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Abstract

In the quadratic eigenvalue problem with all coefficient matrices symmetric, there can be
complex eigenvalues. However, some applications need to compute real eigenvalues only. We
propose a Lanczos-based method for computing all real eigenvalues contained in a given inter-
val of large scale symmetric quadratic eigenvalue problems. The method uses matrix inertias
of the quadratic polynomial evaluated at different shift values. In this way, for hyperbolic
problems, it is possible to make sure that all eigenvalues in the interval have been computed.
We also discuss the general non-hyperbolic case. Our implementation is memory-efficient by
representing the computed pseudo-Lanczos basis in a compact tensor product representation.
We show results of computational experiments with a parallel implementation in the SLEPc
library.

1 Introduction

The quadratic eigenvalue problem (QEP) arises in many scientific computing applications. One
such application is the analysis of damped oscillations of linear systems [27, 28], such as a spring-
mass system, or systems that can be modeled by analogous equations, e.g., electrical networks.
The discretization of the governing equation leads to the eigenproblem

(λ2M + λC +K)x = 0, (1)

where λ is the eigenvalue and x 6= 0 is the eigenvector. In this paper, we focus on the case
where the coefficient matrices M , C and K are real symmetric (although the approach is also
valid for Hermitian matrices). They are sometimes called mass, damping and stiffness matrices,
respectively. Typically, M and K are positive definite.

In cases where damping effects can be neglected, the problem would be solved as a linear
eigenproblem

Ax = µBx. (2)

If the pencil (A,B) is symmetric-definite then all eigenvalues µi are real and if B is positive
definite the eigenvectors xi are mutually B-orthogonal. For large-scale problems where the
full spectrum is not required, Lanczos-type methods can be used to obtain a few eigenpairs
(xi, µi). If the wanted eigenvalues lie in the interior of the spectrum, then one possible strategy
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is to combine Lanczos with the shift-and-invert spectral transformation, that operates with
(A − σB)−1B to compute eigenvalues closest to the shift σ. Furthermore, it is often necessary
to compute all eigenvalues contained in a prescribed interval of the real line. The latter scenario
is the main focus of this paper. By performing several shift-and-invert Lanczos runs at different
shift locations [10, 5] it is possible to effectively sweep the interval and compute all eigenvalues
efficiently. This type of strategy, often called spectrum slicing, relies on the matrix inertia of
(A − σB) obtained at each shift σ, which provides the number of negative eigenvalues for this
matrix and informs about the number of eigenvalues of (2) lying on the left of that particular
shift value, so that a bisection scheme can guarantee that no eigenvalues have been missed. Note
that alternative spectrum slicing mechanisms that do not need inertia are being developed in
recent times [20], but we do not consider this kind of method here.

Our goal is to extend the inertia-based spectrum slicing scheme to the QEP (1). A common
way to solve the QEP is to linearize it first to obtain an equivalent linear eigenproblem (2),
then use a linear eigensolver to compute the wanted solutions, and finally extract the QEP
eigenvectors from the eigenvectors of the linearization. In the case that all three coefficient
matrices of the QEP are symmetric, it is convenient to use a symmetric linearization, where the
resulting A and B matrices of the linearization are also symmetric. However, the pencil (A,B)
is either indefinite, or it is definite but requires to compute a certain transformation so that B
is positive definite [11, 23]. In this scenario, the question is how to use the information of the
matrix inertia of A− σB to determine the localization of eigenvalues.

The topic of inertia computation in indefinite pencils has been treated by Nakatsukasa and
Noferini [22], who show that it is not possible to get the exact eigenvalue count in this general
case. Our problem is a particular case since the pencil comes from the linearization of a sym-
metric quadratic matrix polynomial. We will see below that for some problem types inertia still
gives a complete information about the location of eigenvalues in this case.

In addition to computing the correct eigenvalue count inside an interval, another difficulty
is that a Krylov solver that operates on a symmetric-indefinite pencil and wants to exploit sym-
metry has to rely on the pseudo-Lanczos process [24]. Furthermore, the linearization duplicates
the size of the matrices, that is, A and B have 2n rows and columns, where n is the dimension
of the matrices in (1). A naive implementation of the solver will be inefficient in terms of com-
putational and storage cost, because it has to operate with Lanczos vectors of length 2n, and
also especially because a matrix of order 2n must be factorized in the shift-and-invert technique.
In a previous work [7] we showed that it is possible to make an efficient implementation of the
pseudo-Lanczos recurrence in the case of linearization of a symmetric QEP, and do the shift-
and-invert solves implicitly by only requiring the factorization of Q(σ), where Q is the matrix
polynomial associated with the QEP,

Q(λ) = λ2M + λC +K. (3)

Moreover, we presented a memory-efficient variant, called STOAR [7], that uses a compact
representation of the Krylov basis and hence stores and operates only with vectors of length n.

In this paper we aim at extending STOAR with the capability to retrieve all eigenvalues con-
tained in an interval, with inertia-based spectrum slicing. Since we are factorizing Q(σ), rather
than the linearization, we must consider how to perform bisection by using inertia information
obtained from Q(σ). This will be feasible in the particular case of hyperbolic quadratic eigen-
value problems, where all eigenvalues are real [12], but also in some non-hyperbolic problems
as shown by Li and Cai [19]. This latter paper proposes a classical bisection algorithm to com-
pute all real eigenvalues contained in a interval, using the inertia count. The advantage of our
method, compared to Li and Cai’s, is that the number of required factorizations is much smaller,
as it is a subspace-based algorithm. Furthermore, our method computes both eigenvalues and
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eigenvectors, whereas Li and Cai return eigenvalues only, so one step of inverse iteration would
be necessary for each wanted eigenvector.

The main contribution of this paper is to show how all these ingredients must be combined
to get a robust and efficient spectrum slicing solver for hyperbolic QEPs that can also be used
to solve general symmetric QEPs under certain conditions in the selected interval. We also show
results obtained with a practical implementation in SLEPc [25, 13], where we have combined
our previous STOAR implementation [7] with the spectrum slicing solver for the linear case [5].
In particular, we have to consider practical issues such as how to perform deflation against
basis vectors stored in a compact representation, which is required to avoid reconvergence of
eigenvalues in a neighboring subinterval, or how to lock converged eigenvalues when doing the
thick-restart step.

The paper is organized as follows. Preliminaries are described in section 2, including the de-
scription of inertia laws for linear and quadratic eigenproblems, as well as the restarted memory-
efficient pseudo-Lanczos solver. The details of the spectrum slicing scheme for symmetric QEPs
is presented in section 3, including aspects related to parallel implementation. The performance
and accuracy of the solver is assessed in section 4, and the conclusions follow in section 5.

2 Previous work

In this section we describe related works which include the main ingredients used in the spectrum
slicing method proposed in this work.

2.1 Spectrum slicing in linear eigenvalue problems

The technique of inertia-based spectrum slicing was developed in the 1980’s, reaching its full
potential in the paper by Grimes et al. [10]. Some years ago we implemented this technique in
SLEPc, modernizing the algorithm by including features such as restart and parallel comput-
ing [5]. This implementation is being used to solve very challenging problems in computational
chemistry [17]. We next give a brief overview of the method emphasizing three relevant elements:
B-Lanczos, inertia and deflation. In this section we assume a symmetric linear eigenproblem
(2) with positive definite B.

2.1.1 Solver preserving the symmetric structure

The spectrum slicing technique uses the symmetric Lanczos method and the shift-and-invert
transformation to obtain interior eigenvalues. It computes the largest magnitude eigenvalues of

Sx = θx, S = (A− σB)−1B, (4)

where the obtained eigenvalues θ = (µ− σ)−1 correspond to eigenvalues µ closest to the target
σ ∈ R. The transformed matrix S is not symmetric but it is self-adjoint with respect to the
inner product defined by B, 〈u, v〉B := u∗Bv. Hence, by using this non-standard inner product,
the Lanczos method can still be used to generate a Lanczos decomposition

SVj = VjTj + βjvj+1e
∗
j , (5)

where the columns of Vj form a B-orthonormal basis of the Krylov subspace spanned by S and
an initial vector v1, V

∗
j BVj = I, and Tj is a real symmetric tridiagonal matrix.

The Krylov subspace contains increasingly accurate Ritz approximations (x̃i, θ̃i) of eigenpairs
of (4), where Tjyi = θ̃iyi and x̃i = Vjyi. A cheap convergence criterion for the obtained
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approximations is βj |yji| ≤ ε|θ̃i| for a given tolerance ε, which involves a bound for the B-norm
of the residual

ri = Sx̃i − θ̃ix̃i. (6)

In a spectrum slicing strategy we compute all eigenvalues in a given interval by chunks, using
the shift-and-invert transformation at a sequence of shifts, σk, k = 1, 2, . . ., and validating the
number of eigenvalues obtained using the information supplied by the inertia of the matrices
(A− σkB).

2.1.2 Counting eigenvalues using matrix inertias

We denote as ν(M) the number of negative eigenvalues of a symmetric matrix M , and we
refer to it as the inertia of M . In virtue of Sylvester’s inertia law [16], this value remains
unchanged under congruence transformations. In generalized linear eigenproblems (2) with B
positive definite, Grimes et al. [10] consider the Cholesky decomposition B = LBL

∗
B and the

reduction to standard form L−1B AL−∗B x = λx to see that ν(A − σB) = ν(L−1B AL−∗B − σI) gives
the number of negative eigenvalues for the shifted eigenproblem. Thus, in this case the number
of eigenvalues of A − λB to the left of a shift σ can be obtained as the inertia of the matrix
(A− σB).

In the context of a Lanczos iteration for computing eigenvalues closest to a target value,
to expand the Krylov subspace associated to S (4), we use an indefinite (block-)triangular
factorization A − σkB = LkDkL

∗
k where the matrix Dk is block-diagonal with 1 × 1 or 2 × 2

diagonal blocks. As a byproduct of this factorization the number of eigenvalues on the left of
σk can be obtained, νk := ν(A− σkB) = ν(Dk). In this way, running Lanczos on two different
shifts σk < σk+1, we know that the number of eigenvalues, counted with their multiplicities, in
the interval [σk, σk+1) is νk+1 − νk.

2.1.3 Avoiding reconvergence via deflation

Computing eigenvalues from different Lanczos runs may entail some difficulties that spectrum
slicing has to address. One of them is ascertaining whether equal (in machine precision) val-
ues computed from different shifts are spurious duplicates or genuine multiples of a particular
eigenvalue. Another problem faced by spectrum slicing is to ensure B-orthogonality between
eigenvectors associated to a multiple eigenvalue (or a cluster of eigenvalues) when calculated
from more than one shift. The tool used for solving these problems is deflation, which avoids
reconvergence by forcing the Lanczos method to work in the orthogonal complement of a set of
selected vectors. Since eigenvectors of (2) are mutually B-orthogonal, in the context of the B-
Lanczos method, such vectors can be easily deflated incorporating them directly in the Lanczos
basis against which B-orthogonalization is performed. This fact makes the B-Lanczos procedure
a suitable Krylov method when considering the deflation of eigenvector sets.

Although selected deflation reduces the possibility of recalculating eigenvalues already ob-
tained, it also involves an additional cost since at each iteration of the Lanczos method one
vector has to be orthogonalized against all vectors selected for deflation. Therefore, the amount
of deflation to be applied for each shift must be adjusted. The strategy used in our slicing
technique for linear eigenproblems [5] selects for deflation the set of computed eigenvectors as-
sociated to eigenvalues inside the smallest subinterval [σ`, σr] containing the current shift σ and
having endpoints at the set of previous shifts. This scheme accepts any value computed from σ
in [σ`, σr], where reconvergence is not possible, and discards any eigenvalue computed outside
this interval.

Figure 1 depicts the spectrum slicing process for three consecutive shifts. First, it shows a
trust subinterval (between a and σk−1) with no missing eigenvalues, obtained after k−1 shifts
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σk−1

a b

σ` σrσk

a b

σ` σrσk+1

Figure 1: Three steps of a sample spectrum slicing computation, corresponding to three consec-
utive shift values σk−1, σk and σk+1. The picture illustrates a situation of backtracking, because
σk+1 is placed on the left of σk while normal movement is to the right. Vertical lines represent
eigenvalues, with taller and thicker strokes for already computed eigenvalues (violet color for
those being used for deflation) and smaller strokes for eigenvalues that have not been found by
the algorithm yet. The shaded area is the trust subinterval, where computed inertia matches the
number of eigenvalues found. The interval [σ`, σr] is used to choose eigenvectors for deflation.

have been processed; second, it shows the subinterval selected for deflation at the kth Lanczos
run, and the newly computed eigenvalues at σk; and third, it illustrates the deflation subinterval
when backtracking to search for missing eigenvalues, and the extension of the trust subinterval
(between a and σk) once the number of computed eigenvalues matches the inertia count.

2.2 Symmetric quadratic eigenproblems

We now turn our attention to the quadratic eigenvalue problem (1), where we assume that all
matrices are symmetric and M is non-singular. These problems have special spectral properties,
such as for example that eigenvalues λ are real or come in complex conjugate pairs λ and λ̄, even
if the matrices defining the QEP are complex Hermitian. Also, in some cases we can ensure that
all the eigenvalues are real, as discussed below. Under some assumptions [29], real eigenvalues
of symmetric QEPs present a variational characterization allowing results to be exploited in
a spectrum slicing method relying on Sylvester’s law of inertia, similar to those mentioned in
section 2.1.

A standard way of solving the quadratic eigenvalue problem is via linearization, that is, via
a linear eigenvalue problem whose eigenvalues coincide with those of the QEP. For the case of a
symmetric QEP, the pencil

L(λ) = A− λB, with A =

[
K 0
0 −M

]
, B =

[
−C −M
−M 0

]
, (7)

is a linearization that preserves symmetry. The eigenvectors of L(λ)y = 0 have the form y = [ xλx ],
where (x, λ) are the eigenpairs of Q(λ)x = 0.

For our purpose, we will consider the general case of symmetric quadratic eigenvalue problems
as well as the special subclass of hyperbolic quadratic eigenproblems. A symmetric QEP is
hyperbolic if M > 0 and (x∗Cx)2 > 4(x∗Mx)(x∗Kx) for all x ∈ Cn \ {0} [27]. In this case, all
eigenvalues are guaranteed to be real, forming two disjoint groups of n eigenvalues, each having
linearly independent eigenvectors. Hyperbolic QEPs are also characterized by the symmetric
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Q > 0
Q′ < 0

Q > 0
Q′ > 0

Q < 0

Figure 2: Pictorial representation of the two groups of eigenvalues of a hyperbolic QEP. The
line ν(Q) illustrates how the value of the inertia of matrix Q(σ) changes for varying σ.

pencil (7) being definite [15]. A particular case of hyperbolic QEP, often called overdamped, is
when C > 0 and K ≥ 0, in which case all its eigenvalues are nonpositive. On the other hand,
a more general class of symmetric QEPs where all eigenvalues are real is the so-called definite
QEP, characterized by the fact that a symmetric-definite linearization exists [15, 1]. Symmetric
QEPs of both hyperbolic and definite type can be transformed in a way that the B matrix of the
symmetric linearization pencil (7) is positive definite. A procedure for this has been proposed by
Niendorf and Voss [23]. Then it is possible to apply the spectrum slicing technique of section 2.1
without modification. However, we advocate for modifying the spectrum slicing method so that
it can be used without the need of the Niendorf–Voss transformation, resulting in a cheaper
computation as will be illustrated in section 4. Furthermore, our approach may also be suitable
for some general symmetric QEPs (not definite). For the modified spectrum slicing method,
we are not exploiting the overdamped and definite structures, we will only distinguish between
hyperbolic QEP and general symmetric QEP.

The spectrum slicing technique described in section 2.1 relies on the eigenvalue count inside
an interval, which is computed using the matrix inertia of A − σB. To extend this scheme to
the symmetric QEP we review similar results available for some particular QEP types, such as
the hyperbolic case.

2.2.1 Matrix inertia in quadratic symmetric matrix polynomials

In the sequel, we will use n`(σ) to denote the number of real eigenvalues to the left of σ ∈ R in
a given symmetric eigenproblem (linear or quadratic).

In symmetric linear eigenvalue problems (2), specific properties such as B being positive
definite give us the possibility of computing n`(σ), which in this case is equal to the value of
the matrix inertia ν(A−σB). For the more general case of symmetric nonlinear eigenproblems,
Kostić and Voss [18] give sufficient conditions that allow using the matrix inertia information to
locate real eigenvalues. In the particular case of hyperbolic QEPs, they show that it is always
possible to compute n`(σ) from the matrix inertia ν(Q(σ)), in a similar way as in the linear
case. Focusing particularly on the hyperbolic case, we now summarize results that have been
used in the eigensolver implementation (section 3) for computing n`(σ).

As mentioned before, the eigenvalues of a hyperbolic QEP form two disjoint groups of n real
eigenvalues each,

λ−1 ≤ λ
−
2 ≤ · · · ≤ λ

−
n < λ+1 ≤ λ

+
2 ≤ · · · ≤ λ

+
n , (8)

as illustrated in Figure 2. The intervals J− := [λ−1 , λ
−
n ] and J+ := [λ+1 , λ

+
n ] correspond to the

two real solutions ρ−(x) and ρ+(x), respectively, of the scalar equation

x∗Q(λ)x = λ2x∗Mx+ λx∗Cx+ x∗Kx = 0, x ∈ Cn \ {0}. (9)
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Another property of hyperbolic problems is that the matrix Q(σ) is negative definite for all σ
in the open interval (λ−n , λ

+
1 ), and positive definite in the intervals (−∞, λ−1 ) and (λ+n ,+∞).

To compute n`(σ), for a given shift σ ∈ R, from the matrix inertia ν(Q(σ)), we need to
know the relative position of σ with respect to the intervals J− and J+. We distinguish three
cases [18]:

• If ν(Q(σ)) = n, then σ is located between the two intervals J− and J+, and hence there
are n eigenvalues on the left of σ, n`(σ) = n.

• If ν(Q(σ)) = 0, then σ is either on the left of J− or on the right of J+. In that case, we
compute t := x∗Q′(σ)x for a random vector x to determine which side is σ on. It holds
that n`(σ) = 2n if t > 0, and n`(σ) = 0 otherwise.

• If 0 < ν(Q(σ)) < n, then σ is either inside J+ or J−. Similarly to the previous case, to
discriminate between the two intervals we need to compute t := x∗Q′(σ)x, in this case for
a vector x such that x∗Q(σ)x > 0. One such x is for example a Ritz vector approximating
an eigenvector associated to a positive eigenvalue of Q(σ). Then,

n`(σ) =

{
ν(Q(σ)), if t < 0,

2n− ν(Q(σ)), if t > 0.
(10)

The fact that n`(σ) can always be computed in the hyperbolic case makes the spectrum
slicing technique applicable for these problems. The general case of symmetric QEPs is trickier.
There may be both real and complex eigenvalues, and there is no general formula to compute
n`(σ) from ν(Q(σ)), even if all eigenvalues are real. As a consequence, the described technique
cannot be applied in general for all symmetric QEPs. Still, we can find conditions that allow us
to extend the spectrum slicing technique to certain non-hyperbolic problems. For that case, it
is relevant to define eigenvalue types of symmetric matrix polynomials [8]. A real eigenvalue λi
of Q(λ)x = 0 is of positive type if

x∗Q′(λi)x = 2λix
∗Mx+ x∗Cx > 0, ∀x ∈ ker(Q(λi)) \ {0}. (11)

Likewise, it is of negative type if x∗Q′(λi)x < 0. We say that a real eigenvalue is of definite
type if it is either of positive or negative type, and otherwise it is of mixed type. In the case of
hyperbolic QEPs, all eigenvalues are of definite type, more precisely those contained in J− are
of negative type and those in J+ of positive type.

Given an interval [a, b], if all real eigenvalues contained in such interval are of definite type
and, furthermore, all of them are of the same type (either positive or negative) and semi-simple,
then it is possible to show [19] that n`(b) − n`(a) = |ν(Q(b)) − ν(Q(a))|. Hence, under these
assumptions, the spectrum slicing technique of section 3 can be used to find all real eigenvalues
contained in the interval in general symmetric QEPs. Unfortunately, it is not possible to know
a priori if a given problem satisfies the assumptions or not.

2.3 Memory-efficient Krylov solvers for the symmetric QEP

Our solver relies on a Krylov method operating on the pencil of the linearization (7), which is
not definite in general. As hinted in section 2.1, we need to use an iterative solver that preserves
the structure of the linearization, in a way that the computed eigenvectors can be readily used in
the deflation mechanism required for spectrum slicing. This can be accomplished with pseudo-
Lanczos [24, 7]. Furthermore, due to the structure of the linearization it is very convenient to
use specific memory-efficient methods such as STOAR [7].
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2.3.1 The pseudo-Lanczos method to solve symmetric indefinite linear eigenprob-
lems

The pseudo-Lanczos recurrence preserves the symmetric-indefinite structure of the problem by
using an indefinite inner product [9], 〈u, v〉B := u∗Bv, for which 〈z, z〉B can be negative. The
computed pseudo-Lanczos decomposition, analogous to (5), is

SVj = VjΩ
−1
j Tj + tj+1,jω

−1
j+1vj+1e

∗
j , (12)

where Vj is the Krylov basis satisfying V ∗j BVj = Ωj , Tj is a real symmetric tridiagonal matrix,
and Ωj = diag(±1) is a signature matrix. Algorithm 1 shows the required steps to compute the
pseudo-Lanczos decomposition.

Algorithm 1 Pseudo-Lanczos iteration

Input: Matrices B and S = (A− σB)−1B, initial vector v1, number of steps k
Output: Pseudo-Lanczos basis Vk+1, tridiagonal matrix Tk, signature matrix Ωk+1

1: Normalize: ω1 = sign(v∗1Bv1), v1 = v1ω1/
√
|v∗1Bv1|

2: for j = 1, 2, . . . , k do
3: z = Svj
4: t1:j,j = V ∗j Bz

5: z = z − VjΩ−1j t1:j,j

6: tj+1,j =
√
|z∗Bz|

7: ωj+1 = sign(z∗Bz)
8: vj+1 = zωj+1/tj+1,j

9: end for

Our implementation also incorporates a thick restart based on the eigenvectors of the pro-
jected matrix Ω−1j Tj [7].

The pseudo-Lanczos method can be seen as non-symmetric Lanczos particularized for the
case of a symmetric generalized eigenproblem. As such, it may suffer from breakdown (or near
breakdown) in the case that an isotropic vector is generated, that is, if 〈z, z〉B = 0 for z 6= 0.
Also, a solver based on pseudo-Lanczos may become unstable, either due to the pseudo-Lanczos
iteration itself (involving indefinite Gram-Schmidt orthogonalization [26]) or the resolution of
the symmetric-indefinite projected problem. A careful implementation of these two parts can
reduce the risk of instability, and furthermore it is possible to detect instability by monitoring
the loss of pseudo-symmetry in the projected problem [7].

In the case of shift-and-invert transformation, the matrix used to expand the Krylov subspace
is

S = (A− σB)−1B =

[
−K−σC −σM
−σM M

]−1 [
C M
M 0

]
. (13)

A practical implementation should avoid the explicit computation of the inverse of A−σB, and
instead perform a linear solve whenever a matrix-vector product with S is required. Rather
than factoring this 2n × 2n matrix, a Schur complement approach is preferred, which involves
operating with the (implicit) inverse of Q(σ), that is, the quadratic polynomial (3) evaluated at
the current shift σ. Since Q(σ) is symmetric (for a real σ), this can be done with an indefinite
(block-)triangular factorization Q(σ) = LDL∗, as described in section 2.1 for the linear case.
Then the inertia ν(Q(σ)) = ν(D) is readily available to determine the number of eigenvalues in
a subinterval.

8



2.3.2 The STOAR method

The dimension of the matrices of the linearization (7) is 2n, where n is the size of the coefficient
matrices of Q. This increased dimension not only implies double storage requirements for the
Krylov basis, V ∈ C2n×j (for some dimension j), but also a high computational cost. Memory-
efficient Krylov solvers [21] try to exploit the block structure of the linearization in a way that the
memory requirements are restricted to a basis with vectors of dimension n only, U ∈ Cn×(j+1),
plus some additional coefficients, G ∈ C2(j+1)×j . These bases are related as

V = (I2 ⊗ U)G. (14)

These algorithms are also adapted to carry out much less operations than would be done in a
naive implementation. Details of how these techniques have been implemented in SLEPc for
general matrix polynomials of arbitrary degree are given in a previous paper [6].

Here we focus on the particular case of symmetric matrix polynomials of degree 2. The
details of the memory-efficient Krylov solver for this case have already been worked out in a
previous work [7]. The STOAR method, that we will use in the spectrum slicing method of
section 3, is a variant of TOAR (two-level orthogonal Arnoldi) [21] that exploits symmetry by
using the pseudo-Lanczos recurrence for the matrix

Š = B̌−1Ǎ =

[
0 I

−M−1K −M−1C

]
(15)

associated with the linearization

Ľ(λ) = Ǎ− λB̌, with Ǎ =

[
0 K
K C

]
, B̌ =

[
K 0
0 −M

]
. (16)

It generates a Krylov relation (12) where the pseudo-Lanczos vectors are built in a compact
form (14),

Vj =

[
V 0
j

V 1
j

]
=

[
Uj+1 0

0 Uj+1

] [
G0
j

G1
j

]
, (17)

where G0
j and G1

j are the Uj+1 coordinates of the blocks V 0
j and V 1

j , respectively. We now
summarize the main steps carried out by the STOAR method [7].

The first step is the expansion of the Krylov subspace z = Švj (line 3 of Algorithm 1).

Since the last pseudo-Lanczos vector vj =

[
v0j
v1j

]
is expressed in the compact representation,

v0j = Uj+1g
0
j , v

1
j = Uj+1g

1
j , a compact representation of z =

[
z0

z1

]
, where{

z0 = v1j

z1 = −M−1(Kv0j + Cv1j ) = −M−1(KUj+1g
0
j + CUj+1g

1
j ),

(18)

is computed taking Uj+2 = [Uj+1, uj+2], with orthonormal columns, and coefficients g =
[
g0

g1

]
so that z0 = Uj+2g

0, z1 = Uj+2g
1. The vector uj+2 and coefficients g1 are obtained via Gram-

Schmidt orthonormalization of z1 against the columns of Uj+1, whereas g0 =
[
g1j
0

]
.

The orthogonalization and normalization steps (lines 4–8 of Algorithm 1) start with vector
z = (I2⊗Uj+2)g. Using the fact that Uj+2 has orthonormal columns, the Gram-Schmidt orthog-
onalization turn into the orthogonalization of g against the columns of Gj with the indefinite
inner product defined by [

U∗j+2KUj+2 0

0 −U∗j+2MUj+2

]
. (19)
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The normalization proceeds in the same way, by normalizing the resulting vector to obtain gj+1

and ωj+1.
STOAR is a restarted method that compresses the Krylov basis when it reaches a specified

maximum size. While reducing the Krylov basis from size m to p by a transformation of the
form Ṽp = VmQ = (I2 ⊗ Um+1)GmQ, for Q ∈ Cm×p, this method performs (in the same way as
TOAR), an additional step which involves an SVD decomposition of the matrix

[
G0
m, G

1
m

]
to

adjust the size of the basis Um+1 to the new Krylov basis dimension.

3 Spectrum slicing for quadratic eigenproblems

In this section we show how the spectrum slicing technique of section 2.1 can be adapted to
symmetric QEPs solved with the STOAR method of section 2.3 using the information provided
by inertia as discussed in section 2.2.

3.1 Basic scheme

Algorithm 2 shows a scheme of the spectrum slicing technique particularized for symmetric
QEPs. The algorithm computes all real eigenvalues contained in a given interval [a, b]. The
overall computation is similar to the case of linear eigenproblems, but with important differences
that will be highlighted below.

Algorithm 2 Spectrum slicing for symmetric QEPs

Input: Matrices A and B, interval [a, b]
Output: Computed eigenpairs (xi, λi) with λi ∈ [a, b]

1: Set k = 1
2: Compute n`(a), n`(b)
3: Σ = {(a, a, b, n`(a), n`(b))}
4: while Σ 6= ∅ do
5: Extract (σk, σ`, σr, n`(σ`), n`(σr)) from Σ
6: Compute n`(σk)
7: Select eigenvectors computed at [σ`, σr] as deflation vectors
8: Run STOAR at σk to obtain m eigenpairs (xi, λi)
9: Discard (xi, λi) for λi /∈ [σ`, σr]

10: Split eigenvalues in two groups {λ`i}
m`
i=1 and {λri }

mr
i=1 with λ`i < σk < λri

11: if m` 6= n`(σk)− n`(σ`) then
12: Choose new shift σ in [σ`, σk]
13: Insert (σ, σ`, σk, n`(σ`), n`(σk)) into Σ
14: end if
15: if mr 6= n`(σr)− n`(σk) then
16: Choose new shift σ in [σk, σr]
17: Insert (σ, σk, σr, n`(σk), n`(σr)) into Σ
18: end if
19: k = k + 1
20: end while

The computation proceeds by placing shifts σk at different points of the interval. Normally
the method sweeps the interval either from from left to right or right to left (depending on
whether the interval is open in one end, for instance), but it does not mean that the values
of the shifts increase (or decrease) monotonically, since in some cases the algorithm must get
back to look for missing eigenvalues. There is a bag Σ of unprocessed shifts, where each shift
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is represented by a tuple (σk, σ`, σr, n`(σ`), n`(σr)) indicating the current shift value σk, the
interval for deflation [σ`, σr] and the number of (real) eigenvalues on the left (inertia) of both
ends of this interval. At the beginning of the algorithm, Σ must be filled with the initial shift,
which is one of the ends of the interval, together with the whole interval [a, b] (which can be
open on one side) and the eigenvalue count at both a and b (see section 3.4 for details about how
n`(·) is obtained). Next, the algorithm proceeds by extracting one shift at a time from the bag
and processing it, until the bag is empty (at each shift, at most two new shifts may be inserted
into the bag).

New shifts are added to the bag in the case that the number of computed eigenvalues is still
less than the eigenvalue count provided by inertia (computed at line 6), either on the left or
on the right of σk (or both). The values of the new shifts added to the bag (lines 12 and 16
of Algorithm 2) are determined in two ways. The normal case is when either σ` or σr coincide
with one end of the global interval; in that case, the distance of the new shift with respect of
the previous one takes into account the separation of computed eigenvalues [5]. In the case that
the algorithm gets back to compute missing eigenvalues, then the new shift is just the midpoint
of [σ`, σk] (or [σk, σr]).

Since eigenvalues are computed by chunks, from different pseudo-Lanczos factorizations at
different shifts, it may happen that some of the eigenvalues are computed more than once.
To avoid that, we perform explicit deflation, but only against a limited set of eigenvectors, as
was mentioned in section 2.1. Eigenvectors corresponding to computed eigenvalues located in
[σ`, σr] are selected for deflation (line 7 of the algorithm), and this prevents reconvergence of
these eigenvalues in the next pseudo-Lanczos run. In the event that an eigenvalue outside [σ`, σr]
is computed we must discard it (line 9 of the algorithm) because we cannot tell if it is a genuine
or spurious copy.

3.2 Linearization

The computation associated with each shift consists essentially in a run of the STOAR method
to compute a fixed number, m, of eigenpairs around σk. In our implementation, the employed
linearization is a general one, that includes (7) and (16) as particular cases. We consider sym-
metric pencils proposed by Higham et al. [14] belonging to the space H(Q),

L̂(λ) = Â− λB̂, with Â =

[
βK αK
αK αC − βM

]
, B̂ =

[
αK − βC −βM
−βM −αM

]
, (20)

with α, β ∈ R. A pencil of this type is a linearization for the matrix polynomial (3) whenever
the matrix

Rα,β := β2M − αβC + α2K (21)

is non-singular [14]. The eigenvectors of the linearization have the form y = [ xλx ], where (x, λ)
is an eigenpair of the QEP. The linearizations (7) and (16) are particular cases of (20) taking
(α, β) = (1, 0) and (0, 1), respectively. By leaving (α, β) as free parameters, we give the user the
possibility to improve the properties of the indefinite inner product matrix B̂ for a more stable
Gram-Schmidt orthogonalization [26].

For the spectrum slicing scheme we need to perform the shift-and-invert transformation at
each shift. Contrary to the approach used in our previous paper [7], where the transformation
was done on the quadratic problem, the deflation technique, explained in section 3.3, requires the
shift-and-invert transformation to be performed on the linearization. The rationale is that in this
latter case the transformed problems generated from different shifts have the same eigenvectors,
which can be directly used from one shift to another for deflation.
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To compute the action of (Â − σB̂)−1B̂ on some vector v ∈ Cn without explicitly building
and factorizing the matrix (Â− σB̂) of size 2n, we use a block factorization. Assuming β 6= 0,
the factorization is

Â− σB̂ =

[
βK − σαK + σβC αK + σβM

αK + σβM αC − βM + σαM

]
=

[
I 0
α
β I I

] [
I 0
0 1

βRα,β

] [
I −(αK + σβM)
0 I

] [
βQ(σ) 0
σI −I

]
,

(22)

with Rα,β defined above. From decomposition (22) we get

(Â− σB̂)−1B̂ =

[
βQ(σ) 0
σI −I

]−1 [
I −(αK + σβM)
0 I

]−1
B̃, (23)

where

B̃ :=

[
I 0

0 βR−1α,β

] [
I 0
−α
β I I

]
B̂ =

[
αK − βC −βM
−I 0

]
. (24)

Expressions (23) and (24) allow us to make computations for z = (Â − σB̂)−1B̂v by blocks,
operating with matrices and vectors of size n, with the formula{

z0 = −Q(σ)−1(σMv0 + Cv0 +Mv1)

z1 = σz0 + v0.
(25)

If β = 0, it is possible to derive the same formula assuming α 6= 0. Considering that v is
expressed in compact representation, vector z must also be computed in this representation as
explained in section 2.3.

As in the linear case, the computation of (25) must not evaluate the inverse of Q(σ) explicitly.
Instead, a symmetric-indefinite triangular factorization of Q(σ) is used to expand the basis.
Furthermore, this factorization will provide the inertia of this matrix, which informs about the
localization of eigenvalues, as discussed in section 2.

3.3 Deflating eigenvectors in compact representation

As mentioned in section 2.1, the deflation mechanism for spectrum slicing consists in augmenting
the Krylov subspace with already available eigenvectors. These eigenvectors have been computed
in a previous shift σ and deflation prevents their re-computation. In the case of Algorithm 2,
that uses the STOAR method, we augment the pseudo-Lanczos basis, which is expressed in the
compact representation (17), with eigenvectors of the linearization [ xλx ], which are also expressed
in compact representation. This has several implications:

• During the spectrum slicing loop it is necessary to keep eigenvectors of the linearization
[ xλx ], and only at the end of the computation we extract the relevant part x. Note that this
does not mean an increase of memory storage, since [ xλx ] needs to store about n elements
in compact representation.

• The management of the subspace basis is much more involved than in the linear case,
because augmenting the basis is not as simple as appending new columns, due to the
compact representation, and similarly for other operations such as extracting a number of
columns from the subspace basis.
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To illustrate the issues associated with management of the basis, let us consider several
situations. The simplest case is when after step 7 of Algorithm 2 we have a basis of p deflation
vectors expressed in compact representation Vp = (I2 ⊗ Up)Gp. Deflation in pseudo-Lanczos
is effected by including these vectors in the orthogonalization of steps 4–5 of Algorithm 1. A
simple way to achieve this is to initialize the pseudo-Lanczos basis to Vp and then start the loop
at j = p. This will extend the basis naturally to order k, and we just have to consider only the
trailing principal submatrix of order (k−p) of the projected matrices Tk and Ωk (the leading
part contains the already known eigenvalues).

The situation is somewhat more complicated when the set V of vectors selected for deflation
is just a part of the eigenvectors obtained from a previous shift, or when such set includes vectors
computed from two distinct shifts. In the first case, V would be stored in compact representation
V = (I2⊗U)G with G having less columns than U , making it necessary to perform an operation
to adjust and level off both dimensions. In the second case, where we have two sets of vectors
V1 = (I2 ⊗ U1)G1 and V2 = (I2 ⊗ U2)G2, obtained from two different STOAR runs, we would
need to orthogonally extend one of the two bases, for instance Ũ = [U1, Ũ2], in such a way
that the new basis Ũ spans both U1 and U2, and we would get in this way a unified compact
representation for the two groups of eigenvectors [V1, V2] = (I2 ⊗ Ũ)[G1, G̃2].

The latter two cases get simplified if after every STOAR run the basis of computed eigenvec-
tors (that includes those used for deflation) is divided in two groups (corresponding to eigenvalues
lying on the left and right of the shift), each of them represented independently in compact form.
In this way, the vectors associated with each of the subintervals generated at steps 11 and 15 of
Algorithm 2, get stored directly in the appropriate way for their use in deflation of subsequent
subintervals.

The basis split is accomplished by means of a small computation involving the SVD of a
matrix as follows. The first q < p vectors of the computed basis are Vq = (I2 ⊗ Up)Gq with
Up ∈ Cn×p and Gq ∈ C2p×q, so we need to adjust the number of columns of Up and rows of Gq.
The rank of [V 0

q , V
1
q ] is q and similarly for [G0

q , G
1
q ] ∈ Cp×2q. We then compute the compact

singular value decomposition [
G0
q G1

q

]
= Ǔ Σ̌V̌ ∗, (26)

where Σ̌ is a q×q diagonal matrix of singular values, and Ǔ , V̌ have dimensions p×q and q×2q,
respectively. This decomposition allows us to express the Vq vectors in the form

V i
q = UpG

i
q = UpǓ Σ̌V̌ i∗ , for i = 0, 1, (27)

where we have written V̌ ∗ = [V̌ 0∗ , V̌ 1∗ ]. Updating Up ← UpǓ and Giq ← Σ̌V̌ i∗ , for i = 0, 1, we
obtain the representation for Vq we are looking for.

3.4 Additional details

To complement the description, we provide some additional implementation details.
A fundamental value in Algorithm 2 is n`(σ), the number of real eigenvalues to the left

of σ ∈ R. In a practical implementation this value is explicitly computed only in the case of
hyperbolic QEPs, but not in the general symmetric case that we will discuss below.

In the hyperbolic case, the computation of n`(σ) has been described in section 2.2. Apart
from computing the inertia of Q(σ) (which implies a factorization), the case 0 < ν(Q(σ)) < n
involves an additional cost because it requires computing a value t := x∗Q′(σ)x to determine the
relative position of σ with respect to the intervals J− and J+. In our implementation, x is an
approximate Ritz vector of Q(σ) corresponding to a positive eigenvalue, and we compute it via
a linear eigensolver from SLEPc’s EPS module. This computation is required unconditionally at
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the beginning of Algorithm 2 (step 2), but inside the loop we can avoid it unless the endpoints
of the interval satisfy a ∈ J−, b ∈ J+.

As we have mentioned in section 2.2, in the general symmetric case there is no known way
to explicitly compute n`(σ). Still, the spectrum slicing technique can be implemented if the
interval [a, b] contains only eigenvalues of the same definite type. The algorithm in this case
works similarly to Algorithm 2, but storing the inertias ν(Q(σ)) instead of n`(σ), and using
|ν(Q(σ2))−ν(Q(σ1))| as a count of the number of eigenvalues in [σ1, σ2]. If the assumption that
the interval contains only eigenvalues of the same type does not hold, there is no guarantee of a
proper functioning and it may happen that the number of returned eigenvalues is smaller than
the actual number of real eigenvalues in [a, b]. To minimize the occurrence of this latter scenario,
we have implemented several mechanisms to check situations where the required assumption
does not hold:

• The first check is done at the beginning of the algorithm on both endpoints of the initial
interval, a and b. For each of them, we compute the eigenpair (x, λ) satisfying the QEP
Q(λ)x = 0 for λ inside the interval [a, b] and closest to the endpoint. The type of this
eigenvalue is given by the sign of x∗Q′(λ)x. If the sign is different in both eigenvalues,
then the solver aborts because the assumption does not hold.

• If the previous check did not fail, the eigenvalue type must also be checked for all eigenval-
ues as they are computed, because in principle eigenvalues of different type may be mixed
arbitrarily. In this case, instead of explicitly computing the eigenvector x of the quadratic
eigenproblem, the type of the eigenvalue λ can be determined by checking the type of λ
directly in the linearization. From the relation

y∗L̂′(λ)y = −y∗B̂y = (αλ+ β)x∗Q′(λ)x, (28)

where y = [ xλx ], we see that the type of λ in the QEP can be easily determined from the
type of λ in the linearization L̂. Furthermore, the sign of y∗B̂y is readily available at
the end of each STOAR run. If the solver detects eigenvalues of different type within the
interval, the execution is aborted with an informative error message.

• The algorithm will also abort the execution if it detects a mismatch between the inertia
count and the number of found eigenvalues in a given subinterval.

Still, in the general case there could be cases in which the solver does not detect that the input
interval does not satisfy the required conditions. In that case, the number of returned eigenvalues
would be less than the actual number of eigenvalues contained in the interval.

We conclude this section with a brief description of the parallel implementation. SLEPc relies
on PETSc [3] for linear algebra operations such as sparse matrix-vector products or linear solves.
These operations are parallelized for distributed memory parallel computers with a message-
passing paradigm (MPI). Oversimplifying, parallelizing an algorithm essentially amounts to
deciding which objects (matrices and vectors) must be parallel (stored in a distributed way),
and then PETSc (and SLEPc) internally manage the data exchange necessary to perform the
different operations in parallel. Regarding Algorithm 2, the main cost lies in the computation
of the inertia via a triangular factorization, as well as the STOAR runs for each shift. The
inertia involves a triangular factorization, and parallel implementations of such factorizations
are available in PETSc via third party packages such as MUMPS. For the STOAR runs we can
distinguish two main building blocks: on one hand the operations in (25), including triangular
solves and matrix-vector products with the matrix polynomial coefficients, and on the other
hand the orthogonalization of vectors. For the latter operation, we have implemented parallel
subroutines in SLEPc that operate with vectors expressed in a compact representation (14).
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Table 1: Computational results for the spectrum slicing solver with hyperbolic quadratic matrix
polynomials. For each problem, the table shows the matrix dimensions, n, the interval of interest,
and the number of eigenvalues contained in the interval, neig. Results include the number of
processed shifts, #σ, the maximum backward error, ηmax, and the run time (in seconds) with
16 MPI processes.

problem n interval neig #σ ηmax t (s)

spring 1.5 mill. (−∞,−49.494891] 411 29 3 · 10−14 181

spring 20000 [−9.7,−0.5277] 1423 99 1 · 10−11 41.3

loaded string 20000 [4, 100000] 101 11 1 · 10−10 2.7

Recall that, in this representation, the U basis consists of a set of long vectors (of length n) that
will be distributed in the parallel code, whereas the G factor is in comparison very small and
hence it must be stored redundantly in all MPI processes.

4 Experimental results

We now show how our new spectrum slicing solver behaves in terms of accuracy as well as
computational performance (including parallel efficiency). We first focus on hyperbolic problems
and defer the general symmetric case until the end of this section.

The computer used for the executions is Tirant 3, consisting of 336 computing nodes, each of
them with two Intel Xeon SandyBridge E5-2670 processors (16 cores each) running at 2.6 GHz
with 32 GB of memory, interconnected with an Infiniband FDR10 network. All runs placed at
most 4 MPI process per node. The presented results correspond to SLEPc version 3.10, together
with PETSc 3.10 and MUMPS 5.1.2. All software has been compiled with Intel C and Fortran
compilers (version 18) and Intel MPI.

For the hyperbolic QEPs, we make use of the NLEVP collection [4]. In particular, we
consider two problems:

• spring is a QEP obtained from the discretization of a linearly damped mass-spring system.
It is a monic polynomial Q(λ) = λ2I + λC +K, where both C and K are tridiagonal. We
consider the simplest case where all masses are equal, and all dampers and springs have
the same damping constants. In particular, we use the default values µ = 1 (masses),
τ = 10 (dampers) and κ = 5 (springs), which result in a hyperbolic (and overdamped)
problem.

• loaded string is a rational eigenvalue problem arising from the discretization of a loaded
vibrating string, with a load of mass m attached by an elastic spring of stiffness k. Con-
sidering µ = k/m, the problem is formulated as(

A− λB +
λ

λ− µ
C

)
x = 0, (29)

with A,B tridiagonal and positive definite, and C = kene
T
n . This problem can be easily

transformed to a QEP by multiplication with λ − µ. We consider m = 1 and k = 1, in
which case the resulting QEP is hyperbolic.

Table 1 shows information and results for these two problems. The spring problem has
been solved for two different sizes and two different intervals, one of them is half-bounded and
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Table 2: Computational results for the spectrum slicing solver with hyperbolic quadratic ma-
trix polynomials, where the Niendorf-Voss transformation has been previously applied. Results
include the number of processed shifts, #σ, the maximum backward error, ηmax, the run time
(in seconds) with 16 MPI processes for the initial transformation, ttransf , and for the spectrum
slicing computation, tslice.

problem n #σ ηmax tslice (s) ttransf (s)

spring 1.5 mill. 27 5 · 10−14 175 36.6

spring 20000 100 4 · 10−12 43.4 0.42

the other one intersects both J− and J+ and hence contains eigenvalues of both negative and
positive type. In this way, we show that the solver is able to cope with all cases that may appear
in hyperbolic problems.

The accuracy of a computed solution (x, λ) is assessed by means of its relative backward
error

η(x, λ) =
‖Q(λ)x‖

(|λ2|‖M‖+ |λ|‖C‖+ ‖K‖) ‖x‖
, (30)

where we use∞-norms for practical computation of matrix norms. Note that the solver does not
evaluate this backward error in the stopping criterion. Instead, the stopping criterion relies on
the residual of the linearization, that is readily available during the pseudo-Lanczos iteration.
By default, we check ‖ri‖/|θ̃i| < tol, where θ̃i is the approximate eigenvalue and ri is the
residual (6). The tolerance used for the experiments in this section was 10−10.

The results of Table 1 show that all computed eigenvalues satisfy the requested tolerance.
Apart from the reported cases, we have tested the solver with many other problem sizes and
intervals, serially and in parallel, and we can conclude that it is remarkably robust in all cases
for hyperbolic problems. It is worth mentioning that even in the case that one of the STOAR
runs quits earlier due to loss of symmetry (as mentioned in section 2.3), the overall algorithm
tolerates this situation because it can recover by computing missing eigenvalues from a different
shift. In terms of performance, the run times largely depend on how many shifts are processed
by the spectrum slicing algorithm, since each shift implies a sparse factorization. In any case, the
total computation time is generally much smaller compared to a naive solution of the linearized
problem, apart from the fact that this latter approach does not guarantee that all eigenpairs are
returned.

Table 2 shows the results for the same problems as in Table 1 but solved by previously
applying the Niendorf-Voss transformation (cf. section 2.2), consisting in shifting the QEP with
a value µ such that matrix Q(µ) is negative definite. Then, the symmetric linearization pencil
has a definite B matrix, and the spectrum slicing method will operate always with a definite
inner product. In the spring problem, both approaches provide a similar accuracy, and the
computation time corresponding to the spectrum slicing method is also similar. However, the
Niendorf-Voss transformation has an additional cost that in the case of n = 1.500.000 is non-
negligible. The loaded string problem was not included in Table 2 since we could not carry out
the Niendorf-Voss transformation because the required linear eigenproblems did not converge.

Results for parallel performance when the solver is applied to the spring problem of size 1.5
million are reported in Figure 4 (left), with up to 128 MPI processes. We can see that the cost
associated with orthogonalization of vectors (expressed in compact representation) scales almost
linearly. However, the overall scalability is hindered by the factorization and linear solves (red
line) that have worse parallel efficiency. It is well known that parallel direct solvers do not scale
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Table 3: Computational results for the spectrum slicing solver with symmetric quadratic matrix
polynomials (non-hyperbolic). See Table 1 for a description of the columns.

problem n interval neig #σ ηmax t (s)

spring (n/o) 20000 [−2,−1.55] 215 14 6 · 10−12 1.8

sleeper 1.5 mill. [−0.99,−0.97] 234 21 9 · 10−12 144

atmos (0.5 Hz) 40000 [0.00628, 0.00973] 230 18 2 · 10−13 3

atmos (2 Hz) 40000 [0.02513, 0.03779] 844 67 2 · 10−13 11

Figure 3: Full spectrum of the three non-hyperbolic problems: non-overdamped spring (left),
sleeper (center), and atmos (right). In all cases, the matrix size used to generate the plots is 400.

well beyond a few tens of processes. For intervals containing many eigenvalues, it would be
possible to implement a two-level parallelization scheme, where the interval is split in several
subintervals, each of them being processed by a subset of MPI processes. In this way, the
number of processes participating in a single factorization is limited. We have implemented this
in SLEPc in the spectrum slicing algorithm for linear problems [17], but not yet for quadratic
eigenproblems.

We now turn our attention to symmetric QEPs that are not hyperbolic. We consider three
problems, the first two belonging to the NLEVP collection. The information associated with
these problems is shown in Table 3.

• spring is the same problem considered before, but with modified parameters τ = 0.6202
and κ = 0.4807 such that the QEP becomes non-hyperbolic. This problem is referred to
as non-overdamped mass-spring system by Li and Cai [19].

• sleeper is a QEP modelling a railtrack resting on sleepers. It is a monic polynomial Q(λ) =
λ2I + λC +K, where both C and K are pentadiagonal.

• atmos is the name we use to refer to a QEP from modal analysis of atmospheric infrasound
propagation [2]. It corresponds to a novel formulation valid for wide-angle propagation in
atmospheres with high Mach number flow, summarized in this equation[

k2H

(
v20
c2
− 1

)
− kH

2ωv0
c2

+
d2

dz2
+
ω2

c2

]
ψ = 0. (31)

A finite difference discretization is used along a vertical grid (z), resulting in a symmetric
QEP with M ,C diagonal, and K tridiagonal.

17



1 2 4 8 16 32 64 128

101

102

103
T

im
e

[s
]

spring 1.5M

Run time
Linear solves
Orthogonalization

1 2 4 8 16 32 64 128

101

102

103

T
im

e
[s

]

sleeper 1.5M

Run time
Linear solves
Orthogonalization

Figure 4: Execution times (in seconds) with up to 128 MPI processes for the spectrum slicing
solver on the spring (left) and sleeper (right) problems of dimension 1.5 million. The problem
parameters are shown in Table 1 and Table 3, respectively.

Figure 3 shows the full spectrum of these problems, corresponding to a problem of size
n = 400. We can see that there are both real and complex eigenvalues. We have checked that,
in these problems, real eigenvalues located on the left of a particular value are of negative type,
and those on the right are of positive type. This implies that our spectrum slicing solver should
work without difficulties, provided that the requested interval does not extend over eigenvalues
of the two groups. The intervals shown in Table 3 satisfy this restriction1, and in the case of
the atmos problem they represent the range of values with physical interest for the application
at the given frequency.

Results in Table 3 show that our solver provides good accuracy also for the general symmetric
case, with very fast computation times. Regarding the performance, the same comments in
previous paragraphs also apply in this case. In particular, the scalability plot of Figure 4 for
the non-hyperbolic case (sleeper, right plot) shows a very similar trend as before.

5 Conclusions

We have designed a spectrum slicing method for symmetric (or Hermitian) quadratic eigenvalue
problems that, under certain conditions, is able to compute all real eigenvalues contained in a
given interval. This method extends the well-known inertia-based spectrum slicing technique
for linear symmetric-definite eigenproblems, by relying upon different ingredients such as the
pseudo-Lanczos recurrence, the symmetric linearization of quadratic matrix polynomials and
the inertia count. Our implementation is also memory-efficient as it stores the basis vectors
in a compact representation, which enables significant memory savings at the cost of a more
complicated implementation of deflation during the iteration.

Our solver is particularly effective for the special case of hyperbolic QEPs. In this case, the
user can specify any interval of interest and the solver returns all the eigenvalues lying inside it.
The more general case of symmetric QEPs can also be addressed, but only if the user-provided
interval contains eigenvalues of the same definite type (positive or negative). Our solver is also
compatible with the Niendorf-Voss transformation [23], so if the QEP has been transformed
with this method the spectrum slicing computation will work all the way using a definite inner
product, and still use a memory-efficient representation of the basis.

1We have also considered tests where the requested interval does not satisfy the assumption of having only
eigenvalues of the same type, and our solver has detected this situation in all cases.
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Regarding the performance of the solver, we have presented results of both serial and parallel
executions on various test cases. The parallel scalability is limited by the required factorizations
at each shift. As a future work we will consider a two-level parallelism (based on subdivision of
the interval) in such a way that the number of processes can be increased further without losing
efficiency.
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of nonlinear eigenvalue problems. ACM Trans. Math. Software, 39(2):7:1–7:28, 2013.

[5] C. Campos and J. E. Roman. Strategies for spectrum slicing based on restarted Lanczos
methods. Numer. Algorithms, 60(2):279–295, 2012.

[6] C. Campos and J. E. Roman. Parallel Krylov solvers for the polynomial eigenvalue problem
in SLEPc. SIAM J. Sci. Comput., 38(5):S385–S411, 2016.

[7] C. Campos and J. E. Roman. Restarted Q-Arnoldi-type methods exploiting symmetry in
quadratic eigenvalue problems. BIT, 56(4):1213–1236, 2016.

[8] I. Gohberg, P. Lancaster, and L. Rodman. Spectral analysis of selfadjoint matrix polyno-
mials. Annals of Mathematics, 112(1):33–71, 1980.

[9] I. Gohberg, P. Lancaster, and L. Rodman. Indefinite Linear Algebra and Applications.
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