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Abstract Minimizing energy consumption is a key issue

from both an environmental and economic perspectives for

railways systems; however, it is also important to reduce

infrastructure construction costs. In the present work, an

artificial neural network (ANN) was trained to estimate the

energy consumption of a metropolitan railway line. This

ANN was used to test hypothetical vertical alignments

scenarios, proving that symmetric vertical sinusoid align-

ments (SVSA) can reduce energy consumption by up to

18.4% compared with a flat alignment. Finally, we ana-

lyzed the impact of SVSA application on infrastructure

construction costs, considering different scenarios based on

top–down excavation methods. When balancing reduction

in energy consumption against infrastructure construction

costs between SVSA and flat alignment, the extra con-

struction costs due to SVSA have a return period of

25–300 years compared with a flat alignment, depending

on the soil type and construction method used. Symmetric

vertical sinusoid alignment layouts are thus suitable for

scattered or soft soils, up to compacted intermediate

geomaterials.

Keywords Infrastructure construction costs on railways �
Symmetric vertical sinusoid alignments � Optimization of

energy consumption � Artificial neural networks (ANN)

1 Introduction

The International Energy Agency reported up to 9555

million tonnes of oil equivalent (Mtoe) of energy con-

sumption in the world in 2016. The transport sector con-

sumes 28.8% of that energy, hence demonstrating its

significant impact on global energy consumption [1].

Railways are more efficient in terms of energy con-

sumption than road transport for both passengers and

freight [2–4]. For example, despite carrying about 8% and

17% of passengers and freight across Europe, respectively

(EU-28), European railways only represent about 2% of the

energy consumed by the transportation sector [5]. How-

ever, it is necessary to continue reducing railways energy

consumption so as to improve its competitiveness. For this

reason, many strategies have been implemented to improve

railways efficiency, focused on aspects as diverse as track

geometry, rolling stock, driving schemes, or line operation.

The most common strategy is to focus on driving

schemes because these allow higher rates of efficiency

[6–8]. Previous studies have tried to reduce energy con-

sumption focusing on manually driven trains [9, 10] and on

trains equipped with automatic train operation as well [11].

This kind of strategy has been studied for metropolitan

rail lines [12], freight rail lines [13–15], and high-speed rail

lines [16].

Alternatively, other authors have proposed to modify

rolling stock parameters to optimize energy consumption.

For instance, various studies have focused on the imple-

mentation of regenerative brake [17, 18], on-board storage

systems [19], and consideration of train load variations and

delays as well [12]. Finally, some authors have focused on

optimizing track geometry to reduce energy consumption

[20–24].
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These varied research strategies show that a wide range

of actions may be taken within the railway sector to con-

tinue improving energy efficiency and achieving the

objective of reducing the transport sector carbon footprint.

This will also improve the competitiveness of the railways

sector against other transportation modes within the

framework of a more sustainable world.

Regarding the modeling of energy consumption through

artificial neural network (ANN) models, authors have used

them to disaggregate household electricity consumption

[25] and to predict energy consumption in supermarkets

[26], bioclimatic buildings [27], and hotel rooms [28],

obtaining interesting results.

In the railway field, Aolfazli et al. [29] built an ANN

model to predict oil consumption in the Iranian rail trans-

port, and Feng et al. [30] developed an ANN model to

estimate energy consumption due to traction on a subway

line.

Concerning infrastructure construction costs, authors

have shown that it is hard to find common variables that

influence such costs. This is mainly due to the economic

and geographical differences presented by each case study

[31–35].

Available construction techniques, type of soil, local

prices, or costs for every work unit may also vary the

overall infrastructure construction costs as well [36–38].

A key factor that explains these cost variations among

railway projects is the cost of establishing the corridor,

including expropriations. This cost may be as low as

USD 10 million/km for a railway with no payment for

building permissions or may be more than USD 200 mil-

lion/km for a subway line in a difficult urban topography.

In the latter, high expropriation costs, problematic geology,

high costs of relocation, and compensation for existing

companies and residents must be taken into account [39].

Infrastructure construction costs are also influenced by the

quality of management, environmental limitations, and

safety requirements [40].

The purpose of this paper is to measure the impact of

symmetric vertical sinusoid alignments on infrastructure

construction costs and to compare this with the reduction of

energy consumption provided by such vertical alignments.

The importance of this research lies in the existence of a

knowledge gap in evaluating energy-efficient geometrical

alignments against their extra construction costs.

This paper expands our previous research [21, 41, 42],

where we developed an ANN model able to predict the

energy consumption of a metropolitan railway line using

measured data. In this paper, we use it to compare the

energy consumption of different vertical alignments, aim-

ing to reduce energy consumption between two stations

with the same elevation.

2 Methodology

Figure 1 shows a flowchart of the methodology applied for

this study, starting from data gathering and the development

of a neural network to estimate energy consumption and

concluding with the comparison between symmetric vertical

sinusoid alignment and flat alignment in energy reduction

and construction costs under different circumstances. Every

step in the flowchart is described below in more detail.

2.1 Data Collection and Processing

To measure the energy consumption of the train, three

MSAVDC meter devices (Mors-Smitt�) were installed in

the train to measure the energy consumed by each train

subsystem in real time: traction subsystem, auxiliaries

subsystem, and rheostatic brake subsystem (Fig. 2). Train

speed was measured too, using a Knorr sensor model

BB0457681100 [41].

After validating the accurate performance of all devices,

up to 13 trips with passengers on board were registered on

August 4, 2014. For each trip, energy consumed in each

subsystem were recorded with a sampling frequency of

1 Hz, and the train speed was recorded as well with a

sampling frequency 100 HZ. (100 Hz for speed).

2.2 Artificial Neural Networks (ANN)

ANNs are one of the most popular machine learning (ML)

algorithms. Their popularity lie in their ability to extract

complex patterns within the data and to perceive trends that

are very complex to be observed by humans or even by

other computer techniques. This is possible because ANNs

have an outstanding ability to derive meaning from com-

plex or inaccurate data [21, 41, 43, 44]. McCulloch and

Pitts introduced the term ANN in 1943, as they were

inspired by the architecture of the nervous systems or brain

connections in living beings [45].

ANNs are composed of many neurons. These elements are

interconnected in parallel and work in unison to solve diverse

problems. ANNs are used for predicting or classifying values

and then optimizing them.ANNs have been applied in several

topics, including transportation engineering [46–50] and

railways engineering [21, 23, 24, 41, 42, 51].

The ANN chosen herein for predicting energy con-

sumption is a two-layer feed-forward ANN, widely used to

adjust functions [41, 52]. This kind of network is known by

its classification in layers and because connections between

units go strictly forward, hence avoiding loops in the net-

work. Feed-forward neural networks are the most com-

monly used ANNs due to their simplicity and outstanding

results.
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The ANN used for predicting energy consumption in

this paper was trained using speed, acceleration, and gra-

dient as input variables, while measured empirical energy

consumption was the target variable. In previous works, we

showed that these input variables provide good accuracy,

thus making it unnecessary to consider another input data

to calibrate energy consumption [21, 41].

The training process consists of comparing available

target data with the output data provided by the ANN, and

adjusting the ANN parameters through an iterative process

until measured energy consumption (target data) and sim-

ulated energy consumption (output data) are similar

enough [41]. When the differences between target and

output data are very small, the ANN is completely trained

and could be used to make predictions varying the input

data (to test hypothetical scenarios).

As we explained in detail in our previous research paper

[41], to avoid overfitting, the data were divided randomly

into three subsets: one for training (70%), one for valida-

tion (15%), and one for testing (15%). The ANN was

trained with the training data, and after each iteration, a

check-up with the validation data was performed.

The training method used for the proposed ANN in this

paper was back-propagation, which aims to minimize the

relative mean squared error (rMSE) by modifying the

synaptic weights of the neurons after each iteration. The

specific training algorithm used was the Levenberg–Mar-

quardt algorithm, which is very efficient and widely

checked.

Fig. 1 Methodology flowchart Source: Authors

Fig. 2 Scheme of MSAVDC meter devices (Mors-Smitt�) installed

on train Source: Authors
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When the validation rMSE begins to increase (while the

training rMSE continues to drop), the network will start to

adjust the data error (overfitting), and the training will be

stopped. At this point, the test data are used to perform a

final check-up for the validity of the ANN.

2.3 Application of ANN Model

After the ANN model being trained, the application of the

ANN model was then carried out. In the application of the

ANN model, three hypothetical scenarios were specified

with their respective speed profile, considering optimal

indications for efficient driving between two stations [52].

The following assumptions were considered to make an

integrated analysis of vertical alignment and speed profiles

for these hypothetical vertical alignments [53]:

• The vertical track layout is symmetrical with respect to

the central axis.

• Parabolic curvatures are applied to vertical curves,

while the gradient cannot exceed the maximum climb-

ing capacity of the train.

• Horizontal curvatures are not considered for this

analysis.

• The train accelerates to its full power unless it surpasses

the comfort-limited acceleration.

• Braking system can provide the maximum allowable

comfort-limited deceleration rate.

The three scenarios have the same characteristics: a

1000-m long track stretch between two stations of equal

elevation. The three scenarios only differ in their vertical

alignment. Figure 3 shows the three hypothetical scenarios.

• The first one is a flat alignment;

• the second one is a symmetric vertical sinusoid

aligment profile with a maximum depth of d = 10 m

(1.0% of the total track length) halfway between both

stations of d = 5 m (0.5% of the total track length); and

• the last scenario is a symmetric vertical sinusoid

aligment profile with a maximum depth of d = 10 m

(1.0% of the total track length) halfway between both

stations of d = 10 m [21].

Once the hypothetical scenarios were determined, the

trained ANN was applied to predict the energy consump-

tion (output) corresponding to each hypothetical alignment

using speed, acceleration, and gradient as input variables.

To do so, a speed profile was defined for each hypo-

thetical scenario based on the theoretical basis of efficient

driving: the train accelerates until reaching a cruising speed

and then coasts without applying traction force until it

begins to apply braking to reach the final station. To cal-

culate the speed profile for each hypothetical scenario, the

characteristics of the Metro Series 4300 (Vossloh) were

considered, and resistance to movement was calculated

using the Davis equation, which is a well-known resistance

formula.

Finally, the energy consumption due to each scenario

calculated using the three input variables defined above

(speed, acceleration, and gradient) were compared among

them to determine the vertical alignment with the lowest

energy consumption. Note that speed optimization was not

considered in this paper, as travel time was verified to be

the same for each vertical alignment.

Also, it is important to mention that the three hypo-

thetical scenarios were chosen in an empirical way. This

paper does not aim to determine the optimal symmetric

vertical sinusoid aligment depth to optimize energy con-

sumption but to analyze the balance between energy sav-

ings and construction costs. A proper depth optimization

could be carried out in future works.

2.4 Comparison of Infrastructure Construction

Costs

Knowing the energy consumption in every hypothetical

alignment [21], the differences in infrastructure construc-

tion costs were then analyzed to find the best hypothetical

alignment as a balance between energy consumption and

infrastructure construction costs. This analysis may help

stakeholders in their decision-making process to find

whether it is worth to potentially increase construction

costs to reduce later operational costs.

The assumptions made for this comparison rely on the

basis that all three alignments are entirely constructed

below the ground level, i.e., in tunnel section, as this is the

most usual situation in metropolitan railways. This is

achieved by means of tunneling and excavation methods.

In such methods, we will consider the amount of excavated

soil, the soil strength, the presence of water table, and the

ground refilling as influent parameters on infrastructure

construction costs. Other parameters such as tunnel length

and section are not considered since these remain invari-

able among the different considered alignments. This

analysis is carried out in Sect. 4.3.

3 Case Study

3.1 Input Data

Line 5 of MetroValencia in Spain has 12.95 km and 18

stations. We studied a 2720-m-long track stretch within

said Line 5 between the Marı́tim-Serrerı́a and Alameda

stations.

As we showed in previous studies [21, 41], the input

variables chosen to train the ANN model were speed,

acceleration, and gradient.
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As explained above, speed was directly measured using

a Knorr sensor model BB0457681100. Acceleration was

derived from speed. Figure 4 shows speed and acceleration

signals registered during the first trip.

As for the gradient, there is a maximum gradient of

20 mm/m between the Marı́tim-Serrerı́a and Alameda sta-

tions (Fig. 5).

3.2 Target Data

The monitored train was a Metro Series 4300 (Vossloh)

with four cars, whose main characteristics are:

• Max. speed: 80 km/h

• Nominal tension: 1500 V DC

• Power: 1480 kW

Energy consumption measured as described above was used

as target data for training ANN. Figure 6 shows an example

of the registered energy consumption on the first trip from

Marı́tim-Serrerı́a to Alameda. The blue rectangles in Fig. 6

represent the five stations from Marı́tim-Serrerı́a to Ala-

meda, which are Maritim-Serrerı́a, Ayora, Amistat, Aragón,

and Alameda respectively from left to right.

4 Results and Discussion

4.1 Training of the ANN

Different tests were performed by combining the input

variables previously defined to identify which of these

input variables better fit the target data. Two criteria were

used to assess the performance of the ANN model [54]:
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• Pearson correlation coefficient (R) between target and

output data must be greater than 90%.

• Mean square error between target and output data must

represent only 20% or less of the target data variance

[or, in other words, relative mean squared error (rMSE)

must be less than 20%].

The training and validation of the ANN model were

performed using the Neural Fitting Tool in MATLAB

R2017a.

The neural network size was determined studying rMSE

values for training and validation data, with their variation

depending on the number of neurons in the hidden layer.

After testing different number of neurons (Fig. 7), we

found that the optimal network size was 30, because more

neurons will increase validation rMSE [41].

After the training process, we analyzed the cross-vali-

dation score between target and output for training,

validation, and test data, achieving an overall correlation of

90.85% (see Fig. 8).

After several combinations, we have shown in previous

research [41] that the model satisfies both criteria using

speed, acceleration, and gradient as input variables. These

variables have thus a significant impact on energy con-

sumption in metropolitan railway lines.

Results show an average registered energy consumption

of 7.29 kWh/km (shown in Fig. 9), while the model pre-

dicts an energy consumption of 7.11 kWh/km: the differ-

ence between both values is just 0.176 kWh/km (2.4%).

Note that every trip was the same in terms of train load and

number of intermediate stops between the first and last

stations (shown in Fig. 6).

Fig. 5 Vertical layout and stations of the studied route Source: Line 5 of MetroValencia in Spain, by the Authors
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4.2 Application of the ANN on Hypothetical

Alignments

The trained ANN was used to predict the energy con-

sumption for every hypothetical scenario using the input

variables defined above.

The results show a total energy consumption of

5.81 kWh/km for the flat alignment, 4.74 kWh/km for the

symmetric vertical sinusoid alignment with a maximum

depth of d = 5 m, and 4.94 kWh/km for the symmetric

vertical sinusoid alignment with a maximum depth of

d = 10 m.

The symmetric vertical sinusoid alignment (SVSA)

with maximum depth d = 5 m obtained the lowest energy

consumption, a reduction of 18.41% in comparison with

the flat alignment. Remember, as we mentioned above in
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Sect. 2.3, that each trip for every hypothetical scenario had

the same duration (86 s); hence, travel time did not affect

the results.

To assess this saving in economic terms, we assumed an

average energy cost in Spain of 0.086 €/kWh (year 2016),

an average frequency of a train passing every 5 min with a

commercial service of 20 h/day on workdays and an

average frequency of 7 min during 18 h/day on non-

workdays. With this information, the following traction

costs for each scenario were obtained:

• Flat layout: 38,100 €/km/year

• SVSA with d = 0.5% of L: 31,100 €/km/year

• SVSA with d = 1.0% of L: 32,400 €/km/year

Here, L is the length between two stations, d is

the maximum depth between two stations. Therefore, it

could be seen that the SVSAs have less energy cost com-

pared with the flat layout. The SVSA with d = 0.5% L

represents a saving of 7000 €/km/year.

4.3 Infrastructure Construction Costs

The aim of this section is to estimate the differences in

construction costs between two scenarios: the flat layout

and the SVSA with d = 0.5%. SVSA with d = 1.0% is

excluded from this analysis as this yields worse energy

consumption results than the previous SVSA solution,

whereas higher construction costs are expected.

The first premise to keep in mind in this analysis is the

high dispersion of costs due to tunneling and excavation,

which depend on so many factors as we explained in the

above sections.

There are two main groups of construction techniques

for undertaking an underground infrastructure: tunneling

and excavation. Tunneling is usually performed using

tunnel boring machines (TMB) or the New Austrian Tun-

neling Method (NATM), whereas excavation is normally

executed with top–down methods such as ‘‘cut and cover.’’

No remarkable cost differences exist between tunneling

methods as the main defining parameters, i.e., length and

section, remain invariable. Hence, only differential exca-

vation costs for top–down techniques are addressed. In this

last case, the parameters considered in this study are the

amount of excavated soil, the soil strength, the presence of

water table, and the ground refilling.

4.3.1 Amount of Excavation

Differential costs between a flat layout and the SVSA

layout in this aspect are due to the extra volume to be

excavated in the latter case. Such volume is given by the

following expression (Eq. 1):

V ¼ B r
L

o

z� z� dLþ dL sin
2p
L
x

� �� �� �
dx ¼ B � L2 � d;

ð1Þ

where B is the width of the excavation and z is the level of

the tunnel crown for the flay layout, L is the length

between two stations, d is the maximum depth between two

stations. In this analysis, all the dug soil has the same

properties in terms of soil strength and water saturation.

4.3.2 Soil Strength

Excavation costs strongly depend on the soil strength. For

this study, five categories were set up: scattered soil, soft

soil, compacted intermediate geotechnical material (IGM),

strong IGM, and rock. Their respective costs per cubic

meter are presented in Table 1. Unitary prices have been

taken from [55, 56].
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4.3.3 Water Table

In totally or partially water-saturated soils, it is necessary to

drawdown the water table below the deepest excavation level.

This lowering must be maintained during the whole excava-

tion period until the excavation is waterproofed. Common

drawdown water table methods can be grouped in exclusion

and dewatering methods. The former group includes low-

permeability walls, grouting methods, ground freezing, or

fluid pressure. The latter group includes methods such as

wellpoints, injection wellpoints, or deep wellpoints [57].

Although the most suitable drawdown method varies

depending on the depth, soil nature, and water flow, for this

example, a deep wellpoint method was considered, with an

estimated unitary cost of 4.83 €/h.

4.3.4 Ground Refilling

Whereas, in some cases, the gap left by the SVSA layout

above the tunnel comparedwith the flat layoutmaybeused for

other purposes (e.g., parking, storing, commercial uses, etc.),

in other cases, this volumemust be refilled, which is normally

done with the same soil extracted from the excavation. For

these cases, a refilling cost of 2.02 €/m3 was considered.

4.4 Discussion

Figure 9 shows that the trained ANN model can predict the

energy consumption well enough as we presented in Ref. 41.

This trainedANNmodel with three input variables makes

an accurate prediction of the energy consumption by a train if

each input variable is always within the range considered

during training.With that precaution inmind, theANNcould

be used to test scenarios such as other hypothetical align-

ments, looking for reducing energy consumption.

In this study, the trained ANN was used to obtain the

energy consumed by a train passing along a 1000-m-long

track stretch between two stations with the same elevation

and a different hypothetical alignment. It was found that

the SVSA with a maximum depth of d = 5 m yielded the

lowest energy consumption, reducing it by 18.4% com-

pared with the flat alignment. This reduction is due to

gravity, which contributes both to acceleration and braking

thanks to the gradient variation. For a metro network with a

commercial service such as the one shown in Sect. 4.2, this

means a saving of 7000 €/km/year.

Whereas this saving can be directly computed if the

infrastructure is constructed using the TBM or NATM

methods (since there are no remarkable cost differences

between both layouts), it must be compared with the extra

costs of excavation when a top–down procedure is utilized.

For this last case, together with the five soil classes

described above, four different scenarios were considered:

only excavation (E), excavation plus water table drawdown

(E ? WTD), excavation and refilling (E ? R), and exca-

vation with water table drawdown and refilling (E ?

WTD ? R). Table 2 presents the equivalent time, in years,

after which the energy consumption savings cancel the

former extra excavation costs.

Results from Table 2 are estimative, since these strongly

depend on the real technical and economic conditions of

the worksite and the later train operations. That said, there

is a significant step between compacted IGM and strong

IGM (125–140 years) due to the excavation technique

being more cost intensive. In the same line but at a lower

scale, there are important differences when refilling is

carried out after the excavation. This means increasing the

return period about 20–25 years. The presence of water

table seems to be less significant.

Bearing in mind that metro infrastructures may last more

than 100 years, Symmetric vertical sinusoid alignment

layouts may be a suitable solution for scattered or soft

soils, or even compacted intermediate geomaterials

(IGMs). Particularly suitable are the cases in which there is

no need of refilling the gap above the infrastructure.

5 Conclusions

The aim of this paper is to measure the impact of symmetric

vertical sinusoid alignment on infrastructure construction

costs and compare this with the reduction of energy con-

sumption provided by this type of vertical alignments.

The main reason to investigate this subject is that many

strategies to optimize railways energy consumption have

Table 1 Unitary prices and performances for excavation of different

types of soils

Soil type Unitary prices in (€/m3) Performance in (h/m3)

Scattered soil 2.52 0.046

Soft soil 2.83 0.057

Compacted IGM 3.16 0.068

Strong IGM 14.93 0.269

Rock 23.63 0.366

Table 2 Time (years) to recover extra construction costs with energy

savings

E E ? WTD E ? R E ? WTD ? R

Scattered soil 25 30 50 50

Soft soil 30 35 50 55

Compacted IGM 35 35 55 60

Strong IGM 160 175 180 200

Rock 250 270 275 300

Urban Rail Transit (2020) 6(3):145–156 153

123



been proposed in the past, but only a few rely on track

geometry. However, it is important to analyze these

strategies to maintain low infrastructure construction costs

as well.

In that context, this paper summarizes our previous

research [21, 41, 42], where we trained and validated an

ANN model that predicts the energy consumption of a train

in a metropolitan railway line using three input variables:

speed, acceleration, and gradient. We used this ANN to

compare different vertical alignments and obtain the

energy consumption due to each one between two stations

with the same elevation.

The trained ANN predicts an energy consumption of

7.11 kWh per km, a small difference of 2.4% compared

with the average measured energy consumption of

7.29 kWh per km.

The trained ANN is a useful tool that allows the study of

energy consumption of a metropolitan railway line. This

method may function as a virtual laboratory where it is

possible to test other hypothetical scenarios, modifying

variables such as track layout and train driving style to

reduce energy consumption.

A symmetric vertical sinusoid alignment profile with a

maximum depth of d = 5 m halfway yielded a reduction of

18.4% in energy consumption compared with a completely

flat alignment.

This, for example, in a network with an average fre-

quency service of a train every 5 min and a commercial

service of 20 h/day in labor days, represents a saving in the

costs of traction of 7000 €/km/year.

Comparing the differential construction costs between

flat and 5% SVSA layouts, whereas in tunneling methods

such as TBM or NATM, there are no practical differences,

in a top–down excavation method, the extra excavation

volume for the SVSA layout may lead to substantial cost

increments. These over costs are particularly important in

strong IMGs or rocky grounds. Less relevant is the need of

refilling and the presence of water table. In general, time

recovering periods may range from 25 to 300 years

between the most favorable and the most disadvantageous

cases.

These results demonstrate the importance of designing

energetically efficient geometric alignments. Although this

strategy already allows a significant energy consumption

reduction to be obtained, this can be accompanied by other

strategies such as economic driving to come up with a

better and more efficient transport system in terms of

energy consumption. However, it is important to perform a

detailed assessment of the impact of these geometric

alignments because this could led to overruns in infras-

tructure construction costs, which could never be

recovered.

The main contribution of this research lies in its pro-

posal of a simple ANN model for predicting the energy

consumption with few input variables and, then, in using

said ANN to compare different hypothetical vertical

alignments in terms of energy consumption reduction.

Additionally, we have compared the energy savings of

energy-efficient vertical alignments against the extra costs

of their infrastructure construction, thus obtaining different

time recovering periods for different cases.

Next steps of research will involve an analysis on how

the ANN model can be improved if energy recuperation is

involved. This will allow the testing of other hypothetical

operative scenarios, hence further contributing to minimize

the energy consumption of the system.
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Montréal, Montreal, Canada

38. Ming-Guang L, Jin-Jian C, An-Jun X, Xiao-He X, Jian-Hua X

(2014) Case study of innovative top-down construction method

with channel-type excavation. J Construct Eng Manag

140(5):05014003. https://doi.org/10.1061/%28ASCE%29CO.

1943-7862.0000828

39. Fox Halcrow (2000) World bank urban transport strategy review:

mass rapid transit in developing countries, Final report. World

Bank, Washington

40. BB&J Consult (2000) The world bank group urban transport

strategy review: Implementation of rapid transit. Final report.

World Bank, Washington

41. Pineda-Jaramillo JD, Insa R, Martı́nez P (2018) Modelling the

energy consumption of trains applying neural networks. Proc Inst

Mech Eng F J Rail Rapid Transit 232(3):816–823

42. Pineda-Jaramillo JD (2017) Modelo de optimización del consumo
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