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An experiment of divergent selection for intramuscular fat was carried out at Universitat Politécnica de Valéncia. The high
response of selection in intramuscular fat content, after nine generations of selection, and a multidimensional scaling analysis
showed a high degree of genomic differentiation between the two divergent populations. Therefore, local genomic differences
could link genomic regions, encompassing selective sweeps, to the trait used as selection criterion. In this sense, the aim of this
study was to identify genomic regions related to intramuscular fat through three methods for detection of selection signatures
and to generate a list of candidate genes. The methods implemented in this study were Wright's fixation index, cross population
composite likelihood ratio and cross population — extended haplotype homozygosity. Genomic data came from the 9th
generation of the two populations divergently selected, 237 from Low line and 240 from High line. A high single nucleotide
polymorphism (SNP) density array, Affymetrix Axiom OrcunSNP Array (around 200k SNPs), was used for genotyping samples.
Several genomic regions distributed along rabbit chromosomes (OCU) were identified as signatures of selection (SNPs having a
value above cut-off of 1%) within each method. In contrast, 8 genomic regions, harbouring 80 SNPs (OCU1, OCU3, OCU6, OCU7,
O0CU16 and OCU17), were identified by at least 2 methods and none by the 3 methods. In general, our results suggest that
intramuscular fat selection influenced multiple genomic regions which can be a consequence of either only selection effect or the
combined effect of selection and genetic drift. In addition, 73 genes were retrieved from the 8 selection signatures. After
functional and enrichment analyses, the main genes into the selection signatures linked to energy, fatty acids, carbohydrates and
lipid metabolic processes were ACER2, PLIN2, DENNDAC, RPS6, RRAGA (OCU1), ST8SIA6, VIM (OCU16), RORA, GANC and
PLA2G4B (0CU17). This genomic scan is the first study using rabbits from a divergent selection experiment. Our results pointed
out a large polygenic component of the intramuscular fat content. Besides, promising positional candidate genes would be
analysed in further studies in order to bear out their contributions to this trait and their feasible implications for rabbit breeding
programmes.
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Implications genomic regulation and could be used to apply in genomic

. , . evaluation programmes for intramuscular fat.
Intramuscular fat content is an essential factor in meat qual-

ity because it affects nutritional, sensory and technological
properties of meat, such as tenderness, flavour and juiciness
of meat. In this study, we applied method of selection signa- Introduction
tures to identify genomic regions modified by a divergent
selection experiment for intramuscular fat in rabbits. Results
revealed several selection signatures across the rabbit genome
with genes linked to lipid metabolism. These findings will
help to increase our understanding of intramuscular fat

Selection and mutation trigger shifts in the genome architec-
ture of traits, gathering the history of particular populations
at a genomic level (Oleksyk et al., 2010). Genomic regions
harbouring genes influenced by a selective process can be
detected by the methods for the identification of selection
signatures. These methods can be categorised in four groups
* E-mail: noeibes@dca.upv.es depending on the assumptions behind the null hypothesis of
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absence of selection (Qanbari and Simianer, 2014): (i) based
on classical analyses of genetic variability (e.g. F;; — Wright's
fixation index, 7 — nucleotide diversity), (ii) reduction of local
variation in genomic regions (e.g. ROH — run of homozygosity),
(iii) modification of allelic frequency spectrum (e.g. TD —
Tajima’s D, Fay and Wu H test, CLR — composite likelihood
ratio) (iv) and linkage disequilibrium decay (e.g. [iHS| — inte-
grated haplotype score, EHH — extended haplotype homozy-
gosity, varLD — variation of linkage disequilibrium); see
reviews by Oleksyk et al. (2010) and Qanbari and Simianer
(2014). The choice of methods depends on the type of selective
events, timescale of selective events, the density of the geno-
typing data and the number of populations available for each
particular study. A combination of methods for selection sig-
natures can provide a clearer evidence of the genomic regions
considered as selection signatures (Utsunomiya et al., 2013).

The identification of genomic regions containing genes
affected by natural and artificial selection can be a difficult
task, because selection is a complex phenomenon involving
a potentially large number of traits (Mallick et al,, 2009).
Conversely, populations derived from divergent selection
experiments for one trait provide a valuable biological material
for detecting those signatures, as the genetic divergence
between them is linked to one particular trait (Qanbari and
Simianer, 2014). In this sense, several studies of divergent
selection were used to detect genomic regions associated with
selection events in poultry: for BW (Johansson et al., 2010),
feather pecking behaviour (Grams et al,, 2015) and antibody
response (Lillie et al, 2017), and pigs: for intramuscular fat
(Kim et al, 2015) and feed efficiency (Mauch et al,, 2018).

In rabbits, an experiment of divergent selection for intra-
muscular fat was carried out at the Universitat Politécnica de
Valéncia attaining a high selection response (Martinez-
Alvaro et al, 2016). The genomic information from these
two rabbit lines establishes an outstanding material to dis-
entangle the genetic architecture of intramuscular fat content
through genome-wide scan studies for the detection of selec-
tion signatures.

The aim of this study was to identify genomic regions
using three methods to detect selection signatures that exploit
genomic information from divergent populations and based on
distinct hypotheses. The first is F; (Qanbari and Simianer,
2014), based on conventional genetic differentiation, the
second is the cross population — composite likelihood ratio
(XP-CLR; Chen et al,, 2010), which analyses the modifications
on the allele frequency spectrum and the last one is the cross
population — extended haplotype homozygosity (XP-EHH;
Sabeti et al, 2007), focused on the differences on the exten-
sion of linkage disequilibrium between populations. The final
objective was to generate a list of potential candidate genes
associated with intramuscular fat content.

Material and methods

Animals, genotyping data and quality control
The two rabbit lines divergently selected for intramuscular
fat came from a synthetic line (base population) reared at
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Universitat Politecnica de Valéncia (Zomefio et al, 2013).
Each line was composed of 8 to 10 sires and 40 to 60 does
per generation. Further details of the divergent selection
experiment for intramuscular fat are presented in Martinez-
Alvaro et al. (2016). After nine generations of selection, the
response was 3.1 phenotypic SDs (41% of the mean from
the base population), estimated as the phenotypic difference
between the two divergently selected lines: GA9 — High line at
9th generation and GB9 — Low line at 9th generation (Sosa-
Madrid et al., 2020). In addition, this selection response was
corroborated by estimating the genetic means of each line at
9th generation under Bayesian inference. The model was the
same as one described by Martinez-Alvaro et al. (2016),
including the fixed effects (line, month, sex and parity order),
a common litter random effect and a residual random effect.
Muscle samples were collected for genotyping. A total of
480 individual rabbits (240 from each line) at 9th generation
were genotyped with the Affymetrix Axiom OrcunSNP Array,
around 200k single nucleotide polymorphism (SNP). In addi-
tion, we genotyped 96 ancestors at 8th generation (10 sires
and 38 dams by each line): GA8 - High line at 8th generation
and GBS - Low line at 8th generation. Quality control of the
SNP data was performed using ‘Axiom Analysis Suite v.
3.0.1.4" by using the following criteria: (i) individual call
rate > 0.97, (i) SNP call rate > 0.95, (iii) SNP minor allele fre-
quency (MAF) > 0.05, and (iv) only autosomal SNPs with
known positions were used. An exploratory analysis of sen-
sitivity to MAF threshold on the results of selection signatures
was carried out using 0.001, 0.01 and 0.05 MAF values. The
number of SNPs after quality control and the results of selec-
tion signatures showed negligible changes between the MAF
thresholds. Hence, a MAF threshold of 0.05 was chosen in
order to control the rate of false-positive selection signatures
and the effect of genotyping errors on the results. After filter-
ing, we imputed the missing genotypes and inferred haplotype
phases using population and genealogical information with
Fimpute (Sargolzaei et al,, 2014). The imputation was carried
out because the genomic data had a high quality, for example,
all individuals presented a missing genotyping rate less than
0.02. A total of 5144 SNPs were imputed, showing an accuracy
greater than 0.98 (Pearson’s correlation). The final data set
consisted of 89 968 genotyped SNPs from 477 rabbits (240
from the High and 237 from the Low lines, respectively).

Divergence between lines

At first, a multidimensional scaling (MDS) analysis with all
genomic data was carried out to corroborate the divergence
between lines. The command cmdscale() from R package
stats was implemented for the MDS analysis. In addition,
linkage disequilibrium was computed as Pearson’s squared
correlation coefficient (R?) across the rabbit genome using
PLINK (Purcell et al., 2007).

Detection of selection signatures

The data were analysed using the following methods for the
detection of selection signatures, taking advantage of selection
in the two divergent lines after nine generations of selection:



Fixation index. This Fy parameter was computed for each
SNP as:

_ = Ezpi“—l?i)"i
. HHs 2p (1-p) T
T H 2p (1 -p)

where Hs is the average expected heterozygosity of rabbit
lines, Hr is the expected heterozygosity of the total popula-
tion, p is the average allele frequency across lines, p; is the
allele frequency for each line i, and n; is the number of rabbits
(individuals) in each of the i lines. The F; values were clus-
tered over sliding windows of predefined size (250, 500 and
1000 kb) surrounding every SNP. The F; normalisation was
carried out in order to correct the F; values due to the hetero-
geneous distribution of SNPs, after quality control, along the
rabbit genome. The equation used was

Y.
normalised_Ff,, = 5}—“
V1

This is based on the number of SNP within window j: n;, the
SD using all data: S, the deviation from f; average of a given
window j: X, and the F; total mean: 1. (Beissinger et al,, 2015).

Cross population — composite likelihood ratio test, The
XP-CLR method computes the likelihood ratio of selection
signatures by comparing the spatial distribution of allele
frequencies in an observed window to the frequency spec-
trum of the whole genome between two populations
(Chen et al., 2010). The High line was used as the objective
population and the Low line was used as the reference pop-
ulation. In this analysis, XP-CLR software available at http:/
genetics.med.harvard.edu/reich/Reich_Lab/Software.html was
employed to compute the XP-CLR. After several exploratory
analyses on XP-CLR score and its parameters, we defined a
grid size of 2000 base pairs, sliding window size of three lev-
els (250, 500 and 1000 kb), maximum number of SNPs within
a window 200 and a correlation value between two adjacent
SNPs weighted with a cut-off of R2 > 0.95 (author’s recom-
mendation). A shortcoming of CLR-based methods is that the
correlation of marginal likelihood terms in the composite like-
lihood function is ignored. Thus, these methods overestimate
the amount of information that is available in the data, which
can prompt false-positive signals of selection. To control for this
issue, the XP-CLR method assigns weights to each marginal like-
lihood function in proportion to their statistical independence
from all of the others (low or null correlations amongst the func-
tions of marginal likelihoods). When R? > 0.95, CLR scores for
two SNPs are down-weighted. After performing the analyses for
every level of sliding window, the XP-CLR score for every SNP
was chosen as the value of the nearest grid to each SNP. More
details of the parameters of this method are described in Chen
et al. (2010).

Cross population— extended haplotype homozygosity test.
The EHH profiles are defined as the probability that two ran-
domly chosen haplotypes are identical by descent for the
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entire interval from the core region to a given point. The
XP-EHH test compares the integrated EHH profiles between
two populations around the same SNP, detecting ongoing
selection or nearly fixed sites (overrepresented haplotypes)
unveiling selection in one population (Sabeti et al,, 2007).
As in the XP-CLR score, we defined the High line as the objec-
tive population and Low line as the reference population.
First, we calculated the integrated haplotype score (/HH)
for both lines. Then, the statistic was calculated at each
SNP position as:

XP — EHHpigh—tow = IN(IHHpigh /IHHi0y)

in which XP-EHHpigh-1ow is the XP-EHH between the High and
Low intramuscular fat lines, IHH,iqn is the integrated haplo-
type score of the High line and IHH,q,, is the integrated hap-
lotype score of the Low line (Sabeti et al., 2007; Qanbari and
Simianer, 2014). The maximum of extended haplotype was
restricted in 250, 500 and 1000 kb in order to compare with
the other methods and to evaluate the sensitivity of the
methods to the window size. The computation of XP-EHH
score was carried out using selscan software (Szpiech and
Hernandez, 2014), and finally, normalisation of these data
was performed as recombination rates vary widely across
the rabbit genome within and between populations. This nor-
malisation was carried out setting all such log-ratios have
zero mean and unit variance. Each log of XP-EHH values
was subtracted the mean and divided by SD using all log
of EHH values. The EHH statistic can be interpreted as a mea-
sure of selection solely after appropriate normalisation for
genome-wide difference in haplotype length between popu-
lations as the distribution of recombination sites and the
recombination rate are not steady (Sabeti et al., 2007).

Enrichment analysis of functional annotation, and gene
ontology terms

In this study, we used a cut-off of 1% (the 99th percentile of all
values) for every method to retain interesting signatures of
selection. In order to determine the genomic regions of interest
for searching genes and functional annotations, we used the
physical position of the SNPs exceeding the cut-off (250 kb)
in at least two methods. This distance criterion was chosen
based on the results of the relationship between window size
and the three methods of selection signatures used in this
study. We considered that criterion for searching genes under
the assumption that an outstanding signature of selection
must be detected in at least two methods, showing better
evidence in this way and taking into account that the meth-
ods use different null hypotheses of absence of selection.
Each method models the genomic information under math-
ematical procedures that imply different shifts on the genome:
simple genetic differentiation on each marker genetic, Fg;
shifts on multi-locus including the alleles distribution, XP-
CLR and linkage disequilibrium decay including the haplo-
types extension, XP-EHH. Selection signatures can be better
identified when the modelling of absence or presence of selec-
tion mirrors the history of selection for particular populations

2227


http://genetics.med.harvard.edu/reich/Reich_Lab/Software.html
http://genetics.med.harvard.edu/reich/Reich_Lab/Software.html

Sosa-Madrid, Varona, Blasco, Hernandez, Casto-Rebollo and Ibafiez-Escriche

The number of SNPs within 1Mb window size

0 Mb 22 Mb 43 Mb 65 Mb 87 Mb

108 Mb

130 Mb 152 Mb 173 Mb 195 Mb

o [ITIECFNNMNEENE B THI 4 UE e Ny fErn orEemoamrm
coz (Il W NEET FITOTHE MITEEAD ) I RUUEET REEN CEmnnad

coo [l IV TIEDS D070 D
o IINERTEIT T DR IRE MM NI

ovs  |NIENT ' EE

ovs [ITINT

oo NIV BRI MIOEONN W MEEE D0 EORI W e

ovs MOENIN LI 1 I 0 0 RO WA

ool W WEIIN I RETEE e

oo IIN M W IIEE

ol 1IN WE L 0 MM

ov: Il NI MIIDEREEWE | M Wi 0
o MIIIE BRI | WOON IR DU IEEE W el 1
s |HL 1M 7 WD M MIE WvmE I mERen 9
ovs W WIN U000 CHEID N ENEEI AR 17
s MIE THIE 1IN0 DEEE | /I W gg
o7 [NENIEED WEN [TEEm o
owe | |NIVETENEED 00 W 49
o [IVAN TSN 10 AN 57
ovao | 1 NENDREN) 65
Chr21 ||l| >=72

Figure 1 (colour online) Single nucleotide polymorphism (SNP) density within 1-Mb window size for each chromosome (Chr), using 89 968 SNPs after quality

control for the intramuscular fat genomic data in rabbits.

(Kim et al., 2015; Gonzalez-Rodriguez et al., 2016). In addi-
tion, we considered a cut-off of 1% in order to reduce false-
positive selection signatures (Mallick et al., 2009).

The genomic regions for each rabbit chromosome (OCU)
were defined based on the OryCun2.0 rabbit genome assembly
(Camneiro et al, 2014b). The genes comprised within those
genomic regions were identified using BIOMART (Ensemble
98), available at https://www.ensembl.org/index.html;
then, the functional annotation and gene ontology (GO)
terms enrichment analysis was performed using Enrichr
(Kuleshov et al., 2016). The gene functional analysis was
carried out using the rabbit and mouse annotation databases.
Parameters recommended by the developers of Enrichr (i.e.
P-value < 0.05 for Fisher exact test and a high combined score,
greater than 70) were used for the identification of genes in this
study. We focused on the genes related to biological functions
(GO terms) of energy metabolism and lipid metabolism.

Results and discussion

The average physical distance between SNPs was 23.51 kb
after quality control. However, the density of the SNPs through
the rabbit genomic map was heterogeneous (Figure 1). The
average SNP density for each 1-Mb window was 41.87 with
a SD of 22.36, ranging between 0 and 93. The OCU14,
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0CU20 and OCU21 had a low density with the average num-
ber of SNPs 32.29, 35.56 and 28.38 per Mb, respectively. In
0CU14, two large gaps without any SNP marker were found
(54.0 to 64.0 and 89.0 to 95.0 Mb). Despite the gaps, the SNP
density used in our study was in line with other studies (Gurgul
etal, 2018; Ma et al., 2019). The heterogeneity of SNP density
confirmed the need of data normalisation for the methods to
detect selection signatures.

The linkage disequilibrium was very high, with estimated
R? values of 0.81, 0.68 and 0.52 at physical distances of
40, 250 and 1000 kb, respectively. The number of linkage
disequilibrium blocks was 2309 encompassing 89 346
SNPs and showing a distance of 1 Mb for the longest linkage
disequilibrium block. Moreover, the MDS displayed a notice-
able genomic differentiation between the individuals (8th
and 9th generation) from the High and Low lines; 17.59%
and 2.75% of variance explained by two first dimensions,
respectively (Figure 2). As expected, this analysis also sup-
ported the close relationship between the parents (8th gen-
eration) and their offspring (9th generation) in both lines.

Genome-wide scan for populations from divergent
selection

The identification of potential signatures of selection was
performed with three methods (Fy, XP-CLR and XP-EHH)
and three window sizes (250, 500 and 1000 kb). The
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Figure 2 (colour online) Multidimensional scaling plot of intramuscular fat genomic data in rabbits. The plot displays the first component (MDS1), the second
component (MDS2) and intramuscular fat lines: (left panel) High line at 8th generation (GA8 in red), High line at 9th generation (GA9 in light blue), (right panel)
Low line at 8th generation (GB8 in yellow), Low line at 9th generation (GB9 in dark green).

Table 1 Correlations between the levels of window size within methods of selection signatures in rabbits

XP-CLR  XP-CLR  XP-CLR  XP-EHH  XP-EHH  XP-EHH

250kb  500kb  1000kb 250 kb 500kb  1000kb  Fy250kb  F500kb  Fy 1000 kb
XP-CLR 250 kb 1 0.8798  0.8142  —0.0284  —0.0298  —0.0437 0.1804 0.1697 0.1545
XP-CLR 500 kb 1 09587  —0.0427  —0.0463  —0.0634 0.1804 0.1731 0.1571
XP-CLR 1000 kb 1 —0.0442  —0.048  —0.0669 0.1787 0.1726 0.1572
XP-EHH 250 kb 1 0.8951 07189  —0.0195 —0.0226 —0.0238
XP-EHH 500 kb 1 0.8229  —0.0259 —0.0283 —0.0302
XP-EHH 1000 kb 1 —0.0403 —0.0424 —0.0463
Fye 250 kb 1 0.9719 0.9215
F. 500 kb 1 0.9648
Fx 1000 kb 1

XP-CLR = cross population — composite likelihood ratio; XP-EHH = cross population — extended haplotype homozygosity; £; = Wright's fixation index.

correlations between window sizes within every method
were very high for F; method (>0.92) and lower for the
XP-CLR and XP-EHH methods, especially between 250
and 1000 kb (Table 1). However, all correlations within
the methods were high, between 0.72 and 0.97, confirm-
ing that the results were robust to variations in window
size. Thus, hereinafter we will refer exclusively to the results

obtained with a window size of 500 kb. As expected, the cor-
relations of the results between methods were very low, with
an average of 0.08 using absolute values (Table 1). These
correlations agreed with a genome scan study using pigs
divergently selected for intramuscular fat, in which the cor-
relations were less of 0.12 between methods to detect selec-
tion signatures (iHS, F;; and Rsb; Kim et al,, 2015). It can be
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explained because every method entails a distinct hypoth-
esis (Qanbari and Simianer, 2014; Gonzalez-Rodriguez
etal., 2016), capturing different selection signals depend-
ing on the timescale of selective events (Utsunomiya et al.,
2013). Hence, we decided to analyse the results separately
and those SNPs exceeding a cut-off of 1% in at least two
methods were used to establish selection signatures and
to search for candidate genes.

The average of 500 kb windows for F; (non-normalised),
XP-CLR (non-normalised) and XP-EHH (in absolute value)
was 0.0973, 1.7228 and 0.5878, respectively. The average
of Fy by computing each SNP was 0.10. This average of
F was higher than the results obtained in other studies
between several populations of domestic European rabbit,
Fs =0.08 (Carneiro et al,, 2014a), and also, from an experi-
ment of divergent selection for uterine capacity in rabbits,
F+=0.05 (Sosa-Madrid et al, 2017). To our knowledge,
no comparison can be made for XP-EHH and XP-CLR because
until date this is the first study using these methods for
detecting signatures of selection in rabbits.

The results of the genome-wide scans are shown by
Manbhattan plots in Figure 3. The results of each method indi-
vidually showed several chromosomes with SNPs exceeding
the cut-off of 1%. However, the joint results of the three
methods did not evidence a genomic region clearly linked
to a signature of selection. None of SNPs had values exceed-
ing the cut-off of 1% in all methods (Figure 4). In contrast,
several SNPs (80) associated with selection signatures over-
lapped between at least two methods. The overlapping
results between XP-CLR and F,; were greater than the others,
harbouring SNPs in OCU16 (31 SNPs) and OCU17 (24 SNPs);
see Table 2. It can be explained because F; and XP-CLR are
based on differences in allele frequency and could detect dra-
matic shifts of opposite symmetrical allele frequencies for the
SNPs located in the vicinity of an important causative variant.
Conversely, XP-EHH is based on haplotype lengths compari-
son and was designed to compare a selected population with
a reference population (non-selected; see Sabeti et al,, 2007).
Then, if the extension of a selected haplotype occurs in both
lines with similar strength, the power of detection for XP-EHH
could be lower than when regions were selected in one of the
divergent lines but not in the another.

In total, eight genomic regions of the rabbit genome were
identified as selection signatures (Table 2). This number is
low in comparison with most signature selection studies
(13 to 224 regions) that used populations from divergent arti-
ficial selection experiments for BW, antibody response and
feather pecking behaviour in poultry (Johansson et al.,
2010; Grams et al., 2015; Lillie et al., 2017) and for intra-
muscular fat and backfat thickness in pigs (15 regions;
Kim et al., 2015). Nevertheless, most of these studies iden-
tified selection signatures using only one method, unlike
our study.

The selection signatures identified in our study can be a
consequence of the selection of a polygenic trait with a high
heritability such as the intramuscular fat (Martinez-Alvaro
et al., 2016) or due to the effect of genetic drift. The last
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hypothesis could be plausible because of the reduced number
of sires used in the first generations, the mating structure (a
female was mated with the same sire during its production
life; Zomefio et al., 2013), and the increase of two sire fam-
ilies in the last generations in each line. In many ways, detec-
tion of selective sweeps in smaller populations is more
difficult than in large populations as extensive drift can
obscure and weaken the selection signatures (Mallick et al.,
2009; Johansson et al.,, 2010). However, genetic drift would
generate random shifts of allelic frequency across the rabbit
genome and our results showed the existence of consecutives
SNPs with high scores of selection signatures within methods
which is a direct evidence of selection. For instance, cluster 5
in OCU16 presented high scores of normalised Fy (up to
17.85, Table 2) and a substantial length (487.49 kb) encom-
passing 31 SNPs. They could be identified because we
employed windows for detecting selection signatures instead
of evaluating each SNP of the rabbit array. In addition, under
the £ method and a cut-off of 1%, a cluster in OCU13 encom-
passing 45 SNPs was identified by this study in a relevant
genomic region (83.8 to 86.0 Mb) associated with intramus-
cular fat in rabbits, according to a genome-wide association
study (GWAS) using the two lines of divergent selection
(Sosa-Madrid et al,, 2020). This region showed SNPs with high
normalised F, reaching values up to 20.33 (0.51 as F;; mean
of 500 kb windows), albeit with only one of these SNPs, Affx-
151937959, agreed with the relevant SNPs reported by GWAS
(Sosa-Madrid et al,, 2020). This SNP showed a low MAF (0.09),
but the surrounding SNPs presented very high MAF (up to
0.44). The methods of selection signatures can validate GWAS
results assuming the presence of major genes affecting a
selected trait. Otherwise, these methods would reveal new
associated genomic regions, unlike GWAS results, when
the selected trait has a large polygenic component influenc-
ing several genomic regions (Qanbari and Simianer, 2014).

On the other hand, divergent selection for intramuscular
fat did not lead to fixation of alternate alleles of any of the
SNPs studied. The selection response was very high (3.1 SD);
hence, we expected some SNPs associated with causal var-
iants had their alternate alleles fixed to nearby fixation in
one of the opposite divergent lines (e.g. frequencies in
High line: 0A/1T and in Low line: 1A/OT). These SNPs would
show MAF values of 0.5 using all samples (both lines).
However, the SNPs did not show both conditions. All these
results would suggest several soft selective sweeps caused
by short-term divergent selection of intramuscular fat
instead of few hard selective sweeps, controlling this trait
(Oleksyk et al., 2010).

Underlying selected genes and gene ontology terms for
divergent selection

Potential candidate genes were explored within the genomic
regions identified as signatures of selection using a cut-off of
1%. The number of genes disclosed for each method was
579, 443 and 368 for XP-CLR, XP-EHH and F;, respectively
(see Supplementary Table S1). From these genes, 73 were
detected by at least 2 methods of selection signatures.
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Figure 3 (colour online) Manhattan plot of 500 kb window for every method of selection signature in rabbits: normalised Wright's fixation index, F (top);
cross population — composite likelihood ratio test, XP-CLR score (middle) and normalised cross population - extended haplotype homozygosity test, XP-EHH
(bottom). The dashed line denotes the cut-off of 1% (F: 15.81, XP-CLR: 38.94, and XP-EHH: +/—2.34).
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Cut-offof 1%
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e

Figure 4 (colour online) Venn diagram of methods of selection signatures
in rabbits: cross population — composite likelihood ratio test (XP-CLR), cross
population — extended haplotype homozygosity test (XP-EHH) and Wright's
fixation index (Fs).

These genes were grouped in 63 protein coding and 10 non-
protein coding genes (see Supplementary Table S2). The
results of the first 10 biological processes of the GO term
enrichment analysis through Enrichr are presented in
Supplementary Table S3. The GO term enrichment analysis
did not identified pathways related to biological processes
affecting the intramuscular fat.

A deep search of biological functions for the 73 genes dis-
closed 12 promising candidate genes related to lipid and
carbohydrate metabolism which are important pathways
to modulate the intramuscular fat (Table 3). Genes involved
in the lipid metabolism were alkaline ceramidase 2 (ACER2),
Perilipin 2 (PLINZ2), Vimentin (VIM), Ras-related GTP binding
A (RRGA), ribosomal protein S6 (RPS6), RNA Polymerase-
Associated Protein RTF1 Homolog (RTF7), solute-carrier gene
family 24 member 2 (5LC24A2) and phospholipase A2 group
IVB (PLA2G4B). From these, it is worth to highlight ACER2
(OCU1), VIM (0CU16) and PLIN2 (OCU1), which are tightly
related to lipid droplets and storage, being crucial in disease
such as obesity, diabetes and atherosclerosis. ACER2 enco-
des ceramidases which break down ceramides to sphingosine
and free fatty acids at alkaline pH. VIM can cause an exces-
sive endosomal cholesterol accumulation due to an imbal-
ance of its iterations with other proteins (Walter et al.,
2009). PLINZ bears an essential role over long-chain fatty
acid transport. Genomic studies reported PLIN2 associations
with intramuscular fat content (Gandolfi et al., 2011) and its
composition in pigs (Gol et al., 2016). Moreover, gene
expression studies for intramuscular fat in pig identified dif-
ferentially expressed genes such as RTF7in OCU17 (Damon
et al., 2012) and SLC24A2 in OCU1 (Li et al., 2010). RRGA
and RPS6 in OCU1 could stimulate the lipogenesis and the
lipid accumulation via activation of the mammalian target
of rapamycin signalling pathways (Wipperman et al., 2019).
PLA2G4B in OCU17 is linked to phospholipid catabolic
processes because of its phospholipase A2 (PL2) activity.
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This enzyme has been widely studied using knockout
and transgenic mice, showing to be important for the
fatty acid pathway, for example, for oleic acid (Aloulou
et al.,, 2012).

Phenotypic variation of intramuscular fat between
divergent lines could also be due to differences in regula-
tion of lipid and carbohydrates (glycogen) metabolisms.
This latter is important for intramuscular fat as the glyco-
Iytic products could be used to synthesise fatty acids, being
incorporated into cholesterol esters, triacylglycerol and
phospholipids in hepatocytes, increasing the lipid stores
(Rui, 2014). Genes involved in the carbohydrate metabo-
lism were RAR related orphan receptor A (RORA), glucosidae
alpha neutral C (GANC), ST8 alpha-N-acetyl-neuraminide
alpha-2,8-sialytransferase 6 (ST85/A6) and DENN domain
containing 4C (DENND4C). The regulation of differentiating
pre-adipocytes by retinoic acid is controlled by RORA in
OCU1, bearing a crucial role in triglyceride (lipids)/glucose
homeostasis and various immune functions. The RORA func-
tions are tightly related to hepatosteatosis, obesity and insu-
lin resistance. Besides, RORA was identified by genomic
studies in Nellore (Cesar et al.,, 2014) and Chinese Wagyu cat-
tle (Wang et al., 2019) having extreme phenotypes of intra-
muscular fat composition and marbling. Hence, we presented
RORA as the principal candidate gene for further studies. In
addition, other genes, GANC in OCU17 is involved in the
hydrolysis of glycogen and S785/A6 in OCU16 is important
in the pathways of oligosaccharide metabolic process and
carbohydrate biosynthetic process. DENND4C in OCU1
could modulate indirectly the intramuscular fat content
through control of glucose transport in response to insulin.
However, the specific functions of these genes over the
intramuscular fat remain unknown. Further analyses would
be needed to corroborate the relationships between these
genes (their polymorphisms) and the intramuscular fat con-
tent in rabbits.

Conclusions

In conclusion, a large number of genomic regions were
identified within each method of selection signatures. A
total number of 80 SNPs and 73 genes were detected using
selection signatures exceeding cut-off of 1% at least 2 of
the methods: XP-CLR, XP-EHH and F;. General biological
functions were retrieved from enrichment analysis. However,
genes such as ACER2, PLIN2 (OCU1), ST8SIA6, VIM (0CU16),
RORA, GANC and PLA2G4B (OCU17) linked to energy
metabolism, carbohydrates metabolism and lipid metabolism
were identified as candidate genes to explain the differences
in intramuscular fat observed between the divergent lines.
The findings of the current study suggest that the intramus-
cular fat content in rabbits is influenced by a large polygenic
component.
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Table 2 SNP name (SNP_ID), rabbit chromosome (OCU), cluster (genomic region), SNP physical position in megabase and
values for three methods of selection signatures based on detection in at least two methods using a cut-off of 1%

SNP_ID ocu CLUSTER Physical position XP-CLR XP-EHH Fe:

Affx-151788669 1 1 34.40 42.80 -2.78 3.25
Affx-151841835 1 34.42 46.32 -2.72 4.05
Affx-151948493 1 34.42 42.35 —2.72 4.05
Affx-151981842 1 34.53 70.13 -2.89 7.58
Affx-151800050 1 34.55 74.74 —2.88 8.12
Affx-151888128 1 34.56 42.29 -2.89 8.10
Affx-151808312 1 34,57 72.84 -2.88 9.02
Affx-151996305 1 34.59 76.09 -2.87 9.25
Affx-151796600 1 34.60 64.85 —2.86 9.33
Affx-151996963 3 2 148.58 39.42 2.41 -1.34
Affx-151940966 6 3 6.58 68.34 -2.89 1.05
Affx-151916999 6 6.59 47.82 -2.89 1.1
Affx-151906393 6 6.60 80.26 -2.88 1.17
Affx-151850643 6 6.62 75.42 -3.11 1.62
Affx-152006617 6 6.63 80.80 -3.07 1.62
Affx-151909107 6 6.65 53.68 —-2.98 1.86
Affx-151858638 7 4 7.85 62.05 —2.48 0.64
Affx-151988414 7 7.87 48.46 -2.53 1.1
Affx-151901134 7 7.89 83.02 -2.54 1.26
Affx-151884578 7 7.89 80.85 -2.50 1.26
Affx-151968222 7 7.91 82.74 -2.53 1.26
Affx-151923372 7 7.92 82.83 —2.55 1.55
Affx-151832398 7 7.95 60.81 -2.41 2.09
Affx-151887243 7 7.96 78.92 -2.41 2.09
Affx-151798377 7 7.99 121.74 -2.38 2.65
Affx-152002624 16 5 44.14 56.15 0.57 16.01
Affx-151964090 16 44.16 76.86 0.58 16.05
Affx-151954735 16 4418 56.19 0.57 16.63
Affx-152011401 16 44.21 49.99 0.58 16.44
Affx-151994299 16 44.25 76.42 0.58 16.82
Affx-151935006 16 44.27 44.46 0.58 16.87
Affx-151934731 16 44.28 39.12 0.58 16.91
Affx-151916386 16 44 .31 41.23 0.58 17.23
Affx-151945660 16 44 .31 49.81 0.58 17.05
Affx-151892655 16 4433 85.41 0.58 16.87
Affx-151923274 16 44.34 139.09 0.57 16.92
Affx-151981680 16 44.34 164.39 0.57 16.92
Affx-151922936 16 44.37 166.24 0.57 16.42
Affx-152012312 16 44.37 146.40 0.85 16.23
Affx-151904619 16 44.38 111.16 0.85 16.83
Affx-151947283 16 44.39 78.58 0.85 16.83
Affx-151892171 16 44.41 47.52 0.85 17.38
Affx-151999419 16 44.42 50.66 0.71 17.38
Affx-151831673 16 44.46 53.22 0.74 16.96
Affx-151877806 16 44.47 52.99 0.74 17.19
Affx-151933718 16 44.48 52.90 0.74 17.41
Affx-151961515 16 44.50 51.22 0.73 17.85
Affx-152004824 16 44.51 50.14 0.73 17.67
Affx-152008187 16 44,52 74.51 0.73 17.46
Affx-151886887 16 44.54 93.91 0.74 17.25
Affx-151900728 16 44.55 100.41 0.32 17.25
Affx-151875439 16 44.56 96.80 0.31 17.25
Affx-151786498 16 44.57 118.82 0.30 16.81
Affx-151820958 16 44,59 131.41 0.32 16.86
Affx-151942314 16 44.61 112.63 0.31 16.40
Affx-151797733 16 44.63 100.38 0.30 15.93

(Continuea)
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Table 2 (Continued)

SNP_ID ocu CLUSTER Physical position XP-CLR XP-EHH Fot

Affx-151854426 17 6 11.32 47.27 -1.68 17.79
Affx-152017855 17 11.45 41.36 -1.7 20.90
Affx-151809007 17 11.46 40.34 -1.7 20.65
Affx-151945077 17 11.49 44.26 -1.7 20.79
Affx-151827750 17 11.50 45.09 -1.7 21.05
Affx-151813388 17 11.51 49.33 -1.70 20.79
Affx-151897106 17 11.51 60.52 -1.7 20.69
Affx-151970040 17 11.52 61.40 -1.69 20.95
Affx-151854218 17 11.53 60.99 -1.69 20.69
Affx-151999939 17 11.54 58.80 -1.69 20.70
Affx-151872016 17 11.56 56.37 -1.69 20.06
Affx-151809616 17 11.57 55.06 -1.67 19.42
Affx-151800782 17 11.58 54.38 -1.69 19.06
Affx-151992875 17 11.59 53.07 —-1.64 18.71
Affx-151953403 17 11.62 46.73 —-1.64 16.22
Affx-151860917 17 7 29.59 39.64 —-0.22 19.14
Affx-151984545 17 29.64 39.42 —-0.40 17.52
Affx-151841455 17 8 30.42 80.81 —-0.16 15.89
Affx-152009920 17 30.45 39.82 -0.27 16.57
Affx-151819416 17 30.55 84.32 0.06 16.43
Affx-151905376 17 30.56 87.35 -0.13 16.43
Affx-151933923 17 30.57 83.99 -0.12 16.15
Affx-151909639 17 30.57 81.33 0.74 16.45
Affx-151912729 17 30.59 71.87 0.79 15.99

SNP = single nucleotide polymorphism; XP-CLR = cross population — composite likelihood ratio test; XP-EHH = cross population - extended
haplotype homozygosity test, these values are normalised; F; = fixation index, these values are normalised.
The bold data and green cells indicate the values exceeding a cut-off of 1% (XP-CLR: 38.94 and XP-EHH: +/— 2.34, f: 15.81).

Table 3 Biological processes of highlighted genes identified by at least

two methods of selection signatures in rabbits for cut-off of 1%

Biological Process Highlighted genes

DENNDA4C

VIM, PLINZ, ACER2
RRAGA, RPS6

RORA, ST85IA6, GANC
RORA, ACER2, PLA2G4B

Insulin signalling pathways

Lipid droplets and storage
mTORC signalling pathways
Carbohydrate metabolism process
Lipid metabolic process

Regulation of adipocytes RORA
differentiation
Phospholipase activity PLA2G4B

Processes related to intramuscular
fat*

PLINZ, SLC24A2, RTF1, RORA

mTOR = the mammalian target of rapamycin; DENND4C = DENN domain con-
taining 4C; VIM = Vimentin; PLIN2 = Perilipin 2; ACER2 = alkaline ceramidase 2;
RRGA = Ras-related GTP binding A; RPS6 = ribosomal protein S6; RORA = RAR
related orphan receptor A; ST8SIA6 = ST8 alpha-N-acetyl-neuraminide alpha-
2,8-sialytransferase 6; GANC = glucosidae alpha neutral C; PLA2G4B = phos-
pholipase A2 group IVB; SLC24A2 = solute-carrier gene family 24 member 2;
RTF1 = RNA Polymerase-Associated Protein RTF1 Homolog.

*Based on genomic and gene expression studies of intramuscular fat.
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