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Abstract

Since recent studies have shown that the Cayley transform method can be an effective iterative method for
solving the inverse eigenvalue problem, in this work, we consider using an extension of it for solving a type
of parameterized generalized inverse eigenvalue problem and prove its locally quadratic convergence. This
type of inverse eigenvalue problem, which includes multiplicative and additive inverse eigenvalue problems,
appears in many applications. Also, we consider the case where the given eigenvalues are multiple. In this
case, we describe a modified problem that is not overdetermined, and discuss the extension of the Cayley
transform method for this modified problem. Finally, to demonstrate the effectiveness of these algorithms,
we present some numerical examples to show that the proposed methods are practical and efficient.
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1. Introduction

The inverse eigenvalue problem can appear in various forms depending on the applications [1, 2, 3, 4, 5].
The most common type is the parameterized inverse eigenvalue problem [6, 1]. In this paper, we study a
kind of inverse eigenvalue problem, called parameterized generalized inverse eigenvalue problem.

We will use the following notations. The transpose and the determinant of a matrix A are represented,
respectively, by the symbols AT and det(A). In stands for the n × n identity matrix and Aij denotes the
elements of the matrix A. We will use the symbols A > 0 and A ≥ 0, when the matrix A is positive definite
and positive semi-definite, respectively. The symbol ‖ · ‖ represents the Euclidean norm for vectors or its
corresponding induced matrix norm.

Generally, in the inverse eigenvalue problems, the given information contains either all or part of the
eigenvalues or eigenvectors and the unknown parameters are the elements of a matrix or a matrix pencil [1].
The classes of inverse eigenvalue problems were recognized and categorized according to their specifications
by Chu and Golub [1].

One of the categories of inverse eigenvalue problems, that due to numerous applications has always been
a concern for researchers, is the parameterized case [7, 8]. A parameterized inverse eigenvalue problem can
be defined as follows:

Definition 1. Let A(c) = A(c1, c2, . . . , cn) be a given n× n matrix whose entries are analytic functions of
parameters (c1, c2, . . . , cn). Given n real numbers λ1, λ2, . . . , λn, the problem of finding c ∈ Rn such that
the eigenvalue problem A(c)x = λx has the prescribed eigenvalues λ1, λ2, . . . , λn, is called the parameterized
inverse eigenvalue problem (PIEP).
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In many applications the matrix-valued function A(c) belongs to an affine family, resulting in the special
case of the PIEP in the form below [9]:

Problem 1. Given n+ 1 real symmetric n×n matrices Ak (k = 0, 1, . . . , n) and n real numbers λ∗1 ≤ λ∗2 ≤
· · · ≤ λ∗n, find parameters c ∈ Rn such that the matrix

A(c) = A0 +

n∑
i=1

ciAi (1.1)

has the given eigenvalues {λ∗i }ni=1.

If the eigenvalues of A(c) are denoted by {λi(c)}ni=1 with λ1(c) ≤ · · · ≤ λn(c) and the given eigenvalues
{λ∗i }ni=1 are distinct, then it is possible to solve the problem by means of quadratically convergent Newton-
like methods operating on the system of nonlinear equations

f(c) := [λ1(c)− λ∗1, . . . , λn(c)− λ∗n]T = 0. (1.2)

The seminal paper by Friedland, Nocedal and Overton [9] describes three methods, that need to solve
a linear system of equations at each Newton step, whose coefficient matrix is the Jacobian. The three
methods differ in how the (approximate) Jacobian matrix is computed. The Jacobian matrix depends on
the eigenvectors {qi(c)}ni=1. Method I explicitly computes eigenvectors at each Newton step, Method II
updates them with one step of inverse iteration, and Method III updates the eigenvector matrix Q(c) by
means of the matrix exponential and Cayley transforms. The main computational cost of the aforementioned
methods is the solution of the linear systems of equations (with the Jacobian matrix and also associated with
inverse iteration or the Cayley transform). Some authors have proposed to relax the accuracy with which
these systems are solved, via iterative solvers, thus obtaining an inexact method. In this case, it is important
to avoid oversolving by adjusting the tolerance of the inner loop so that the requested accuracy increases as
the Newton process converges. In particular, Chan et al. [10] propose an inexact Newton-like method that
solves inexactly both the Jacobian system and the inverse iteration update, while Bai et al. [11] advocate for
the inexact Cayley method where only the Jacobian system is solved inexactly. An alternative to the inexact
Newton-like method (with inverse iteration update) was proposed by Shen et al. [12], where the correction
is not computed by solving a linear system but by Ulm’s method, which involves a matrix recurrence using
the Jacobian matrix. This idea was also applied to the case of the Cayley transform method [13].

More recently, Aishima [14] has proposed a quadratically convergent method based on matrix equations,
which can be seen as an improved version of the Cayley transform method. The main advantage is that
orthogonality of the approximate eigenvector matrix can be refined without the Cayley transform, resulting
in a significantly cheaper computation.

The case of multiple eigenvalues is more subtle, but was already addressed in [9] with appropriate
modifications of the three methods. Some of the above methods have also been adapted for the case of
multiple eigenvalues: the inexact Cayley transform method in [15], the Ulm-like Cayley transform method
in [16], and Aishima’s method in [17].

On the more theoretical side, many studies have focused on existence theory for different categories of
these problems [18, 19]. Sufficient conditions for the solvability of algebraic inverse eigenvalue problems
by using Brouwer’s fixed-point theorem and the topological degree have been presented in [20] and [21],
respectively. In [22], sufficient conditions for a positive solution of the algebraic inverse eigenvalue problem
have been provided. Also, Xu [19] investigated the sufficient conditions for the solvability of algebraic inverse
eigenvalue problems.

A modification of Problem 1 is the case where the affine family (1.1) is defined with m < n matrices
only, in which case the problem may not have an exact solution but it is possible to solve the problem in
the least-squares sense [23]. Another extension of PIEP is the parameterized generalized inverse eigenvalue
problem, that by using another matrix-valued function B(c) = B(c1, c2, . . . , cn), can be defined as follows:

2



Definition 2. Let (A(c), B(c)) be a given matrix pencil whose entries are analytic functions of parameters
(c1, c2, . . . , cn). Finding c ∈ Rn such that the generalized eigenvalue problem A(c)x = λB(c)x has the given
eigenvalues λ1, λ2, . . . , λn, is called the parameterized generalized inverse eigenvalue problem (PGIEP).

In this paper, we focus on a special case of PGIEP, where we need another set of n + 1 real symmetric
n× n matrices {Bk}nk=0 so that

B(c) = B0 +

n∑
k=1

ckBk. (1.3)

We further assume that B(c) > 0 whenever c ∈ Ω, an open subset of Rn. In this case {λi(c)}ni=1 with
λ1(c) ≤ · · · ≤ λn(c) denote the eigenvalues of the pencil (A(c), B(c)).

Problem 2. Given A(c) (1.1) and B(c) (1.3) with B(c) > 0 for c ∈ Ω, and given n real numbers λ∗1 ≤ · · · ≤
λ∗n, find c ∈ Rn such that λi(c) = λ∗i for i = 1, . . . , n.

Problem 2 appears in many practical applications in areas such as structural engineering, mechanics,
and physics [3]. Examples of these applications are the structural design [24, 25], studying a vibrating string
[26], nuclear spectroscopy, the educational testing problem [9], the graph partitioning problem, the design of
control systems [22] and factor analysis [27]. These problems have also many applications in mathematical
and numerical analysis, such as Sturm-Liouville problems and preconditioning.

For Problem 2, like in Problem 1, there is a lot of literature on the theory of solvability. In [7], Dai
et al. stated the sufficient conditions for guaranteeing the existence of a solution for the parameterized
generalized inverse eigenvalue problem. These conditions have been presented earlier for the parameterized
inverse eigenvalue problem by Ji [28].

Problem 2 was approached by many authors. We next review the most important methods. Dai and
Lancaster [29] extend Method I of Friedland et al. [9], that is, via the explicit computation of eigenvectors of
the pencil (A(c), B(c)). Practically, this method requires computing the complete solution of the generalized
eigenvalue problem A(c)x = λB(c)x in each iteration of Newton’s method. On the other hand Shu et al.
[30] introduced the Homotopy solution for the system of nonlinear equations (1.2).

The method of Aishima [14] mentioned above extends naturally to Problem 2. Dai et al. [7] also propose
a method for Problem 2, but based on a different principle: smooth LU decomposition, which reformulates
the nonlinear function (1.2). A variation of this latter method is presented in [31], by using a QR-like
decomposition. In this method, the nonlinear function is written as

f(c) =


r

(1)
nn(c)

r
(2)
nn(c)

...

r
(n)
nn (c)

 , (1.4)

in which r
(i)
nn(c) is obtained by computing a QR-like decomposition of (A(c)− λiB(c)) for i = 1, 2, . . . , n,

A(c)− λiB(c) = Qi(c)Ri(c), Ri(c) =

[
R

(i)
11 (c) R

(i)
12 (c)

0 r
(i)
nn(c)

]
,

where R
(i)
11 (c) is upper triangular and Qi(c) is orthogonal.

In addition, Lancaster [32] and Biegler-Konig [33] presented a formulation based on determinant evalu-
ation for the parameterized inverse eigenvalue problems. This formulation was used for PGIEP in [34]. In
this method, the system of nonlinear equations is constructed as

f(c) =


det(A(c)− λ1B(c))
det(A(c)− λ2B(c))

...
det(A(c)− λnB(c))

 = 0,
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but it should be noted that this formulation is not computationally attractive.
Most of the methods to solve inverse eigenvalue problems have high computational complexity, because

they need to solve an eigenvalue problem in each iteration. To avoid this and to reduce the computational
cost, we propose a numerical algorithm based on the Cayley transform method.

In this paper, two extensions of the Cayley transform method are used to find an answer for a parameter-
ized generalized inverse eigenvalue problem. The first one is for Problem 2 with distinct specified eigenvalues
and the second one for the case where multiple eigenvalues are given. We also provide some convergence
analysis that consists of extensions of ideas developed in [9, 11]. The paper concludes with some results of
numerical experiments of both algorithms, in section 4.

2. Formulation

First, we review the approach proposed by Friedland et al. [9] based on the use of matrix exponential
and Cayley transforms. Let Q be an orthogonal matrix, then a solution to Problem 1 can be described by
c∗ and Q as

QTA(c∗)Q =Λ∗, (2.1)

QTQ =I, (2.2)

where Λ∗ = diag(λ∗1, λ
∗
2, . . . , λ

∗
n). Suppose that Q(k) is the current estimate of Q and Z(k) is a skew-

symmetric matrix. Let us write Q = Q(k)eZ
(k)

. Then, using the Taylor series of the exponential function
and the definition of the skew-symmetric matrix, i.e., ZT = −Z, we can express (2.1) as

Q(k)TA(c∗)Q(k) = eZ
(k)

Λ∗e−Z
(k)

= (I + Z(k) +
1

2
Z(k)2

+ . . .)Λ∗(I − Z(k) +
1

2
Z(k)2

+ . . .)

= Λ∗ + Z(k)Λ∗ − Λ∗Z(k) +O(‖Z(k)‖2).

Suppose that c(k) denotes the current approximation of c∗, it can be updated as c(k+1) by neglecting second-
order terms in Z(k) as

Q(k)TA(c(k+1))Q(k) = Λ∗ + Z(k)Λ∗ − Λ∗Z(k). (2.3)

Assuming that A(c) is defined by (1.1), i.e.,

A(c) = A0 +

n∑
i=1

ciAi, (2.4)

the parameters vector c(k+1) is obtained by equating the diagonal elements in (2.3) as

q
(k)
i

T
(A0 +

n∑
j=1

c
(k+1)
j Aj)q

(k)
i = λ∗i , i = 1, 2, . . . , n. (2.5)

By defining d
(k)
i = q

(k)
i

T
A0q

(k)
i and J

(k)
ij = q

(k)
i

T
Ajq

(k)
i for i, j = 1, . . . , n, we find c(k+1) by solving the linear

system
J (k)c(k+1) = λ∗ − d(k), (2.6)

where
λ∗ = [λ∗1, λ

∗
2, . . . , λ

∗
n]T .

Then, equating the off-diagonal elements in (2.3),

q
(k)
i

T
A(c(k+1))q

(k)
j = Z

(k)
ij (λ∗j − λ∗i ), i, j = 1, 2, . . . , n, i 6= j, (2.7)
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ALGORITHM 1: Cayley transform method for Problem 1

Input: Problem matrices {Ak}nk=0, given eigenvalues Λ∗ = diag(λ∗
1, λ

∗
2, . . . , λ

∗
n) and initial guess c(0) ∈ Rn

Output: Computed solution c(k+1)

1 Compute matrix A(c(0)) and its orthonormal eigenvectors [q1(c(0)), q2(c(0)), . . . , qn(c(0))]

2 Let Q(0) = [q
(0)
1 , q

(0)
2 , . . . , q

(0)
n ] = [q1(c(0)), q2(c(0)), . . . , qn(c(0))]

3 for k = 0, 1, 2, . . . do

4 if ‖Q(k)TA(c(k))Q(k) − Λ∗‖ is sufficiently small then exit

5 Form vector d(k) and the approximate Jacobian matrix J(k)

J
(k)
ij =q

(k)
i

T
Ajq

(k)
i

d
(k)
i =q

(k)
i

T
A0q

(k)
i

6 Solve the Jacobian equation (2.6) to obtain c(k+1)

7 Compute the skew-symmetric matrix Z(k) using (2.8)

8 Compute H(k) = (I − 1
2
Z(k))Q(k)T and then solve the linear systems

(I +
1

2
Z(k))vi = h

(k)
i , i = 1, 2, . . . , n (2.10)

and set
Q(k+1)T = [v1, v2, . . . , vn] (2.11)

9 end

and, assuming that the given eigenvalues are distinct, we obtain the off-diagonal elements of Z(k) as

Z
(k)
ij =

q
(k)
i

T
A(c(k+1))q

(k)
j

λ∗j − λ∗i
, i, j = 1, 2, . . . , n, i 6= j. (2.8)

Finally, we create an orthogonal approximation of eZ , by using the Cayley transform eZ ≈ (I + 1
2Z)(I −

1
2Z)−1, and we calculate the new estimation of the matrix Q as

Q(k+1) = Q(k)(I +
1

2
Z(k))(I − 1

2
Z(k))−1. (2.9)

Algorithm 1 describes this method.

2.1. Distinct eigenvalues

In this sub-section, we present a new algorithm for Problem 2, by adapting the Cayley transform method.
Let (A,B) be a matrix pencil with matrix A symmetric and B symmetric positive definite, then there

exists a real nonsingular matrix X such that XTAX is a real diagonal matrix and

XTBX = I,

and eigenvalues of the matrix pencil (A,B) are equal to the diagonal elements of XTAX [35]. We will use
the following result for a pencil of matrix-valued functions (A(c), B(c)).

Theorem 1 ([29]). Let {Ai}ni=0 and {Bi}ni=0 be sets of real symmetric n× n matrices and suppose that the
pencil of matrix-valued functions (A(c), B(c)) at c = c∗ has prescribed eigenvalues λ∗1, λ

∗
2, . . . , λ

∗
n and that

q∗1 , q
∗
2 , . . . , q

∗
n are the corresponding eigenvectors so that

[q∗1 q
∗
2 . . . q∗n]TA(c∗)[q∗1 q

∗
2 . . . q∗n] = diag(λ∗1, λ

∗
2, . . . , λ

∗
n),

[q∗1 q
∗
2 . . . q∗n]TB(c∗)[q∗1 q

∗
2 . . . q∗n] =I.
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There exists a neighbourhood of c∗ in which the generalized eigenvalue problem for the pencil (A(c), B(c)) has
real analytic eigenvalues λ1(c), λ2(c), . . . , λn(c) and corresponding real analytic eigenvectors q1(c), q2(c), . . . , qn(c)
and

Q(c)TA(c)Q(c) =Λ(c),

Q(c)TB(c)Q(c) =I,

where Q(c) = [q1(c) q2(c) . . . qn(c)] and Λ(c) = diag(λ1(c), λ2(c), . . . , λn(c)). In addition

∂λi(c)

∂cj
= qi(c)

T (Aj − λ∗iBj)qi(c).

In particular, we see that if Problem 2 has a solution c∗, then there is a neighbourhood of c∗ in which the
eigenvalues of the pencil of matrix-valued functions (A(c), B(c)) are distinct and are differentiable functions.

According to Theorem 1, c and Q are a solution to Problem 2, if the following equations are satisfied:{
QTA(c)Q = Λ∗,
QTB(c)Q = I.

(2.12)

Suppose that c(k) and Q(k) represent our current estimation of c and Q, respectively. Similarly to the
Cayley transform procedure, let us write Q = Q(k)eZ where matrix Z, as opposed to Algorithm 1, is not
skew-symmetric, then using (2.12), we have{

Q(k)TA(c)Q(k) = e−Z
T

Λ∗e−Z ,

Q(k)TB(c)Q(k) = e−Z
T
e−Z .

Then, by using the Taylor series of e−Z , we have

Q(k)TA(c)Q(k) = (I − ZT +
1

2
(ZT )

2
+ . . . )Λ∗(I − Z +

1

2
Z2 + . . . ) = Λ∗ − ZTΛ∗ − Λ∗Z +O(‖Z‖2),

(2.13a)

Q(k)TB(c)Q(k) = (I − ZT +
1

2
(ZT )

2
+ . . . )(I − Z +

1

2
Z2 + . . . ) = I − ZT − Z +O(‖Z‖2). (2.13b)

Neglecting second order terms and subtracting (2.13b) post-multiplied by Λ∗ from (2.13a) results in

Q(k)TA(c)Q(k) −Q(k)TB(c)Q(k)Λ∗ = ZΛ∗ − Λ∗Z. (2.14)

To improve our approximations to the parameters c(k+1), equating the diagonal elements of (2.14), we get

qi
(k)T (A0 +

n∑
j=1

c
(k+1)
j Aj)q

(k)
i − qi

(k)T (λ∗iB0 + λ∗i

n∑
j=1

c
(k+1)
j Bj)q

(k)
i = 0. (2.15)

Let us write
J

(k)
ij = qi

(k)T (Aj − λ∗iBj)q
(k)
i , (2.16)

d
(k)
i = qi

(k)T (A0 − λ∗iB0)q
(k)
i , (2.17)

therefore, from (2.15), c(k+1) can be found from

J (k)c(k+1) = −d(k).

By equating the diagonal elements of the sum of (2.13a) and (2.13b), and the off-diagonal elements of (2.14),
we obtain the elements of matrix Z(k) as

Z
(k)
ij =


qi

(k)TA(c(k+1))qi
(k)+qi

(k)TB(c(k+1))qi
(k)−λ∗

i−1
−(2+2λ∗

i ) , i = 1, 2, . . . , n, i = j,

qi
(k)TA(c(k+1))qj

(k)−λ∗
j qi

(k)TB(c(k+1))qj
(k)

λ∗
j−λ∗

i
, i = 1, 2, . . . , n, j = 1, 2, . . . , n, j 6= i.

(2.18)

6



ALGORITHM 2: Cayley transform method for Problem 2

Input: Problem matrices {Ak}nk=0 and {Bk}nk=0 , given eigenvalues Λ∗ = diag(λ∗
1, λ

∗
2, . . . , λ

∗
n) and initial

guess c(0) ∈ Rn
Output: Computed solution c(k+1)

1 Compute the matrix pencil (A(c(0)), B(c(0))) and its eigenvectors [q1(c(0)), q2(c(0)), . . . , qn(c(0))]

2 Let Q(0) = [q
(0)
1 , q

(0)
2 , . . . , q

(0)
n ] = [q1(c(0)), q2(c(0)), . . . , qn(c(0))]

3 for k = 0, 1, . . . do

4 if max{‖Q(k)TA(c(k))Q(k) − Λ∗‖, ‖Q(k)TB(c(k))Q(k) − I‖} is small enough then exit

5 Compute the Jacobian matrix J(k) and d(k) using the equations (2.16) and (2.17), respectively

6 Solve c(k+1) from the Jacobian equation

J(k)c(k+1) = −d(k)

7 Compute A(c(k+1)) and B(c(k+1))

8 Find Z(k) using (2.18)

9 Compute the subsequent approximation of the matrix of eigenvectors Q(k+1) using (2.19)

10 end

Using the Cayley transform, we compute the subsequent approximation of the matrix of eigenvectors Q(k+1),
as

Q(k+1) = Q(k)eZ
(k)

' Q(k)(I +
1

2
Z(k))(I − 1

2
Z(k))−1. (2.19)

Thus the Cayley transform method for solving Problem 2 can be summarized in Algorithm 2.

2.2. Multiple eigenvalues

Since the inverse eigenvalue problem with a multiple eigenvalue is overdetermined, Friedland et al. [9]
presented a modified problem to remove this feature, by using only n− s smallest eigenvalues

λ∗1 = · · · = λ∗t < λ∗t+1 < · · · < λ∗n−s, (2.20)

where s = t(t−1)
2 . This modified problem has been extended to Problem 2 in [31]. The rationale for using

n − s smallest eigenvalues is as follows. The two relations of (2.12) can be seen as a system of n(n + 1)
equations (each of the two parts has n(n+ 1)/2 due to symmetry), where the unknows are the n2 elements
of Q and the n entries of c. However, if a multiple eigenvalue is present, s degrees of freedom are lost in the
first part of (2.12) since they just describe coordinate transformations in the eigenspace of λ1. Hence, either
s of the remaining eigenvalues are not specified, or s parameters must be added. Therefore, by accepting
the above assumption, the modified problem is expressed as follows:

Problem 3. Find the parameters c = (c1, c2, . . . , cn)T such that the matrix pencil (A(c), B(c)) has the given
numbers λ∗1 = · · · = λ∗t < λ∗t+1 < · · · < λ∗n−s for its n− s smallest eigenvalues.

Since in Problem 3 s of the rows and columns of the Jacobian matrix (2.16) have effectively been removed,
Algorithm 2 must now be adapted for solving this problem. To do this, we first focus on solving the following
matrix equations (with second order terms neglected), as before{

Q(k)TA(c)Q(k) = Λ∗ − ZTΛ∗ − Λ∗Z +O(‖Z‖2),

Q(k)TB(c)Q(k) = I − Z − ZT +O(‖Z‖2).
(2.21)

As formerly, we divide the computations of c and Z, for solving this system of equations. But, it is clear that
s = t(t− 1)/2 of the Zij obtained by (2.18), namely those for which 1 ≤ i ≤ j ≤ t, are of no help in solving
(2.21) and may be removed from the equation, since these eigenvalues are multiple. Also, we can see that

7



the system of equations (2.21) is appropriate to specify only n− s eigenvalues, since only n− s eigenvalues
are given in Problem 3. Thus, we must replace Λ∗ in (2.21) by Λ̄∗ = diag(λ̄∗1, λ̄

∗
2, . . . , λ̄

∗
n−s, λ̄

∗
n−s+1, . . . , λ̄

∗
n),

where λ̄∗i = λ∗i for i = 1, 2, .., n− s, and the last s entries are free parameters. For i = 1, 2, . . . , n− s, we can
obtain c(k+1) from the diagonal elements of (2.21), omitting the quadratic terms,{

q
(k)
i

T
A(c(k+1))q

(k)
i = λ∗i − 2λ∗iZii,

q
(k)
i

T
B(c(k+1))q

(k)
i = 1− 2Zii,

(2.22)

and, subtracting the second part multiplied by λ∗i from the first part and using the definition of A(c) and
B(c), we have

q
(k)
i

T
(A0 +

n∑
j=1

c
(k+1)
j Aj)q

(k)
i − q

(k)
i

T
(λ∗iB0 +

n∑
j=1

λ∗i c
(k+1)
j Bj)q

(k)
i = 0.

Therefore, the new expression for computing c(k+1) has two parts. The first equations, for i = 1, . . . , n− s,
take the form

q
(k)
i

T
(

n∑
`=1

(A` − λ∗iB`)c
(k+1)
` )q

(k)
i = −q(k)

i

T
(A0 − λ∗iB0)q

(k)
i , (2.23)

while for the remaining ones, with 1 ≤ i ≤ j ≤ t, by using the off-diagonal elements of (2.21), we have

q
(k)
i

T
(

n∑
`=1

(A` − λ∗iB`)c
(k+1)
` )q

(k)
j = −q(k)

i

T
(A0 − λ∗iB0)q

(k)
j . (2.24)

Previously, equations (2.24) were not enforced by Algorithm 1; they were not needed since the given eigen-
values were sufficient. We can write the combined system (2.23)–(2.24) as

K(k)c(k+1) = b(k). (2.25)

Now, after obtaining c(k+1), we need to clarify how the unknowns Zij are to be calculated. According to
the off-diagonal entries of (2.21) and using Λ̄∗ = diag(λ̄∗1, λ̄

∗
2, . . . , λ̄

∗
n), for any i 6= j we have

q
(k)
i

T
A(c(k+1))q

(k)
j = −λ̄∗jZ

(k)
ji − λ̄

∗
iZ

(k)
ij , (2.26)

and

q
(k)
i

T
B(c(k+1))q

(k)
j = −Z(k)

ji − Z
(k)
ij , (2.27)

where

λ̄∗i =

{
λ∗j if i = 1, 2, . . . , n− s,

q
(k)
i

T
A(c(k+1))q

(k)
i otherwise.

(2.28)

Therefore, for i 6= j such that λ̄∗i and λ̄∗j satisfy

|λ̄∗i − λ̄∗j | > ε,

where ε is a small multiple of the machine precision, Zij is produced uniquely as

Z
(k)
ij =

qi
(k)TA(c(k+1))qj

(k) − λ̄∗jqi(k)TB(c(k+1))qj
(k)

λ̄∗j − λ̄∗i
. (2.29)

Further, to handle (2.26) and (2.27) for multiple eigenvalues λ̄∗i = λ̄∗j , we set Z
(k)
ij = 0, when this choice

substituted into the equations, satisfies both equations at the same time.
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Finally, we calculate the diagonal elements of matrix Z(k) corresponding to the alternative eigenvalues
λ̄∗i . Equating the off-diagonal elements of (2.22), we get

Z
(k)
ii =

qi
(k)TA(c(k+1))qi

(k) + qi
(k)TB(c(k+1))qi

(k) − λ̄∗i − 1

−(2 + 2λ̄∗i )
, i > t. (2.30)

The approximation of the matrix of eigenvectors is computed with the Cayley transform, as before. A
final detail is required to complete the description of the method. Since matrix Z(k) is not assumed to be
skew-symmetric, the next iterate Q(k+1) may depart from B-orthogonality. Hence, once Q(k+1) is computed,
we refine it so that B-orthogonality is maintained. We use the Newton-Schulz iteration [36, section 8.3]

derived from applying Newton’s method to the equation Q(k+1)TB(c)Q(k+1) = I. Since this iteration is
quadratically convergent and the initial guess Q(k+1) is already close to the solution, we apply just one
iteration, resulting in

Q(k+1) =
1

2
Q̂(k+1)

(
3I − Q̂(k+1)TB(c(k+1))Q̂(k+1)

)
, (2.31)

where

Q̂(k+1) = Q(k)(I +
1

2
Z(k))(I − 1

2
Z(k))−1.

Due to the analysis offered above, we can describe the Cayley transform method adapted for solving
Problem 3 as shown in Algorithm 3.

3. Convergence analysis

The purpose of this section is to show the quadratic convergence of the Cayley transform method for
solving Problems 2 and 3. We first show the convergence of Algorithm 2. To start, we set the following
assumptions.

1. There exists c∗ such that the given eigenvalues {λ∗1, λ∗2, . . . , λ∗n} are the eigenvalues for the matrix
pencil (A(c∗), B(c∗)).

2. We consider that all the given eigenvalues are distinct.

We will now provide some introductory results that will be required for the convergence proofs.

Lemma 1. For two matrix-valued functions (1.1) and (1.3), there exist two positive constants α1 and α2

such that for any c and c̄

‖A(c)−A(c̄)‖ ≤ α1‖c− c̄‖, ‖B(c)−B(c̄)‖ ≤ α2‖c− c̄‖.

Proof. By definition of A(c) and B(c) and let

α1 := (

n∑
l=1

‖Al‖2)
1
2 , α2 := (

n∑
l=1

‖Bl‖2)
1
2 .

Lemma 2. If c∗ is a solution for Problem 2 and Q is the matrix of the eigenvectors of the matrix pencil
(A(c∗), B(c∗)) normalized so that QTB(c∗)Q = I, then we have

‖qi‖ ≤
√
‖B(c∗)

−1‖, i = 1, 2, . . . , n,

where qi, i = 1, 2, . . . , n, are the columns of Q.

Proof. The result can be derived trivially from 1 = ‖qTi B(c∗)qi‖ = ‖B(c∗)
−1
B(c∗)‖.
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ALGORITHM 3: Modified Cayley transform method for Problem 3

Input: Problem matrices {Ak}nk=0 and {Bk}nk=0 , given eigenvalues Λ∗ = diag(λ∗
1, λ

∗
2, . . . , λ

∗
n−s) and initial

guess c(0) ∈ Rn
Output: Computed solution c(k+1)

1 Compute the eigen-decomposition of the matrix pencil (A(c(0)), B(c(0))) to obtain the B(c(0))-orthonormal

eigenvectors [q1(c(0)), q2(c(0)), . . . , qn(c(0))]

2 Let Q(0) = [q
(0)
1 , q

(0)
2 , . . . , q

(0)
n ] = [q1(c(0)), q2(c(0)), . . . , qn(c(0))]

3 for k = 0, 1, . . . do

4 if for Q
(k)
n−s = {q(k)

1 , q
(k)
2 , . . . , q

(k)
n−s} and Λ∗

n−s = diag(λ∗
1, λ

∗
2, . . . , λ

∗
n−s),

max {‖Q(k)
n−s

T
A(c(k+1))Q

(k)
n−s − Λ∗

n−s‖, ‖Q
(k)
n−s

T
B(c(k+1))Q

(k)
n−s − In−s‖},

is small enough then exit

5 Compute the Jacobian matrix K(k) and b(k) using the equations (2.23) and (2.24)

6 Form A(c(k+1)) and B(c(k+1))

7 Compute the matrix Z(k) as: For each 1 ≤ i, j ≤ n such that i 6= j

Z
(k)
ij =

 q
(k)
i

T
A(c(k+1))q

(k)
j −λ̄∗

j q
(k)
i

T
B(c(k+1))q

(k)
j

λ̄∗
i −λ̄

∗
j

if |λ̄∗
i − λ̄∗

j | > ε

0 otherwise,

and for i = j,

Z
(k)
ii =

 q
(k)
i

T
A(c(k+1))q

(k)
i +q

(k)
i

T
B(c(k+1))q

(k)
i −λ̄∗

i −1

−(2+2λ̄∗
i )

if i > t

0 if i ≤ t

8 Compute the subsequent approximation of the matrix of eigenvectors Q̂(k+1), using (2.19);

Q̂(k+1) = Q(k)(I +
1

2
Z(k))(I − 1

2
Z(k))−1

and replace it by the corresponding B(c(k+1))-orthogonal matrix, using one step of Newton-Schulz
iteration

Q(k+1) =
1

2
Q̂(k+1)

(
3I − Q̂(k+1)TB(c(k+1))Q̂(k+1)

)
9 end

Lemma 3. Suppose that the Jacobian J∗ = J(c∗) is nonsingular. Then there exist positive numbers δ1 and
ρ1 such that, if ‖Z(k)‖ ≤ δ1 for some k, then J (k) is nonsingular and

‖(J (k))−1‖ ≤ ρ1.

Proof. Using the definition of J (k) we have

|J (k)
ij − J

∗
ij | = |q

(k)
i

T
(Aj − λ∗iBj)q

(k)
i − qi

T (Aj − λ∗iBj)qi|, (3.1)

and in view of the fact that Q(k) = QeZ
(k)

= Q(I − Z(k) + . . . ), we can write

q
(k)
i ' qi −

n∑
r=1

Z
(k)
ri qr.
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Therefore, we have

|J (k)
ij − J

∗
ij | = |(qi −

n∑
r=1

Z
(k)
ri qr)

T (Aj − λ∗iBj)(qi −
n∑
r=1

Z
(k)
ri qr)− qi

T (Aj − λ∗iBj)qi|

= | − qiT (Aj − λ∗iBj)
n∑
r=1

Z
(k)
ri qr −

n∑
r=1

Z
(k)
ri q

T
r (Aj − λ∗iBj)qi +

n∑
r=1

Z
(k)
ri qr

T (Aj − λ∗iBj)
n∑
r=1

Z
(k)
ri qr|

≤ |qiT (Aj − λ∗iBj)
n∑
r=1

Z
(k)
ri qr|+ |

n∑
r=1

Z
(k)
ri q

T
r (Aj − λ∗iBj)qi|+ |

n∑
r=1

Z
(k)
ri qr

T (Aj − λ∗iBj)
n∑
r=1

Z
(k)
ri qr|.

Therefore, by the Cauchy-Schwarz inequality, since ‖qi‖2 ≤ µ with µ = ‖B(c∗)−1‖ and ‖
∑n
r=1 Z

(k)
ri qr‖ ≤

‖Z(k)‖√µ, we obtain

|J (k)
ij − J

∗
ij | ≤

√
µ‖(Aj − λ∗iBj)‖‖Z(k)‖√µ

+ ‖Z(k)‖√µ‖(Aj − λ∗iBj)‖
√
µ

+ ‖Z(k)‖√µ‖(Aj − λ∗iBj)‖‖Z(k)‖√µ
= µ‖(Aj − λ∗iBj)‖‖Z(k)‖(2 + ‖Z(k)‖), 1 ≤ i, j ≤ n.

Then, by using the Frobenius norm, we have

‖J (k) − J∗‖ ≤ ‖J (k) − J∗‖F ≤
√
nµ

√√√√ n∑
j=1

‖(Aj − λ∗ωBj)‖2‖Z(k)‖(2 + ‖Z(k)‖), (3.2)

where
∑n
j=1 ‖(Aj − λ∗ωBj)‖ = max1≤i≤n

∑n
j=1 ‖(Aj − λ∗iBj)‖.

Since J∗ is nonsingular, using (3.2) and the continuity of the inverse matrix function, we conclude that
(J (k))−1 exists and is uniformly bounded. This completes the proof.

Remark 1. It is possible to derive an expression for the bound of Lemma 3. Using Weyl’s inequality for
singular values we have

|σn(J (k))− σn(J∗)| ≤ ‖J (k) − J∗‖, (3.3)

where σn is the smallest singular value. Noting that ‖(J (k))−1‖−1 = σn(J (k)) and using (3.2) and (3.3) we
can see

|‖(J (k))−1‖−1 − ‖((J∗)−1‖−1| = |σn(J (k))− σn(J∗)| ≤
√
nµ

√√√√ n∑
j=1

‖(Aj − λ∗ωBj)‖2‖Z(k)‖(2 + ‖Z(k)‖).

It then follows that

‖(J (k))−1‖−1 ≥ ‖(J∗)−1‖−1 −
√
nµ

√√√√ n∑
j=1

‖(Aj − λ∗ωBj)‖2‖Z(k)‖(2 + ‖Z(k)‖),

and finally, we obtain

‖(J (k))−1‖ ≤ ‖(J∗)−1‖

1−
√
nµ‖(J∗)−1‖‖Z(k)‖(2 + ‖Z(k)‖)

√∑n
j=1 ‖(Aj − λ∗ωBj)‖

, (3.4)

where

√
nµ‖(J∗)−1‖

√√√√ n∑
j=1

‖(Aj − λ∗ωBj)‖ ≥ 1,

because 1 = ‖I‖ = ‖J∗(J∗)−1‖ ≤ ‖J∗‖‖(J∗)−1‖.
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Also, according to the previous lemmas and since all eigenvalues, and the eigenvectors corresponding
to distinct eigenvalues, are Lipschitz continuous functions in a neighborhood of c∗, we present convergence
results for Algorithms 2 and 3.

Theorem 2. There exists θ such that, if ‖Z(k)‖ ≤ θ for some k, then the sequence of norms of the matrix
Z(k+1) of Algorithm 2 converges to zero, and the iterates {c(k)} of Algorithm 2 quadratic converge to c∗.

Proof. The matrix Z̄(k) and vector c(k+1) of Algorithm 2 are defined by{
Q(k)TA(c(k+1))Q(k) = Λ∗ − Z̄(k)TΛ∗ − Λ∗Z̄(k),

Q(k)TB(c(k+1))Q(k) = I − Z̄(k) − Z̄(k)T .
(3.5)

By subtracting the above equations from (2.13), we obtain{
Q(k)T (A(c∗)−A(c(k+1)))Q(k) = −Z(k)TΛ∗ − Λ∗Z(k) + Z̄(k)TΛ∗ + Λ∗Z̄(k) +O(‖Z(k)‖2),

Q(k)T (B(c∗)−B(c(k+1)))Q(k) = −Z(k) − Z(k)T + Z̄(k) + Z̄(k)T +O(‖Z(k)‖2).
(3.6)

Now, using Lemma 1, the diagonal equalities in (3.6) and the definition of the Jacobian (2.16), we have

‖c∗ − c(k+1)‖ ≤ 2
√
n‖Z(k)‖2‖Λ∗‖‖J (k)−1

‖, (3.7)

and by using the off-diagonal elements in (3.6), we have, for i 6= j,

|Z̄(k)
ij − Z

(k)
ij | ≤

|q(k)
j

T ∑n
l=1(c∗l − c

(k+1)
l )(Al − λ∗jBl)q

(k)
i |+ 2|λ∗j |‖Z(k)‖2

|λ∗i − λ∗j |
. (3.8)

Also, noting that ‖q(k)
i ‖

2
≤ µ with µ = ‖B(c∗)−1‖, Q(k) = Qe−Z

(k)

= Q(I − Z(k) + . . . ), and using Lemma
1 we have

|q(k)
j

T
n∑
l=1

(c∗l − c
(k+1)
l )(Al − λ∗jBl)q

(k)
i | ≤ ‖c

∗ − c(k+1)‖‖
n∑
l=1

(Al − λ∗jBl)‖(1 + ‖Z(k)‖)µ(1 + ‖Z(k)‖). (3.9)

Thus, by applying (3.9) and (3.8), we obtain

|Z̄(k)
ij − Z

(k)
ij | ≤

‖c∗ − c(k+1)‖
√
‖
∑n
l=1(Al − λ∗jBl)‖(1 + ‖Z(k)‖)µ(1 + ‖Z(k)‖) + 2|λ∗j |‖Z(k)‖2

|λ∗i − λ∗j |
, (3.10)

Similarly, the diagonal elements |Z̄(k)
ii − Z

(k)
ii | are obtained. Using the inequality (3.7) and Lemma 3, and

defining ρ =
√
nµ‖(J∗)−1‖

√
‖
∑n
l=1(Al − λ∗ωBl)‖, we can see

|Z̄(k)
ij − Z

(k)
ij | ≤

2‖Λ∗‖‖Z(k)‖2(1− ρ(2 + ‖Z(k)‖)‖Z(k)‖+ ρ(1 + ‖Z(k)‖)2)

δ(λ∗)(1− ρ(2 + ‖Z(k)‖)‖Z(k)‖)

≤ 2‖Λ∗‖‖Z(k)‖2(1 + ρ)

δ(λ∗)(1− ρ(2 + ‖Z(k)‖)‖Z(k)‖)
,

where δ(λ∗) = mini6=j |λ∗i − λ∗j |. Also we know that ‖Z̄(k) − Z(k)‖ ≤
√∑

i,j |Z̄
(k)
ij − Z

(k)
ij |2. Therefore, we

obtain

‖Z̄(k) − Z(k)‖ ≤ 2n‖Λ∗‖‖Z(k)‖2(1 + ρ)

δ(λ∗)(1− ρ(2 + ‖Z(k)‖)‖Z(k)‖)
. (3.11)
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Now suppose that θ = δ(λ∗)
8n‖Λ∗‖(1+ρ) , and due to this assumption, for ρ ≥ 1 and n ≥ 2, we see ‖Z(k)‖ ≤ θ ≤ 1

16 ,

and so

‖Z̄(k)‖ ≤ ‖Z(k)‖+
2n‖Λ∗‖‖Z(k)‖2(1 + ρ)

δ(λ∗)(1− ρ(2 + ‖Z(k)‖)‖Z(k)‖)
, (3.12)

and ‖Z̄(k)‖ ≤ 1 and therefore

‖(I − 1

2
Z̄(k))−1‖ ≤ 1

1− 1
2‖Z̄(k)‖

≤ 2. (3.13)

Let us now look at the updated matrix

Q(k+1) = Qe−Z
(k+1)

' Q(I−Z(k+1)) = Q(k)(I+
1

2
Z̄(k))(I− 1

2
Z̄)−1 = Q(I−Z(k))(I+

1

2
Z̄(k))(I− 1

2
Z̄(k))−1,

we can see that

(I − Z(k+1)) = (I − Z(k))(I +
1

2
Z̄(k))(I − 1

2
Z̄(k))−1.

From here we have

Z(k+1) = I − (I − Z(k))(I +
1

2
Z̄(k))(I − 1

2
Z̄(k))−1

= (I − 1

2
Z̄(k))−1[I − 1

2
Z̄(k) − (I − Z(k))(I +

1

2
Z̄(k))]

= (I − 1

2
Z̄(k))−1[I − 1

2
Z̄(k) − I − 1

2
Z̄(k) + Z(k) +

1

2
Z(k)Z̄(k)]

= (I − 1

2
Z̄(k))−1[Z(k) − Z̄(k) +

1

2
Z(k)Z̄(k)]

= (I − 1

2
Z̄(k))−1[(Z(k) − Z̄(k)) +

1

2
Z(k)(Z̄(k) − Z(k) + Z(k))].

It then follows that

‖Z(k+1)‖ ≤ ‖(I − 1

2
Z̄(k))−1‖(‖Z(k) − Z̄(k)‖+

1

2
‖Z(k)‖2 +

1

2
‖Z̄(k) − Z(k)‖‖Z(k)‖)

≤ 128

223
‖Z(k)‖+

1

32
‖Z(k)‖+

32

223
‖Z(k)‖ ' 1

2
‖Z(k)‖,

because of (3.11) and (3.13). Now (3.7) combined with Lemma 3 shows the convergence of {c(k)}, and this
completes the proof.

Now we show the convergence of Algorithm 3. We replace our assumption by the following.

1. There exists c∗ such that the matrix pencil (A(c∗), B(c∗)) has the given eigenvalues λ∗1 = · · · = λ∗t <
λ∗t+1 < · · · < λ∗n−s.

2. The matrix K(c∗), defined by (2.23) and (2.24) using any B-orthonormal set of eigenvectors of
(A(c∗), B(c∗)), is nonsingular.

Theorem 3. There exists θ such that, if ‖Z(k)‖ ≤ θ for some k, then the sequence of norms of the matrix
Z(k+1) of Algorithm 3 converges to zero, and the iterates {c(k)} of Algorithm 3 converge quadratically to c∗.

Proof. First, we bound ‖c(k+1) − c∗‖ in a similar way as (3.7). The only difference is that the new iterate
c(k+1) is defined by (2.23) and (2.24). So, using the first n−s diagonal equations of (3.6), plus the equations
corresponding to 1 ≤ i < j ≤ t, and the definition of matrix K, we have

‖c∗ − c(k+1)‖ ≤ 2
√
n‖Z(k)‖2‖Λ∗‖‖K(k)−1

‖. (3.14)
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For the second part we need to consider the unspecified eigenvalues. So by using the off-diagonal elements
in (3.6) and the new eigenvalues {λ̄∗i }, we have

|Z̄(k)
ij − Z

(k)
ij | ≤

|q(k)
j

T
(
∑n
l=1(c∗l − c

(k+1)
l )(Al − λ̄∗jBl))q

(k)
i |+ 2|λ̄∗j |‖Z(k)‖2

|λ̄∗i − λ̄∗j |
, i < j, j > t. (3.15)

As explained before, by introducing a tolerance parameter ε in Step 7 of Algorithm 3, we ensure that the
unspecified eigenvalues are distinct from the given eigenvalues. Also, the diagonal elements of Z̄(k) − Z(k)

have a similar bound as in (3.15). Finally, since Zij = 0, 1 ≤ i ≤ j ≤ t, as in (3.11), we have

‖Z̄(k) − Z(k)‖ ≤ 2
√
n2 − t2‖Λ∗‖‖Z(k)‖2(1 + ρ)

δ(λ̄∗)(1− ρ(2 + ‖Z(k)‖)‖Z(k)‖)
. (3.16)

where δ(λ̄∗) = mini 6=j |λ̄∗i − λ̄∗j |. Now suppose that θ = δ(λ̄∗)

8
√
n2−t2‖Λ∗‖(1+ρ)

, and due to this assumption, for

ρ ≥ 1 , 1 ≤ t ≤ n and n ≥ 2, we see ‖Z(k)‖ ≤ θ ≤ 1
8
√

3
≤ 1

8 .

The rest of the proof is the same as the proof in Theorem 2 and we have

‖Z(k+1)‖ ≤ ‖(I − 1

2
Z̄(k))−1‖(‖Z(k) − Z̄(k)‖+

1

2
‖Z(k)‖2 +

1

2
‖Z̄(k) − Z(k)‖‖Z(k)‖). (3.17)

Hence, in a similar way as the proof in Theorem 2, we obtain

‖Z(k+1)‖ ≤ 32

49
‖Z(k)‖+

1

8
‖Z(k)‖+

32

89
‖Z(k)‖.

Also, the assumption of the nonsingularity of matrix K(c(k)) combined with (3.14) shows the quadratic
convergence of c(k) and the proof is complete.

4. Numerical experiments

In this section, we use four examples to examine the convergence of Algorithm 2. In addition, we present
numerical tests of Algorithm 3 on two parameterized generalized inverse eigenvalue problems with multiple
eigenvalues, and show the effectiveness of this algorithm for iteratively computing a solution of Problem
3. Also, in some examples, we compare the performance and numerical accuracy of the new methods with
some other available algorithms.

It is noteworthy that in our tests, the iterations were terminated when the current iterate satisfies

max{‖Q(k+1)TA(c(k+1))Q(k+1) − Λ∗‖, ‖Q(k+1)TB(c(k+1))Q(k+1) − I‖} ≤ 10−12 for Algorithm 2, and in
Algorithm 3 when the residual of Step 4 was less than 10−8. All our experiments were carried out in
MATLAB. In all the numerical examples, we compute the initial matrix Q(0) as the eigenvector matrix of
the pencil (A(c0), B(c0)). In some examples where the eigenvalues {λ∗i } are unknown, we first produce c∗

with entries randomly selected, then we compute the eigenvalues of (A(c∗), B(c∗)). Examples are presented
in the following sub-sections to assess the accuracy and performance.

4.1. Accuracy evaluation

In this sub-section, we illustrate the convergence performance of the proposed methods on some examples.
For all examples, we report our experimental results in tables where the columns labeled as E1 and E2 show

the values of residues ‖Q(k+1)TA(c(k+1))Q(k+1) −Λ∗‖ and ‖Q(k+1)TB(c(k+1))Q(k+1) − I‖, respectively, and
k represents the iteration number.
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Table 1: Numerical results for Example 1 by using Algorithm 2.

k E1 E2 ‖Z(k)‖ ‖c(k+1) − c(k)‖
0 2.107e-02 7.421e-04 1.364e+00 2.424e-01
1 3.794e-03 1.111e-04 1.542e+00 1.021e-01
2 2.351e-05 2.259e-09 7.380e-02 6.904e-03
3 1.628e-09 5.283e-16 1.125e-03 8.316e-05
4 4.709e-16 2.778e-16 2.072e-08 2.119e-09

Example 1. For the first example, we consider a typical problem in [29, Example 1]. We have a parameterized
generalized inverse eigenvalue problem in which n = 5,

A0 = diag(9, 11, 10, 8, 14), B0 = diag(11, 13, 15, 11, 10), A1 = B1 = I,

A2 =


0 2 0 0 0
2 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 , B2 =


0 1 0 0 0
1 0 1 0 0
0 1 0 −1 0
0 0 −1 0 −1
0 0 0 −1 0

 ,

A3 =


0 0 3 0 0
0 0 0 2 0
3 0 0 0 −1
0 2 0 0 0
0 0 −1 0 0

 , B3 =


0 0 −1 0 0
0 0 0 −1 0
−1 0 0 0 1
0 −1 0 0 0
0 0 1 0 0

 ,

A4 =


0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0

 , B4 =


0 0 0 2 0
0 0 0 0 1
0 0 0 0 0
2 0 0 0 0
0 1 0 0 0

 ,

A5 =


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

 = B5,

A(c) = A0 +

5∑
i=1

ciAi, B(c) = B0 +

5∑
i=1

ciBi.

The eigenvalues are defined to be

λ∗ = [0.43278721102, 0.66366274839, 0.94385900467, 1.10928454002, 1.49235323254]T .

Algorithm 2 is used to find the unknown parameters vector c. This algorithm running with the starting
vector c(0) = [1.1, 1.2, 1.3, 1.4, 1.5]T converges to the solution

c∗ = [1, 1, 1, 1, 1]T .

The numerical results for Algorithm 2 are displayed in Table 1.
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Table 2: Numerical results for Example 2 by using Algorithm 2.

n k E1 E2 ‖Z(k)‖ ‖c(k+1) − c(k)‖
100 0 2.107e-02 7.421e-04 1.364e+00 2.424e-01

1 2.067e-03 3.056e-04 5.787e-02 3.403e-01
2 8.524e-06 1.117e-07 76.613e-04 2.033e-02
3 5.325e-13 2.840e-13 2.581e-07 8.625e-06
4 1.730e-13 4.077e-13 8.557e-11 7.541e-12

200 0 2.850e-03 3.051e-04 7.104e-0 3.689e-01
1 2.807e-05 1.444e-07 8.862e-04 7.104e-01
2 2.087e-12 1.510e-12 4.087e-07 1.856e-05
3 3.814e-13 1.361e-12 4.739e-10 4.519e-11

Example 2 [14]. In this example, we construct a matrix A(c) as (1.1), using Toeplitz matrices {Ai} in the
form

A0 = 0, A1 = I, A2 =



0 1 0 . . . 0

1 0 1
. . .

...

0 1
. . .

. . . 0
...

. . .
. . . 0 1

0 . . . 0 1 0


, . . . , An =



0 0 . . . 0 1

0
. . .

. . . . . . 0
...

. . .
. . .

. . .
...

0 . . .
. . .

. . . 0
1 0 . . . 0 0


.

In addition, to construct a matrix B(c) as (1.3), we use the set of matrices {Bi} given by

B0 = 0, Bk = {bkij}, bkij =

{
1 if i = j = k,
0 otherwise.

In Table 2, for n = 100 and 200, the convergence histories of Algorithm 2 are illustrated.

Example 3. We consider an example obtained from a physical application. This is a special case of the
famous on-line system of masses and springs [3, 8]. Suppose that mi and ki (for i = 1, 2, . . . , n) are the mass
of the ith particle and the stiffness of the ith spring, respectively, and that the springs satisfy Hooke’s law.
Then the motion equations are given by

mi
d2ui
dt2

=

 −kiui + ki+1(ui+1 − ui), i = 1,
−ki(ui − ui−1) + ki+1(ui+1 − ui), i = 2, 3, . . . , n− 1,
−ki(ui − ui−1), i = n.

(4.1)

We can write the matrix form of equations (4.1) as

M
d2u

dt2
= −Ku,

where

K =



k1 + k2 −k2 0 . . . 0 0
−k2 k2 + k3 −k3 0

0 −k3 k3 + k4
. . . 0

...
. . .

. . .
...

0 −kn
0 0 . . . −kn kn


, M = diag(m1,m2, . . . ,mn).

M and K are called the mass and stiffness matrices, respectively. A fundamental solution u(t) = eiωtx
result in the symmetric eigenvalue problem Kx = λMx, where λ = ω2. For finding the stiffness parameters
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Table 3: Numerical results for Example 3 by using Algorithm 2.

n k E1 E2 ‖Z(k)‖ ‖c(k+1) − c(k)‖
100 0 4.513e-03 1.167e-14 6.630e-02 1.247e+00

1 3.283e-03 2.431e-14 3.074e-02 9.635e-01
2 1.009e-06 3.601e-14 5.257e-03 1.788e-01
3 1.707e-09 1.386e-14 2.263e-04 7.667e-03
4 6.337e-15 1.638e-14 4.130e-07 1.393e-05
5 6.040e-15 1.358e-14 6.882e-12 2.819e-10

200 0 4.896e-05 3.327e-14 2.908e-02 1.596e+00
1 7.548e-06 4.714e-14 1.141e-02 6.279e-01
2 2.209e-07 4.503e-14 1.962e-03 2.936e-01
3 7.343e-09 3.970e-14 3.577e-04 1.955e-02
4 9.314e-12 3.770e-14 1.274e-05 6.964e-04
5 2.618e-14 1.554e-14 1.512e-08 8.261e-07

ki corresponding to given natural frequencies ω1 < ω1 < · · · < ωn, we have an inverse problem. It is easily
seen that this inverse problem can be modeled as Problem 2, using the notation,

K = K0 +

n∑
i=1

kiKi,

where
K0 = 0, K1 = e1e

T
1 ,

Ki = (ei−1 − ei)(ei−1 − ei)T , i = 2, 3, . . . , n,

M0 = M, Mi = 0, i = 1, 2, . . . , n,

where ek is the kth column of the identity matrix. For simplicity, here we assume M = I.

We consider the two problem sizes n = 100 and 200. By using the initial guess c(0) = c∗ + ζ, where
c∗ = [1, 2, 3, . . . , n − 1, n]T and ζ = 0.5, Algorithm 2 converges. The residual values for this problem are
given in Table 3.

Example 4. In this example, we consider a truss problem and present some computational results to demon-
strate the advantages of Problem 2 in structural design. We consider an n-bar truss problem [24], with the
following parameters: Young’s modulus E = 6.95×1010N/m2, weight density P = 2650kg/m3, acceleration
of gravity g = 9.81m/s2, non-structural mass at all nodes m0 = 425kg, and length l = 10m of horizontal
and vertical bars. In this problem, the design variables are the areas of cross sections of the bars. Using ci
to denote the area of the cross section of the ith bar, the stiffness and mass matrices of the structure can
be written respectively as

A(c) = A0 +

8∑
i=1

ciAi, B(c) = B0 +

8∑
i=1

ciBi,

where A0 = 0, B0 = m0I is the constant lumped mass matrix, and Ai, Bi (i = 1, 2, . . . , n) are n × n
symmetric matrices.

Assuming that c∗ = [1, 1, . . . , 1]T and using the starting vector c(0) = c∗ + ζ, where each element of ζ is
0.5, the algorithm converges. In Table 4, for n = 100 and 200, the convergence histories are illustrated.
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Table 4: Numerical results for Example 4 by using Algorithm 2.

n k E1 E2 ‖Z(k)‖ ‖c(k+1) − c(k)‖
100 0 2.108e+04 6.874e-02 1.665e-01 5.000e+00

1 7.541e+02 2.466e-03 3.436e-02 3.209e-04
2 9.238e-01 3.041e-06 1.233e-03 3.550e-05
3 1.384e-06 4.705e-12 1.530e-06 1.487e-07
4 4.670e-09 3.998e-14 2.565e-11 1.399e-11

200 0 2.108e+04 6.877e-02 1.675e-01 7.071e+00
1 7.546e+02 2.470e-03 3.592e-02 9.582e-04
2 9.291e-01 3.073e-06 1.952e-03 1.125e-04
3 1.405e-06 4.804e-12 8.047e-06 2.833e-07
4 3.412e-08 2.658e-13 8.446e-11 2.674e-11

Example 5 [29]. This example is a Problem 3 with multiple eigenvalues and n = 6. Define

A0 =


216 889.2 −135 −245.4 141.6 858.12

889.2 66.3 −483.75 −820.39 413.12 1598.29
−135 −483.75 204.375 −2.425 −131.5 −541.325
−245.4 −820.39 −2.425 158.495 −367.365 693.021
141.6 413.12 −131.5 −367.365 209.035 154.057
858.12 1598.29 −541.325 693.021 154.057 316.63

 , B0 = I,

B1 = diag(43, 2222995816, 43.5245534248, 43.2978630424, 43.6484775005, 43.3099531961, 43.6635901927),

and matrices Ak and Bk are determined as

Ak = uku
T
k , k = 1, 2, . . . , 6,

Bk =

6∑
j=k

Vk−1,j(ek−1e
T
j + eje

T
k−1), k = 1, 2, . . . , 6,

where

u1 =


12
−1
0.5
−0.4
0.2
0.1

 , u2 =


12
−1
0.5
−0.4
0.2
0.1

 , u3 =


0
0
12
−1
0.5
−0.4

 ,

u4 =


0
0
0
12
0

0.5

 , u5 =


0
0
0
0
12
0.1

 , u6 =


0
0
0
0
0
12

 ,

V =


0 −0.8467500959 0.4233750479 −0.3387000384 0.1693500192 −0.0846750096

−0.8467500959 0 −0.2246513095 2.8755367617 −0.0898605238 1.1232565475
0.4233750479 −0.2246513095 0 −0.9004508446 0.4502254223 −0.3579661145
−0.3387000384 2.8755367617 −0.9004508446 0 −0.6097095231 6.8750004851
0.1693500192 −0.0898605238 0.4502254223 −0.6097095231 0 −0.6911965633
−0.0846750096 1.1232565475 −0.3579661145 6.8750004851 −0.6911965633 0

 .
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Table 5: Numerical results for Example 5 by using Algorithm 3.

k E1 E2 ‖Z(k)‖ ‖c(k+1) − c(k)‖
0 2.317e-01 1.491e-01 3.561e-01 2.239e+00
1 1.739e-02 4.661e-03 1.152e-01 3.855e-01
2 8.811e-05 3.359e-05 5.407e-03 5.543e-02
3 5.962e-09 5.916e-10 7.640e-05 1.468e-04
4 1.656e-15 1.067e-15 5.850e-09 1.958e-08

Also, let c∗ = [3.3635, 14.1327, 2.2459, 13.5385, 0.9773, 17.8286], then the pencil (A(c∗), B(c∗)) has the eigen-
values

λ∗1 = λ∗2 = λ∗3 = 1.5, λ∗4 = 3.2124, λ∗5 = 18.9881, λ∗6 = 33.3574.

Algorithm 2, on the assumption that the starting vector is c(0) = [3, 15, 3, 15, 1, 18]T and t = s = 3, converges
to the solution

c∗ = [3.3635, 14.1327, 2.2459, 13.5385, 0.9773, 17.8286]T .

In Table 5, we report the obtained results.

Example 6. Let n = 8, A0 = 0, B0 = diag(99, 103, 100, 105, 101, 107, 101, 108) and B1 = I. In addition, let
A and B be two symmetric matrices of the form

A =



7400 11820 −12060 1850 −3020 460 710 −2326
11820 27176 −29158 7100 −6116 2928 1878 −4992.8
−12060 −29158 32914 −8005 6318 −3854 −1759 5681.4

1850 7100 −8005 2950 −1274 1466 827 −1106
−3020 −6116 6318 −1274 2144 −166 6 1334

460 2928 −3854 1466 −166 1523 593 −351.2
710 1878 −1759 827 6 593 990 12.8
−2326 −4992.8 5681.4 −1106 1334 −351.2 12.8 1408.76


,

B =



0 −20 −10 −10 −10 10 0 −10
−20 0 −20 12 2 −12 0 2
−10 −20 0 21 9 −9 −10 9
−10 12 21 0 −1 10 2 −11
−10 2 9 −1 0 −22 9 −8
10 −12 −9 10 −22 0 −1 9
0 0 −10 2 9 −1 0 −22
−10 2 9 −11 −8 9 −22 0


.

Now construct the matrices Ak and Bk from A and B as

Ak =

k−1∑
j=1

akj(eke
T
j + eje

T
k ) + akkeke

T
k k = 1, 2, . . . , 8,

Bk =

k−1∑
j=1

bk−1,j(ek−1e
T
j + eje

T
k−1), k = 2, 3, . . . , 8,

where ek is the kth column of the identity matrix. This example was presented in [29].
We consider c∗ = [1, 1, 1, 1, 1, 1, 1, 1]T , then the generalized eigenvalue problem for (A(c∗), B(c∗)) has one

multiple eigenvalue of multiplicity 3,

λ∗1 = λ∗2 = λ∗3 = 2, λ∗4 = 3, λ∗5 = 10, λ∗6 = 16.9485, λ∗7 = 34.9037, λ∗8 = 586.4204.
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Table 6: Numerical results for Example 6 by using Algorithm 3.

k E1 E2 ‖Z(k)‖ ‖c(k+1) − c(k)‖
0 1.273e-01 5.357e-03 1.794e-01 3.429e-01
1 4.328e-03 1.518e-04 2.743e-02 6.268e-02
2 1.067e-05 9.780e-08 1.278e-03 1.639e-03
3 2.722e-11 6.364e-13 2.824e-06 3.265e-06
4 3.209e-14 1.192e-14 5.655e-12 6.117e-12

Table 7: Comparison between the proposed algorithm and Dai et al. on Example 2.

Algorithm 2 Algorithm 4.1 [7]

n ‖c(k) − c∗‖ CPU ‖c(k) − c∗‖ CPU

40 3.448e-13 0.085 3.991e-08 1.274
80 2.097e-12 0.425 4.900e-08 18.515
120 9.590e-12 0.982 1.234e-10 99.696
160 2.549e-11 1.315 3.074e-11 379.765
200 4.519e-11 2.066 4.501e-11 984.808
240 1.018e-10 3.261 - -
400 5.057e-10 9.296 - -

Therefore, according to the formulation of Problem 3, we have t = 3, s = 3 and n − s = 5. So, the target
eigenvalues were selected as

λ∗ = [2, 2, 2, 3, 10]T .

With the starting vector
c(0) = [0.98, 0.97, 0.98, 0.99, 1, 1.01, 1.02, 1.03]T ,

after 5 iterations, the locally unique solution found by the modified algorithm is

c∗ = [0.9456, 0.9411, 0.9424, 0.9374, 0.9399, 0.9358, 0.9009, 0.9285]T .

We show the results in Table 6.
From the above six examples, we can observe that Algorithms 2 and 3 are feasible for solving Problems

2 and 3, respectively.

4.2. Performance evaluation

In this sub-section, we compare the performance and numerical accuracy of Algorithm 2 and Algorithm
4.1 in [7], by testing Examples 2, 3 and 4. The numerical results and CPU times for these cases can be
seen in Tables 7, 8 and 9, respectively. It should be noted that in Examples 2 and 4, for large dimensions,
Algorithm 4.1 requires a lot of time. But in Example 3, our implementation showed that the sequence
generated by algorithm 4.1 fails to converge. Our numerical results prove that Algorithm 2 is more effective
than Algorithm 4.1 in [7] in terms of the computing time.

Table 8: Comparison between the proposed algorithm and Dai et al. on Example 3.

Algorithm 2 Algorithm 4.1 [7]

n ‖c(k) − c∗‖ CPU ‖c(k) − c∗‖ CPU

40 3.910e-11 0.0624 8.061e-11 1.087
80 3.992e-10 1.107 - -
120 7.752e-10 7.889 - -
160 1.370e-09 16.321 - -
200 4.094e-09 51.8698 - -
240 6.227e-09 70.633 - -
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Table 9: Comparison between the proposed algorithm and Dai et al. on Example 4.

Algorithm 2 Algorithm 4.1 [7]

n ‖c(k) − c∗‖ CPU ‖c(k) − c∗‖ CPU

40 3.448e-12 0.089 6.168e-11 0.918
80 2.097e-12 0.414 2.978e-12 4.820
120 9.590e-12 1.462 2.113e-12 20.176
160 4.519e-11 2.305 1.885e-11 68.595
200 4.519e-11 2.066 1.407e-11 165.678
240 2.800e-11 3.261 9.773e-11 355.977
400 1.669e-10 11.470 - -

5. Conclusions

In this paper, we first provided an algorithm based on the Cayley transform for solving a type of
parameterized generalized inverse eigenvalue problem with distinct eigenvalues. When the given eigenvalues
are multiple, we have explained how to express the problem so that it is not overdetermined, and then we
have presented an algorithm for these cases. We have analyzed the convergence for both the distinct and the
multiple eigenvalue cases. Numerical examples have been given to show the agreement with the theoretical
results. Also, we showed that they are applicable to large problems. In particular, our methods are much
faster with respect to the methods proposed in [7], and can address much larger problem sizes.
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