(Ψ
′(x∗)(δ− γ) + I) + C3

)
e(j)2

+
[
−C2C3 +

(
I −Ψ′(x∗)(γ− δ)

)
C3C2 (22)

+
(
−Ψ′(x∗)2(γ− δ)2 + 2Ψ′(x∗)(γ− δ)− 2I

)
C3

2 + 2C4]e(j)3]
+ O

(
e(j)4)

.

Using (20) and (22), we obtain

u(j) =
(

I + Ψ′(x∗)(δ− γ)
)

C2e(j) −
[(

Ψ′(x∗)2(γ− δ)2 − 3Ψ′(x∗)(γ− δ) + 3I
)

C2
2 + C3

]
e(j)2

+
[
−2C4

(
3I + 2Ψ′(x∗)(δ− γ)

)
C2C3 −

(
I −Ψ′(x∗)(γ− δ)

)
C3C2

−(γ− δ)
(
(γ− δ)Ψ′(x∗)2 − 2Ψ′(x∗)

)
C3

2

]
e(j)3

+ O
(

e(j)4)
. (23)

From Equation (23), we get

Q(j) = Γ
[

I + (δ− γ)Ψ′(x∗)C2e(j) (24)

+
(
−2C3 +

(
−2(1 + α)I + (1 + 4α)(γ− δ)Ψ′(x∗)− (2α− 1)(γ− δ)2Ψ′(x∗)2

)
C2

2

)
e(j)2]

Γ + O
(

e(j)3)
.
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Again, using Taylor series around x∗, we obtain

Ψ(z(j)
1 ) = Ψ′(x∗)

[(
(−γ + δ)Ψ′(x∗) + I

)
C2e(j)2

+
((
−2I + 2(γ− δ)Ψ′(x∗)− (γ− δ)2Ψ′(x∗)2

)
C2

2 − C3

)
e(j)3]

+ O
(

e(j)4)
. (25)

Substituting Equations (22)–(25), the error equation up to the second step of technique (9) is

e(j)
z2 = −C2

2(δ− γ)Ψ′(x∗)
(

Ψ′(x∗)(δ− γ) + I
)

e(j)3
+
[
(δ− γ)Ψ′(x∗)C2C3+

2
(

I + (δ− γ)Ψ′(x∗)
)

C3C2 +
(
(2α + 1)I + 3(2α + 1)(δ− γ)Ψ′(x∗)

(γ− δ)2
(
(6α + 1)Ψ′(x∗)2 − 2α(γ− δ)Ψ′(x∗)3

))
C3

2

]
e(j)4

+ O
(

e(j)5)
. (26)

Again, developing e(j)
z2 by Taylor series around x∗ and using Equation (23), the error equation

of (9) is given by

e(j+1) = (δ− γ)2(Ψ′(x∗))2
(

Ψ′(x∗)(δ− γ) + I
)

C3
2e(j)4

+ O
(

e(j)5)
. (27)

Hence, (9) has order of convergence four, provided γ 6= δ.

Let us remark that in this proposed method, the fourth-order of convergence is achieved. However,
the error equation depends on the value of two parameters, γ and δ, which would allow increasing
its order, taking appropriate values. Moreover, more steps with similar shape can be added that can
increase the final order of convergence in several units, as can be seen in the following section.

2.2. Development and Convergence Analysis of Sixth-Order Scheme

Now, we propose the following new iterative procedure by introducing additional steps in the
proposed technique (9) to achieve sixth-order convergence.

z(j)
1 = x(j) − [w(j)

1 , w(j)
2 ; Ψ]−1Ψ(x(j)),

z(j)
2 = z(j)

1 −Q(j)Ψ(z(j)
1 ),

z(j)
3 = z(j)

2 −Q(j)Ψ(z(j)
2 ),

z(j)
4 = z(j)

3 −Q(j)Ψ(z(j)
3 ),

x(j+1) = z(j)
4 −Q(j)Ψ(z(j)

4 ), j = 0, 1, . . .

(28)

where u(j) = I − [w(j)
1 , w(j)

2 ; Ψ]−1[z(j)
1 , x(j); Ψ], Q(j) =

(
I + 2u(j) − 2(α− 2)(u(j))2)[w(j)

1 , w(j)
2 ; Ψ]−1 and

γ, δ, α ∈ R.
Next, we prove the convergence of scheme (28) in the following result.

Theorem 2. Let Ψ : D ⊆ Rn → Rn be differentiable enough in D, an open neighborhood of x∗ which satisfies
Ψ(x∗) = 0. Consider that initial guess x(0) is sufficiently close to the required zero x∗ and Ψ′(x) is non-singular
in x∗ and continuous. Then, the local convergence order of {x(j)}, generated by (28), is six for all α ∈ R, if real
parameters γ and δ satisfy γ 6= δ.

Proof. Now, from fourth step of scheme (28) and using (23)–(27) and Taylor series for Ψ(z(j)
3 ), we have

e(j)
z4 = C4

2(δ− γ)3(Ψ′(x∗))3
(

Ψ′(x∗)(δ− γ) + I
)

e(j)5
+ O

(
e(j)6)

. (29)
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In a similar way as before, by considering Taylor series for Ψ(z(j)
4 ), and Equations (23)–(29), we get

final sixth-order error equation

e(j+1) = C5
2(δ− γ)4(Ψ′(x∗))4

(
Ψ′(x∗)(δ− γ) + I

)
e(j)6

+ O
(

e(j)7)
. (30)

Hence, proposed method (28) has order of convergence six, provided γ 6= δ.

3. Methods with Memory

As it has been stated in (27), the convergence order of the scheme is four if (δ− γ) I Ψ′(x∗) 6= −I.
On the other side, if we choose δ and γ such that (γ− δ) I = −[Ψ′(x∗)]−1, then convergence must be
at least five. However, the further acceleration of convergence is not possible in absence of knowledge
about the value of [Ψ′(x∗)]−1. However, we can estimate [Ψ′(x∗)]−1, using the already available data
which leads to accelerate the order of convergence. This idea was suggested by Traub in [2] and later
used and extended by Petković et al. in [18], at this moment for scalar equations. Motivated from this
fact, we approximate [Ψ′(x∗)]−1 by

B(j) = {[u(j−1)
1 , v(j−1)

1 ; Ψ]}−1 ≈ [Ψ′(x∗)]−1, j ≥ 1, (31)

where u(j)
1 = x(j) − γ1B(j)Ψ(x(j)) and v(j)

1 = x(j) + δ1B(j)Ψ(x(j)), using the current and previous
available data. In this manner, we extend the Jacobian-free methods (9) and (28) to schemes with
memory to solve nonlinear systems. Thus, we can define the new methods with memory as follows:

z(j)
1 = x(j) − [u(j)

1 , v(j)
1 ; Ψ]−1Ψ(x(j)),

z(j)
2 = z(j)

1 −Q(j)Ψ(z(j)
1 ),

x(j+1) = z(j)
2 −Q(j)Ψ(z(j)

2 ), j = 0, 1, . . .

(32)

and 

z(j)
1 = x(j) − [u(j)

1 , v(j)
1 ; Ψ]−1Ψ(x(j)),

z(j)
2 = z(j)

1 −Q(j)Ψ(z(j)
1 ),

z(j)
3 = z(j)

2 −Q(j)Ψ(z(j)
2 ),

z(j)
4 = z(j)

3 −Q(j)Ψ(z(j)
3 ),

x(j+1) = z(j)
4 −Q(j)Ψ(z(j)

4 ), j = 0, 1, . . .

(33)

respectively. Here, Q(j) = I + 2u(j) − 2(α− 2)(u(j))2, u(j) = I − [u(j)
1 , v(j)

1 ; Ψ]−1[z(j)
1 , x(j); Ψ], and γ1

and δ1 are arbitrary constants satisfying δ1 − γ1 = 1.

Convergence Analysis of Methods with Memory

Now, we state and prove the R-order of convergence of schemes with memory (32) and (33).

Theorem 3. Let Ψ : D ⊆ Rn → Rn be differentiable enough in an open convex neighborhood D of x∗,
solution of Ψ(x) = 0 and given matrix B(k), recursively calculated by the form given in (31) and for an initial
guess x(0), close enough to solution x∗. Then, the R-order convergence for iterative schemes (32) and (33) are
2 +
√

5 ≈ 4.24 and 3 +
√

10 ≈ 6.162, respectively, if δ1 − γ1 = 1.

Proof. Let {x(j)} be a sequence of approximation generated by the iterative expression (32) such that
it converges to the solution x∗ of Ψ(x) = 0 with R− order at lest r. Then,

e(j+1) ≈ D(j,r)e(j)r
, (34)
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being {D(j,r)} a sequence tending to Dr, asymptotic error constant, when j→ ∞. Let us also remark
that notation s ≈ t means that the magnitudes of s and t have the same order. Further on,

e(j+1) ≈ D(j,r)(D(j−1,r)(e(j−1))r)r = D(j,r)(D(j−1,r))r((e(j−1))r2
). (35)

By (31) and (20) for iteration (j− 1), one gets

B(j) = −[u(j−1)
1 , v(j−1)

1 ; Ψ]−1 = −Γ
[

I − (e(j−1)
1 + e(j−1)

2 )C2

]
+ O

(
e(j−1)2)

(36)

and
I + B(j)Ψ′(x∗) = (e(j−1)

1 + e(j−1)
2 )C2 + O

(
e(j−1)2)

) ∼ e(j−1). (37)

Using the accelerating matrix δ− γ = B(j) in (27), we get

e(j+1) = C3
2 B(j)2

Ψ′(x∗)2
[
Ψ′(x∗)B(j) + I

]
e(j)4

+ O
(

e(j))5
)

. (38)

Applying (37) in (38), one gets

e(j+1) ∼ e(j−1)ej4 ∼ e(j−1)(e(j−1)r
)4 ∼ (e(j−1))4r+1. (39)

Then, comparing the powers of e(j−1) in (35) and (39), we obtain

r2 = 4r + 1. (40)

By using Theorem 9.2.9 of [1],the R− order of convergence of this scheme is, at least, the unique
positive root of (40), i.e., 4.24.

In similar terms, setting (δ− γ) I = B(j) in (30) and using (37), one gets

e(j+1) = C5
2(B(j))4(Ψ′(x∗))4

(
Ψ′(x∗)(B(j)) + 1

)
(ej)6 + O

(
ej)7
))

,

∼ e(j−1)(ej)6 ∼ e(j−1)((e(j−1))r)6 ∼ (e(j−1))6r+1.
(41)

By means of a comparison of the powers of e(j−1) in (35) and (41), we get

r2 = 6r + 1. (42)

In a similar way as before, solving equation (42), the R—order of (33) is 6.162. This completes
the proof.

Once this convergence order has been stated, the performance of these procedures must be
checked on different kinds of problems. In the following section, several real-life problems (some of
them big-sized) are solved by using these techniques.

4. Numerical Experiments

In this section, we consider several numerical problems to show the performance of the proposed
methods. New schemes (32) namely PM1

4, PM2
4 for α = 1

2 and for α = 1
4 , respectively, are considered

and compared with existing techniques with memory proposed by Sharma and Petković, (SM4) for
(c = −0.01) [12] and Narang’s et al. method (MM1

4) [14]. The proposed schemes (33) for α = 1
2 ,

and α = 1
4 are denoted as PM3

6, and PM4
6, respectively and compared with existing schemes with

memory namely SM2
6, MM6 proposed by Sharma and Arora et al. [13], and Narang’s et al. [14],

respectively. For better and fair comparisons, the performance of the new methods as well as the
existing ones is tested for the same varying initial estimation of the accelerating matrix B(0) = −0.001I.
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The numerical results are performed with γ1 = 1 and satisfying δ1 − γ1 = 1. To numerically check
the order of convergence proven theoretically, we have displayed the number of iteration indices
j, the residual ‖Ψ(x(j))‖, the distance between the two last iterations ‖x(j+1) − x(j)‖, and also the
approximated computational order of convergence (ρ) using the ACOC defined in [19],

ACOC ≈
ln ‖x

(j+1)−x(j)‖
‖x(j)−x(j−1)‖

ln ‖x(j)−x(j−1)‖
‖x(j−1)−x(j−2)‖

, j = 2, 3, . . . , (43)

where x(j−2), x(j−1), x(j), and x(j+1) are four consecutive approximations in the iterative process.
All numerical computations were done on Mathematica 11 [20] with multiple precision arithmetics,
by using 2000 digits of mantissa, with the aim of minimizing the round-off errors and in all tables,
b(±c) denotes b× 10±c.

Example 1. Let us firstly consider the problem of kinematic synthesis for steering, that was described in [21–24].
It is modeled as the nonlinear system

[Gi (x2 sin (φi)− x3)− Ei (x2 sin (ψi)− x3)]
2 + [Ei (x2 cos (ψi)− 1)− Gi (x2 cos (φi) + 1)]2

− [x1 (x2 cos (φi) + 1) (x2 sin (ψi)− x3)− x1 (x2 sin (φi)− x3) (x2 cos (ψi)− x3)]
2 = 0, for i = 1, 2, 3,

being

Ei = − (sin (φi)− sin (φ0)) x3x2 − (x2 sin (φi)− x3) x1 + (cos (φi)− cos (φ0)) x2, i = 1, 2, 3,

and

Gi = − sin (ψi) x3x2 − cos (ψi) x2 + sin (ψ0) (x3 − x1) x2 + cos (ψ0) x2 + x1x3, i = 1, 2, 3.

We can see in Table 1 the values of ψi and φi, in radians. We have considered the initial estimation
x(0) = (0.91, 0.70, 0.66) in order to get the approximation of the solution

x∗ ≈ (0.9051567 . . . , 0.6977417 . . . , 0.6508335 . . . )T .

The numerical results are displayed in Table 2.

Table 1. Values in radians of ψi and φi for Example (1).

i ψi φi

0 1.3954170041747090114 1.7461756494150842271
1 1.7444828545735749268 2.0364691127919609051
2 2.0656234369405315689 2.2390977868265978920
3 2.4600678478912500533 2.4600678409809344550

It can be observed in Table 2 that the estimations of the error of proposed methods are better than
those of the known methods from the first iteration. Moreover, the estimated order of convergence
coincides with the theoretical one, for all schemes.
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Table 2. Comparative study of different methods for Example 1.

Cases j ‖Ψ(x(j))‖ ‖x(j+1)− x(j)‖ ACOC

SM4

2 2.5(−11) 4.7(−10) 4.305
3 3.3(−37) 4.6(−35)
4 1.6(−144) 9.1(−143)

MM4

2 1.7(−11) 2.5(−9) 4.055
3 5.7(−35) 7.5(−34)
4 2.9(−135) 2.5(−133)

PM1
4

2 8.3(−13) 8.4(−11) 4.200
3 2.3(−41) 2.8(−39)
4 6.6(−161) 7.8(−159)

PM2
4

2 5.0(−13) 5.3(−11) 4.085
3 5.0(−42) 7.7(−41)
4 1.1(−164) 9.8(−163)

SM6

2 3.1(−19) 1.9(−17) 6.166
3 9.7(−100) 7.0(−98)
4 1.2(−595) 7.2(−594)

MM6

2 1.3(−19) 1.8(−17) 6.134
3 4.1(−99) 1.7(−97)
4 1.6(−590) 1.9(−588)

PM3
6

2 1.3(−23) 1.2(−21) 6.165
3 1.8(−124) 1.7(−122)
4 5.8(−746) 2.8(−744)

PM4
6

2 4.8(−24) 4.9(−22) 6.167
3 3.8(−127) 4.9(−125)
4 8.9(−762) 2.7(−760)

Example 2. Now, we focus our studies in the Van der Pol equation [22,25], defined as:

z′′ − µ(z2 − 1)z′ + z = 0, µ > 0, (44)

governing the flow in a vacuum tube. The boundary conditions are z(0) = 0, z(2) = 1. Moreover, the set of
nodes in the interval [0, 2] is given by

x0 = 0 < x1 < x2 < x3 < · · · < xn, being xi = x0 + ih, and h =
2
n

.

Indeed, we assume that

z0 = z(x0) = 0, z1 = z(x1), . . . , zn−1 = z(xn−1), zn = z(xn) = 1.

By discretizing problem (44) with central divided differences for the first and second derivative,

z′i =
zi+1 − zi−1

2h
, z′′i =

zi−1 − 2zi + zi+1

2h
, i = 1, 2, . . . , n− 1,

we get a system of nonlinear equations of size (n− 1)× (n− 1),

2h2zi − hµ
(

z2
i − 1

)
(zi+1 − zi−1) + 2 (zi−1 + zi+1 − 2zi) = 0.

We use µ = 1
2 and initial estimation z(0)i =

(
1
k2

)
, i = 1, 2, . . . , n− 1. Also, we employ n = 101 so we

obtain a 100× 100 system of nonlinear equations. The numerical results are shown in Table 3.
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Table 3. Comparative study of different methods for Example 2.

Cases j ‖Ψ(x(j))‖ ‖x(j+1)− x(j)‖ ACOC

SM4

2 5.8(−14) 5.8(−12) 4.239
3 1.3(−55) 1.3(−53)
4 4.6(−232) 1.3(−230)

MM4

2 7.7(−15) 1.0(−12) 4.235
3 5.7(−59) 3.8(−57)
4 2.3(−247) 2.8(−245)

PM1
4

2 2.1(−14) 3.2(−12) 4.259
3 1.1(−56) 1.2(−54)
4 1.6(−237) 1.3(−235)

PM2
4

2 2.3(−14) 3.5(−12) 4.262
3 1.1(−56) 1.2(−54)
4 1.6(−237) 1.3(−235)

SM6

2 6.6(−28) 3.8(−26) 6.152
3 4.8(−169) 3.6(−167)
4 7.4(−1037) 7.3(−1035)

MM6

2 9.8(−30) 9.6(−28) 6.162
3 4.4(−178) 4.9(−176)
4 8.2(−1092) 6.9(−1092)

PM3
6

2 7.0(−29) 9.0(−27) 6.174
3 6.4(−172) 5.2(−170)
4 4.8(−1056) 1.9(−1054)

PM4
6

2 1.1(−28) 1.4(−26) 6.170
3 9.8(−171) 6.9(−169)
4 1.7(−1048) 6.1(−1047)

In this case, the best results have been obtained by schemes MM4 and MM6, although those
obtained by our proposed methods are very similar.

Example 3. Let us consider another nonlinear problem that is called Coupled Burgers equations [26] defined as

∂u
∂t
− ∂2u

∂x2 − 2u
∂u
∂x

+
∂u
∂x

v = 0,

∂v
∂t
− ∂2v

∂x2 − 2v
∂v
∂x

+
∂u
∂x

v = 0,

u(0, t) = v(0, t) = 0, ∀t ≥ 0,

u(x, 0) = v(x, 0) = sinx,

(45)

in the intervals x ∈ [0, 5] and 0 ≤ t ≤ 1
4 . Again, by using finite differences, Equation (45) is reduced to a

nonlinear system. Consider wi,j = u(xi, tj) and ri+1,j = v(xi, tj) be, respectively, their estimated solution at
the nodes of the mesh. Let the number of subintervals in x and t be denoted by M and N, respectively , and h1

and h2 be the respective step size. By applying central differences to

uxx(xi, tj) =
wi+1,j − 2wi,j + wi−1,j

h2
1

and vxx(xi, tj) =
ri+1,j − 2ri,j + ri−1,j

h2
1

backward differences for

ut(xi, tj) =
wi,j − wi,j−1

h2
and vt(xi, tj) =

ri,j − ri,j−1

h2
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and central differences for

ux(xi, tj) =
wi+1,j − wi−1,j)

2h1
and vx(xi, tj) =

ri+1,j − ri−1,j

2h1
.

We consider M = 9 and N = 9 which yields to a system of size 128, with the initial estimation
for points = Range[−0.8, 0.8, 0.025] and x0 = Drop[Drop[Join[pts, pts], 1],−1] has been evaluated in
Mathematica software. The matrix plot of two divided differences used in proposed iterative scheme has been
shown in Figures 1 and 2. In Figure 3, the approximation of the solution is represented. In Figure 4, the blue
line shows the exact solution u(x, t) = e−tsinx and dotted red points represents approximated solution.

1 50 100 128

1

50

100

128

1 50 100 128

1

50

100

128

Figure 1. Matrix plot of the divided difference operator [x(k), w(k); Ψ].

1 50 100 128

1

50

100

128

1 50 100 128

1

50

100

128

Figure 2. Matrix plot of the divided difference operator [x(k), z(k)1 ; ψ].
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Figure 3. Estimated solution for coupled Burger Equation’s t ∈ [0, 1
4 ].

1 2 3 4 5

-1.0

-0.5

0.5

1.0

Figure 4. Exact and approximated solution of u(x, t).

Example 4. Now, we are going to check the performance of the methods on the mixed Hammerstein integral
equation (see [1] pp. 19–20),

x(s) = 1 +
1
5

∫ 1

0
G(s, t)(x(t))3dt,

being the kernel

G(s, t) =

{
(1− s)t, t ≤ s,

s(1− t), s ≤ t.

and x ∈ C[0, 1], s, t ∈ [0, 1] .
We use Gauss-Legendre quadrature formula, given as

∫ 1
0 f (t)dt ≈ ∑8

j=1 wj f (tj), to transform this intergal
equation into a finite-dimensional problem. The nodes tj and weights wj, j = 1, 2, . . . , 8 are determined by means
of Legendre polynomials (see Table 4). Denoting the approximations of x(ti) by xi, i = 1, 2, . . . , 8, one gets the
system of nonlinear equations F(x) = ( f1(x), . . . , f8(x))T , where

fi(x1, . . . , x8) = 5xi − 5−
8

∑
j=1

aijx3
j = 0,

where i = 1, 2, . . . , 8 and

aij =

{
wjtj(1− ti), j ≤ i,

wjti(1− tj), i < j.
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Table 4. Abscissas and weights of Gauss-Legendre quadrature formula.

j tj wj

1 0.01985507175123188415821957... 0.05061426814518812957626567...
2 0.10166676129318663020422303... 0.11119051722668723527217800...
3 0.23723379504183550709113047... 0.15685332293894364366898110...
4 0.40828267875217509753026193... 0.18134189168918099148257522...
5 0.59171732124782490246973807... 0.18134189168918099148257522...
6 0.76276620495816449290886952... 0.15685332293894364366898110...
7 0.89833323870681336979577696... 0.11119051722668723527217800...
8 0.98014492824876811584178043... 0.05061426814518812957626567...

The convergence results of the methods to the solution x∗ ≈
(1.002096, 1.009900, 1.019727, 1.026436, 1.026436, 1.019727, 1.009900, 1.002096)T using initial guess
x(0) = ( 9

10 , 9
10 , . . . , 9

10 )
T is presented in Table 5.

Table 5. Comparative study of different methods for Example 4.

Cases j ‖Ψ(x(j))‖ ‖x(j+1)− x(j)‖ ρ

SM4

2 4.1(−31) 8.8(−32) 4.236
3 2.4(−136) 5.0(−137)
4 3.7(−582) 7.8(−583)

MM4

2 1.6(−31) 3.5(−32) 4.236
3 4.8(−138) 1.0(−138)
4 2.5(−589) 5.4(−590)

PM1
4

2 1.5(−42) 3.3(−43) 4.234
3 6.7(−185) 1.4(−185)
4 9.3(−788) 2.0(−788)

PM2
4

2 1.9(−42) 4.1(−43) 4.234
3 1.7(−184) 3.5(−185)
4 4.2(−786) 8.9(−787)

SM6

2 4.9(−67) 1.1(−67) 6.162
3 2.3(−420) 5.0(−421)
4 1.3(−2597) 2.8(−2598)

MM6

2 9.6(−69) 2.0(−69) 6.162
3 6.7(−431) 1.4(−431)
4 1.4(−2662) 3.0(−2663)

PM3
6

2 1.5(−101) 3.3(−102) 6.162
3 4.2(−633) 9.0(−634)
4 1.3(−3908) 2.8(−3909)

PM4
6

2 2.9(−101) 6.1(−102) 6.162
3 1.9(−631) 4.0(−632)
4 2.0(−3898) 4.3(−3899)

In this example, we observe again that the proposed methods, as well in fourth-order as in sixth
one, get the best error estimations from the first iterations.

Example 5. Let us also consider the Frank-Kamenetskii Problem [27] that is described by the following
boundary problem

xy′′ + y′ + xey = 0, y′(0) = y(1) = 0. (46)

To transform problem (46) into nonlinear system of size 50× 50 with step size h = 1
51 , the finite difference

discretization is used. In the test made, initial guess x(0) = ( 1
10 , 1

10 , . . . , 1
10 )

T has been used and the obtained
results are shown in Table 6.
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Table 6. Comparative study of different methods for Example 5.

Cases j ‖Ψ(x(j))‖ ‖x(j+1)− x(j)‖ ρ

SM4

2 1.5(−19) 2.6(−16) 4.236
3 2.4(−74) 4.2(−71)
4 2.1(−306) 3.7(−303)

MM4

2 6.1(−20) 1.0(−16) 4.236
3 5.7(−76) 9.9(−73)
4 2.6(−313) 4.4(−310)

PM1
4

2 6.9(−26) 1.2(−22) 4.235
3 3.6(−101) 6.2(−98)
4 4.7(−420) 8.1(−417)

PM2
4

2 9.1(−26) 1.6(−22) 4.235
3 1.2(−100) 2.1(−97)
4 7.3(−418) 1.3(−414)

SM6

2 2.8(−37) 4.8(−34) 6.162
3 3.3(−216) 5.8(−213)
4 9.6(−1319) 1.7(−1315)

MM6

2 6.2(−39) 1.1(−35) 6.162
3 2.3(−226) 4.0(−223)
4 2.5(−1381) 4.3(−1378)

PM3
6

2 4.1(−56) 7.2(−53) 6.162
3 3.4(−332) 5.9(−329)
4 1.6(−2033) 2.7(−2030)

PM4
6

2 9.2(−56) 1.6(−52) 6.162
3 4.7(−330) 8.1(−327)
4 2.4(−2020) 4.2(−2017)

For this example, method PM1
4 gets the best error estimations among its partners and PM3

6
achieves also the best error estimates from the first iteration.

5. Concluding Remarks

To summarize, we have developed new Jacobian-free methods of fourth and sixth-order for
solving systems of nonlinear equations numerically. The convergence of the proposed schemes is
accelerated by using memorization which is based on current and previous available data. A wide
range of numerical experiments have been taken into account, that confirm the theoretical results.
It is found that the presented methods with memory perform as good or higher effectiveness as the
existing ones.
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