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Abstract: The construction industry of all countries in the world is facing the issue of sustainable
development. How to make effective and accurate decision-making on the three pillars (Environment;
Economy; Social influence) is the key factor. This manuscript is based on an accurate evaluation
framework and theoretical modelling. Through a comprehensive evaluation of six cable-stayed
highway bridges in the entire life cycle of five provinces in China (from cradle to grave), the research
shows that life cycle impact assessment (LCIA), life cycle cost assessment (LCCA), and social impact
life assessment (SILA) are under the influence of multi-factor change decisions. The manuscript
focused on the analysis of the natural environment over 100 years, material replacement, waste
recycling, traffic density, casualty costs, community benefits and other key factors. Based on the
analysis data, the close connection between high pollution levels and high cost in the maintenance
stage was deeply promoted, an innovative comprehensive evaluation discrete mathematical decision-
making model was established, and a reasonable interval between gross domestic product (GDP)
and sustainable development was determined.

Keywords: sustainable development; LCIA; LCCA; SILA; cable-stayed bridge; GDP

1. Introduction

The most common greenhouse gases in the Earth’s atmosphere include water vapour
(H2O), carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), ozone (O3) and chlo-
rofluorocarbons (CFC). The concentration of carbon dioxide in the atmosphere has a
dominant influence on global warming [1,2]. According to predictions by the United Na-
tions, the world’s population will reach 9.8 billion in 2050 [3]. Population shifts will result
in a massive consumption of resources and a rapid growth of energy requirements [4].
This makes the sustainable development of the construction industry, which accounts for
44% of all energy consumption, become more urgent [5,6]. What is the key to sustainable
development? It is to reduce environmental, economic and social impacts [7]. Thus, the
scope of research is expanded to the economic and social aspects, and the close correlation
between producers and consumers is increased [8].

To avoid the serious consequences brought about by climate change, efforts should
be made to substantially reduce the emission of greenhouse gases. Hansen et al. revealed
that the concentration of carbon dioxide in the atmosphere must be less than 350 parts
per million (ppm); otherwise, climate change will get worse [9]. The analysis of the latest
global atmospheric observations by the World Meteorological Organisation shows that
the global mean surface mole fractions of CO2, CH4, and N2O reached new highs in 2015,
i.e., 400.0 ± 0.1 ppm, 1845 ± 2 parts per billion (ppb), and 328.0 ± 0.1 ppb, respectively.
These values constitute 144%, 256% and 121% of the pre-industrial levels (before 1750),
respectively [10].

Low-carbon energy consumption and the reduction in greenhouse gas emissions from
the construction industry are particularly critical [11]. Lin and Liu. cited the CO2 emissions
from commercial and residential buildings in China, surveyed by the Index Decomposition
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Analysis (IDA), which concluded that emissions from the construction industry account for
30–50% of the total emissions [12]. Science researchers all over the world have proposed
measures to reduce environmental pollution caused by the construction industry. For the
accuracy and systematisms of the research, LCIA was introduced to solve problems facing
the construction industry [13,14]. Standardised provisions for multiple systemic analysis
methods were given in ISO 14040 and ISO 14044 [15].

Table 1 shows a comparative analysis of the latest research results of LCIA, LCCA and SILA.

Table 1. Recent statistics and analysis of some closely related achievements.

Methods Description Characteristic Limitation References

LCIA

Preventive design using 15
different methods of LCA

concrete bridge deck.

How to reduce
environmental pollution in

the maintenance stage:
Design and evaluation of
15 preventive measures.

The research content is
relatively concentrated,
single, and focuses on
material replacement.

[16]

Use LCIA to evaluate the
rationality of the

bridge design.

Use wooden bridges and
alternative concrete to

analyse the LCA impact of
a cable-stayed bridge.

Ideal research design for the
future. There are currently

no large-span wooden
bridges in operation. There

are assumptions and
uncertainties in the

maintenance assessment of
wooden bridges.

[17]

Apply life cycle
sustainability assessment
to the superstructure of

small span bridges.

The study was conducted
using 27 bridges, and it
was determined that a

bridge composed of steel
and concrete was the

best indicator.

The LCA study of ordinary
highway bridges, the

conclusion is whether it is
suitable for long-span

special bridges.

[18]

LCA was used to assess the
environmental impact of

the entire 60-year life span
of the provincial highway.

The research structure has
a complete range of

tunnels, bridges, roadbeds,
culverts, etc.

The road selection is in a
remote area, and the research
data are not representative.

[19]

Several cases (schools,
hospitals, commercial and
residential buildings) were

quantitatively studied
using LCA.

There are many types of
structures studied, and an

evaluation model is
established to
quantitatively

analyse emissions.

The research conclusions are
poorly comparable, and the

LCA data are
highly uncertain.

[20]

LCCA

The article introduces a
general framework for

evaluating bridge life cycle
performance and cost.

The focus is on analysis,
prediction, optimization

and decision-making
under bridge uncertainty.

All the articles in this article
are cost theory analysis, and

there is no specific bridge
case analysis.

[21]

Research and develop an
LCCA model to evaluate
highway infrastructure

investment.

Contributed to the
systematic and

informatised evaluation
method of highway

infrastructure investment.

Lack of case studies and
model application research. [22]

The energy consumption
cost of highway pavement
is analysed based on LCCA

and LCA.

Combining LCA and
LCCA to determine the

best pavement frame, road
expansion projects are

more practical.

Case application analysis of
pavement concrete

sustainability, no structural
concrete evaluation.

[23]
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Table 1. Cont.

Methods Description Characteristic Limitation References

Quantify the life cycle
environmental impact of the

structure through
environmental costs.

Calculate the environmental
costs of materials, energy,

transportation and
construction equipment for

the bridge structure.

The main research is the
LCCA influence of the bridge

girder structure.
[24]

The LCC and LCA analysis
of concrete bridges were

discussed, and the
optimization scheme was

proposed.

Economic and
environmental impact
analysis of reinforced

concrete and prestressed
concrete bridges.

The bridge structure is
simply a simply supported

beam bridge across the river.
[25]

Use SLCA to clarify the
assessment (IA) methods

and information covered in
the different impact

guidelines.

Use representational
models to analyse the

difference and connection
between social influence
and social performance.

All are written descriptions,
without modeling and

data analysis.
[26–28]

Use SIA to study and
practice all issues related to

social issues in the entire
project life cycle (before

conception to
after closure).

Analysed the overall social
issues in the process of
community and project

management. Put forward
that the biggest social

problem management in
the project is corruption.

Lack of case application
analysis and discussion. [29,30]

SIA is undergoing a
revolutionary force and

revolutionary force
for change.

SIA’s unfamiliarity with
social sciences and the

concerns of practitioners’
lack of competence.

Lack of case application
analysis and discussion. [31,32]

EIA and SIA have technical
flaws in analysis
and evaluation.

Consider four conceptual
elements in a sociological

context of complexity
and vitality.

Talked about the project
SIA’s attention to sensitive

factors and the improvement
of social responsibility. How

to realize the scientific
methodology needs to

be developed.

[33,34]

LCIA\LCCA\SILA

Evaluate the sustainability
performance of different
concrete and stone walls

used in the building.

Multi-criteria decision
analysis methods are used
to evaluate and prioritise

the alternative walls
generated by LCA, LCC

and S-LCA.

The research is sustainable
and comprehensive, the

evaluation structure is single,
and recycling is
not considered.

[35]

The study analysed the
impact of different mixed
timber building structures

on three different
categories of environment,

economy and society.

The comparison of wood
and concrete in the

building structure has been
analysed to

improve sustainability.

There are few studies on the
three pillars of sustainability.

This article has the same
research route and

different structures.

[36]

Three box-type concrete
bridges were optimised

and sustainable.

Researchers focus on the
environmental pillar, while

the social pillar has been
slow to develop.

It mainly studies the process
of sustainability assessment
and briefly analyses three
precast concrete bridges.

[37]

Discussed the framework
for assessing the

sustainability of bridges,
including related technical,
economic, environmental

and social issues.

The sustainability of four
versions of the same bridge
was studied, and the local

details of the bridge
were analysed.

There is a lack of sustainable
research on regional and
actual operating bridges.

[38]
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First, this study aims to evaluate the impact of LCIA~LCCA~SILA (2L~1S) on six
bridges in five different regions of China. This study will fill the gap in the research for
bridges of similar structure and purpose across regions, provinces, and economic belts
in this field. Secondly, the process of 2L~1S is digitised and visualised to display the
research results more intuitively. Thirdly, this study also considers the mutual influence
between 2L~1S and the regional economic belts, to obtain the optimal interval and scope
of influence.

The main purpose of this research is to analyse and study the comprehensive impact
of bridges of the same structure in different regional economic zones on the environment,
economy and society (three pillars) throughout their life cycle through software. In addition,
discussed the correlation between regional economic development and the three pillars
through modelling.

The innovations of the research are as follows: (1) break through the usual sustain-
ability research and only focus on textual descriptions, without accurate modelling data
descriptions; (2) the selected research case represents the influence status between the main
economic belts in China and has important guiding significance for the future planning of
the government and related departments.

The rest of this work will be divided into the following sections: Section 2: Methods;
Section 3: Results and Discussion; Section 4: Conclusions.

2. Methods

LCIA has become an international standardisation tool for environmental assess-
ment [39,40]. Preliminary conditions need to be defined for every study: the functional
unit and system boundary of the assessment were the six bridges and the SILAs of the
corresponding communities. The assessment was conducted based on the LCIA, covering
the whole of the life cycle. LCIA was analysed by using OpenLCA (Life cycle assessment)
1.10.1, LCCA by the budgetary estimate process, and SILA by OpenLCA1.10.3 (OpenLCA
development team, Berlin, Germany) [14]. The three tools are relevant and systematic. The
databases used in this study included Ecoinvent [41], Bedec [42], and Product Social Impact
Life Cycle Assessment (PSILCA) [43]. See Sections 2.1 and 2.2 for detailed modelling.

2.1. Modeling Analysis

The construction industry is the most active sector in both developed and developing
countries, forming a high global consistency [44]. LCIA was included as a sustainable sur-
vey method, because it can systematically assess the environment in all directions and com-
plete the selection of friendly products [45]. ISO has issued a series of 14,040 standards and
International Life Cycle Data (ILCD) manuals to promote sustainable development [15,46].

2.1.1. LCIA

The studied cases were six representative cable-stayed bridges, including South Tai
Hu Lake Bridge (STHB), Shenzhen Bay Bridge (SZBB), New Bridge of Xishuangbanna
Tropical Botanical Garden (BGNB), Cable-stayed Bridge of Changjiang West Road, Deyang
City (CJWB), Hanjiang Highway Bridge, Xiantao City (XTHB), and Baishan Bridge, Baishan
City (BSCB). Five of them adopted a reinforced concrete structure and one adopted a steel
structure (the main beam of SZBB is constructed by welding and bolting steel components).
All of them have a single tower. The length of the main bridge ranges from 136 to 410 m
and all six bridges are Class I municipal highway bridges. Table 2 shows the detailed data.
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Table 2. Cable-stayed bridge maintenance data statistics table.

Check Method Inspection Cycle Check Parts Maintenance Cycle

Daily check Working day

Pier foundation, cone slope, side wall of
bridge abutment, pavement of bridge
deck, drainage system, sidewalk, railing,
guardrail, anti-collision wall of bridge
deck, lighting system on bridge,
expansion device, bridge head laying
plate, sign, marking and traffic safety
facilities, bridge installation sensors,
wiring, cables, anchorage protection
inspection, bridge damping device
normal operation, support cleaning, rust
and corrosion prevention.

Maintenance/year,
Overhaul/5 years.

Frequency check One time/every month

Regular check One time/one to
three years

Coating layer of exposed concrete. Maintenance/year,
Replacement/5 years.

Bridge deck paving, waterproof layer.
Maintenance/year,
Overhaul/2 years,
Replacement/10 years.

Anti-collision guardrail, expansion joint.
Maintenance/year,
Overhaul/2-5 years,
Replacement/15 years.

Cable-stayed bridge cables, slings, tie
rods, external damping devices.

Maintenance/year,
Overhaul/5 years,
Replacement/20 years.

Main beams, steel supports, bridge floor
drainage pipes, bridge floor lighting
facilities.

Maintenance/year,
Overhaul/5 years,
Replacement/50 years.

Basin type rubber bearing.
Maintenance/year,
Overhaul/5 years,
Replacement/25 years.

Damping device between towers
and beams.

Maintenance/year,
Overhaul/5 years,
Replacement/30 years.

Main beams, steel supports, bridge floor
drainage pipes, bridge floor lighting
facilities.

Maintenance/year,
Overhaul/5 years,
Replacement/50 years.

According to ISO standards, and the requirement for the scope of strict assessment
and examination of the life cycle of the bridge [47–49], the full life cycle of these six bridges
was analysed in five stages: survey and design, material manufacturing, construction
and installation, maintenance and operation, and disassembly and recycling. Since the
cross section of the main girder of the bridge is variable, the calculation unit was based on
1 cubic meter. In order to achieve the rationality of the data comparison study and analysis,
the study length of the six cable-stayed bridges was selected as a uniform 390 m to input
relevant data (390 m including the main bridge and some auxiliary bridges).

Seven key impact categories, including energy use, ecotoxicity, acidification, eutrophi-
cation, climate change, particulate matter formation and ozone depletion, were determined
through the comparative analysis of the oxidation separation of fossil materials and the
European Union Product Environmental Footprint (EUPEF) [50–52]. Five of these seven
categories were selected as the important goals of bridges’ LCIA: global warming potential
(GWP), acidification potential (AP), free-water eutrophication potential (FEP), particulate
matter formation potential (PMFP), including fumes and dust, and waste potential (WP).



Int. J. Environ. Res. Public Health 2021, 18, 122 6 of 33

The assessment and modelling method of LCIA has a midpoint and endpoint. Hui-
jbregts et al. made a clear distinction and explanation in their reports ReCiPe 2008 and
2016 LCIA [53,54]. By comparing the advantages and disadvantages of the two modelling
approaches [55], it was found that the midpoint modelling is more appropriate for stages,
while the end-point modelling is more appropriate for intervals.

Major modelling formulas of LCIS:
Environmental impact contribution of transport vehicle:

Em = ∑
j
i{Kim × [∑

j
i (Ki + K2 + · · · · · ·+ Kj)]×M× (1 + α)×Vm × λµ + · · · · · ·

+Kjm × [∑
j
i (Ki + K2 + · · · · · ·+ Kj)]×M× (1 + β)×Vm × λµ}

(1)

where Em = Environmental impact contribution of transport vehicle (kg); Kim,Kjm = Fuel
consumption of vehicles i, j (L/100 km); Vm= Quantity of surveying vehicles i, j; α, β = Engine
fuel loss of different types of vehicles (%); and λµ = Physical and chemical environmental
emission coefficient of fuel µ (kg/kg) [56].

Environmental impact contribution of mechanical equipment:

Mm= ∑j
i{[Gim × (1 + α)× Tim × (λµ ⊕ λν)]+ · · · · · ·+ [Gjm × (1 + α)× Tjm × (λµ ⊕ λν)]} (2)

where Mm = Environmental impact contribution of mechanical equipment (kg);
Gim, Gjm = Fuel consumption and power consumption of equipment i j (kg/h, kWh);
Tim = Normal working hour of mechanical equipment (h);⊕ = Logic “Or”; and λν = Physical
and chemical environmental emission coefficient of electric energy ν (kg/kg).

Environmental impact contribution of personnel:

Pm= Wm×λp × Tp (3)

where Pm = Environmental impact contribution of personnel (kg); Wm = Total number
of personnel (persons); λp = Environmental impact coefficient of personnel (kg/working
day/person); Tp =Total working hours of personnel (working day).

Environmental impact contribution of office facilities:

Wm= ∑j
i

{[
Fim × Ti × (1 + Li)× λi]+······[Fjm × Tj ×

(
1 + Lj

)
× λj

]}
(4)

where Wm = Environmental impact contribution of office facilities (kg); Fim, Fjm = Power
consumption of office facilities i, j (Kwh); Ti, Tj = Working hours of office facilities i , j (h); and
Li, Lj = Electricity loss coefficient of facilities i, j (%).

SimaPro has been the world’s leading life cycle assessment (LCA) software package for
30 years; it is trusted by industry and academics in more than 80 countries [57]. OpenLCA
can access the social and economic impact of 15 different life cycles. The software has been
widely used in various industries and research fields in Europe, the United States, Japan
and the rest of the world; it is supported by databases such as Ecoinvent, Bedec, Soca,
bridge design, construction drawings, and published research results.

2.1.2. LCCA

LCCA of bridges mainly includes initial cost, cost of maintenance, repair and replace-
ment, casualties of personnel or loss of goods during operation, road use cost, and indirect
loss of socio-economic benefits [58,59]. In order to accurately estimate these costs, it is
necessary to clarify the degradation rate of bridge components and build a correct model
for the designated fatigue life index [60,61]. Table 2 shows the maintenance cycle. The core
elements of LCCA are financial factors, inter-generational responsibility, environmental
aspects and sustainability, realising the optimal balance between safety, economic efficiency,
and sustainability [62].

LCCA was conducted in accordance with the process of highway engineering in
China, as shown in Figure 1. It was of equal importance to determine the life cycle cost,
cost benefit, or cost risk by considering a variety of ways of calculating cost benefit [58].
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E
[
CT

(
x, TReady

)]
= Ci(x)+∑

TReady
t=1

∑J
j=1 E

[
CAdvisoryj(x, t)

]
+ ∑K

k=1 E[CAssess(x, t)] + ∑L
l=1 E(CMixed(x, t))

(1 + r)t

 (5)

where E
[
CT

(
x, TReady

)]
= LCCA cost in the preparatory stage (Chinese Yuan: CNY);

Ci(x) = Direct cost in the preparatory stage (CNY);
J

∑
j=1

E
[
CAdvisoryj(x, t)

]
= Consulting fee

of the development organisation (CNY);
K
∑

k=1
E[CAssess(x, t)] = Impact assessment fee of

the development organisation (CNY);
L
∑

l=1
E(CMixed(x, t)) = Other costs incurred in the

preparatory stage of the project, including expert review fee, transportation fee, approval
procedure fee, office fee, labour fee for related personnel (CNY); and r = Discount rate (%).
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The service rate for the project-bidding agency issued by National Development and
Reform Commission is given by [63]:

CBidding Service = 

500 million CNY ≤ CBuild(x, TEnd) ≤ 1000 million CNY CBS = 0.035% ∗CBuild

1000 million CNY < CBuild(x, TEnd) ≤ 5000 million CNY CBS = 0.008% ∗CBuild

5000 million CNY < CBuild(x, TEnd) ≤ 10, 000 million CNY CBS = 0.006% ∗CBuild

10, 000 million CNY < CBuild(x, TEnd) CBS = 0.004% ∗CBuild

CBidding service = Maximum amount 3.5 million CNY 3.0 million CNY, 4.5 million CNY

(6)

Costs of survey and design:

CDesign(x, TEnd) =
TEnd
∑

t=Start

{ [
CSurvey(x)+∑

tEnd
t1 (x,tSurvey)

]
(1±λh)+∑

tEnd
t1 (x,tSurvey)+CDesign(x)+∑

tEnd
t1 (x,tDesign)

(1+r)t

}
[1± (CFloat)][1± (Rt)]

(7)

where CDesign(x, TEnd) = LCCA cost in the stage of survey and design (CNY); CDriect(x),
CDesign(x)= Direct cost in the stage of survey and design (CNY);∑tEnd

t1

(
x, tSurvey

)
, ∑tEnd

t1

(
x, tDesign

)
=Indirect cost in the stage of survey and design (CNY); Rt= National tax rate (%); CFloat= Ad-
justment range (%); and λh = Adjustment coefficient [64].
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λh=



TLocal ≥ 35 ◦C λh = 1.2
TLocal ≤ −10 ◦C λh = 1.2
2000 meters ≤ HAltitude ≤ 3000 meters λh = 1.1
3001 meters ≤ HAltitude ≤ 3500 meters λh = 1.2
3501 meters ≤ HAltitude ≤ 4000 meters λh = 1.3
4001 meters ≤ HAltitude λh � 1.3(Negotiated price)

(8)

where TLocal = Ambient temperature of the place where the project locates (◦C), and
HAltitude = Altitude of the place where the project locates (m).

Concerning the rate for the design and examination of construction drawings [63], it
is charged by the budgetary investment ratio, thus the rate should not be higher than 2‰
of the budget amount of the project.

Construction costs:

CBuild(x, TEnd) =
TWarranty termination

∑
t=Start

{
CDirect cost+CExtra charge+[(CDirect cost+CExtra charge) ∗ CProfit]

(1+r)t

}
[1± (Rt)]

(9)

where CBuild(x, TEnd) = LCCA cost in the stage of construction (CNY); CDirect cost = Direct
cost of the project (CNY); CExtra charge = Indirect cost of the project (CNY); and CProfit =
Construction profits of the project (CNY).

Costs of maintenance and operation:
Global warming and extreme weather events have resulted in observable effects on

people, the environment, and civil infrastructures [6]. Stewart et al. proposed four main
factors for infrastructure corrosion and structural performance deterioration, including
temperature [65]. Barbara Rossi et al. concluded that the total project cost decreases with
the increase in the discount rate, and the period of investment return ranges between 18.5
and 24.2 years [66].

The six bridges are located in five economic belts. Climate, traffic density, traffic
accidents, load effect of heavy-duty vehicles, and natural disasters (such as flooding, ice
damage, freezing damage and mudslides) have different degrees of impact on the main-
tenance costs of bridges. The analysis was carried out according to the Chinese Code for
Maintenance of Highway Bridges and Culverts (JTG H11-2004), as shown in Table 1 [67,68].

Costs of maintenance and repair: CMaintenance
(
x, T100years

)
=

t=100years
∑

t=1year

(CDirect cost+CExtra charge

(1+r)t

)
[1± (Rt)]

TTotal maintanence times
TTimes of cycle

Maintenance costs

t=100years
∑

t=1year

(CDirect cost+CExtra charge

(1+r)t

)
[1± (Rt)]

TStrengthening structure times
TTimes of cycle

Strengthening structure costs

t=100years
∑

t=1year

(CDirect cost+CExtra charge

(1+r)t

)
[1± (Rt)]

TEmergency repair times
TTimes of cycle

Emergency repair costs of road

t=100years
∑

t=1year

(CDirect cost+CExtra charge

(1+r)t

)
[1± (Rt)]

TRoutine maintanence times
TTimes of cycle

Routine maintenance costs

t=100years
∑

t=1year

(CDirect cost+CExtra charge

(1+r)t

)
[1± (Rt)]

TIntermediate maintanence times
TTimes of cycle

Intermediate maintenance costs

t=100years
∑

t=1year

(CDirect cost+CExtra charge

(1+r)t

)
[1± (Rt)]

THeavy maintanence times
TTimes of cycle

Heavy maintenance costs

t=100years
∑

t=1year

(CDirect cost+CExtra charge

(1+r)t

)
[1± (Rt)]

TMad maintanence times
TTimes of cycle

Mad improvement costs

(10)

where CMaintenance
(
x, T100 years

)
= Costs of maintenance and operation (CNY);

TNumber of cycle represents the days of each maintenance cycle (days); and TTotal maintanence times,
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TStrengthening structure times, TEmergency repair times, TRoutine maintanence times, TMed maintanence times,
TIntermediate maintanence times, and THeavy maintanence times represent the total time for mainte-
nance (days), the total time for strengthening (days), the total time of emergency repair
(days), the total time for routine maintenance (days), the total time for intermediate mainte-
nance (days), the total time for heavy maintenance (days), and the total time for overhaul
maintenance (days), respectively.

Costs of traffic accidents:
Civilian car ownership in China reached 232,312,300 units in 2018, increasing by

42.7% since 2015 [69]. Wang et al. analysed the severity of traffic accidents in China
from a macro perspective, finding that the total fatality rate and man-made injury rate
of highway traffic accidents from 2000 to 2016 increased by 19.0% and 63.7% [70]. Vlegel
et al. found that the average per capita health care cost was EU 8200 and the productivity
cost was EU 5900 [71]. Rukaibi et al. estimated that the average cost of a traffic accident in
Kuwait was 9122 KD/crash (equivalent to EU 25,333.02) [72]. According to the data in the
China Statistical Yearbook-2019, there were 244,937 traffic accidents in 2018, resulting in
63,194 deaths, 258,532 injuries, and direct property losses of CNY 1385 million [69].

CTraffic accident
(
x, T100years

)
= 

t=100years
∑

t=1year

(CHuman costs+CProperty damage+COther related losses

(1+r)t

)[
(1 + e)t

]
t=100years

∑
t=1year

CHuman costs =
t=100years

∑
t=1year

(
CLoss of productivity + CQuality of live costs + CMedical costs

)
t=100years

∑
t=1year

CCProperty damage =
t=100years

∑
t=1year

(
CVehicle damage costs + CNon vehicle damage costs

)
t=100years

∑
t=1year

COther related losses =
t=100years

∑
t=1year

(
CAdminstration costs + CEnviromental costs + CTravel delay costs

)
(11)

where CTraffic accident
(
x, T100years

)
= Cost of traffic accidents (CNY); CHuman cos ts;

CProperty damage; COther related losses = Human costs (CNY); property damage (CNY); other
related losses (CNY); and e = Economic growth rate (%).

The six bridges studied are municipal highway bridges and no traffic tolls were
charged during the operation.

The total costs required in the stage of maintenance and operation are the sum of
Equations (10) and (11).

Disassembly costs:
The cable-stayed bridges will be disassembled at the expiration of their designed

service life. The modelling of incurred costs was subject to Eq. (4). The materials to be
demolished include broken concrete, scrap steel and waste. Construction wastes dumped
and stacked in the natural environment without authorisation are one of the sources of
environmental pollution [73]. In recent years, countries all over the world have been using
recycled materials for sustainable development and steel is re-smelted for recycling [74,75].

Recycling cost of waste and scraps:

CRecycling

(
x, TRecycling

)
=

t=New product
∑

t=Secondary processing

[CWaste concrete ∗ uConcrete ∗ CPost−processing costs+CWaste steel ∗ uSteel ∗ CSteelmaking costs

(1+r)t

] (12)

where CRecycling

(
x, TRecycling

)
= Recycling costs of waste and scraps (CNY); CWaste concrete

= Quantity of demolished concrete waste (kg); uConcrete,usteel = Recovery rate of concrete
and steel waste (%); and CSteelmaking costs, CPost−processing cost “51” = Cost of recycling and
disposal (CNY/kg).

2.1.3. SILA

SILA witnessed its heyday from 1970 to 1980 and has been widely practiced in many
fields around the world [76]. Social impact assessment comprises analysing, monitoring,
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and managing the social impacts of a project to bring about a more sustainable and equitable
biophysical and human environment [77]. However, the assessment criteria and the quality
of collected data are affected due to the limited resources of social assessment and the
limited ability of regulatory agencies to control the management system [78,79].

PSILCA and USDA data and the Social Hotspots Database (SHDB) were used in this
study to assess the research on sustainable social pillars [80,81]. The PSILCA database
features the latest data sources, the original data sources and the quality assessment of risk
data. Furthermore, the social contact messages from the PSILCA database can be associated
with each other in the manner of SOCA (SOCA is an add-on for the Ecoinvent database,
containing social inventory data based on PSILCA.) via Green Delta. The processes that
are identical to those in environmental assessment can be used for social assessment, thus
realising the coherence of the entire assessment (show in Figure 2). SILA uses input data
from the LCIA for environmental and social assessment and determines 54 quantitative and
qualitative indexes for 18 categories [82]. Five of the analysis indexes are closely related to
the community stakeholders, according to the location where the six bridges are located
and can be used as the factors for the social impact analysis. The five indexes are fatal
accidents (FA), international migrant workers (IMW), youth illiteracy (YI), corruption (C),
and sanitation coverage (SC).
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According to the location of the six bridges in the region, the five indexes selected are
closely linked to community stakeholders and can be used as factors for social impact analysis.

2.2. Research Process

The six cable-stayed bridges across five geographical zones of China (Northeast China,
East China, Central China, South China, and Southwest China) and six provinces (Zhejiang,
Guangdong, Sichuan, Hubei, Yunnan and Jilin) were selected as the objects of study [83].
They are important in terms of geographical location, economic value, environmental
impact, and social assessment, becoming the strong backing for this study, as shown
in Figure 3.
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2.2.1. LCIA

General information about the six bridges is shown in Table 2. All of these bridges
have been completed and put into operation. They are the main highway bridges of the
cities where they are located.

The Chinese government classifies cities by criteria including the agglomeration
degree of commercial resources, urban pivotability, resident activeness, lifestyle diversity
and future plasticity [84]. Among these six cable-stayed bridges, STHB is located in a
third-tier city, SZBB in a first-tier city, BGNB in a fourth-tier city, CJWB in a fourth-tier city,
XTHB in a fifth-tier city, and BSCB in a fifth-tier city.

They were designed by six design institutes in different regions, which are between
84 and 2380 km away from the project sites. The surveying equipment used was self-owned,
calibrated equipment with high precision, which needed to be transported by truck to the
project site. The expressway is the preferred mode of transport, but rail travel should be
adopted if the transport distance is larger than 500 km. The development organisation was
not allowed to use self-produced concrete for cable-stayed bridges, because the bridges are
municipal works. All concrete used for the cable-stayed bridges had to be purchased as
commercial concrete. Concrete is classified into C55, C50, C40, C30, C25 and C20. SZBB is
a steel bridge, using 374 m3 of precast blocks of commercial concrete for the bridge deck.

During the construction, the materials were mainly transported and hoisted by a
tower crane, a 25 T/50 T truck crane, and a floating crane (for the sections across the river),
because the main tower of the cable-stayed bridge was too high. The main beam of SZBB
is made of Q345-C low alloy steel and the accessory structures are made of Q235-B steel.
The components and parts were connected by high-strength bolts and welding. The bridge
was divided into 31 beam sections, which were manufactured in the factory and then
transported to the bridge position by barges. The floating crane and land cranes worked
together to lift and install these sections in the right place. The other five cable-stayed
bridges adopted reinforced concrete structures. The main towers were subject to cast-in-
place construction with creeping formwork by sections. The main beams were subject to
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cast-in-place construction with a sliding formwork using the full framing method. The
details are shown in Table 3.

BSCB is located in Baishan City, Jilin Province. The construction environment is
affected by the local climate. The local temperature in winter can be as low as −42 ◦C,
with an annual average temperature of 4.6 ◦C [85]. Construction has to be stopped in
October every year and can restart again by the end of April of the next year. The affected
construction duration reaches 210 days a year.

The operation stage is the key period for the environmental impact contribution of
bridges. A large number of vehicles will emit exhaust gases within the 100 years of service
life, causing severe environmental pollution. Exhaust gas pollution is the key to research
on LCIA. Dargay et al. concluded that the automobile saturation in China is 807 vehicles
for every 1000 persons [86], which is set as the upper limit of the number of vehicles in each
region. According to the study by Wu et al., car ownership will grow up to 4.8% in 2030,
with the growth rate in 2050 being 2.9%, reaching 455 vehicles for every 1000 persons [87].
The traffic volume in 100 years is determined according to the comprehensive data analysis
of the China Statistical Yearbook [88], as shown in Figure 4.
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Table 3. Cable-stayed bridge engineering data statistics table.

Bridge Name Regional Location Basic Situation Bridge Layout Drawing

South Tai Hu Lake Bridge
(338 m)

East China, Huzhou
in Zhejiang

The main bridge is a double-cable, plane H-shaped, single-tower,
concrete, cable-stayed bridge with a span layout of
160 + 190 + 38 m, an urban expressway level, and a design speed
of 60 Km/h. The standard section width of the bridge is 40.5 m.
The main beam adopts the cross-section form of double main
ribs, the building height is 3.055 m, the full width is 40.5 m, and
the standard main rib is 2.7 m high and 1.7 m wide. The
transverse partition is 0.28 m wide; the bridge deck is 28 cm
thick, and each cable plane has 24 pairs of cables.
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Table 3. Cont.

Bridge Name Regional Location Basic Situation Bridge Layout Drawing

New Bridge of
Xishuangbanna Tropical
Botanical Garden (225 m)

Southwest China,
Xishuangbanna Prefecture

The main bridge is an elliptical steel box with a concrete tower
column, double cable plane, cable-stayed bridge with a span of
75 + 90 m and a total length of 165 m. The side span is 75 m and
the main span is 90 m. The full width of the bridge deck is
14.2 m, the side main beam is 1.8 m high, the bottom width is
1.2 m, the outer top and bottom width is 1.55 m, and the bridge
deck is 22 cm thick. The tower column of the cable-stayed bridge
adopts a steel box concrete structure with a cross section of
2.5 * 4.0 m and a steel plate thickness of 20 mm.
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Cable-stayed Bridge of
Changjiang West Road,
Deyang City (136 m)

Southwest China,
Deyang City

Single tower, single cable, plane cable-stayed bridge without
back cable, main span 108 m, side span 27.7 m, harp-shaped
cable surface, tower and beam consolidation. The standard cable
distance on the beam is 8 m, the standard section is 8 m long and
weighs about 300 Tons. The main beam adopts a pre-stressed
concrete, single-chamber, three-box, flat, thin-walled box beam.
The top plate of the box is 24 m wide; the bottom plate is 8.4 m
wide, the beam height is 2.5 m, the top plate thickness is 24 cm,
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A horizontal partition is set every 4 m with a thickness of 28 cm.
The approach bridge adopts multi-span continuous beams, all of
which are 20 m in span, and the main beam is a 1.4 m high
box girder.
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Table 3. Cont.

Bridge Name Regional Location Basic Situation Bridge Layout Drawing

Hanjiang Highway Bridge
in Xiantao City (312 m) Central China, Xiantao City

The main bridge is a 50 + 82 + 180 m, three-span, single-tower,
double-cable plane cable-stayed bridge, the main girder has a
full cross-section width of 25.6 m, a basic section length of 8 m,
a basic width of side ribs of 1.8 m, and a basic spacing of 8 m
between the diaphragms. The roof thickness of the main beam is
0.30 m, and the beam height is 1.9 m.

Int. J. Environ. Res. Public Health 2021, 18, 122 19 of 32 
 

 

Hanjiang 
Highway Bridge 
in Xiantao City 
(312 m) 

Central China, 
Xiantao City 

The main bridge is a 50 + 82 + 180 m, three-span, single-tower, 
double-cable plane cable-stayed bridge, the main girder has a full 
cross-section width of 25.6 m, a basic section length of 8 m, a 
basic width of side ribs of 1.8 m, and a basic spacing of 8 m 
between the diaphragms. The roof thickness of the main beam is 
0.30 m, and the beam height is 1.9 m. 

 

Baishan Bridge in 
Baishan City (410 
m) 

Northeast China, 
Baishan City 

The main bridge is a two-span, single-cable, plane cable-stayed 
bridge with a span of 85 + 85 m. The main beam adopts a single 
box three-chamber section, the beam height is 2.0 m, the 
thickness of the top plate is 20 cm, and the thickness of the 
bottom plate is 40 cm. The section of the main tower adopts an 
“H” shaped cross-section concrete tower column. Oblique cable 
harp layout, single-cable deck bridge type, double-width layout 
with a net width of 15.5 m and a total width of 23.3 m. 

 

Baishan Bridge in Baishan
City (410 m)

Northeast China,
Baishan City

The main bridge is a two-span, single-cable, plane cable-stayed
bridge with a span of 85 + 85 m. The main beam adopts a single
box three-chamber section, the beam height is 2.0 m, the
thickness of the top plate is 20 cm, and the thickness of the
bottom plate is 40 cm. The section of the main tower adopts an
“H” shaped cross-section concrete tower column. Oblique cable
harp layout, single-cable deck bridge type, double-width layout
with a net width of 15.5 m and a total width of 23.3 m.
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Establish a traffic flow analysis model:
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NThe N of V passing on the bridge
Every Y = ×LBridge N = The above CA

(13)

where B = Billion; CA = Calculated; C = Completed; D = Disassembly; GA = Greatest
amount; GR = Growth rate; H = Highways; I = Inquiry; N = Number; P = Population;
SD = Start disassembly; SO = Start operation; V = Vehicles; and Y = Years. (Note: this
abbreviation is only used in Equation (13)).

Figure 4 and Equation (13) show that the traffic volume of SZBB and BGNB is
2 to 5 times that of the traffic volume of the other four bridges, which will affect the
subsequent environmental pollution data of the bridges. After 2000, infrastructure expen-
diture in China accounted for approximately 6.5% of gross domestic product (GDP), much
higher than the average level of 4% in other developing countries. After 2009, coastal
provinces and cities increased investment in infrastructure (including energy, transporta-
tion, telecommunications, water and sewage treatment), reaching 15–20% of GDP [89].

After the expiration of the operation stage, the cable-stayed bridges enter the disas-
sembly stage. These bridges will be demolished by mechanical disruption because blasting
demolition has many safety-impacting factors and these bridges are all located in urban ar-
eas. The scrapped steel materials will be transported to steel works for recycling. Concrete
blocks will be transported to the production plants of reclaimed materials for crushing and
classification. All of the remaining waste will be transported to the waste treatment plant
for recycling.

2.2.2. LCCA

All of these cable-stayed bridges are municipal works, so the construction costs
are analysed based on Engineering Standards for China’s Transportation Industry, JTG
3830-2018 Measures for Preliminary Estimate/Budgeting of Highway Projects, and JTG/T
3831-2018 Norms for Preliminary Estimate of Highway Projects [90].

The construction cost is first calculated by Equation (9), in accordance with design
drawings, bill of quantities, and norms for preliminary estimates of highway projects. As
shown in Table 4, the construction costs of the cable-stayed bridges were: CNY 72,055,116.25
for STHB, CNY 103,996,538.70 for SZBB, CNY 18,803,871.58 for BGNB, CNY 24,721,480.22
for CJWB, CNY 47,164,942.89 for XTHB, and CNY 37,812,245.23 for BSCB, respectively.
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Table 4. Statistical table of construction cost of six cable-stayed bridge projects ([91]). Unit: CNY.

Number Cost Incurred Ratio Calculation
Method STHB SZBB BGNB CJWB XTHB BSCB

1 Direct project cost 63,392,933.82 92,208,319.2 15,353,271.88 20,691,737.1 40,938,707.24 32,501,337.6
2 Insurance fee 1,901,788.015 2,766,249.576 460,598.1564 620,752.114 1,228,161.217 975,040.129

2-1 Project insurance stipulated
in the contract 2.50% 1*2(2-1) 1,584,823.346 2,305,207.98 383,831.797 517,293.428 1,023,467.681 812,533.441

2-2
Third-party liability
insurance stipulated in
the contract

0.50% 1*2(2-2) 316,964.6691 461,041.596 76,766.3594 103,458.686 204,693.5362 162,506.688

3 Completion Files. 500,000 Constant cost 500,000 500,000 500,000 500,000 500,000 500,000

4
Construction
environmental
protection fees

1,000,000 Constant cost 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000

5 Safety production fees 1.50% 1*5 950,894.0074 1,383,124.788 230,299.0782 310,376.057 614,080.6085 487,520.064

6
Engineering management
software (temporary
estimate)

100,000 Constant cost 100,000 100,000 100,000 100,000 100,000 100,000

7
Application fee for
building information
model technology

100,000 Constant cost 100,000 100,000 100,000 100,000 100,000 100,000

8
Temporary road
construction, maintenance
and dismantling fees

101,428.6941 147,533.3107 24,565.23501 33,106.7794 65,501.93158 52,002.1402

8-1

Fees for the construction,
maintenance and
dismantling of the
original roads

0.08% 1*8(8-1) 50,714.34706 73,766.65536 12,282.6175 16,553.3897 32,750.96579 26,001.0701

8-2

Construction, maintenance
and dismantling fees of
temporary steel trestle
and wharf

0.08% 1*8(8-2) 50,714.34706 73,766.65536 12,282.6175 16,553.3897 32,750.96579 26,001.0701

9
Temporarily occupying
land and occupying
the river

0.25% 1*9 158,482.3346 230,520.798 38,383.1797 51,729.3428 102,346.7681 81,253.3441
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Table 4. Cont.

Number Cost Incurred Ratio Calculation
Method STHB SZBB BGNB CJWB XTHB BSCB

10
Erection, maintenance and
dismantling of temporary
power supply facilities

0.08% 1*10 50,714.34706 73,766.65536 12,282.6175 16,553.3897 32,750.96579 26,001.0701

11

Provision, maintenance and
dismantling of
telecommunications
facilities

0.08% 1*11 50,714.34706 73,766.65536 12,282.6175 16,553.3897 32,750.96579 26,001.0701

12 Water supply and sewage
facilities 0.08% 1*12 50,714.34706 73,766.65536 12,282.6175 16,553.3897 32,750.96579 26,001.0701

13
The construction fee of the
contractor’s project
department

0.42% 1*13 266,250.3221 387,274.9406 64,483.74189 86,905.2959 171,942.5704 136,505.618

14 Provisional expenses. 5.00%
(1 + 2 + 3 + 4 + 5 +
6 + 7 + 8 + 9 + 10 +

11 + 12 + 13)*14
3,431,196.012 4,952,216.129 895,422.4561 1,177,213.34 2,245,949.661 1,800,583.11

The total fees of the project 1 + . . . + 14 72,055,116.25 103,996,538.7 18,803,871.58 24,721,480.2 47,164,942.89 37,812,245.2
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In the operation stage, aging parts and components need to be repaired and replaced
in the bridges. Table 1 presents the maintenance and repair cycles of the main compo-
nents. The costs generated by multiple replacements will be included in the costs for the
construction stage, and the economic growth coefficient can then be considered.

The costs of traffic accidents are mainly used to analyse losses caused by traffic
accidents and related expenses. According to the Chinese transportation statistics [32], the
incidence of traffic accidents from 2001 to 2018 dropped by 25.7%, resulting in the reduction
in property losses by 29.3%. After 2014, the annual reduction rate of traffic accidents stayed
between 0.4% and −0.7%, and the property losses remained at CNY 5600 per accident.

As shown in Table 5, LCCA was conducted in three stages. The first stage covered the
years from 2003 to 2018. The costs of traffic accidents were analysed based on the existing
data. The coefficient for the growth or reduction rate of traffic accidents in 15 years, and
the annual average number of traffic accidents were also determined. The second stage
covered the years from 2019 to 2030. In 2030, the population of China will reach its peak
and so will the level of car ownership (Figure 4). The population and car ownership will
begin to decline after 2031 and the accident rate will tend to be stable.

Table 5. Statistical table of loss from traffic accidents of six bridges during operation ([32]).

Bridge Name Time Period
(Years)

Accident Loss
(CNY/Time)

Times of
Accidents

Comprehensive
Loss Fee (CNY)

STHB
2006~2018,
2019~2030,
2031~2105

3866 693\659\460 7,005,192

SZBB
2007~2018,
2019~2030,
2031~2106

3259 268\255\179 2,287,818

BGNB
2006~2018,
2019~2030,
2031~2105

4831 301\286\201 3,806,828

CJWB
2005~2018,
2019~2030,
2031~2104

8706 1070\1019\718 24,437,742

XTHB
2003~2018,
2019~2030,
2031~2102

6885 262\250\175 4,730,682

BSCB 2019~2030,
2031~2118 7213 456\434\306 8,626,748

2.2.3. SILA

As shown in Figure 2, SILA was also conducted in five stages. The impact of the
bridges on communities was analysed for all aspects, from the design stage to the final
disassembly stage. The International Finance Corporation’s Performance Standards on
Social and Environmental Sustainability (IFC 2012a) was taken as the reference. These
Standards has become globally recognised good practice for handling environmental and
social risk management and has been adopted by more than 80 leading banks as the
“gold standard” for guiding project development [92,93]. The Standards formulate eight
performance standards, including social and environmental assessment and management
systems, labour and working conditions, pollution prevention and abatement, community
health, safety and security, land acquisition and involuntary resettlement, biodiversity
conservation and sustainable natural resource management, indigenous peoples, and
cultural heritage. Based on the characteristics of Chinese communities (aboriginals will
not be considered, because there are no aboriginals in the communities where cable-stayed
bridges are located, and cultural heritage will also not be considered, because there is no
newly-built cultural heritage in the construction areas), and the latest assessment factors in
the PSILCA database, five assessment standards were selected as the research parameters,
in accordance with the conclusions of comprehensive analysis (see Figure 2).
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3. Results and Discussion
3.1. LCIA

According to our findings (shown in Table 6), the GWPs of six bridges are the main
sources of environmental pollution, accounting for over 92% of the total pollution of each
bridge. This is why the authors chose these five parameters in the long-term research.
Effective control of GWP is the top priority for alleviating global pollution.

Table 6. Life cycle assessment (LCA) statistical tables for six cable-stayed bridges. Unit: kg.

Bridge
Name GWP AP FEP PMFP WP

STHB 285,792,121.03 758,359.05 778,387.38 2,755,862.99 4,202,670.97
SZBB 75,192,817.81 538,510.86 445,853.55 1,469,182.83 3,451,343.80
BGNB 69,261,736.42 214,170.43 251,077.34 756,768.56 1,397,595.57
CJWB 80,429,187.06 236,629.18 264,255.94 845,577.45 1,414,549.54
XTHB 167,606,486.66 424,005.32 502,313.61 1,559,831.83 2,530,246.34
BSCB 151,598,681.32 322,031.97 424,120.38 1,219,842.08 1,917,809.39

Figure 5 shows the environmental impact contributions of the six cable-stayed bridges,
in the maintenance and operation stage, as follows: STHB = 209,488.94 tonnes > XTHB
= 133,511.65 tonnes > BSCB = 126,010.36 tonnes > CJWB = 648,518 tonnes > BGNB =
49,735.66 tonnes > SZBB = 1230.24 tonnes.
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An interesting research finding is that the main beam of SZBB is a steel structure,
Environmental impact contributionmaterial manu f acturing stage > Maintenance and operation
stagematerial manu f acturing stage, which is 40,327.22 tonnes and accounts for 49.73% of the
total contribution of SZBB. This finding also proves that the environmental impact con-
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tribution of the steel bridge mainly comes from the material manufacturing stage and
the construction and installation stage, accounting for 83.82% of the total contribution.
Although there is a huge difference between the environmental impact contribution of a
steel bridge and that of a concrete bridge, the total environmental impact contribution of
the two kinds of bridges are approximate to each other.

3.2. Comparison

The differences in the durability of building materials and standards between Europe
and China result in a difference in the life span of bridges, and the difference is mainly
manifested in the service life of concrete; the warranty period of concrete for stay cables in
Europe is 100 years, while in China, it is 20 or 50 years [67,94].

Thus, a large amount of maintenance and replacement work is required, resulting in
great changes in environmental pollution values during the maintenance period.

Table 7 shows the environmental impact contribution values of five impact factors in the main-
tenance stage. Subject to the European and Chinese design standards, the maximum value falls
on GWPEuropean standard = 5343.68 tonnes for SZBB and GWPChinese standard = 19,736.99 tonnes
for STHB. Interestingly, the value of SZBB’s steel structure under the European standard
is 10,824.72 tonnes greater than that under the Chinese standard. The difference in the
design life of the materials leads to 33- to 73-fold differences, in terms of the environmen-
tal pollution value in the maintenance stage, and this is just a comparison analysis for
one stage.

Table 7. Environmental pollution data in Europe and China during the maintenance phase. Unit: kg.

Bridge Name Quantity Analysed According to
Chinese Standards

Quantity Analysed According to
European Standards

STHB 202,577,714.70 4,060,953.15
SZBB 8,469,275.96 5,413,303.55
BGNB 46,427,579.22 1,264,900.09
CJWB 61,909,222.65 1,857,067.35
XTHB 127,556,952.20 3,689,371.79
BSCB 120,405,196.80 1,648,154.08

Figure 6 shows the difference in the environmental pollution value for the six bridges
under five environmental impact factors and subject to two standards. The replacement
times of the exposed stable cables and concrete of the cable-stayed bridges in the 100 years of
the service life increases with time, resulting in an increase in GWP by 3249~15761 tonnes,
particularly the GWP of the steel bridge at SZBB, which reduces by 4568 tonnes. The
pollution contributions of the six cable-stayed bridges increase by 549,412.2 tonnes in total,
which is an amazing figure.
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3.3. LCCA

The conclusions of LCCA are shown in Table 8. The bridges selected in the case
analyses are located in China, so the norms for Chinese highways were used in each
analysis. For the cable-stayed bridges with reinforced concrete structures, the cost ratio of
the maintenance and operation stage remains between 49% and 64%. However, the cost of
steel bridges in the construction stage accounts for 63.2% of the total expenses because of
the high investment cost. The maintenance cost of the steel bridge is 30% lower than that
of the concrete bridge. The main reason is that the steel structure is superior to the concrete
structure in terms of durability.

Table 8. Statistical table of the cost ratio of 6 cable-stayed bridges.

Cost Name STHB SZBB BGNB CJWB XTHB BSCB

Cost of project preparation 0.01% 0.02% 0.01% 0.01% 0.01% 0.01%
Survey and design costs 0.07% 0.13% 0.06% 0.05% 0.06% 0.06%

Project construction costs 33.63% 63.20% 28.29% 24.39% 30.40% 29.99%
Maintenance and
operating costs 60.57% 33.56% 63.69% 49.94% 63.78% 60.00%

Accident costs 3.27% 1.39% 5.73% 24.11% 3.05% 6.84%
Demolition stage costs 2.45% 1.69% 2.23% 1.50% 2.69% 3.10%

As shown in Figure 7, the maintenance cost of STHB is CNY 120 million, which is
1.8 times the construction cost. The maintenance costs of BGNB, CJWB, XTHB and BSCB
are 2.0 to 2.3 times their construction costs. For the cable-stayed bridges with the reinforced
concrete structure, the stay cables and concrete need to be replaced two to five times,
because their service life and durability ranges between 20 and 50 years. Costs for multiple
replacement events are the primary reason for the excessive maintenance costs, so the key
to reducing costs is to improve the service life of materials.
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3.4. SILA

SILA was conducted for the six cable-stayed bridges from four categories, including
the population impact, community system, social resources and economic development.
Five impact factors were selected according to the classification.

Table 9 shows some of the SILA values for the six bridges. For each cable-stayed
bridge, corruption > sanitation coverage > fatal accidents > international migrant workers
> youth illiteracy.

Table 9. Statistical table of five social environmental impact data for 6 cable-stayed bridges. Unit: med risk hours.

Bridge Name Fatal Accidents International
Migrant Workers Youth Illiteracy Corruption Sanitation

Coverage

STHB 55,792,892.84 31,765,165.76 28,624,476.33 118,864,998.3 88,496,114.86
SZBB 47,282,293.11 26,919,734.79 24,258,123.41 1,007,33434 74,996,993.87
BGNB 6,502,779.89 3,702,297.38 3,336,243.37 13,853,967.44 10,314,409.72
CJWB 9,202,951.4 5,239,614.97 4,721,563.11 19,606,597.66 14,597,297.3
XTHB 28,358,724.3 16,145,776.5 14,549,409.27 60,417,367.61 44,981,301.3
BSCB 14,063,615.15 8,006,988.77 7,215,320.78 29,962,088.48 22,307,058.1

As shown in Figure 8, the values of five impact factors in each stage of the six cable-
stayed bridges are ranked as follows:

NumbersConstruction and installation stage > NumbersDecommissioning and dismantling stage >
NumbersStructural materials processing and construction stage >
NumbersDesign stage > NumbersMaintenance and operation stage.
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Figure 8. (a) The content in the first panel is the description of the five SILA factors of STHB; (b) 
The content in the second panel is the description of the five SILA factors of SZBB; (c) The content 
in the third panel is the description of the five SILA factors of BGNB; (d) The content in the fourth 
panel is the description of the five SILA factors of CJWB; (e) The content in the fifth panel is the 
description of the five SILA factors of XTHB; (f) The content in the sixth panel is the description of 
the five SILA factors of BSCB. 

3.5. Deepen the Analysis 

Figure 8. (a) The content in the first panel is the description of the five SILA factors of STHB; (b) The content in the second
panel is the description of the five SILA factors of SZBB; (c) The content in the third panel is the description of the five SILA
factors of BGNB; (d) The content in the fourth panel is the description of the five SILA factors of CJWB; (e) The content in
the fifth panel is the description of the five SILA factors of XTHB; (f) The content in the sixth panel is the description of the
five SILA factors of BSCB.
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3.5. Deepen the Analysis
3.5.1. Economic Evaluation

As shown in Figure 9, the bridges with the peak value of GDP in 10 years are SZBB
and STHB (Government, n.d.); the bridges with the peak value of LCIA are STHB and
XTHB; the bridges with the peak values of LCCA and SLCA are STHB and SZBB. The
analysis concludes that the environmental pollution, production cost and social impact gen-
erated by infrastructure in developed regions increase accordingly. In particular, there is a
complementary relationship between GDP and the emissions of environmentally polluting
gases. The constant emission load of environmental pollution gases under GDP growth
signifies that the current energy technologies must be replaced with renewable energy
resources, and/or more energy-efficient production technologies must be adopted [95].
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3.5.2. Modelling and Discussion

Definition of Markov chain: assuming that X1, X2, · · · · · ·Xn is the discrete sequence
of random influence variables, abbreviated as {Xn}, the state space of the entire {Xn} is
denoted as E = {x1, x2, · · · · · · xn}; if any impact factor is subject to xi1xi2, · · · · · · xinE, then
P(Xn+1) =

(
xin+1 | X1 = xi1 , · · · · · ·Xn = xin

)
.

The impact matrix is established based on the definition,

Kh=



x11(h1) x12(h1) · · · · · · x1m(h1) h1 = GDPvariables
x21(h2) x22(h2) · · · · · · x2m(h2) h2 = GWPvariables

...
...

...
...

...
...

...
...

xn1(hk) xn2(hk) · · · · · · xnm(hk) hk = Hvariables

(14)

where Kh = conclusion of the infrastructure’s comprehensive impact assessment.
According to Equation (13),
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KSix bridges=



GDP LCIA LCCA SLCA− 1 SLCA− 2 SLCA− 3 SLCA− 4 SLCA− 5
4766 2943 2143 559 318 284 1189 885
8169 811 1645 473 269 243 1007 750
1510 718 665 65 37 33 139 103
3384 832 1014 92 52 47 196 146
3289 1726 1551 283 162 146 604 450
1453 1555 1261 141 80 72 300 223



KSix bridges1=



GDP LCIA LCCA SLCA− 1 SLCA− 2 SLCA− 3
4766 2943 2143 559 318 284
8169 811 1645 473 269 243
1510 718 665 65 37 33
3384 832 1014 92 52 47
3289 1726 1551 283 162 146
1453 1555 1261 141 80 72



KSix bridges1=



4766 2943 2143 559 318 284
8169 811 1645 473 269 243
1510 718 665 65 37 33
3384 832 1014 92 52 47
3289 1726 1551 283 162 146
1453 1555 1261 141 80 72



Assuming
∣∣∣KSix bridges1 − λ1E

∣∣∣=
∣∣∣∣∣∣∣∣∣∣∣∣

4766− λ1 2943 2143 559 318 284
8169 811− λ1 1645 473 269 243
1510 718 665− λ1 65 37 33
3384 832 1014 92− λ1 52 47
3289 1726 1551 283 162− λ1 146
1453 1555 1261 141 80 72− λ1

∣∣∣∣∣∣∣∣∣∣∣∣
= ∑6

1 Kbridges1

If the diagonal method is used, then (14) = (4766 − λ1) × (811 − λ1) × (655 −
λ1) × (92 − λ1) × (162 − λ1) × (72 − λ1) − 433287870784λ1 − 5454599392867510 = 0,
λ1=∑7

1(12588 + 4766 + 811 + 665 + 92 + 162 + 72)/7 = 2736.7 ≈ 2737.

KSix bridges2=



4766 2943 2143 559 1189 885
8169 811 1645 473 1007 750
1510 718 665 65 139 103
3384 832 1014 92 196 146
3289 1726 1551 283 604 450
1453 1555 1261 141 300 223



Assuming
∣∣∣KSix bridges2 − λ2E

∣∣∣=


4766− λ2 2943 2143 559 1189 885
8169 811− λ2 1645 473 1007 750
1510 718 665− λ2 65 139 103
3384 832 1014 92− λ2 196 146
3289 1726 1551 283 604− λ2 450
1453 1555 1261 141 300 223λ2

 =
6

∑
1

Kbridges2 (15)

If the diagonal method is used, then (15) (4766 − λ2) × (811 − λ2) × (665 − λ2) ×
(92 − λ2) × (604 − λ2) × 223λ2 − 147825193568210000λ2 − 1046549405522410 = 0, λ2 =
∑7

1(82565 + 4766 + 811 + 665 + 92 + 604 + 223)/7=12818.
Based on Equations (14) and (15), we can conclude that the most reasonable impact

range is 2737 < KSix bridges < 12818.
According to Figure 10, five-point positions are located in the reasonable comprehen-

sive evaluation range. The five points are Point 2© and 5© of STHB, Point 1© of SZBB, Point
3© of CJWB, and Point 4© of XTHB.
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4. Conclusions

The manuscript proposes a comprehensive and effective sustainability assessment
method and establishes an assessment framework and modelling theory for complex
structural bridges (cable-stayed bridges) in terms of environment, economy, and social
impact. Through the comprehensive evaluation of six highway cable-stayed bridges in five
provinces of China in the whole life cycle (from cradle to grave), the conclusion is drawn.
GWP is the main source of environmental pollution in LCIA, accounting for more than
92% of the emissions of each bridge, which are concentrated in the maintenance stage. In
LCCA, the proportion of maintenance stage cost is 49–64%. In SILA, the corruption value
has the greatest influence, accounting for 36% of the total amount. The SZBB steel structure
bridge is special: GWP accounts for 50% in the LCIA material stage and 63.2% in the LCCA
construction stage.

In view of the high pollution and high cost in the maintenance stage, the conclusion
shows that it is closely related to the design standard and service life of the materials. It is
found that the difference in LCIA between Europe and China is 33~73-fold, which is due to
the difference in the replacement period between the main girder and stay cable of 80 years
and 50 years/cycle. More interestingly, the LCIA value of SZBB in Europe is higher than
that in China by 10,824.7 tonnes, because the maintenance period of steel structure differs
by 15 years/cycle. The differences in the above conclusions are closely related to regional
population density, vehicle ownership and traffic frequency, which is one of the research
directions in the future.

Finally, to obtain the relationship between GDP and sustainable impact, the com-
prehensive evaluation coefficient of the influence matrix is established by using discrete
mathematics for multi factor decision-making, and the reasonable range of 2737~12,818
(The theoretical judgment standard of innovation) between China’s five major economic
regional bridges and regional GDP is analysed.

This study aims to propose a complete method for assessing the sustainability of
bridges. This article provides important knowledge for preliminary decisions in the con-
struction of bridges as well as how to mitigate the loads of the three pillars. The limitation
of the study is that there is no questionnaire survey in the social impact assessment, and it is
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impossible to compare and analyse whether there is a big difference between the conclusion
and the actual impact. Future research directions need to strengthen the resilience analysis
of evaluating the impact of the construction industry on society, and the mutual promotion
and optimization of the GDP influencing factors and sustainable development.
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