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Structured Abstract 
Purpose - To systematically review evidence regarding the association of multi-

parametric biomarkers with clinical outcomes and their capacity to explain relevant 
subcompartments of gliomas. 

 
Materials and Methods - Scopus database was searched for original journal papers from 

January 1st, 2007 to February 20th, 2017 according to PRISMA. Four hundred forty-nine 
abstracts of papers were reviewed and scored independently by two out of six authors. 

Based on those papers we analyzed associations between biomarkers, subcompartments 
within the tumor lesion, and clinical outcomes.  From all the articles analyzed, the twenty-

seven papers with the highest scores were highlighted to represent the evidence about MR 
imaging biomarkers associated with clinical outcomes. Similarly, eighteen studies 

defining subcompartments within the tumor region were also highlighted to represent the 
evidence of MR imaging biomarkers. Their reports were critically appraised according to 

the QUADAS-2 criteria. 
 
Results – It has been demonstrated that multi-parametric biomarkers are prepared for 
surrogating diagnosis, grading, segmentation, overall survival, progression-free survival, 

recurrence, molecular profiling and response to treatment in gliomas. Quantifications and 
radiomics features obtained from morphological exams (T1, T2, FLAIR, T1c), PWI 

(including DSC and DCE), diffusion (DWI, DTI) and chemical shift imaging (CSI) are 
the preferred MR biomarkers associated to clinical outcomes. Subcompartments relative 

to the peritumoral region, invasion, infiltration, proliferation, mass effect and pseudo 
flush, relapse compartments, gross tumor volumes, and high-risk regions have been 

defined to characterize the heterogeneity. For the majority of pairwise co-occurrences, 
we found no evidence to assert that observed co-occurrences were significantly different 

from their expected co-occurrences (Binomial test with False Discovery Rate correction, 
α=0.05). The co-occurrence among terms in the studied papers was found to be driven by 

their individual prevalence and trends in the literature. 
 
Conclusion - Combinations of MR imaging biomarkers from morphological, PWI, DWI 
and CSI exams have demonstrated their capability to predict clinical outcomes in different 

management moments of gliomas. Whereas morphologic-derived compartments have 
been mostly studied during the last ten years, new multi-parametric MRI approaches have 

also been proposed to discover specific subcompartments of the tumors. MR biomarkers 
from those subcompartments show the local behavior within the heterogeneous tumor and 

may quantify the prognosis and response to treatment of gliomas. 
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Structured Abstract 
Purpose - To systematically review evidence regarding the association of multi-parametric biomarkers 
with clinical outcomes and their capacity to explain relevant subcompartments of gliomas. 
 
Materials and Methods - Scopus database was searched for original journal papers from January 1st, 2007 
to February 20th, 2017 according to PRISMA. Four hundred forty-nine abstracts of papers were reviewed 
and scored independently by two out of six authors. Based on those papers we analyzed associations 
between biomarkers, subcompartments within the tumor lesion, and clinical outcomes.  From all the articles 
analyzed, the twenty-seven papers with the highest scores were highlighted to represent the evidence about 
MR imaging biomarkers associated with clinical outcomes. Similarly, eighteen studies defining 
subcompartments within the tumor region were also highlighted to represent the evidence of MR imaging 
biomarkers. Their reports were critically appraised according to the QUADAS-2 criteria.  
 
Results – It has been demonstrated that multi-parametric biomarkers are prepared for surrogating diagnosis, 
grading, segmentation, overall survival, progression-free survival, recurrence, molecular profiling and 
response to treatment in gliomas. Quantifications and radiomics features obtained from morphological 
exams (T1, T2, FLAIR, T1c), PWI (including DSC and DCE), diffusion (DWI, DTI) and chemical shift 
imaging (CSI) are the preferred MR biomarkers associated to clinical outcomes. Subcompartments relative 
to the peritumoral region, invasion, infiltration, proliferation, mass effect and pseudo flush, relapse 
compartments, gross tumor volumes, and high-risk regions have been defined to characterize the 
heterogeneity. For the majority of pairwise co-occurrences, we found no evidence to assert that observed 
co-occurrences were significantly different from their expected co-occurrences (Binomial test with False 
Discovery Rate correction, α=0.05). The co-occurrence among terms in the studied papers was found to be 
driven by their individual prevalence and trends in the literature.  
 
Conclusion - Combinations of MR imaging biomarkers from morphological, PWI, DWI and CSI exams 
have demonstrated their capability to predict clinical outcomes in different management moments of 
gliomas. Whereas morphologic-derived compartments have been mostly studied during the last ten years, 
new multi-parametric MRI approaches have also been proposed to discover specific subcompartments of 
the tumors. MR biomarkers from those subcompartments show the local behavior within the heterogeneous 

tumor and may quantify the prognosis and response to treatment of gliomas. 
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1. Introduction 
Gliomas are tumors that arise from glial cells. Types of glioma include astrocytoma, oligodendroglioma, 
and a number of diagnostic categories classified as other gliomas and mixed neuronal-glial tumors. A grade 
of malignancy, ranging from I to IV, is assigned to each specific tumor class; grade I and II tumors are 
known as low-grade gliomas, while grade III and IV tumors are considered high-grade gliomas [1]. 
According to the report in the United States from 2008 to 2012 [2], gliomas represent approximately 27% 
of all central nervous system (CNS) tumors in adults and 53% of CNS tumors in children and adolescents 
aged 0-14 years in the United States. Most importantly, 80% of malignant tumors are gliomas. In particular, 
glioblastoma, a high-grade glioma with predominantly astrocytic differentiation, accounts for the majority 
of gliomas (55%) and 46% of all malignant CNS tumors and carries the worst prognosis. 
Gliomas and especially high-grade gliomas are heterogeneous masses at phenotypic, physiologic, and 
genomic levels [3,4,5]. Such condition implies difficulties in standard of care definitions. Multiple research 
studies have tackled this heterogeneity attempting to define biomarkers relative to clinical outcomes by 
delineating regions of interest in the tumors.  
MR imaging biomarkers are biological features extracted from MR imaging able to support decisions 
during the management of patients. Multi-parametric image biomarkers are compositions of 
complementary image biomarkers willing to represent the patients’ conditions better than single 
biomarkers. Tumor subcompartments are areas of differing underlying biology within the heterogeneous 
tumor region where image biomarkers could provide clinically relevant information. 
This paper reports a literature systematic review of evidence regarding the definition of multi-parametric 
MR imaging-based biomarkers associated with clinical outcomes and their capacity to explain relevant 
subcompartments in patients with glioma. We sought to address two main clinical questions in this 
population: (1) which multi-parametric MR imaging biomarkers can be associated with clinical outcomes? 
and (2) which subcompartments have been defined in multi-parametric MR images? For each question, we 
will analyze the journal papers published in a period of 10 years that used multi-parametric MR image 
biomarkers to study clinical outcomes and patient conditions. We gave special attention to those journals 
including papers presenting the definition of subcompartments within the tumor lesion based on multiple 
MR images and their relation with clinical outcomes.  

2. Materials and Methods 
2.1 Evidence acquisition 

This systematic review was performed after collecting published scientific documents until February 20th, 
2017, reporting original studies where multi-parametric MR biomarkers were related to clinical outcomes 
and/or patient conditions. The identification of documents was mainly achieved using the Scopus advanced 
search engine to query the Scopus citation database (1083 papers). The general terms of the query were 
magnetic resonance, glioma, multi-parametric MR biomarker and subcompartment. These terms were 
instantiated in specific terms building a Scopus advanced query that was executed on February 20th, 2017 
(see Table S1a in Supplementary material for details). A query to PubMed database through its “PubMed 
Advanced Search Builder” and its thesaurus called MeSH (Medical Subject Headings) added 83 references 
to the list of identified papers of the study. 
Focusing on the query logic, at the initial point we started with the following selection criteria: all papers 
that contain the term “magnetic resonance imaging” (accepting also “mr”, “mri” or “perfusion”) together 
with the word "glioma or glioblastoma" in its title, abstract or keywords. Then, we were adding more 
conditions aiming to adjust as much as possible the obtained results. Going deeply into the query executed 
(showed in Table S1a), it can be divided into 5 different sub-queries (broken down in Table S1b of the 
Supplementary File), following these patterns: 

1. Studies of multiparametric MRI and/or subcompartments in gliomas  
2. Studies of MRI for predicting clinical outcomes or conditions in patients with glioma 
3. Studies of vascularity MRI in gliomas  
4. Studies of MRI and molecular profiling in gliomas 

5. Studies of contrast-enhanced MRI biomarkers in gliomas 

We specified exclusion criteria for those papers classified as reviews in the Scopus database (using the 
field “doctype”). Lastly, there were considered only articles written in English language. 
After filtering from 1st, 2007 to February 20th, 2017 and eliminating duplicates we screened 815 records 
by reviewing titles. In the next step, we excluded 166 papers by consensus between authors JGG and MOS 
after reviewing carefully their titles; the main reason was the lack of using magnetic resonance imaging 
techniques, but there were others like using other techniques (CT, SPECT, etc.), some case reports and 
others were out of our scope. Then we cope with 649 abstracts and all of them were reviewed by JGG and 
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MOS, discarding 200 because they did not associate multiple biomarkers to clinical outcomes or patient 
conditions.  
At that moment, we decided to make an extensive review of all the selected abstracts in order to extract the 
maximum information that we consider important for our study. Thus, two out of six authors (from JGG, 
MOS, EFG, JJA, APG and RSR) evaluated the selected 449 studies by a set of features relative to: the 
population, research design (retrospective vs. prospective study; transversal vs. longitudinal study and 
evaluation criteria), diagnosis, clinical outcome, treatment, management time point at the MR exam, MR 
field strength, MR sequence, analysis techniques, MR biomarkers and tumor subcompartments. The catalog 
of values for each feature was prospectively defined from the keywords used in the abstracts of the papers. 
The valuable and detailed information collected at this point has been the basis of this review.  
Table1 summarizes the variables extracted from the 449 abstracts included in the qualitative synthesis. The 
table shows for each feature the number of abstracts with information and the categorized values list. For 
clarity, only the most frequent values for the variables are included in the table. For a complete list of 
variables, readers may visit the supplementary material. The file that contains the characterized data for all 
the abstracts selected is publicly available in the Supplementary File 
(statsQueries_MultiparametricMRI.xlsx). 

Table1. Table1_featuresExtracted 
 

The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) process for reporting 
included and excluded studies was adhered to. The flow diagram of the process is shown in Fig 1.  

Fig 1. Fig1_flowchart 

 

2.2 Assessment of study quality 

We evaluated in more detail the final set of 45 highlighted papers for the considered questions by the 
Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) criteria [6]. The overall quality of the 
studies was fair to good, with low risk of bias and concerns about applicability (Fig. 2). Table S5 of 
Supplementary File provides the detailed analysis of risk of bias and applicability concerns. 

Fig 2. Fig2_quadas2 

 

2.3 Qualitative synthesis  
During the review, the authors scored every abstract in a 0 to 10 scale given the relevance of the previously 
defined features for our clinical questions. The 45 papers with scores equal or higher than 8 were 
highlighted. From them, 18 defined tumor subcompartments and the other 27 did not. We analyzed the 
quality of our study using QUADAS-2 criteria over the highlighted papers, as mentioned in the previous 
section “assessment of study quality”. 
In the procedure to assign a score to a paper, the main variables taking into consideration have been: clinical 
outcomes, MR biomarkers, and subcompartments. These three features have had the biggest weight of the 
score, but the others have also been important to get the final value. For example, if one study has a 
population of 5 patients and another similar study carries out 50 patients, the later get a better score. In 
short, the score has to be understood as a measure of the relevance of every paper related to the clinical 
question to be answered. 
After reviewing the 449 abstracts, the distribution of papers assigned to every score is presented in Table2: 

Table2. Table2_scoresDistribution 

 

3. Results 
3.1 Populations studied 

Most of the papers (317 out of 449, 70%) assessed in the review were targeted to adults and the median (± 
mean absolute deviation) number of individuals in their studies was 37±17. Additionally, it is worth to 
mention the high number of studies addressing glioblastoma (169 out of 449, 38%) and, more generally, 
high-grade gliomas (278 out of 449, 62%). Most study designs were transversal (366 out of 449, 82%) and 
retrospective (371 out of 449, 83%). Table S2 in Supplementary File gives a complete number of the target 
populations, a number of individuals, diagnoses and study designs of assessed studies. 



 8 

 

3.2 MRI studies 

Most of the procedures were carried out before the surgical intervention (199 out of 449, 44%). The second 
most studied time point was at follow-up (51 out of 449 articles, 11%). Finally, only 25 studies were carried 
out during recurrence (6%). In total, there were 142 studies performed after surgery (32%). 
Most papers did not report the used MR field strength in the abstract. There was a high variability in the 
type of MR sequences included in the studies. Most studies focused on functional images, including 
perfusion (PW) (174 studies, 39%) and diffusion-weighted (DW) images (117 studies, 26%). Standard 
morphologic MR images were also routinely used (182 out of 449, 41%). See Table S3 in Supplementary 
File for details. 

 

3.3 Clinical outcomes and treatments 

Most papers defined overall survival (OS) as the main response variable of the study (177 out of 449, 39%). 
Fewer studies were able to study progression-free survival (PFS) (41 studies, 9%), time to progression 
(TTP) (3 studies, <1%), recurrence (33 studies, 7%), tumor progression (12 studies, 3%) and RANO criteria 
(2 studies, <1%). Some studies also included molecular profiling and biological functions as response 
variables (51 out of 449, 11%). As expected, diagnosis and grading were clinical outcomes highly 
evaluated, appearing each one in 104 papers (23% each one). 
Most of the studies did not directly refer to a specific treatment. This was in part due to the high number of 
preoperative studies. Nevertheless, it is likely that most postoperative patients received the standard 
treatment based on radiation therapy and Temozolomide [7]. Bevacizumab (with 25 studies) and 
Temozolomide (with 15 studies) were the most cited specific treatments. Table S4 in Supplementary File 
shows the clinical outcomes and treatments of the studies assessed in this review. 

 

3.4 Which multi-parametric MR imaging biomarkers can be associated with clinical outcomes? 

Imaging biomarkers were classified into two groups: biomarkers based on feature extraction methods and 
biomarkers for specific MR-sequences. Biomarkers based on feature extraction methods are independent 
of the MR sequence and are related to volumes, areas, texture features, shapes and image moments from 
morphologic or functional images (3rd to 11th rows of Table S6 in Supplementary File). Besides, biomarkers 
for specific MR sequences were extensively used in the reviewed literature and includes the quantification 
of Cerebral Blood Volume (CBV) (112 studies), Ktrans (31 studies) and ADC (79 studies), among others. 
Moreover, authors defined specific biomarkers based on metabolite concentration or ratios extracted from 
Chemical Shift Imaging (CSI). Table S6 summarizes the MR imaging biomarkers used in the studies 
selected for this review. 
Figure 3 summarizes the relationships found among MR imaging biomarkers and the most prevalent clinical 
outcomes. In this graphical network, the thickness of the edges is linearly relative to the number of papers 
where the concepts appear connected; these connections have been calculated from the co-occurrence 
matrix between all pairs of terms showed in the graph, using R routines [64].  

Fig 3. Fig3_ subrogatedbiomarkers 
In that context, there were observed some strong co-occurrences between biomarkers and clinical outcomes 
as well as biomarkers with each other. Specifically, CBV biomarker was used several times in combination 
with ADC (26 papers, 5.7%) and spectroscopic metabolites, such as choline (Cho) and creatine (Cr) (20 
and 18 papers, respectively). These co-occurrences were not significantly different from their expected co-
occurrences given by their individual prevalence (Binomial test with False Discovery Rate correction, 
α=0.05). Nevertheless, this high prevalence may reflect the search for complementary information provided 
by the biomarkers. Whereas CBV indicates vascularization of tumor region [8], ADC is a biomarker 
grading cellular density and integrity, and therefore related to tumor growth and necrosis [9]. Moreover, 
metabolites are the functional fingerprint of protein functions, genetic variations and environmental 
effects [10]. 
In view of the results, overall survival and PFS were evaluated mainly by perfusion biomarkers, such as 
CBV (OS-CBV in 17 papers, 3.7%; PFS-CBV in 11 papers, 2.4%). ADC was also used for survival analysis 
(OS-ADC in 8 papers, 1.7%), while there were fewer studies of survival based on the MR spectroscopic 
analysis of tumor metabolites. Progression-free survival was mainly analyzed by ADC, CBV, N-acetyl-
aspartate (NAA), Glutamate (Glu), Glutamine (Gln) and Myo-inositol (mI). Moreover, the association of 
molecular profiling with perfusion biomarkers was largely studied by the reviewed papers. Additionally, 
the association of mI, NAA, Cho, lactate, and lipids with molecular profiling was extensively studied as 
well. 

Table 3. Table3_biomarkers 
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Twenty-seven highlighted journal papers were included in Table 3 [11-37]. All clinical outcomes were 
studied, at least once, by the combination of three or more types of MR exams. Twelve papers associated 
MR biomarkers to progression, recurrence or survival. From them, 9 extracted morphologic biomarkers, 7 
used perfusion coefficients, 5 used diffusion parameters and 4 quantified different MRS/CSI metabolites. 
Apart from that, morphologic images and perfusion coefficients were used in 3 studies of molecular 
profiling, whereas ADC was used in 2 and MRS/CSI in 1, respectively. Morphologic features were used in 
5 out of the 6 studies for tumor grading to discriminate gliomas after manual segmentation, whereas 
MRS/CSI was also used in 4 of them. Moreover, only 2 studies performed segmentations as a primary goal 
of the multi-parametric study: the first one combined morphologic images (T1, T2, FLAIR and T1c), while 
the second one combined them with PW and DW imaging studies. Only O’Neill et al. [19] studied response 
to treatment (VEGF Trap) using morphologic images, DCE, DWI, and FDG-PET.  Besides, only Durst et 
al. [36] estimated nuclear density to predict tumor infiltration in a study from morphologic, perfusion and 
diffusion images. It is also relevant to highlight that radiomics and radiogenomics techniques were applied 
during the last years to define relevant biomarkers from MR images in gliomas. 
 

3.5 Which subcompartments have been defined in multi-parametric MR images? 

Morphologic regions (such as tumor, edema, and necrosis), broad volumes of interest, intensity-based 
regions (enhanced tumor, non-enhanced tumor) or regions from functional images (such as contrast-
enhanced tumor or hypoperfused tumor volume) guided the majority of the studies. Several studies defined 
morphological subcompartments of the tumor, such as the center of the tumor (8 studies), the rim of the 
tumor (3 studies) or the peritumoral region (17 studies). Others focused on treatment-response 
compartments, such as radiation-induced edema (1 study) and resection cavities (3 studies). Different 
conditions of the local regions (e.g. specifically hypoxia and mass effect) and biological processes 
associated with cancer, such as infiltration and vascular disruption, defined functional regions of the tumors. 
Less specific but still focused on defining subcompartments were those studies showing heterogeneous 
lesions in contrast to homogeneous lesions. As expected, specific locations of the tumor were also studied: 
locations involving basal ganglia, corpus callosum, caudate putamen or close to the cerebrospinal fluid. 
Table S7 in Supplementary File includes all references to subcompartments and regions defined in the 
reviewed papers. Additionally, Table S8 in Supplementary File lists the analysis techniques and statistical 
tests performed by the studies included in this review.  
Figure 4 shows the graphical network of the relationships among subcompartments, MR imaging 
biomarkers and clinical outcomes. Although the most prevalent regions in the eligible studies are relative 
to the morphology of the tumor, several studies defined specific regions associated with response to 
treatment and the tumor characterization at different levels. It is important to mention that the obtained co-
occurrences were not significantly different from their expected.  

Fig 4. Fig4_subcompartments 
The question “which subcompartments have been defined in multi-parametric MR images?” is answered 
in S2 Table [38-55]. Whereas typical morphologic-derived compartments, such as enhancing tumor, edema 
and necrosis have been studied during the last decades, more specific subcompartments or regions have 
been defined only in multi-parametric studies. The peritumoral region has been widely studied with 
different morphologic, perfusion, diffusion and metabolic biomarkers for either diagnosis, grading or 
survival analysis. Moreover, specific compartments such as relapse compartments, gross tumor volumes, 
high-risk volumes, and non-specific clustering compartments have been defined for overall survival, 
progression-free survival and recurrence. Besides, Christoforidis et al. [54] defined tumoral pseudoblush 
as a marker for increased tumoral microvascularity. Finally, the study to connect the subcompartments with 
high levels of invasion, infiltration, proliferation, mass effect and FLAIR hyperintensity with different 
molecular profiles of gliomas was of special interest to this review. 

Table 4. Table4_subcompartments 

4. Discussion 
Multiple image biomarkers have demonstrated their association to clinical outcomes of glioma, including 
diagnosis, grading, segmentation, overall survival, progression-free survival, recurrence, molecular 
profiling and response to treatment. Combinations of biomarkers, such as PW, DW, and CSI, with 
radiomics features from morphological exams (T1, T2, FLAIR, and T1c) are the preferred MR biomarkers 
in the state of the art. 
There is a trend to delineate subcompartments, relative to tumor progression and specific biological 
processes in gliomas. As it is said in Hanahan [56], the biology of a tumor can only be understood by 
studying the individual specialized cell types within it, and taking into consideration the “tumor 
microenvironments” that the cells construct during the course of multistep tumorigenesis. In addition to the 
characterization of the peritumoral region, relapse compartments, gross tumor volumes, high-risk volumes, 
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and non-specific clustering compartments have been defined for overall survival, progression-free survival 
and recurrence. Besides, subcompartments within gliomas with high invasion, infiltration, proliferation, 
mass effect and pseudoflush are markers of differential molecular profiles and tissue characterization. 
Potential clinical benefits of incorporating MR imaging biomarkers and delimiting accurately the different 
subcompartments to the clinical practice include advancements in surgery and radiotherapy planning, 
adjuvant treatment selection, assessment of response, early recurrence detection and selection of subsequent 
therapies. Moreover, this integrated approach will contribute to a better characterization of glioma 
subgroups, identification of new circulating biomarkers, and identification of new targets for the treatment 
of patients with glioma.  
The definition of accurate multi-parametric MR biomarkers for specific tumor regions may help on the 
interpretation of treatment response in early stages, allowing active planning during multidisciplinary 
treatments. Macdonald’s [57] and RANO criteria [58] based on bi-dimensional measurements and WHO 
standards for reporting results of cancer treatment may not reflect non-enhancing patterns of infiltration, 
neither the effect of specific therapies (such as anti-angiogenic therapies on high-grade gliomas) [59]. 
Moreover, manual procedures to delineate complex patterns are not plausible. Despite improvements made 
by the RANO criteria, the delineation of subcompartments based on multi-parametric MR biomarkers to 
routine practice may achieve a more accurate characterization of tumors and could be very helpful in the 
difficult task of depicting the tumor heterogeneity. 
With the objective to achieve a more reliable characterization of brain tumor biology at the molecular level, 
MRI can be combined with another diagnostic technique called positron emission tomography (PET). PET 
can provide this detailed metabolic information, which when combined with the high spatial and contrast 
resolution of MRI could help tailor treatment regimens at an early stage [60].  
By using radioactive tracers, PET can provide quantitative information of cellular activity and metabolism 
of the tumor tissue. Amino acid PET tracers are recommended as a complement to MRI by current 
guidelines in brain tumor imaging. This have proven promising for defining true tumor volume and 
differentiating viable tumor tissue from postoperative changes or radiation necrosis, and as a guide to select 
the best biopsy sites in gliomas.  
Hybrid PET/MRI have the potential to improve the diagnostic accuracy compared to MRI alone. Castiglioni 
[61] describes that hybrid PET/MRI represents an innovative diagnostic technology for non-invasive in 
vivo imaging of cancer; the preliminary results are showing potentials to enter the technique in the clinical 
setting. It also represents a reduction of radiation exposure which implies benefits for patients. 
PET/MRI tomographs open new perspectives for clinical and research applications and attract a large 
interest among the medical community. This new hybrid modality is expected to play a pivotal role in a 
number of clinical applications [62]. Finally, as Marner [63] stress in their article, there are still a number 
of caveats in using a PET/MRI scanner, but solutions to overcome the challenges are being developed. 
It is important to note that most reviewed papers did not provide molecular profiling (i.e., IDH mutation 
and 1p/19q codeletion status) to use the 2016 World Health Organization classification of tumors of the 
CNS (WHO CNS) [1]. 

5. Conclusion 
Combinations of MR imaging biomarkers from morphological, PWI, DWI and CSI exams have 
demonstrated their capability to predict clinical outcomes in different management moments of gliomas. 
Whereas morphologic-derived compartments have been mostly studied during the last ten years, new multi-
parametric MRI approaches have also been proposed to discover specific subcompartments of the tumors. 
MR biomarkers from those subcompartments show the local behavior within the heterogeneous tumor and 
may quantify the prognosis and response to treatment of gliomas. 
The understanding of the underlying behavior of the different tumor tissues in terms of their distribution 
and topology along the lesion and the specific properties of sub-regions is mandatory to improve therapy 
planning. The possibility to know which parts of the homogeneous tumor are more aggressive may provide 
critical information to improve the survival of the patients. 
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Figure legends 

Fig 1. Flow diagram for systematic reviews and meta-analysis (PRISMA) showing the 

outcome of the initial and additional searches resulting in the full studies included in the 
review. 

Fig 2. Results for risk of bias and concerns about applicability using the QUADAS-2 
criteria.   

Fig 3. Graphical network with the relationships among MR imaging biomarkers and 
clinical outcomes. The thickness of the edges is linearly related to the number of papers 

where the concepts appear connected. 
Fig 4. Graphical network with the relationships among subcompartments, MR imaging 

biomarkers, and clinical outcomes. The thickness of the edges is linearly related to the 
number of papers where the concepts appear connected. 

 

Table legends 

Table 1. Data extracted from the 449 abstracts selected for qualitative synthesis. 
Table 2. Number of papers per each score after the author's revision. 

Table 3. Selected papers that use multi-parametric MR imaging biomarkers to predict 
clinical outcomes in gliomas. 

Table 4. Selected papers that define subcompartments and multi-parametric MR 
imaging biomarkers to predict clinical outcomes in gliomas. 
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FEATURES 
EXTRACTED 

#SOURCE 
PAPERS 

CATEGORIZED VALUES *  

POPULATION  368 Adult, Children, Animal  

N (COHORTS)  395 -  

STUDY DESIGN  449 Transversal/Longitudinal, 
Retro/Prospective 

 

DIAGNOSIS 449 HGG, LGG, Diffuse Glioma, Recurrent 
Glioma, Metastasis 

 

TREATMENT 356 Surgery, Radiotherapy (RT), 
Chemotherapy (CT) 

 

CLINICAL 
OUTCOMES  

442 OS, PFS, Diagnosis, Grading, Molecular 

profiling, etc. 

 

MANAGEMENT 
MOMENT  

346 Pre, Intra, Postoperative, PostRT, PostCT, 

Follow-up, Recurrence 

 

MRI EXAM  449 Morphologic, Perfusion, Diffusion  

ANALYSIS 
TECHNIQUES 

430 Quantification, Manual Segmentation, 
Survival Analysis, ROC Curve, etc. 

 

MR BIOMARKERS 449 CBV, CBF, ADC, FA, Metabolite 
concentrations, etc. 

 

SUBCOMPARTMENTS 248 Tumor, Necrosis, Edema, Contrast-
enhanced, Peritumoral, etc. 

 

STATISTICAL TEST 319 Correlations, Student t-Test, COX, Mann-
Whitney-Wilcoxon test, Kaplan-Meier, 

etc. 

 

 

Table 1 
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Table 2 
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Table 3 

Author Population N (Cohorts) Study design 
Diagnosis 

and 
Treatment 

Clinical 
Outcome 

Managemen
t moment 

MRI exam Analysis technique MR biomarkers 

Prager et al. 
[11] 

Adult 

68 
(treatment 

related 
changes vs. 
recurrent 
tumor vs. 

mixed) 

Transversal, 
Retrospectiv

e 

GBM, 
Surgical 

resection 
followed by 

radiation 
therapy and 

temozolomid
e 

Recurrence Recurrence DWI, DSC, T1, 
T2, FLAIR, T1c 

Manual segmentation on ADC 
and DSC maps ADC, CBV 

Kickingerede
r et al. [12] Adult 

119 
(discovery: 

79; 
validation: 

40 

transversal, 
retrospective 

GBM, No 
treatment OS, PFS Preoperative T1c, FLAIR Supervised principal 

component analysis 

12190 features extracted: first-order 
moments, volume, shape, and texture 

features 

Yoo et al. 
[13] 

Adult 

29 (12 GBM, 
3 AA, 5 

recurred 
GBM, and 9 
lymphoma ) 

transversal, 
retrospective 

HGG, LGG, 
lymphomas; 
Pretreatmen

t 

Diagnosis, 
Grading Preoperative ASL, CSI Manual segmentation, 

quantification, ROC 
Fractional Anisotropy, RA, Cho/Cr, and 

Cho/NAA 

Liberman et 
al. [14] Adult 13 

Longitudinal, 
Retrospectiv

e 

GBM; 
Resection, 

Chemoradiot
herapy, 

Bevacizumab 

Recurrence, 
Response to 
treatment 

Follow-up, 
Recurrence 

T1, T2, FLAIR, 
T2*, T1c, T2c*, 

MRS 

Quantitative shape features, 
regression/correlation, 
survised classification 

Tumor volume, shape features 

Ramadan et 
al. [15] Adult 

12 (healthy 
control: 6; 
GBM: 6) 

Transversal, 
Prospective 

GBM, No 
Treatment 

Molecular 
Profiling 

Pretreatmen
t MRS Peak volume ratios 

Mobile lipids, Alanine, NAA, Œ≥-
aminobutyric acid, glutamine and 

glutamate, glutathione, aspartate, lysine, 
threonine, total choline, 

glycerophosphorylcholine, myo-inositol, 
imidazole, uridine diphosphate glucose, 

isocitrate, lactate, and fucose 

Hu et al. [16] Adult 

31 (recurrent 
tumor: 15 vs 

radiation 
necrosis: 16) 

Transversal, 
Retrospectiv

e 

GBM, 
radiation 

therapy after 
surgical 

resection 

Molecular 
profiling 

Postradioter
aphy 

T1, T1c, T2, 
FLAIR, DSC, DWI, 

PD 

Support Vector Machines 
ROC CBV, CBF, ADC 

Ingrisch et 
al. [17] Adult 66 

Transversal, 
Retrospectiv

e 

GBM, No 
treatment OS Preoperative T1c 

manual segmentation, 
random survival forests 

(RSFs) 

208 quantitative image features: tumor 
shape, signal intensity, and texture 
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Ulyte et al. 
[18] 

Adult 69 (GBM: 49, 
AA: 20) 

Transversal, 
Prospective GBM, AA PFS, OS Preoperative DCE 

Histogram analysis, 
Univariate, multivariate, and 

Kaplan-Meier survival 
analysis 

Ktrans, vp, ve, kep, IAUGC 

O’Neill et al. 
[19] Adult 

12 (VEGF 
Trap 

treatment vs 
control) 

Longitudinal, 
Retrospectiv

e 

Temozolomi
de-resistant 
GBM, VEGF 

Trap 

Response to 
treatment Recurrence 

Morphologic 
images, DCE 

DWI, FDG-PET 
Time series FDG-avidity, ADC, Ktrans, and ve 

Kickingerede
r et al. [20] Adult 152 

Transversal, 
Retrospectiv

e 

GBM, No 
treatment 

Molecular 
profiling Preoperative 

Morphologic 
images, PWI, 

DWI 

Histogram quantification, 
machine learning models 

31 MRI features (volume ratios, ADC, 
CBF, CBV and intratumoral susceptibility 

signals, etc) 

Sanz-
Requena et 

al. [21] 
Adult 39 (GIV: 31, 

GIII: 8) 

Tranversal, 
Retrospectiv

e 

HGG, 
Standard 

treatment 
(and partial) 

Survival 
prediction Preoperative Morphological 

MRI, DSC 

Manual segmentation, 
quantification, clustering, 

manual thresholding, survival 
analysis 

Ktrans-T2* 10% 

Jain et al. 
[22] Adult 50 

Transversal, 
Retrospectiv

e 

GBM, 
Pretreatmen

t 

Molecular 
subtype, 
Genomic 

profile, OS 

Preoperative DSC 
Manual Segmentation, 
Quantification, Survival 

Analysis, Regresion 
CBV (maximum and mean) 

Fathi et al. 
[23] 

Human 13 
Transversal, 
Retrospectiv

e 
GBM ??? Preoperative Morphologic, 

PWI, DWI Supervised classification Multivariate intensity space 

Caulo et al. 
[24] 

Human 118 Retrospectiv
e Gliomas Grading Preoperative Morphologic, 

DSC, DTI, MRS 
Manual segmentation, 

Quantification, ROC 
CBV, T2w signal intensity, diffusivity, 

Cho/Cr 

Alexiou et 
al. [25] Adults 

30 (GBM: 27, 
AA: 2, AOD: 

1) 

Longitudinal, 
Retrospectiv

e 

HGG, 
Surgery, 

radio- and 
chemothera

py 

Recurrence Follow-up Morphologic, 
DSC, DTI, SPECT Quantification, ROC True diffusivity, ADC, Fractional 

Anisotropy, rMTT, Ktrans 

van Cauter 
et al. [26] Adult 35 (LGG:14, 

HGG:21) 
Transversal, 
Prospective Gliomas Grading Preoperative T1, T2, DSC, 

DWI, CSI 
Manual segmentation, 

quantification 

Mean diffusivity, Fractional Anisotropy, 
kurtosis, CBF, MTT, relative decrease 

ratio, CSI metabolite ratios 

Seeger et al. 
[27] Adult 40 

Transversal, 
Retrospectiv

e 
Gliomas HGG, 

Recurrence 
Probably 

postsurgery 

Morphological 
MRI, DSC, DCE, 

MRS 
Quantification, ROC CBV, CBF, Ktrans, Cho/Cr 

Chawalparit 
et al. [28] Adult 43 

Transversal, 
Retrospectiv

e 

Gliomas, 
Pretreatmen

t 

Diagnosis/Gr
ading Preoperative 

Morphologic 
images, MRS, 

DTI, DSC 

Manual segmentation, 
Quantification 

Metabolites, CBV, CBF, ADC, Fractional 
Anisotropy 

Li et al. [29] Adult 64 
Longitudinal, 
Retrospectiv

e 

GBM; 
Resection, 

Chemoradiot
herapy 

PFS, OS Postsurgery CSI 
Manual segmentation, 

Quantification, Regression 
analysis, Survival analysis 

NAA/Cho, Cho/NAA 
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Shankar et 
al. [30] 

Adult 

20 
Transversal, 
Retrospectiv

e 

HGG Pretreatmen
t 

Diagnosis, 
Grading Preoperative 

Morphological 
MRI, Perfusion 

CT 

Manual segmentation, 
Quantification, ROC, Survival 

analysis 
Permeability surface area, CBV 

Zinn et al. 
[31] 

Adult 

78 
(Discovery: 

39, 
Validation: 

39) 

Transversal, 
Retrospectiv

e 

GBM, 
treatment-

na√Øve 

OS, 
Molecular 

Profiling, Cell 
invasion 

Preoperative FLAIR 

Kaplan-Meier survival 
statistics, microRNA-gene 
correlation analyses, and 
GBM molecular subtype-

specific distribution 

FLAIR hiper- and hipo-intensity volumes 

Matsusue et 
al. [32] 

Adult 15 
Transversal, 
Retrospectiv

e 

Glioma 
progression Progression Postradiothe

rapy DWI, DSC, MRS Quantification ADC, CBV, Cho/Cr, Cho/NAA 

Juan-
Albarracin et 

al. [33] 
Adult 31 

Transversal, 
Retrospectiv

e 
GBM Segmentatio

n Preoperative T1, T2, T1c, 
FLAIR unsupervised segmentation Multivariate intensity space 

Itakura et al. 
[34] Human 165 

Transversal, 
Restrosectiv

e 
GBM 

Molecular 
signaling 
pathways 

Preoperative Morphologic 
images 

Manual segmentation, 
Unsupervised classification Shape, texture, and edge sharpness 

Ion-
Margineanu 

et al. [35] 
Human 

29 
(Progression, 

No 
progression) 

Transversal, 
Retrospectiv

e 
GBM Progression Follow-up 

Morphologic 
images, DWI, 

PWI, MRS 

Manual segmentation, 
supervised classification 

(random forests, LogitBoost, 
or RobustBoost) 

27-feature vector 

Durst et al. 
[36] Adult 10 Transversal, 

Prospective 

Diffuse LGG, 
No 

Treatment 

Nuclear 
density 

Stereotactic 
biopsy 

Morphologic, 
PWI, DTI 

Quantification, PCA, 
regression analysis 

Diffusivity, ADC, fractional anisotropy, 
rMTT, Ktrans 

Yoon et al. 
[37] Adult 60 (LGG: 12, 

HGG: 48) 

Transversal, 
Retrospectiv

e 

LGG, HGG, 
No 

treatment 
Grading Preoperative 

Morphologic, 
DSC, DWI, MRS, 

FDG-PET 
Quantification ADC, CBV, Cho/Cr, Lip, Lac, SUVmax 

 
 

Table 4 
Author, 

Reference Population N (Cohorts) Study design89 Diagnosis and 
treatment 

Clinical 
Outcome 

Management 
moment MRI exam Analysis 

technique 
MR 

biomarkers Habitats 

Demerath et 
al.[38] Adult 26 Transversal, 

Retrospective 
GBM, No 

treatment 
Molecular 
Profiling Preoperative T1c, FLAIR, PWI, 

DWI, CSI Correlation 
CBV, Axial 

diffusivity, Mass 
effect, mI 

Peritumoral region, infiltration, 
severe mass effect, mild mass 

effect, adjacent normal-
appearing matter, FLAIR 
hyperintensity, edema, 

necrosis, contrast enhanced 
tumor 
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Qin et al. 
[39] Adult 

10 (Beneficial 
vs non-

beneficial) 

Longitudinal, 
Retrospective 

GBM, immune 
checkpoint 
blockade 

Survival Recurrence T1c, FLAIR, ADC correlation 

Bidirectional 
diameters, T1c 
VOI, FLAIR VOI, 
IADC VOI, RANO 

VOIs representing measurable 
abnormality suggestive of 

tumor on T1c, FLAIR and ADC 

Boult et al. 
[40] Mice 

27 (RG2: 13, 
MDA-MB-231 

LM2-4: 14) 

Transversal, 
Prospective 

Rat RG2 gliomas 
and human 

MDA-MB-231 
LM2-4 breast 

adenocarcinomas 
in mice, No 
treatment 

Molecular 
Profiling Preoperative 

T2, Gd-DTPA and 
ultrasmall 

superparamagnetic 
iron oxide (P904)-
enhanced imaging 

histogram, k-
means 

vascular 
parameters, 

water diffusion 
characteristics 
and invasion, 

fractional blood 
volume, ADC 

1) Low fBV and relatively 
impermeable blood vessels (at 

the tumor margins), 2) high 
levels of water diffusion and 

low vascular permeability 
and/or fBV corresponded to 

regions of invasion and edema. 
3) Mismatch between vascular 
permeability and blood volume 

Server et al. 
[41] Adult 74 Transversal, 

Retrospective 
Gliomas, No 
treatment Grading Preoperative DWI, CSI 

Logistic 
regression, ROC 
curve analysis 

ADC, Cho/Cr, 
Cho/NAA Peritumoral edema, Tumor 

Chang et al. 
[42] Adult 26 Transversal, 

Retrospective 

GBM, 
Inmediately after 
gross total tumor 

resection 

Recurrence Postsurgery DWI, FLAIR Logistic 
regression 

ADC, FLAIR 
intensity 

Areas of future GBM 
recurrence within the 

peritumoral region 

Cui et al. [43] Adult 

108 
(Development: 

TCGA, 
Validation: 
TCGA and 
internal 

Transversal, 
Retrospective 

GBM, No 
treatment 

Overall 
Survival, 

Molecular 
Profiling 

Preoperative T1c, DWI 

Kernel density 
estimation, 

MIPAV, 
Radiogenomic 

analysis, 

High T1c 
intensity, low 

ADC 

Gross tumour volume, High-
risk volume (intratumoral 

subregion) 

Khalifa et al. 
[44] Adult 

25 (Relapse: 
13, Control: 

12) 

Longitudinal, 
Prospective 

GBM, 
Radioteraphy, 
concominant 

chemotherapy 

Recurrence Follow-up 
DSC, Last MR 

acquisition (last), 
last-(2M,4M,6M) 

times series, 
ROC 

Variations of 11 
perfusion 

biomarkers 

Hypoperfused tumor volume 
as marker of relapse 

Prasanna et 
al. [45] Adult 

65 (short-
term: 29, long-

term: 36) 

Transversal, 
Retrospective 

GBM, no 
treatment 

Overall 
Survival Preoperative T1c, T2, FLAIR 

Expert manually 
segmented, 
radiomics 

402 radiomics 
features for 
each region 

Peritumoral region, enhancing 
lesion, necrosis 

Lemasson et 
al. [46] Adult 44 (GIV:36, 

GIII: 8) 
Longitudinal, 
Retrospective 

HGG, Standard 
treatment 

Overall 
survival Chemotherapy T1c, FLAIR, DSC 

statistical test, 
physiological 

segmentation, 
parametric 
response 

mapping (PRM) 

CBV PRM Compartments: increase, 
decrease and no change 

Inano et al. 
[47] Adult 36 (HGG: 21, 

LGG: 15) 
Transversal, 

Retrospective 
Gliomas, no 
treatment Grading Preoperative T1, T2, FLAIR, T1c Self-organizing 

maps, k-means 
161 radiomics 

features 

12-class MRcIs (magnetic 
resonance-based clustered 

images) 
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Delgado-
Goni et 
al.[48] 

Female 
C57BL/6 

mice 
(animal) 

3812 Transversal, 
Prospective 

GBM, 
Temozolamide 

Response to 
treatment Postchemoteraphy CSI 

Semi-
supervised 

source 
extraction 

Mobile lipids 
and 

polyunsaturate
d fatty acids 

Normal brain parenchyma, 
actively proliferating GBM and 
GBM responding to treatment) 

Cui et al. [49] Adult 
79 

(Discovery:46, 
Validation: 33) 

Transversal, 
Retrospective 

and prospective 

GBM, No 
treatment 

Overall 
Survival Preoperative T1c, FLAIR 

Automated 
intratumor 

segmentation, 
Multivariate 
sparse Cox 
regression 

model 

Quantitative 
imaging 
features 

Spatially distinct subregions by 
multiparemtric intensity 

patterns 

Price et al. 
[50] Adult 50 Transversal, 

Retrospective 
GBM, no 

treatment 

Invasive and 
non-invasive 

regions 
Preoperative 

Morphologic 
imagesm, DTI, DSC, 

CSI 

Image 
corregistration 

CBV, NAA, mI, 
Cho, Glx, Cr 

Invasive region, noninvasive 
region, and normal 

parenchyma 

Sauwen et al. 
[51] Adult 35 (Gent: 21, 

Leuven: 14) 
Transversal, 

Retrospective 
HGG, no 

treatment Segmentation Preoperative 
Morphologic 

images, PWI, DWI, 
CSI 

Unsupervised 
classification, 
Hierarchical 

non-negative 
matrix 

factorization 

Multiparametric 
space 

hNMF sources, Tissue class 
mixtures 

Jena et al. 
[52] Adult 

26 
(recurrence: 
19, radiotion 
necrosis: 7). 

Transversal, 
Retrospective 

Gliomas, Surgery 
and radiation 

Recurrence 
vs Radiation 

Necrosis 
Postradiotherapy 

Morphologic 
images, DSC, ADC, 

PET 

Multiparametric 
analysis 

Target-to-
background 
ratio, Cho/Cr 

CBV, ADC 

Maximal contrast 
enhancement, FET uptake 

Kim et al. 
[53] Adult 

169 
(Recurrence: 
87, Radiation 
necrosis: 82) 

Transversal, 
Retrospective 

GBM, standard 
treatment Recurrence Follow-up (post-

treatment) T1, DSC, DCE, DWI Quantification, 
ROC ADC, CBV, IAUC Radionecrosis, tumor 

Christoforidis 
et al. [54] Adult 35 Transversal, 

Prospective 
Gliomas, no 
treatment 

Diagnosis, 
microvessels 

area 
Preoperative 

Morphologic 
images (GRE 
sequence) 

Supervised 
classification 

Microvessel 
density, 

microvessel size 
Tumoral pseudoblush 

Wang et al. 
[55] Adult 

67 (GBM: 26, 
SBM: 25, PCL: 

16) 

Transversal, 
Retrospective GBM, SBM, PCL Diagnosis, No 

treatment Preoperative DTI, DSC 2-level decision 
tree 

Fractional 
anisotropy, 

ADC, CL, CP, CS, 
CBV 

Enhancing, immediate 
peritumoral and distant 

peritumoral regions 

 


