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A B S T R A C T

Nowadays, modern architecture is focused on the search of e�cient uses of tech-

nological and sustainable materials, high-tech concept-design-erection processes

and the possibility to produce lightweight solutions with maximum elegance in

shape. These ideas are re�ected on bending-active structures, which recently at-

tracted considerable attention as a new paradigm to build lightweight structures

both in research and practice.

The concept ’active bending’ refers to a category of structures in which bending

is used in the process of shape con�guration. Bending-active structural systems in-

clude curved rods or shells which have been elastically bent from an initial straight

or plane con�guration. As of now, the number of realisations is limited; they are

mostly experimental ones, with architectural or artistic nature. Form �nding of the

equilibrium con�guration is one of the main di�culties during the conceptual phase,

due to the non-linearity of the structural response of the active members, and also

to the interaction with other form-active structural elements as membranes or ca-

bles, whose geometry cannot be prescribed in advance. Computational form-�nding

methods for bending-active structures include �nite element models with non-linear

virtual links that are shortened to reach the �nal form, or dynamic relaxation (ex-

plicit) algorithms to cope with the variables describing the response of the active

members.

This PhD thesis aims to provide an indepth analysis on the applicability of the

active bending principle to the design of lightweight structures, in particular pedes-

trian bridges. For that purpose, the work is carried out from three points of view: (a)

computational modelling and simulation; (b) structural performance and e�ciency;

(c) design and construction. First of all, a literature review on the topic and an

overview of realisations in the �ed of bending-active footbridges is provided. In the

�eld of computational modelling, a novel form-�nding method based on the geomet-

rically exact rod model (or Reissner-Simo beam theory) is implemented. Numerical

examples are also given to show the accuracy of the method. The part of the work

related to the analysis of the structural performance and e�ciency is focused on the

bending-active con�guration proposed in this PhD thesis for designing lightweight

structures: thebending-active braced (or tied) arch. This is a simple planar arch com-

posed of a continuous �exible member that is activated by the action of main cables

pulling at both ends of the rod, and secondary struts or cables that deviate the main

cable and act at certain cross-section of the rod. The computational-analytical part

is completed with the development of a numerical procedure based on genetic algo-

rithms to obtain e�cient structural con�gurations. The thesis ends with the design,

fabrication and assembling of a bending-active short footbridge made of GFRP tubes

using this structural type, held in the laboratory of concept models of the Polytech-

nic University of Valencia.

vii





R E S U M E N

Hoy en día, la arquitectura moderna está orientada principalmente al empleo e�-

ciente de materiales tecnológicos y sostenibles, la tecni�cación del proceso de di-

seño, proyecto y construcción, y la búsqueda de soluciones muy ligeras. Estas ideas

se re�ejan en las estructuras �exo-activas, que recientemente han atraído consider-

able atención como nuevo paradigma para construir estructuras ligeras, tanto en el

ámbito de la investigación como en la práctica.

El término ’�exión activa’ hace referencia a una categoría de estructuras en las

que la �exión se emplea en el proceso de con�guración de su forma. Los sistemas

estructurales �exo-activos incluyen barras o láminas incurvadas cuya geometría es

el resultado de su deformación elástica desde una con�guración inicial recta o plana.

Hasta el momento, el número de realizaciones es limitado; se trata sobre todo de apli-

caciones experimentales con funcionalidad arquitectónica o artística. La obtención

de la con�guración de equilibrio es una de las principales di�cultades que aparecen

en la fase de concepción, debido precisamente a la no linealidad de la respuesta es-

tructural de las barras activas, así como a la posible interacción con otros elementos

estructurales como membranas o cables, que trabajan por forma, y cuya geometría

no se puede �jar de modo arbitrario. Los métodos computaciones de determinación

de forma para estructuras �exo-activas incluyen modelos de elementos �nitos con

cables virtuales no lineales que se acortan hasta alcanzar la con�guración �nal, o

algoritmos de relajación dinámica que consideran las variables que caracterizan la

deformación de las barras activas.

Esta tesis doctoral tiene por objeto proporcionar un análisis en profundidad de la

aplicabilidad del principio de �exión activa al diseño de estructuras ligeras, en par-

ticular a los puentes peatonales. Para ello, la investigación se aborda desde tres pun-

tos de vista: a) modelización computacional; b) e�ciencia estructural; c) diseño y con-

strucción. En primer lugar, se lleva a cabo una revisión de la bibliografía existente,

haciendo hincapié en los trabajos previos en el diseño de pasarelas con �exión activa.

En el campo de la modelización computacional, se desarrolla un novedoso método

numérico de determinación de forma para estructuras �exo-activas basado en el

modelo geométricamente exacto para piezas alargadas (también conocido como la

teoría de vigas de Reissner-Simó). Distintos ejemplos numéricos han sido reproduci-

dos para mostrar la exactitud del método. La parte de la investigación relacionada

con el análisis de la e�ciencia estructural se centra en el comportamiento del sistema

�exo-activo propuesto en esta tesis para el diseño de estructuras ligeras: el arco �exo-
activo arriostrado (o atirantado). Se trata de un arco plano compuesto por una barra

�exible y continuo que se activa por la acción de los cables principales que tiran de

ambos extremos de la varilla, y de los puntales o cables secundarios que desvían el

cable principal y actúan en ciertas secciones transversales. La parte computacional-

analítica se completa con el desarrollo de un procedimiento numérico basado en

algoritmos genéticos, con el �n de obtener con�guraciones estructurales e�cientes.

La tesis �naliza con el diseño, fabricación y montaje de una pasarela �exo-activa

hecha con tubos PRFV utilizando este tipo estructural, realizada en el laboratorio de

modelos de la Universitat Politècnica de València.
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R E S U M

Hui dia, l’arquitectura moderna està orientada principalment a l’ús e�cient de

materials tecnològics i sostenibles, la tecni�cació del procés de disseny, projecte i

construcció, i la cerca de solucions molt lleugeres. Aquestes idees es re�ecteixen en

les estructures �exo-actives, que recentment han atret considerable atenció com a

nou paradigma per a construir estructures lleugeres, tant en l’àmbit de la investi-

gació com en la pràctica.

El terme ’�exió activa’ fa referència a una categoria d’estructures en les quals la

�exió s’empra en el procés de con�guració de la seua forma. Els sistemes estruc-

turals �exo-actius inclouen barres o làmines incorbades, la geometria de les quals és

el resultat de la seua deformació elàstica des d’una con�guració inicial recta o plana.

Fins al moment, el nombre de realitzacions és limitat; es tracta sobretot d’aplicacions

experimentals amb funcionalitat arquitectònica o artística. L’obtenció de la con�g-

uració d’equilibri és una de les principals di�cultats que apareixen en la fase de

concepció, degut precisament a la no linealitat de la resposta estructural de les bar-

res actives, així com a la possible interacció amb altres elements estructurals com

a membranes o cables, que treballen per forma, i la geometria de la qual no es pot

�xar de manera arbitrària. Els mètodes computacions de determinació de forma

per a estructures �exo-actives inclouen models d’elements �nits amb cables virtu-

als no lineals que s’escurcen �ns a aconseguir la con�guració �nal, o algorismes de

relaxació dinàmica que consideren les variables que caracteritzen la deformació de

les barres actives.

Aquesta tesi doctoral té per objecte proporcionar una anàlisi en profunditat de

l’aplicabilitat del principi de �exió activa al disseny d’estructures lleugeres, en par-

ticular als ponts per als vianants. Per a això, la investigació s’aborda des de tres

punts de vista: a) modelització computacional; b) e�ciència estructural; c) disseny

i construcció. En primer lloc, es duu a terme una revisió de la bibliogra�a exis-

tent, amb recalcament en els treballs previs en el disseny de passarel·les amb �exió

activa. En el camp de la modelització computacional, es desenvolupa un nou mè-

tode numèric de determinació de forma per a estructures �exo-actives basat en el

model geomètricament exacte per a peces allargades (també conegut com la teoria

de bigues de Reissner-Simó). Diferents exemples numèrics han sigut reproduïts per

a mostrar l’exactitud del mètode. La part de la investigació relacionada amb l’anàlisi

de l’e�ciència estructural se centra en el comportament del sistema �exo-actiu pro-

posat en aquesta tesi doctoral per al disseny d’estructures lleugeres: l’ arc �exo-actiu
esbiaixat (o lligat). Es tracta d’un arc pla compost per un membre �exible i continu

que s’activa per l’acció dels cables principals que tiren de tots dos extrems de la

vareta, i dels puntals o cables secundaris que desvien el cable principal i actuen en

certa secció transversal de la vareta. La part computacional-analítica es completa

amb el desenvolupament d’un procediment numèric basat en algorismes de tipus

genètic, amb la �nalitat d’obtindre con�guracions estructurals e�cients. La tesi �-

nalitza amb el disseny, fabricació i muntatge d’una passarel·la �exo-activa feta amb

tubs PRFV utilitzant aquest tipus estructural, realitzada en el laboratori de models

de la Universitat Politècnica de València.

xi





P U B L I C AT I O N S

The author, together with other colleagues, has published a number of peer-reviewed

papers dealing with aspects of the work herein:

2021 Shape generation of bending-active braced arches based on elastica
curves
J. Bessini, S. Monleón, J. Casanova and C. Lázaro, In Journal of the Interna-
tional Association for Shell and Spatial Structures; submitted.

2020 Design of bending-active tied arches by using a multi-objective op-
timization method
J. Bessini, P. Shepherd, S. Monleón and C. Lázaro, In Structures. Vol. 27, pp.

2319 – 2328.

2019 E�ciency-based design of bending-active tied arches
J. Bessini, C. Lázaro, J. Casanova and S. Monleón, In Engineering Structures.
Vol. 200, 109681.

2018 Mechanical models in computational form �nding of bending-
active structures
C. Lázaro, J. Bessini and S. Monleón, In International Journal of Space Struc-
tures. Volume 33 (2), pp. 86 – 97.

2017 A form-�nding method based on the geometrically exact rod model
for bending-active structures
J. Bessini, C. Lázaro and S. Monleón, In Engineering Structures. Volume

152, pp. 549 – 558.

xiii



Some ideas and �gures have been presented in the following conferences:

2019 Multi-objective optimization-based design for bending-active tied
arches
J. Bessini, C. Lázaro and P. Shepherd, In Proceedings of the IASS Symposium
2019. International Association for Shell and Spatial Structures.

2018 Design of an experimental lightweight footbridge based on the ac-
tive bending principle
J. Bessini, R. Piñol, C. Lázaro and S. Monleón, In Proceedings of the IASS
Symposium 2018. International Association for Shell and Spatial Struc-

tures.

2018 Shape and performance of bending-active tied arches
C. Lázaro, J. Bessini and S. Monleón, In Proceedings of the IASS Symposium
2018. International Association for Shell and Spatial Structures.

2017 Tangent sit�ness in point-loaded elastica arches
C. Lázaro, S. Monleón and J.Bessini, In Proceedings of the IASS Symposium
2017. International Association for Shell and Spatial Structures.

2017 Form-�nding of bending-active structures using
kinematic constraints
J. Bessini, C. Lázaro and S. Monleón, In Proceedings of the IASS Symposium
2017. International Association for Shell and Spatial Structures.

2016 A review on geometrically exact models for very �exible rods
C. Lázaro and S. Monleón, J.Bessini and J. Casanova, In Proceedings of
the IASS Symposium 2016. International Association for Shell and Spatial

Structures.



A C K N O W L E D G E M E N T S

It seems like only yesterday that this journey began. I was �nishing the Master’s

Degree in Structures in Madrid when I realised that I wanted to continue studying

and learning about structures. On one of my visits to Valencia, I met with Prof. Sal-

vador Monleón, who had been the supervisor of my �nal dissertation for the Civil

Engineering Degree. I was sure that if I did a PhD, it would be with him. He imme-

diately introduced me to Prof. Carlos Lázaro, whom I did not know despite having

studied all the subjects on structures with his notes. He suggested that I did my

thesis on active bending. I had no idea, but I accepted (a year after I started, I still

didn’t know what active bending was). Five years later, I can say that it was the best

decision of my life. During this time, I have not only acquired knowledge of struc-

tures; I have learned to be self-critical, patient and rigorous; to overcome the di�cult

times with serenity, and above all, to work with love and passion. Personal skills

that de�ne a good professional and that I have learned from working with them. I

am enormously grateful to Prof. Lázaro, for his kindness and patient guidance, for

trusting me and encouraging me to always take tortuous ways and for sharing his ex-

traordinary expertise in structural design. I would also like to thank Prof. Monleón,

who originated my passion for the world of structures and bridge design, for giving

me the opportunity to begin this journey and for being there whenever needed.

I wish to thank to Prof. Mario Lázaro for his valuable contribution in the last stage

of this research. His expertise on dynamics and willingness to help have been crucial

to design the experimental tests. I am also grateful to Roberto Piñol, who worked

with me during his Master’s thesis and whose outcomes have been important for this

doctoral thesis. Furthermore, I would like to express my gratitude to a wonderful

group of people who welcomed me and showed their friendship during this time:

Prof. Josep Casanova, Prof. Carmen Castro, Prof. María José Pelufo, Prof. Lourdes

Aznar and Prof. José Luís Bonet. Thanks a lot for the in�nite number of co�ees, for

the moments we shared in the Galileo and for the constant encouragement. Finally,

I am grateful to Prof. Pedro Museros, Prof. Juan Francisco Moyá and Prof. Carlos

Sánchez for their inspiring conversations and continued support.

An important part of this research has been conducted at the University of Bath.

I wish to thank Prof. Paul Shepherd for welcoming me as a visiting researcher in the

Department of Architecture and Civil Engineering as well as for his valuable feed-

back about my research. I extend my thanks also to my colleagues at the University

of Bath: Antiopi, Elisabetta, Beatriz, Daniel, Yasser, Lori, Sharareh, Rana, Carlos,

Kaveh, Anna, Ben, Noor, Auri, Valeria, Federica, Pooja and Quingpeng Li. I felt at

home thanks to them.

Most of all, I would like to express my deep gratitude to my parents for their

relentless support. All that I am I owe to them. For last, I wish to sincerely thank

Patri, for being patiently by my side during the years needed to complete my work

and making brighter every day of my life.

xv





C O N T E N T S

1 introduction 1

1.1 Motivation 3

1.2 Research objectives 4

1.3 Dissertation outline 5

2 state of the art 7

2.1 The active bending principle 7

2.2 Required material properties 9

2.3 Determination of the con�guration 10

2.3.1 Models based on discrete mechanics 12

2.3.2 Models based on �nite-di�erence discretisations 13

2.3.3 Models based on �nite element discretisations 15

2.4 Previous works on the structural performance of bending-active struc-

tures 17

3 a form-finding method based on the gem for bending-active
structures 19

3.1 Introduction 19

3.1.1 Outline of the chapter 20

3.2 The geometrically exact rod model 20

3.2.1 Basic kinematics 20

3.2.2 Variation of the generalised strain measures 22

3.2.3 Equations of static equlibrium 22

3.2.4 Equations of dynamic equilibrium 23

3.2.5 Constitutive equations 23

3.3 The dynamic relaxation method 24

3.4 Fundamentals of the method 24

3.4.1 Application of D’Alembert’s principle 24

3.4.2 Determination of element end forces 25

3.4.3 Strains associated to rotations 26

3.4.4 Strains associated to translations 27

3.5 Numerical implementation 28

3.5.1 Criterium for convergency 29

3.5.2 Boundary conditions 29

3.6 Numerical tests 30

3.6.1 The elastica and the circular beam 30

3.6.2 Bathe and Bolourchi cantilever beam 32

3.6.3 Combined bending and torsion 32

3.6.4 Shear deformability test 36

3.7 Summary 37

4 the bending-active tied arch 39

4.1 Introduction 39

4.1.1 Outline of the chapter 41

4.2 A brief review of the in�exional elastica 41

4.2.1 Con�guration of the elastica 42

4.2.2 Section forces 43

xvii



xviii contents

4.2.3 Scalability of the solution 43

4.3 Self-stress states in bending-active tied arches 44

4.3.1 Notation 44

4.3.2 Equilibrium and compatibility conditions at joints 45

4.4 Direct determination of self-stress con�gurations 47

4.4.1 Examples 49

4.5 Computation of self-stress con�gurations under additional constraints 53

4.6 Summary 57

5 efficiency-based design of bending-active tied arches 59

5.1 Introduction 59

5.1.1 Outline of the chapter 60

5.2 Stress levels after activation in elastica semi-waves 60

5.2.1 Evaluation of the utilisation ratio 60

5.3 Shape of the rod between deviators after activation 64

5.4 Numerical tests on bending-active tied arches with three deviators 66

5.4.1 Relationship between shape and activation forces 67

5.4.2 Stress levels in the rod after activation 67

5.4.3 Structural performance of cables 70

5.4.4 Performance for serviceability limit state (SLS) 72

5.4.5 Performance for ultimate limit state (ULS) 72

5.5 Example 73

5.6 Procedure to design bending-active tied arches withn deviators 74

5.7 Summary 76

6 design of bending-active tied arches by using a moo method 77

6.1 Introduction 77

6.1.1 Outline of the chapter 78

6.2 Problem description 78

6.3 The multi-objective optimisation problem 80

6.3.1 Fitness 82

6.3.2 Selection 84

6.3.3 Recombination and evolution 84

6.3.4 Sensitivity study 84

6.4 Results 85

6.5 Structural analysis and veri�cation 90

6.6 Summary 93

7 experimental footbridge based on the active bending prin-
ciple 95

7.1 Introduction 95

7.1.1 Outline of the chapter 95

7.2 Design 96

7.2.1 Speci�cations 96

7.2.2 Materials 96

7.2.3 Conceptual design 96

7.2.4 Determination of the structural con�guration 99

7.3 Veri�cation of limit states 102

7.3.1 Self-stress state 102

7.3.2 Dead load 105

7.3.3 Serviceability state 105

7.3.3.1 Symmetric load case 105



contents xix

7.3.3.2 Non-symmetric load case 106

7.3.3.3 Torsional load case 107

7.4 Fabrication 108

7.4.1 Fabrication of the nodes 109

7.4.2 Assembling process 112

7.4.3 Future works 121

7.5 Summary 121

8 conclusions and future research 123

8.1 Summary of results 123

8.2 Main conclusions 126

8.3 Future lines of research 127

APPENDIX

a numerical results for the prototype fe model 131

a.1 Form-�nding process 131

a.2 Load testing 135

a.2.1 Dead load (pallets) 135

a.2.2 Symmetric load case 137

a.2.3 Non-symmetric load case 139

a.2.4 Torsional load case 141

bibliography 147





L I S T O F F I G U R E S

Figure 1 Some iconic gridshells built in the last years. 2

Figure 2 Activation process of an initially straight rod. 7

Figure 3 Examples of vernacular architecture built by means of elas-

tically bent elements [97]. 8

Figure 4 Mannheim Multihalle [43]. 8

Figure 5 Experimental prototypes for bending-active footbridges. 9

Figure 6 A physical model subject to bending and torsion e�ects.

(Bending of developable surfaces has been studied in [93].) 11

Figure 7 Discretisation in Adriaenssens and Barnes [3]. 14

Figure 8 Discretisation in Barnes et al. [8]. 14

Figure 9 Discretisation in Du Peloux et al. [39]. 15

Figure 10 Co-rotational setup. 16

Figure 11 Simpli�ed co-rotational setup. 16

Figure 12 Total sti�ness of elastica arches with angle at the in�ex-

ion equal to φ0 for di�erent values of rod slenderness λ

[58]. 18

Figure 13 Kinematics of Reissner-Simo’s model [60]. 21

Figure 14 Scheme of forces and moments acting on the element ij and

the node J 24

Figure 15 A typical element showing the nodal frames and the refer-

ence frame. Λr is computed through spherical interpola-

tion between Λi and Λj. 27

Figure 16 Form-�nding of the elastica and the circular beam de�ned

by the same local reference frames at the beam ends. 30

Figure 17 Curvatures for the elastica (Elas.) in blue and curvatures

for the circular beam (Cir.) in brown. Form-�nding (F.F.)

and theoretical solutions (T.). 31

Figure 18 Evolution of the curve lengths for the elastica and the cir-

cular beam during the form-�nding process. 31

Figure 19 Evolution of the form-�nding process of an elastica curve

and its length (L) at di�erent stages. 33

Figure 20 Original problem of the Bathe and Bolourchi cantilever beam.

34

Figure 21 Evolution of the kinetic energies for the Bathe and Bolourchi

cantilever beam. Figure a) shows the initial geometry. Fig-

ure b) corresponds to the geometry at step 100. Figure c)

shows the �nal equilibrium geometry. 34

Figure 22 Coordinates X-Y-Z using the form-�nding method (F.F.) and

the implicit numerical solution based on Simo’s theory (I.M.)

for the Bathe and Bolourchi cantilever beam. 35

Figure 23 An initially straight rod is bent up to reach vertical tangents

at supports and then twisted by rotating 30º its ends. 36

xxi



xxii list of figures

Figure 24 Shear deformations for the elastica and a beam where trans-

verse shear is not negligible. 37

Figure 25 Bending-active tied arch. 40

Figure 26 Full (notional) elastica corresponding to segment i. 41

Figure 27 In�exional elastica. 42

Figure 28 Elasticas (non-dimensional coordinates) for θ0 = nπ/20

and n ∈ {2, 3, . . . , 17, 18}. 44

Figure 29 Notation. 45

Figure 30 Equilibrium of nodes and elastica sections. 46

Figure 31 Cables, deviators and force polygon. 46

Figure 32 Generic bending-active tied arch with n = 5 elastica sec-

tions. 49

Figure 33 Bending-active tied arch with n = 5 elastica sections and

perpendicular deviators. 50

Figure 34 Symmetric bending-active tied arch with n = 4 elastica

sections. 52

Figure 35 Symmetric bending-active arch with n = 4 elastica sec-

tions of equal length (example 1). 55

Figure 36 Symmetric bending-active tied arch corresponding to the

example 2. 56

Figure 37 Symmetric bending-active tied arch corresponding to the

example 3. 56

Figure 38 Utilisation ratio of elastica semi-waves with rectangular

cross-section Ψ = 0.33, angle at the in�exion θ0, material

properties E = 30 GPa and fu = 400 MPa, and di�erent

values of rod slenderness λ̄. 62

Figure 39 In�uence of the shape factor Ψ on the utilisation ratio of

elastica semi-waves with rectangular cross-section, angle

at the in�exion θ0 and di�erent values of rod slenderness

λ̄. 63

Figure 40 In�uence of the term relative to axial forces on the utili-

sation ratio of elastica semi-waves with rectangular cross-

section, angle at the in�exion θ0 and di�erent values of rod

slenderness λ̄. 63

Figure 41 In�uence of the ratio fu/E on the utilisation ratio of elas-

tica semi-waves with rectangular cross-section, angle at

the in�exion θ0 and di�erent values of rod slenderness λ̄. 64

Figure 42 Axial forces N due to activation process. 65

Figure 43 Shear forces V due to activation process. 65

Figure 44 Bending momentsM due to activation process. 65

Figure 45 De�nition of the input parameters. 66

Figure 46 Di�erent con�gurations for bending-active tied arches with

three equally spaced deviators. 68

Figure 47 Relation between activation force ratios and non-dimensional

shape ratios for a bending-active braced arch with three de-

viators equally spaced and perpendicular to the rod, where

the length of central deviator equals 10% of the length of

the rod and the length of lateral deviators equals 75% of

the central deviator. 69



list of figures xxiii

Figure 48 Stress ratio levels after activation in terms of rod slender-

ness and rise-to-span for a bending-active braced arch with

three deviators equally spaced and perpendicular to the rod,

where the length of central deviator equals 10% of the length

of the rod and the length of lateral deviators equals 75% of

the central deviator. 69

Figure 49 Loading model. 70

Figure 50 Con�gurations with the same rod slenderness λ̄ = 1.5 and

di�erent cable-rod slenderness ratios: a) λ̄c/λ̄ = 5 and b)

λ̄c/λ̄ = 15. 71

Figure 51 Region where stresses in cables are in the interval between

10% and 70% of the maximum allowable stress. 71

Figure 52 Dimensionless de�ections from L/200 to L/1000 for di�er-

ent cable-rod slenderness ratios and a given load in terms

of slenderness and shape. 72

Figure 53 Region where the utilisation ratio in the rod is less than 1

for the ultimate limit state. 73

Figure 54 Design diagram for the example of the section 5.5. 74

Figure 55 Procedure to design a bending-active tied arch with an ar-

bitrary number of deviators. 75

Figure 56 Symmetric loading pattern. 80

Figure 57 Non-symmetric loading pattern. 80

Figure 58 Flowchart of the design method. 81

Figure 59 Fitness functions considered in the multi-objective optimi-

sation problem. 83

Figure 60 Initial population. 86

Figure 61 Distribution of the population and results (red points) at

�nal iteration. 87

Figure 62 Evolution of the �tness function. 88

Figure 63 Utilisation ratios of the rod and cables after activation (FF)

and for the ultimate limit state (ULS). 88

Figure 64 Con�guration for bending-active tied arches at di�erent it-

erations. 89

Figure 65 Vertical de�ections (mm) due to the non-symmetric load-

ing pattern for the serviceability limit state (optimal solu-

tion). 90

Figure 66 Vertical de�ections (mm) due to the non-symmetric loading

pattern for the serviceability limit state (bad solution). 90

Figure 67 Bending moments M (kN.m) in the rod due to activation

process (optimal solution). 91

Figure 68 Bending moments M (kN.m) in the rod due to activation

process (bad solution). 91

Figure 69 Axial forces N (kN) in the rod and deviators due to activa-

tion process (optimal solution). 91

Figure 70 Axial forces N (kN) in the rod and deviators due to activa-

tion process (bad solution). 92

Figure 71 Bending moments M (kN.m) in the rod due to the design

loads for the ultimate limit state (optimal solution). 92



xxiv list of figures

Figure 72 Axial forces N in the rod due to the design loads for the

ultimate limit state (optimal solution). 92

Figure 73 Conceptual model with 3D-printed joints and X-shaped de-

viators. 97

Figure 74 Force diagram after connecting the bending-active arches.

In red colour, internal forces on the rod exerted by the struts.

In pink colour, their resultant, which is (ideally) vertical. 98

Figure 75 Side perspective rendered view of the prototype. 98

Figure 76 De�nition of the parameters for the bending-active tied arch. 99

Figure 77 Relation between axial forces in deviators after activation

for di�erent ratios hq/hm. 100

Figure 78 Dimensionless inverse of the de�ections at mispan for dif-

ferent ratios hq/hm and rod slenderness. 100

Figure 79 Stress levels after activation in terms of rod slenderness λ̄

and rise-to-span of the structure f/a. 101

Figure 80 Increase in sti�ness ∆K after activation in terms of rod

slenderness λ̄ and rise-to-span of the structure f/a. 102

Figure 81 Simulation of the assembling process of the stucture. 104

Figure 82 Detail of deviators; 82a at midspan, 82b at quarters. 108

Figure 83 Experimental footbridge based on the active-bending prin-

ciple. 109

Figure 84 Reproduction of the custom-made joints by using 3D print-

ing. 110

Figure 85 Detail of the custom-made steel joints. 111

Figure 86 Erection process of the prototype (a). 113

Figure 87 Erection process of the prototype (b). 114

Figure 88 Erection process of the prototype (c). 115

Figure 89 Erection process of the prototype (d). 116

Figure 90 Erection process of the prototype (e). 117

Figure 91 Erection process of the prototype (f). 118

Figure 92 Erection process of the prototype (g). 119

Figure 93 Erection process of the prototype (h). 120

Figure 94 The experimental footbridge prototype in service. 121

Figure 95 Bending-active short footbridge made of ultra-high-performance

concrete (UHPC). 128

Figure 96 Axial forces N (kN) in the rod and deviators due to activa-

tion process (stage (a)). 131

Figure 97 Bending momentsMy (kN.m) in the rod and deviators due

to activation process (stage (a)). 131

Figure 98 Bending momentsMz (kN.m) in the rod and deviators due

to activation process (stage (a)). 132

Figure 99 Axial forces N (kN) in cables due to activation process (stage

(a)). 132

Figure 100 Axial forces N (kN) in the rod and deviators due to activa-

tion process (stage (e)). 132

Figure 101 Bending momentsMy (kN.m) in the rod and deviators due

to activation process (stage (e)). 132

Figure 102 Bending momentsMz (kN.m) in the rod and deviators due

to activation process (stage (e)). 133



list of figures xxv

Figure 103 Axial forces N (kN) in cables due to activation process (stage

(e)). 133

Figure 104 Axial forces N (kN) in midspan strut due to activation pro-

cess (stage (c)). 133

Figure 105 Axial forces N (kN) in midspan strut due to activation pro-

cess (stage (d)). 134

Figure 106 Axial forces N (kN) in quarter strut due to activation pro-

cess (stage (d)). 134

Figure 107 Axial forces N (kN) in midspan and quarter struts due to

activation process (stage (e)). 134

Figure 108 Axial forces N (kN) in end struts due to activation process

(stage (e)). 135

Figure 109 Loading pattern (kN) due to the installation of the pallets. 135

Figure 110 Axial forces N (kN) in the rod and deviators due to the in-

stallation of the pallets. 136

Figure 111 Bending momentsMy (kN.m) in the rod and deviators due

to the installation of the pallets. 136

Figure 112 Bending momentsMz (kN.m) in the rod and deviators due

to the installation of the pallets. 136

Figure 113 Axial forces N (kN) in cables due to the installation of the

pallets. 136

Figure 114 Vertical de�ections (mm) due to the installation of the pal-

lets. 137

Figure 115 Loading pattern (kN) due to the symmetric loading pattern

for the load testing. 137

Figure 116 Axial forces N (kN) in the rod and deviators due to the sym-

metric loading pattern for the load testing. 138

Figure 117 Bending momentsMy (kN.m) in the rod and deviators due

to the symmetric loading pattern for the load testing. 138

Figure 118 Bending momentsMz (kN.m) in the rod and deviators due

to the symmetric loading pattern for the load testing. 138

Figure 119 Axial forces N (kN) in cables due to the symmetric loading

pattern for the load testing. 138

Figure 120 Vertical de�ections (mm) due to the symmetric loading pat-

tern for the load testing. 139

Figure 121 Loading pattern (kN) due to the non-symmetric loading

pattern for the load testing. 139

Figure 122 Axial forces N (kN) in the rod and deviators due to the non-

symmetric loading pattern for the load testing. 140

Figure 123 Bending momentsMy (kN.m) in the rod and deviators due

to the non-symmetric loading pattern for the load testing. 140

Figure 124 Bending momentsMz (kN.m) in the rod and deviators due

to the non-symmetric loading pattern for the load testing. 140

Figure 125 Axial forces N (kN) in cables due to the non-symmetric

loading pattern for the load testing. 140

Figure 126 Vertical de�ections (mm) due to the non-symmetric loading

pattern for the load testing. 141

Figure 127 Loading pattern (kN) due to the torsional load case for the

load testing. 141



xxvi contents

Figure 128 Axial forces N (kN) in the rod and deviators due to the tor-

sional load case for the load testing. 142

Figure 129 Bending momentsMy (kN.m) in the rod and deviators due

to torsional load case for the load testing. 142

Figure 130 Bending momentsMz (kN.m) in the rod and deviators due

to the torsional load case for the load testing. 142

Figure 131 Axial forces N (kN) in cables due to the torsional load case

for the load testing. 143

Figure 132 Vertical de�ections (mm) due to the torsional load case for

the load testing. 143



L I S T O F TA B L E S

Table 1 Comparison between references using �nite-di�erence-like

discretisations. 15

Table 2 Section properties of the elastica and the circular beam. 30

Table 3 Material and section properties of the Bathe and Bolourchi

cantilever beam. 32

Table 4 Section properties for the case of bending and torsion ef-

fects. 35

Table 5 Vertical and horizontal relative de�ection for the bent and

twisted beam taking into account di�erent number of ele-

ments in both form-�nding method (F.F.) and implicit method

based on Simo’s theory (I.M.). 35

Table 6 Section properties of the beam used in the shear deforma-

bility test. 36

Table 7 Variables related to self-stressing forces. 47

Table 8 Variables related to the form of the elastic rod. 47

Table 9 Size and force scaling variables. 47

Table 10 Equilibrium and compatibility equations. 48

Table 11 Prescribed and computed variables in the direct method. 49

Table 12 Prescribed variables and computed unknowns for the generic

case. 50

Table 13 Prescribed variables and computed unknowns correspond-

ing to the generic case with perpendicular deviators. 51

Table 14 Prescribed and computed variables in a symmetric struc-

ture with even number of elastica sections (direct method). 52

Table 15 Equations in a symmetric structure with even number of

elastica sections. 52

Table 16 Prescribed variables and computed unknowns in the sym-

metric example. 52

Table 17 Prescribed and computed variables in a symmetric struc-

ture with odd number of elastica sections (direct method). 53

Table 18 Equations in a symmetric structure with odd number of

elastica sections. 53

Table 19 Prescribed variables and computed unknowns in the exam-

ple 1. 55

Table 20 Prescribed variables and computed unknowns in the exam-

ple 2. 56

Table 21 Prescribed variables and computed unknowns in the exam-

ple 3. 57

Table 22 Shape factor for circular hollow cross-sections. 61

Table 23 Section forces and static invariants of the rod segment A-E.

66

xxvii



xxviii contents

Table 24 Values of activation forces and resulting geometric ratios

for the sequence of bending-active tied arches (1-6) shown

in Fig. 46. The de�nition of the parameters can be found in

Fig. 45. 67

Table 25 Material properties. 78

Table 26 Upper and lower bounds for the input variables in the multi-

objective optimisation method. 79

Table 27 Experiments to select the population size and probability

of mutation. 85

Table 28 Form-�nding variables for di�erent con�gurations. 85

Table 29 Utilisation ratios of the rod and cables for the solution reached. 85

Table 30 Maximum de�ections (in mm) for the solution reached. 86

Table 31 Material properties of the prototype. 96

Table 32 Section forces in the rod and cables during the activation

process. 103

Table 33 Section forces in the horizontal struts during the activation

process. 103

Table 34 Section forces in the rod and cables due to the installation

of the pallets. 105

Table 35 Section forces in the rod and cables due to the symmetric

load case for the load testing. 106

Table 36 Section forces in the rod and cables due to the non-symmetric

load case for the load testing. 106

Table 37 Section forces in the rod and cables due to the torsion load

case for the load testing. 107



1 I N T R O D U C T I O N

”
The straight line belongs to men, the curved one to
God.

— Antonio Gaudí
(Architect)

In the realm of structures, e�ciency is driven by the combination of adequate mate-

rial properties and structural con�guration. Well-designed curved shapes, as in the

case of arches and shells, create e�ective mechanisms to transmits loads and lead

to lightweight structural solutions with low material consumption. The 20
th

cen-

tury has witnessed the introduction of two extremely e�cient and succesful surface

structural systems for roofs and other structural applications: thin shells and ten-

sile structures. The development of thin shells was closely related to the expansion

of reinforced concrete. Large scale tensile structures were made possible thanks to

the application of novel analysis techniques and materials (high-strength steel and

acrylate cladding –as in Munich’s Olympia Stadium– and later, structural fabric

membranes).

Paying attention to traditional building methods, there are many examples that

are source of inspiration to search for lightweight as well as environment-aware con-

structions. In di�erent places of the globe, dwellings are built bending and joining

very �exible rods, usually made of bamboo or straw bundles. These constructions

are, despite their lightness, remarkably sti� because of their shape, reached through

elastic deformation. They have also a very low carbon footprint due to the use of

natural materials and the low material consumption.

The idea to build using elastic deformation as a strategy to achieve a structural

shape was adopted by Frei Otto who designed and built in 1975 the Multihalle in

Mannheim (Germany), a temporary (but still standing) roof for an exhibition pavil-

ion, made of timber laths that were assembled on the ground, lifted to the �nal

position, �xed to the ground and stabilised with cables [43]. The Multihalle marked

the beginning of a new type of structures called elastic gridshells [72]. This de-

nomination refers to spatial structures composed of a grid of continuous slender

members that achieve its �nal shape by means of elastic bending (Fig. 1a). It com-

bines the advantage of traditional construction using very �exible elements with

the use of modern techniques and materials and allows to build in larger scales. The

required materials should have a high ratio between strength and Young’s modulus

to reach signi�cant curvatures while keeping enough elastic reserve. The result is a

lightweight structure, rapidly assembled and with low material consumption. The

structural principle is called active bending and it is being studied by several research

groups.

1
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After the Multihalle, several smaller gridshells have been built. A detailed ac-

count of the realisations may be found in [38]. Most of them use timber [76], but

more recently GFRP tubes have also been used [36, 37]. Of this last kind, the most

outstanding example is the ephemeral cathedral of Creteil in Paris (Fig. 1c), designed

by the �rm TESS and the Navier Laboratory of the ENPC. Other examples –e.g. Fara-

day Pavilion [69], ICD/ITKE Research Pavilion (Fig. 1b), Ongreening Pavilion [44],

the Asymptotic Pavilion at the central campus of the TUM [86]– are of ephemeral

and/or sculptural nature.

(a) Mannheim Multihalle [43]. (b) ICD/ITKE Research Pavilion [66].

(c) Ephemeral cathedral of Creteil [38].

Figure 1: Some iconic gridshells built in the last years.

One of the inconveniences that hampered the development gridshells in the 1980s

and 1990s was the di�culty to determine the target con�guration of the structure,

because the activation process, from the initial stress-free con�guration to the de-

sired con�guration is highly non-linear. This problem has been intensively researched

in the last ten years, and today, there are e�cient software tools for simulating the

activation process from the unstressed con�guration.

In fact, there is an increasing interest in investigating the behaviour of very �ex-

ible structures subject to large deformations, both in the investigation of buckling

as a method to shape structures and devices at di�erent scales [78], as well as in

the generation of mechanical and computational models [16]. Good examples of

this are recent references by the Chair of Structural Analysis at the TU Munich that

apply novel beam models, isogeometric analysis and CAD tools for bending-active

problems [11, 95].

As can be seen in the literature, the form-�nding problem of bending-active struc-

tures has been extensively studied. However, the number of investigations focused

on their structural performance and e�ciency in relation to their shape and mem-

ber sizing is still limited [34, 64]. Apart from the already mentioned di�culty to

form-�nd the structure, the need to use a su�ciently �exible but at the same time

strong material for the rods has limited the application to structures made of timber

and more recently of GFRP and also bamboo [87]. Additionally, this fact has tra-
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ditionally restricted the applicability of bending-active structures to dome shapes,

since for structures that need to bear heavier loads and limit de�ections, such as

footbridges, the design space may be very narrow, and this explains why there are

very few bending-active examples.

Therefore, there are many questions still open for research in active bending:

where are the limits of applicability for bending-active structures?, is it possible

to build structures with larger loads like pedestrian bridges?, which are the main pa-

rameters in the assessment of the structural response of a bending-active system?

Are bending-active structures advantageous over passive (standard) ones? Despite

the responses are not evident, they re�ect that there is still room to generate knowl-

edge and improve applications in the �eld.

1.1 motivation

The origin of this thesis lies in the previous work carried out by Lázaro [55].

His dissertation examines the fundamentals of the geometrically exact rod model

and its connection with the non-linear theory of elasticity. The geometrically exact

rod model belongs to a well-established class of mechanical models speci�cally for-

mulated to reproduce the behaviour of very �exible structures. These are derived

from the so-called geometrically exact (or Reissner-Simo) beam theory, and they

are able to handle arbitrarily large rotations of beam cross-sections by considering

their mathematical properties as elements of a non-additive and non-commutative

group [60]. Reissner-Simo models are not free from implementation di�culties,

mainly caused by the exact treatment of rotations. However the conceptual sim-

plicity of the underlying theory and the subsequent powerful numerical solutions

evince their potential consideration as a basis for form-�nding and analysis meth-

ods for bending-active structures. In this context, his work set the stage to advance

in the development of a form-�nding computational method to simulate the process

of deformation of bending-active elements using this mechanical model.

After few months working in the �eld of computational methods, the author had

the opportunity to join the research project: Sistemas estructuras �exo-activos- Con-
cepción, desarrollo y análisis de nuevos prototipos (FLEXACT - grant BIA2105-69330-

P), aimed to: (1) conceive new structural prototypes for lightweight structures based

on active bending strategies; (2) analyse the feasibility of the proposed systems; (3)

develop an e�cient computational procedure for shape determination and analysis

of �exo-active structures. This implied a partial modi�cation of the thesis guidelines,

reducing the weight of the computational-analytical part and redirecting the works

to the �eld of practice and application. Nonetheless, this integrated approach al-

lowed the author further exploration of other key aspects of the design process such

as: (a) conceptual design by means of small-scale models; (b) design and fabrication

of custom-made pieces for bending-active systems; (c) activation and assembling

process. All these topics are re�ected on a 5 m long prototype of an experimental

lightweight footbridge, which has been designed, fabricated and tested in the frame

of this PhD thesis.

Moreover, the reduced number of realisations has further limited the knowledge

about the structural response of bending-active structures. This fact motivated the

studies carried out in this dissertation on e�ciency and structural performance for

this structural type.
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Finally, the well-established knowledge about optimisation methods based on ge-

netic algorithms inspired the development of a design tool to obtain e�cient struc-

tural con�gurations for bending-active arches using multi-objective optimisation

strategies. This work was carried out in the Department of Architecture & Civil in

Engineering at the University of Bath (UK), under the supervision of Dr. Shepherd,

expert in parametric modelling and optimisation methods.

1.2 research objectives

This doctoral thesis aims to evaluate the applicability of the active bending prin-

ciple to the design of lightweight structures, so that they are able to meet the limi-

tations imposed by codes for pedestrian bridges and roo�ng applications. This goal

is achieved by: (a) understanding their structural behaviour from the determination

of the initial geometry of the system to the assessment of the structure against the

design loads posed by codes; (b) evaluating the in�uence of the form-�nding param-

eters involved in the equilibrium con�guration and (c) providing comprehensive

directions towards e�cient solutions with maximum elegance in shape. For that

purpose and given the knowledge gaps identi�ed, the following objectives were es-

tablished:

• To conceive a new structural prototype based on the active bending principle.

The possibility of applying active bending as a resistant mechanism in struc-

tural types suitable for lightweight pedestrian bridges and roo�ng modules is

explored. The de�nition of structural types is supported by the development

of conceptual models and prototypes.

• To advance knowledge in computational modelling and behaviour of very

�exible structures. This includes the implementation and specialisation of an

alternative mechanical model –the so-called geometrically exact (or Reissner-

Simo) beam theory– into the well-known dynamic relaxation (explicit) method.

This mechanical model has been speci�cally designed to reproduce the be-

haviour of very �exible structures and has not been used so far in form-�nding

of bending-active structures.

• To assess the structural performance and e�ciency of the bending-active con-

�gurations identi�ed as promising applications for the design of lightweight

structures. The assessment must include the structural response due to acti-

vation forces and loading models posed by codes.

• To develop a computational procedure based on genetic algorithms to deter-

mine the best structural con�guration of the selected bending-active arrange-

ment, considering the material and geometric restrictions, as well as the limi-

tations posed by the Eurocode for footbridges.
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1.3 dissertation outline

This dissertation is composed of eight chapters and one appendix. It is organised

as described in the following:

chapter one gives the motivation and research objectives of this PhD thesis.

The dissertation outline is also detailed;

chapter two presents a review on the state of the art on active bending, with

particular regard to the strategies of shape determination and preceding works

on the structural performance and e�ciency of bending-active structures. A

brief review on previous works about the application of the active bending

principle in the design of lightweight footbridges is also provided;

chapter three provides the development of a novel form-�nding method based

on the geometrically exact rod model (or Reissner-Simo beam theory) for

bending-active structures. It outlines a brief summary of the fundamentals of

Reissner-Simo theory and the description of the numerical framework. The

principles of the dynamic relaxation method are also reviewed. The chapter

ends with a set of numerical examples showing the ability of the method to

simulate the deformation process of bending-active elements. This chapter

is an adaptation of the published peer-reviewed paper: Bessini, J.; Lázaro, C.;

Monleón, S. (2017) "A form-�nding method based on the geometrically exact

rod model for bending-active structures". Engineering Structures. 152:549-558.

doi: 10.1016/j.engstruct.2017.09.045;

chapter four presents the bending-active braced (or tied) arch as a proposal of

bending-active applications, with emphasis on the analytical development of

the solution. This chapter also describes an analytical method based on elas-
tica curves to generate shapes for bending-active braced;

chapter five goes into the part of the work related to the analysis of structural

performance and e�ciency of bending-active tied arches. Numerical experi-

ments are carried out to evaluate the structural response of a �nite number of

arches due to activation forces and the loading models posed by the Eurocode

for footbridges. This chapter is an adaptation of the published peer-reviewed

paper: Bessini, J.; Lázaro, C.; Casanova, J.; Monleón, S. (2019) "E�ciency-

based design of bending-active tied arches". Engineering Structures. Vol. 200,

1 December 2019, 109681;

chapter six presents a design tool to generate e�cient con�gurations for braced

bending-active arches using multi-objetive optimisation strategies. Following

the structural principles used in Chapter 5, this algorithm evaluates every

potential con�guration to determine the best structural solution. This chapter

is an adaptation of the published peer-reviewed paper: Bessini, J.; Shepherd,

P.; Monleón, S.; Lázaro, C.; (2020) "Design of bending-active tied arches by

using a multi-objective optimisation method". Structures. Vol. 27, pp. 2319-

2328. doi: 10.1016/j.istruc.2020.07.045;

chapter seven shows the design, fabrication and assembling of a footbridge

prototype based on the active bending principle;
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chapter eight presents the conclusions of the thesis and a proposal for future

works;

appendix a gathers the numerical results in the form of diagrams used in the

design of the experimental bending-active footbridge presented in Chapter 7.



2 S TAT E O F T H E A R T

”
Read Euler, read Euler, he is the master of us all.

— Pierre Simon Laplace
(Astronomer and mathematician)

2.1 the active bending principle

The term active-bending refers to a category of structures in which bending is

used in the process of shape con�guration, obtaining structural schemes from elas-

tic members such as beams, plates or rods of great slenderness, which are initially

straight and unstressed (Fig. 2). Because of the geometrical and mechanical proper-

ties of the bent (or active) members, bending-active structures are in general light-

weight structures that achieve the desired sti�ness due to the curved shape acquired

by active elements and to the action of stabilising additional members [16, 18].

Figure 2: Activation process of an initially straight rod.

The �rst examples of bending-active structures are found in vernacular architec-

ture, for instance in the construction of tent-like dwellings by tribal and nomadic

societies (Fig. 3), where �exible slats are joined to form a lattice and bent to a dome-

shaped roof [53, 56]. In spite of the ancient use of this technique, however, the

number of contemporary realisations is limited.

A pioneering architectural realisation using the active bending principle is the

Mannheim Multihalle (1974) designed by Frei Otto, in collaboration with Ian Liddell

and Chris Williams (Fig. 4). With no computational power and simulation knowl-

edge –computers were not powerfull enough at that time– the geometry of the grid-

shell was conceived as a free-form grid of bent timber members and fully form-found

by using meaningful physical models [72].

7
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(a) Oca shelter (b) Yurt tent

Figure 3: Examples of vernacular architecture built by means of elastically bent elements

[97].

(a) Inside view (b) Outside view

Figure 4: Mannheim Multihalle [43].

Otto’s concept meant the birth of a speci�c structural type: the elastic gridshell;

a surface structure in which a �at quadrangular mesh of initially straight members

with rotation-free joints is lifted into the desired con�guration and stabilised by

means of addtional structural members [18].

Since the construction of the Mannheim Multihalle, active bending has attracted

considerable attention as a new paradigm to build lightweight structures. As a result,

a number of dome-shape gridshells have been devised in the last years.
1

However,

bending-active structures are not limited to gridshells and there are other examples

such as pre-bent composite beams or experimental footbridges.

Baverel and Caron [12] proposed a concept of a footbridge using a beam pre-

stressed by bending. The mechanism of a catapult was the basis of the structural

concept to develop the project. Finally, they built a prototype to check the calcula-

tions and the technical feasibility of the system (Fig. 5a). Similarly, the Laboratoire
Navier of the École des Ponts ParisTech –Baverel and Caron belong to this research

group–, devised and built a model of prestressed composite footbridge (Fig. 5b).

The bowstring bridge is obtained by bending straight glass �bre pipes and stabilis-

ing them with cables and zig-zag carbon �bre stays [26]. It can be concluded that

there is a �eld to be explored in the applicability of the active-bending principle in

the design of lightweight pedestrian bridges.

1 A thorough review on realisations may be found in the PhD thesis of Du Peloux [38].
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(a) Experimental footbridge using a beam prestressed by bending [12].

(b) Conceptual model of a prestressed composite footbridge [26].

Figure 5: Experimental prototypes for bending-active footbridges.

2.2 required material properties

The PhD thesis of Douthe [34] included a thorough study of suitable materials

for active bending based on Ashby’s methodology [6]. According to it, several per-

formance indices are derived from the various criteria that need to be considered to

assess the validity of a material. Among these indices, the ratio strength to Young’s
modulus, as well the Young’s modulus itself play a key role, because materials with

high values of both indices are strong and �exible enough to work in a curved con-

�guration. Lienhard [64] has proposed the following ratio between the elastic limit

and the modulus of elasticity for a material to be suitable for active bending:

σel
E

> 2.5 · 10−3 (1)

The ratio is related to the curvature that a rod of a given material can achieve

while remaining in the elastic range. Some metals (aluminium, titanium and high-

strength steels), carbon �ber and glass �ber composites, as well as bamboo and some

types of timber comply with Lienhard’s criterion. For this reason, most examples of

active bending are made of glass �ber composites, bamboo or timber.

The requirement of high-slenderness for active members is opposed by the need

of bearing external loads, since too slender members may be prone to local buckling

and may lead to structures with low sti�ness. In the design of gridshell-like struc-

tures, the most dominant actions are wind and snow, so the structural con�guration

is typically targeted to obtain dome shapes. However, in the case of structures that

must support heavier loads, such as pedestrian footbridges, the designer must �nd

a compromise between the strength and the shape of structural members. This key

observation is analysed by the author in Chapter 5.
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2.3 determination of the configuration2

Due to the non-linearity of the structural response of the active members, the

simulation of the process of deformation of bending-active elements is one of the

main di�culties during the conceptual phase. Moreover, it is often not possible to

obtain beforehand the equilibrium description of the system; its shape has to be de-

termined as a result of a tight interaction between form, forces, material properties

and boundary conditions [16, 64].

As in the case of tensile structures, the design of bending-active structures re-

quires an initial form-�nding step to determine the initial geometry of the system.

Comparing, for example, a gridshell with a cable net, there is additional complexity

in the gridshell due to the fact that bending will also involve shear and possibly axial

forces, and all these will be present in the interaction between members once the

equilibrium con�guration is reached. In addition to the pure form-�nding problem,

bending-active structures require tracking the full deformation path of the structural

elements from an initial unstressed con�guration in order to quantify the e�ect of

the activation of bending on the structure. Once the target shape has been reached

and stabilised, the structural behaviour is considerably in�uenced by the inherited

stress state [18].

Nowadays, the availability of computational tools has made it possible the com-

plete simulation of the process of deformation of active members, taking into ac-

count both the the purely geometrical aspects and the mechanical problem. Among

di�erent strategies, formulations based on explicit methods as dynamic relaxation

(DR) using Kirchho�’s theory as underlying mechanical model are the main trend

today [3, 8, 30, 31, 35, 39, 62, 84, 88].

The �rst proposal to handle the form-�nding problem of gridshells was intro-

duced by Otto et al. in [72]; they studied the uniform mesh net with square cells,

explained how to build meaningful physical models for hanging nets and proposed

the so-called compass method: a geometric method to �nd Chebyshev meshes from

a given curved shape. This method has been recently extended by other authors

either developing computational tools [21, 40, 77] or adding new implementations.

For instance, Lefevre [61] proposed an extension of the method that take into ac-

count the eccentricity between the rod layers. These techniques based on the use

of physical models or simple geometric procedures provide admissible geometrical

solutions (Fig. 6), but they are not able to simulate the induced pre-stress state.

Hence, the development of computational form-�nding methods with an integrated

approach as explained before has been necessary to advance in this research �eld.

In addition to the pure form-�nding problem, the need to solve the mechanical

problem requires four basic features in order to obtain a reliable simulation [56].

1. The implementation of a mechanical model for �exible members capable of

reproducing large displacements and rotations of cross-sections;

2. The ability of traversing critical points in the equilibrium path;

2 This section is based on the articles: Bessini, J.; Lázaro, C.; Monleón, S. (2017) "A form-�nding method

based on the geometrically exact rod model for bending-active structures". Engineering Structures.
152:549-558. doi: 10.1016/j.engstruct.2017.09.045 and Lázaro, C.; Bessini, J.; Monleón, S. (2018) "Me-

chanical models in computational form �nding of bending-active structures". International Journal of
Space Structures. Volume 33 (2), pp. 86 – 97.
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Figure 6: A physical model subject to bending and torsion e�ects. (Bending of developable

surfaces has been studied in [93].)

3. The possibility to add and remove (in each design stage) auxiliar members to

bring the system to the desired con�guration;

4. Storing an inherited state corresponding to a previous stage.

In this context, a direct simulation –starting from an underformed con�guration

until the equilibrium con�guration is reached– may be performed using suitable

�nite element software. Lienhard proposed a form-�nding method based on �nite

element simulations where unstressed members reach their target shape by short-

ening non-linear virtual links [64]. This process has been recently improved by

using isogeometric �nite elements implemented into a CAD environment [11, 54].

Both, the direct simulation strategy and DR, must take into account the non-linear

mechanics of large deformations of slender rods.

Generally, �nite element models have been used for the load analysis and the

simulation of the construction process of structures. The use of implicit resolution

methods is also another potential alternative that is often used to �nd equilibrium

solutions. However, in the so called ’design-oriented’ problems, where the main

unknown is the geometrical con�guration and the determination of deformations

and stresses is not the main goal, the use of explicit methods has been reported

by some authors [7, 31] as more advantageous for those cases in which prescribed

conditions are far from the equilibrium geometry.

Among di�erent explicit methods, DR provides a straightforward way to obtain

the static equilibrium of the structure from a given arbitrary and inaccurate initial

con�guration. The possibility of using �ctitious values for the sti�ness and mass,

high damping ratios and di�erent time steps contributes to the fast convergence of

the numerical solution. This method does not require a �rst shot with an initial con-

�guration that resembles the desired shape, but a good initial guess will be bene�cial

in terms of convergence [8].

DR has been specialised in di�erent ways to �nd the shape of bending-active

structures. The following key aspects are closely related and de�ne the kind of

specialisation:

• Type of discretisation;

• Underlying beam theory.
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There are two types of discretisations in DR formulations reported in the litera-

ture: �nite–di�erence–like discretisations and �nite–element–like discretisations.

In both cases, a key question is how force–con�guration relationships between

nodes are established. Those relationships are determined in each case by the under-

lying beam theory, de�ned by the kinematic assumptions of the model, the selected

elastic energy terms and the constitutive relations [56]. Three groups of discretisa-

tions can be found in the literature in the context of form-�nding of bending-active

structures: (a) models based in discrete mechanics using 3 or 4 DoFs per node; (b)

�nite-di�erence-like discretisations, that shares the same principles as models based

in discrete mechanics and also use 3 or 4 DoFs per node and (c) �nite-element-like

methods with 4 and 6 DoFs per node. The main distinction between the �rst two

groups and the �nite-element-like method is found in the way strain measures and

internal forces are evaluated. The following sections go into these details in more

detail.

2.3.1 Models based on discrete mechanics

They stem from developments in the �eld of computer animation: the underly-

ing mathematics is based on discrete di�erential geometry (DDG) and they allow

for very fast explicit simulation of the dynamics of highly �exible rods. For exam-

ple, Bergou et al. [14] presented a discrete treatment based on the study of adapted

framed curves and the topological concepts of parallel transport and holonomy. In

contrast to typical simulation techniques relying on a kinematic description, they

treat the centreline as dynamic and the material frame as quasi-static. Torsion is

quanti�ed by the angular deviation between material frames and natural Bishop

frames. Thereby, solutions are formulated with a minimal number of degrees of

freedom: the explicit description of the centreline of the rod (three DoFs) and the ori-

entation of material frame using a scalar variable (one additional DoF). The authors

claim that using this procedure, numerical instabilities are avoided in the dynamic

relaxation algorithm. CAD tools based on this approach are commercially available

[75], but unfortunately, as Cuviliers et al. report in [29], their implementation de-

tails are not entirely available to the public. In most cases, the documentation is

limited to explanations or simple examples provided by the developers. The most

widely used CAD tools and libraries for the design of actively-bent structures are:

kangaroo 1 is probably the most representative tool for contemporary imple-

mentations of the DR method in the design of bending-active structures. It consists

of a solver library and a set of Grasshopper (Rhinoceros3D) components [74]. To

quote the developer, Daniel Piker: Kangaroo 1 works by minimising total energy [73].

In other words, Kangaroo moves iteratively the points (or particles) that form the

system, by small steps, until the sum of the energies acting on all the points is as low

as possible (equilibrium state). This approach can be seen as a modi�ed form of DR.

Because of the lack of accuracy in the explanation of the methodology, Kangaroo

has often been classi�ed as a particle spring system: an e�cient approach to simu-

lating the movement of soft bodies in computer animation, but with a too simple

mechanical background to make it reliable for engineering applications.
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shape-up is a library for static and dynamic geometry processing, using a uni-

�ed optimisation framework based on shape constraints [20]. This solver uses pro-

jection operators and proximity functions to relocate a set of points by minimising

the potential energy subject to physical and geometrical constraints. It has been

developed by the Computer Graphics and Geometry Laboratory of EPFL.

kangaroo 2 has also been developed by Daniel Piker, with the aim of improving

Kangaroo 1. However, it does not actually use the classical form of DR implemented

in the previous version, but an approach based on projective constraint-based solv-

ing, as Shape-Up library does [29]. Indeed, the solving process used by Kangaroo 2

can be de�ned as a specialised version of the Shape-Up formulation, since it accel-

erates the system by means of virtual velocities attached to each point. It is one of

the most succesful tools among designers and architects.

k2engineering has been developed by Cecilie Brandt-Olsen [24]. It is a plug-

in that contains a set of customised Kangaroo 2 Grasshopper components with the

scope of calibrating a number of goals concerning structural properties. Among

others, this tool is particularly useful for the analysis of gridshells, typically charac-

terised by large deformations when external loads are applied.

2.3.2 Models based on finite-di�erence discretisations

They share many features in common with the discrete mechanics models: dis-

crete strain measures at nodes are deduced from di�erence schemes between nodal

degrees of freedom, and internal forces or nodes are calculated by ad-hoc equilib-

rium relations or from energy derivations. Several approaches for this method have

been suggested over the years, being reduced models with only three translational

DoFs the most used.

In chronological order, Adriaenssens and Barnes [3], presented a method based

on the Bernoulli-Euler theory with the extensibility assumption. They propose to

calculate axial strains from nodal coordinate di�erences and the magnitude of bend-

ing momentsMj through estimates of curvatures κj obtained from the positions of

groups of three consecutive nodes (i, j, k) and the constitutive equationMj = EIκj
(see Eq. 2). Bending moments Mj are transformed into equivalent forces (Sij, Sjk),

acting on the actual geometry of the beam (see Fig. 7). In this way, only 3 DoFs

per node are needed. This model is valid for initially straight beams with square or

circular shaped cross-sections [2].

κj =
2 sinαj
dik

(2)

Douthe et al. [35], focusing on the previous work by Adriaenssens and Barnes,

proposed a similar methodology, in this case it is suitable for modelling initially

straight beams with axisymmetric cross-section for the design of gridshells.
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Figure 7: Discretisation in Adriaenssens and Barnes [3].

The problem of torsion and bending for dynamic relaxation modelling of spatial

curved beams with non-uniform cross-sections was approached by Barnes et al. [8]

few years later, extending Douthe’s work; their assumption accounts for both tor-

sion and transverse (out of plane) bending e�ects. As in the previous reference, the

out-of-plane shear forces are calculated using the constitutive equation for torsion

Mjkl = GJκjkl. The discrete measure of the torsional strain κjkl is obtained as

follows:

κjkl =
φ−φ0
djkl

(3)

where φ0 is the angle made up of planes ijk and jkl at the start of the process (Fig.

8). This model is valid in cases where cross-sections are isotropic.

i

j
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l

Pij

ϕ

Pkl

Pij
djk

Pkl

Figure 8: Discretisation in Barnes et al. [8].

Du Peloux et al. [39] and Lefevre et al. [62] have recently presented alternative

approaches to model elastic rods with 4-DoFs: three DoFs for nodal positions and

one addtional DoF –φ– to keep track of torsion (see Fig. 9). As mentioned before,

these formulations are close to recent developments in the �eld of computer anima-

tion [14, 15]. The use of Bishop frames [19] allows to deal with general cases of

structures with anisotropic cross-sections and torsional sti�ness e�ects. Similarly,

D’Amico et al. [31] proposed an approach to 3D curved rods as Du Peloux et al. It

computes the angular di�erence between material frames and Bishop frames in case

that torsional constraints are �xed at rod ends. Bishop frames at nodes are found by

using Catmull-Rom interpolation and parallel transport.
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Figure 9: Discretisation in Du Peloux et al. [39].

In all these cases, discretisations were developed to formulate DR algorithms for

form-�nding. But again, the connection with FEM software for the subsequent anal-

ysis and checking of the structure is not direct. Table 1 summarises the main features

of �nite di�erence-like parametrisations presented in this section.

Reference No. of DoFs Beam theory Sti�ness parameters

Adriaenssens et al. [3] 3 Extensible B-E EA, EI
Barnes et al. [8] 3 Modified extensible K-L EA, EI, GJ
Du Peloux et al. [39] 4 Inextensible K-L GJ, EI2, EI3
D’Amico et al. [31] 3 Extensible K-L EA, GJ, EI2, EI3

Table 1: Comparison between references using �nite-di�erence-like discretisations.

2.3.3 Models based on finite element discretisations

Three categories may be identi�ed here:

co-rotational models were introduced in the 1970s by Wempner and Be-

lytschko [13] and have been widely used as basis for dynamic relaxation algorithms

for shape �nding. This technique splits the rod into two-node elements and the con-

�guration is de�ned by nodal positions and nodal frames at a given instant. Thereby,

the mechanical problem is divided into two sub-problems [56]:

1. Modelling the mechanical response of �nite elements in terms of local dis-

placements and rotations. This requires to keep track of element frames to

assess angular di�erences with nodal frames (Fig. 10). In order to avoid the

implementation of full element frames, the use of simpli�ed co-rotational se-

tups is a common procedure in the references presented in this section. Fig-

ure 11 shows this strategy, that consists in computing the vector e1 as the

normalised di�erence of updated nodal positions.

2. Tracking the changes in nodal positions and nodal frames with no limitation

in their magnitude. This means updating large rotations of nodal and element

frames between iterations. The reader is referred to the work of Argyris [4]

and Cris�eld [27] for a detailed treatment of large rotations in this sort of

problems.
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Figure 11: Simpli�ed co-rotational setup.

The �rst approach to handle the problem of slender beams in large displacements

using DR was introduced by Wake�eld in 1980 [96]; he implemented a formulation

taking into account 6 DoFs. As reported by Adriaenssens [1], Williams developed a

more precise resolution scheme, assuming local reference frames at nodes and cubic

shape functions to simulate the sti�ness of the rod. Few years later and based on

Williams’s work, D’Amico et al. [30, 32] built a numerical framework aimed to the

design of gridshells. Li and Knippers [63], as well as Senatore and Piker [88] used

a co-rotational approach to compute the resultant �eld of displacements and the ef-

fect of large deformations in the beam elements. The use of 6 DoFs per node has the

advantage of providing a complete description of the mechanical response. How-

ever, Adriaenssens and Barnes mention in reference [3] that the coupling between

translational and rotational DoFs can cause conditioning problems in explicit meth-

ods. Latest advances in this �eld are related to the implementation of optimisation

methods into the DR formulations. For example, Sakai et al. [85] and Rombouts et
al. [81] have developed shape optimisation approaches for the design of gridhsells

using co-rotational beam elements and DR.

geometrically exact models have been speci�cally designed to reproduce

the behaviour of very �exible structures. The formulation is termed geometrically
exact in the literature, because of the mathematically exact handling of rotations.

Reissner [79] and Simo [89] developed a non-linear theory for the deformation of

�exible rods that can be considered as a special case of Cosserat’s theory, in which

the director vectors attached to material �bres in a cross-section are constrained

to remain inextensible and orthogonal, but not necessarily normal to the deformed

centreline tangents. This theory can be also interpreted as a non-linear version of

Timoshenko’s theory for shear deformable beams and o�ers the conceptual sim-

plicity of the kinematic assumption together with the power of a direct theory for

solving non-linear problems. The assumptions of the geometrically exact model can

be summarised as follows: cross-sections remain plane without changes of shape or

size, although they may experience �nite rotations as a rigid-body; warping e�ects
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are not modelled; the centreline can undergo extension, and shear deformations are

allowed. Simo in 1991 [90], extended his previous work incorporating shear and

torsion-warping deformation into the geometrically exact rod model. Furthermore,

di�erent authors (Cardona and Geradin [25]; Ibrahimbegovic [46]; Sonneville et al.
[92]) have proposed later versions of the geometrically exact rod model over the

years, but without adding signi�cant changes in the approach. The specialisation

of the geometrically exact rod model to the DR procedure has been developed by

the author and his PhD supervisors in [16] and constitutes a substantial part of this

dissertation (see Chapter 3).

non-linear kirchhoff rod models have been recently developed by Armero

et al. [5] and Meier et al. [68]. It is interesting to note that despite Kirchho�’s theory

for rods dates back to the 19
th

c., the formulation of shear-indeformable, non-linear

�nite elements with arbitrarily large rotations has not achieved success until recent

years. Especially interesting are isogeometric (IGA) implementations (Bauer [10]),

because they are capable of simulating the activation process of a bending-active

structure in a CAD environment, even in combination with membranes, and doing

the subsequent structural analysis [94].

2.4 previous works on structural performance of
bending-active structures3

The number of investigations focused on the assessment of the structural per-

formance and e�ciency of bending-active structures is limited. In order to extend

the realm of applicability of this structural principle, further research is needed in

relation to material properties, member sizing and geometry.

Lienhard in [64] studied the e�ciency of several canonical cases of bending-active

structures subject to simple loading patterns over a limited number of cases. A dif-

ferentiation is drawn between (a) pure bending systems, (b) bending-compression

systems, (c) bending-tension systems and (d) bending-torsion systems. A �rst test

considers elastica-shaped arches with several rise-to-span ratios subject to a verti-

cal point load at midspan, and concludes that: once the beam forms the post-buckling
elastica curve, there is no signi�cant change in normal force, leading to constant geo-
metric sti�ness [64]. As a following step, Lienhard carried out numerical dynamic

tests comparing eigenfrequencies of actively bent arches, and passive arches with

the same geometry to evaluate the e�ect of the geometric sti�ness regardless of the

applied load pattern. Pure bending systems give the same frequencies in both cases,

active and passive arches. Therefore, the sti�ness of this kind of systems is indepen-

dent of the bending activation process. Bending-compression systems, as elastica

arches, provide lower values of sti�ness than the passive case, due to compressive

axial forces. In contrast, bending-tension systems, as bow-string type structures,

show higher values of sti�ness comparing again with their passive counterparts.

In the �eld of materials, Douthe considered in [34] strength and sti�ness criteria

to assess the applicability of di�erent materials for active grid-shell members. In

2010, Douthe et al. [37] showed that composite materials in glass �bre reinforced

3 This section is based on the article: Bessini, J.; Lázaro, C.; Casanova, J.; Monleón, S. (2019) "E�ciency-

based design of bending-active tied arches". Engineering Structures. Vol. 200, 1 December 2019, 109681.



18 state of the art

polymers are good options to build elastic gridshells. Few years later, Kotelnikova-

Weiler et al. [51] extended their previous work to provide some directions for the

choice of materials for actively-bent elements, with emphasis on the long-term be-

haviour of pultruded GFRP elements under the e�ect of bending and torsion stresses.

Other aspects such as the durability (creep, relaxation or fatigue) or the dynamic

behaviour cannot be neglected in the design of bending-active structures, especially

in those made of composite materials [37]. In GFRP footbridges it has been observed

that the low weight and high �exibility of the structure have a large in�uence in the

dynamic response of the structure, since natural frequencies are expected to be low

and may be activated by pedestrians walking [26].

In the framework of the research project FLEXACT, Lázaro et al. [58] analysed the

response of circular and elastica-shaped active arches subject to a point load, and

quanti�ed the relation between geometric sti�ness, tangent sti�ness and the angle

at arch ends for di�erent values of the slenderness. Results show that in slender

arches, starting from a straight geometry and increasing the angle at both ends, the

sti�ness increases rapidly until it reaches a maximum (Fig. 12). Passive and bending-

active arches show similar behaviour. In the case of elastica arches, the activation

produces a reduction in maximum sti�ness ranging from 6% to 9.5%, depending of

the slenderness of the rod and comparing it with the sti�ness of a circular arch with

the same geometry. In the case of circular arches, activation does not in�uence the

sti�ness because it does not involve compression forces.

Figure 12: Total sti�ness of elastica arches with angle at the in�exion equal to φ0 for dif-

ferent values of rod slenderness λ [58].

More recently, the research group presented a preliminary study of the relation-

ship between structural shape, activation forces and activation stress levels for bending-

active structures considering di�erent structural con�gurations and loading condi-

tions [57]. This important part in the design of bending-active structures is deeply

explored in this PhD thesis.



3 A F O R M - F I N D I N G M E T H O D B A S E D
O N T H E G E O M E T R I C A L LY E X A C T R O D
M O D E L F O R B E N D I N G -A C T I V E
S T R U C T U R E S

”
One should not calculate a structure he cannot draw.
Formulae should not be used if their physical mean-
ing is not understood. A structure should not be de-
signed by computer if we do not know hot to calcu-
late it by hand.

— Javier Rui-Wamba
(Civil engineer)

This chapter is an adaptation of the published peer-reviewed paper: Bessini, J.;

Lázaro, C.; Monleón, S. (2017) "A form-�nding method based on the geometrically

exact rod model for bending-active structures". Engineering Structures. 152:549-558.

doi: 10.1016/j.engstruct.2017.09.045.

3.1 introduction

In the �eld of bending-active structures, the complexity of �nding beforehand

the equilibrium con�guration and the non-linearity of the structural response are

main issues during the conceptual phase. As explained in the previous chapter, the

use of tools based on classical form-�nding procedures as DR is the main trend

today; di�erent mechanical models with 3, 4 or 6 degrees of freedom have been

implemented for modelling the bending e�ect [3, 8, 16, 30, 31, 35, 39, 62, 84, 88]. As

previously seen, there is a well-established class of mechanical models which has

been speci�cally designed to reproduce the behaviour of very �exible structures and

however, they have not been explored so far in the framework of the form-�nding of

bending-active structures. These are derived from the so-called geometrically exact

(or Reissner-Simo) beam theory, and they are able to treat arbitrarily large rotations

and displacements. The objective of this chapter is to develop a form-�nding tool

based on Reissner-Simo’s theory and the DR method. The reader can refer to section

2.3.3 of the Chapter 2 for a brief review about the model.

One of the keys of this method is the choice of the form-�nding parameters: the

target centreline length and the kinematic constraints at beam ends will determine

the shape of the �nal structure in the ’design-oriented’ process. In addition, the

proposed form-�nding method is based on the following considerations:

• Explicit solution search using DR.

• The geometrically exact rod model as underlying mechanical model.

• Translations and rotations are updated by means of 6 DoFs per node.

19
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• Anisotropic cross-sections can be modelled. Thin-walled open cross-sections

are precluded, since warping and local buckling phenomena are not consid-

ered in the formulation.

• Initial speci�cations of the geometry do not need to be close to the equilibrium

solution.

• Boundary conditions are de�ned by nodal positions and cross-section orienta-

tions (optionally) of the beam ends. Additional numerical constraints or nodes

are unnecessary.

3.1.1 Outline of the chapter

The outline of the chapter is as follows: In sections 3.2 and 3.3, the geometrically

exact model formulation and the principles of the DR method are reviewed. The

fundamentals and description of the numerical framework are detailed in sections

3.4 and 3.5. Numerical examples showing the ability of the form-�nding method to

reproduce the behaviour of active members are included in section 3.6.

3.2 the geometrically exact rod model

The geometrically exact rod model was formulated by Simo [89] starting from

the work of Reissner [79]. It allows to reproduce arbitrarily large displacements and

rotations of rods using an exact kinematic description of �nite rotations of cross-

sections. In this section, a brief summary of the fundamentals of Reissner-Simo

theory is given. The notation used is based, although not the same, as the one intro-

duced by Simo. It follows more closely the one used by Ritto-Corrêa and Camotim in

their summarising reference [80]. The full development of this theory can be found

in the PhD thesis of Lázaro [55].

3.2.1 Basic kinematics

A �xed reference system {x,y,z} in space is chosen. Three con�gurations are con-

sidered (Fig. 13): a) The reference (ideal) con�guration, in which the rod is straight,

the line of centroids is aligned with the x-axis, and cross-sections are oriented in

such way that principal axes of inertia are parallel to y and z-axes. Unit vectors A2
and A3 are attached to the principal axes and A1 is normal to the cross-sections;

they form an orthogonal system. S is the (arc-)length coordinate along the centre-

line in the reference con�guration. X2 and X3 are coordinates in each cross-section.

b) The initial (undeformed) con�guration: the rod centreline can be a spatial curve.

Cross-sections are normal to the curve and are de�ned by a01, a02, a03, the unit

directors in the underformed con�guration, being a01 tangent to the curve. These

directors are the result of a rigid-body rotation of A1, A2, A3. c) The actual (de-

formed) con�guration at an instant t: during the deformation every cross-section is

assumed to undergo a rigid-body motion. Directors a1, a2, a3 remain unitary and

orthogonal, but a1 is not necessarily tangent to the centreline. If the components

with respect to the �xed space frame of a1, a2 and a3 are written in columns, they

form an orthogonal matrix Λ of determinant 1, which is only a function of S and

the time t. The position vector of a material point can be expressed in terms of its
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relative location into the section r∗, the position of the centroid of the section x and

the rotation of the cross-sectionΛ as follows:

x∗
(
S,X2,X3, t

)
= x (S, t) + r∗

(
S,X2,X3, t

)
(4a)

r∗
(
S,X2,X3, t

)
= Λ (S, t) R∗

(
X2,X3

)
(4b)

Figure 13: Kinematics of Reissner-Simo’s model [60].

Section points rotate from an ideal reference con�guration (described by R∗) to

the deformed (actual) con�guration. x(S,t) and Λ(S,t) are the con�guration func-

tions of the geometrically exact model. The 1D deformation gradient can be written

as [60]:

∂x∗/∂S = x ′ +Λ ′ΛT r∗ = γ+ κ̂ r∗ (5)

The hat over a variable denotes a skew-symmetric matrix. The same variable with no

hat refers to its axial vector. Capital letters refer to material variables (variables ex-

pressed in the system of reference attached to the cross-sections). Lowercase letters

refer to spatial variables (variables expressed in the �xed reference system {x,y, z}).
Transformations between spatial and material forms is performed through the ac-

tion ofΛ. Given a vector v, the operation v = ΛV is called push-forward, and the

operation V = ΛTv is called pull-back.

γ and κ are the generalised strain measures expressed in spatial form. Their

counterparts in material form, Γ and K, allow to de�ne the physical strain measures

Γd and Kd as:

Γd = Γ − Γ0 (6a)

Kd = K − K0 (6b)

K̂0 =ΛT0Λ
′
0 represents the rotation and twist rate of the initial centreline, and Γ0

is the material form of the tangent vector to the initial centreline. Γ0 is precisely

the vector A1 of the section frame in the reference con�guration, with components

{1,0,0}. Therefore:

Γd = Γ − A1 = {Γ1 − 1, Γ2, Γ3} (7)
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The �rst component of Γd is a measure of the elongation of the centreline and the

other two components are the distortions along the axes of the cross-section. It is

worth remarking that K0 = 0 when the rod is initially straight, something usual in

the initial de�nition of geometries in form-�nding problems.

3.2.2 Variation of the generalised strain measures

The variation of the con�guration can be computed as:

δx∗ = δx + δΛΛT r∗ = δx + δω̂ r∗ (8)

δω, the axial vector of δω̂, is referred to as the incremental rotation or spin. Be-

cause γ and κ are mathematical objects related to the deformed cross-section, their

variation requires a special de�nition: given a vector v, the corotational variation

5
δv is de�ned as the variation from the point of view of an observer located at the

section reference system as:

5
δv = Λ δ

(
ΛTv

)
= δv − δω× v (9)

The result is composed of two summands: the �rst is the variation of v from the

point of view of an observer located in the �xed reference system. The second is the

correction due to the movement of the actual con�guration as the observer moves

along the centreline of the deformed curve. Further details can be found in the

comprehensive work by Lázaro [55]. The co-rotational variations of the generalised

deformations are:

5
δγ = δx ′ + γ× δω and

5
δκ = (δω) ′ (10)

3.2.3 Equations of static equlibrium

First, the expression of the internal virtual work is manipulated. Introducing the

Eqs. (10) in the term corresponding to the internal forces n and momentsm in the

spatial description, the expression reads:

δWint =

∫Sj
Si

(
n ·
5
δγ+m ·

5
δκ

)
dS (11)

and integrating by parts:∫Sj
Si

(−n) · δxdS +
∫Sj
Si

(
−m ′ +n× γ

)
· δωdS

+ [n · δx]SjSi + [m · δω]
Sj
Si

(12)

The virtual work of the external forces qn and qm is:

δWext =

∫Sj
Si

(qn · δx+qm · δω)dS (13)

Static equilibrium is equivalent to the equality of internal and external virtual work

δWint = δWext for any compatible set of virtual movements of the system. There-

fore, the spatial form of the equations of static equilibrium are:

n ′ +qn = 0 (14a)

m ′ + γ×n+qm = 0 (14b)
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with the boundary conditions at the start:

[n (Si) +ni] · δx (Si) = 0 (15a)

[m (Si) +mi] · δω (Si) = 0 (15b)

and the boundary conditions at the end:[
n
(
Sj
)
+nj

]
· δx

(
Sj
)
= 0 (16a)[

m
(
Sj
)
+mj

]
· δω

(
Sj
)
= 0 (16b)

On the other hand, the internal virtual work in the spatial con�guration can be

expressed in matrix form as:

δWint =

∫Sj
Si

5
δε · fdS =

∫Sj
Si

(5
δγ · n+

5
δκ · m

)
dS

=

∫Sj
Si

{δ xT δωT δ x
′T δω

′T }


0 0
−γ̂ 0
1 0
0 1

{ nm
}
dS (17)

3.2.4 Equations of dynamic equilibrium

To account for dynamic e�ects, Simo [89] introduced the equations of motion

expressed in terms of forces and moments:

n ′ +qn =ma (18a)

m ′ + γ×n+qm = i ω̇+ω× iω (18b)

where m is the mass matrix, i the inertia tensor, a is the translational acceleration

vector, ω is the angular velocity vector and ω̇ the angular acceleration vector, all

of them expressed in spatial form.

3.2.5 Constitutive equations

The material form of the constitutive equations relates the static variablesN and

M with the physical deformations of the model Γd and Kd as follows:{
N

M

}
=

[
CΓ 0
0 CK

]{
Γd
Kd

}
(19)

Assuming that the centroid and the centre of torsion of the cross-section coincide,

CΓ and CK are:

CΓ =

EA 0 0

0 GAQ2 0

0 0 GAQ3

 (20a)

CK =

GJ 0 0

0 EI2 0

0 0 EI3

 (20b)

The spatial description of the internal forces is obtained pushing-forward the corre-

sponding material variables: {
n

m

}
=

[
Λ 0
0 Λ

]{
N

M

}
(21)
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3.3 the dynamic relaxation method

The dynamic relaxation method was introduced in the 60s by Day [33] and Otter

[71]. It was developed to determine the equilibrium con�guration of a system consid-

ering it as a �ctitious dynamic system; the initial speci�cation of the geometry can

be far from the equilibrum solution. The equilibrium con�guration is obtained trac-

ing step-by-step the motion of each node of the structure for small time increments

∆t using Newton’s second law, until the equlibrium state is reached [7]. In order to

achieve rapid convergence, several approaches can be considered, for example the

use of viscous damping. When the structure has large motions, additional damping

strategies (as kinetic damping) must be implemented. Being an explicit method, DR

does not require assembling any sti�ness matrix and it is quick to build the system,

providing powerful and reliable results for non-linear structural problems.

3.4 fundamentals of the method

This section shows the fundamentals of the implementation of the geometrical

exact rod model into the DR method.

An elastic rod is modelled by a discrete set of nodes xi, which are referred to the

�xed Cartesian coordinate system (global reference system {x,y, z}) These nodes are

linked in pairs, being at the same time, the ends of beam elements that constitute

the whole rod.

A local reference frame is associated to each node. The unit vectors of the frame de-

�ne the orientation of corresponding material axes of the cross-section. At the start

of the process, the orientation of the nodal frames at free nodes can be arbitrarily

chosen.

In addition to kinematic constraints, the parameter L0, the target length of the curve

in the equilibrium state, must be prescribed. The sum of distances between nodes

is near the prescribed target length of the elements when the state of equilibrium is

reached.

3.4.1 Application of D’Alembert’s principle

qn,qm

fmIj fnIj

fmiJ

fniJ

-fmiJ

-fniJ

-fnJk

-fmJk

J 

i

j

Figure 14: Scheme of forces and moments acting on the element ij and the node J

The fundamental of the method is based on D’Alembert’s principle. Dynamic

equilibrium is expressed using Eqs. (18a) and (18b), where out of balance forces f̃nJ
and out of balance moments f̃mJ

at node J are equal to the derivative of the linear



3.4 fundamentals of the method 25

momentum ṗJ and the derivative of the angular momentum ḣJ acting on this node:

f̃nJ = ṗJ =mJ aJ (22a)

f̃mJ
= ḣJ = iJ ω̇J +ωJ × iJωJ (22b)

On the other hand, the out of balance forces/moments are the resultant of the exter-

nal loads and the internal forces/moments caused by elements attached to node J :

f̃nJ = −fniJ − fnJk (23a)

f̃mJ
= −fmiJ − fmJk (23b)

Evaluating iteratively the equations of the dynamic equilibrium at nodes, the update

of the geometry is provided by the motion associated to each set of out of balance

forces/moments. The state of equilibrium is reached when the structure comes to

rest; the sum of all forces/moments is zero at each node.

Internal forces/moments at element ends are computed according to D’Alembert’s

principle: using the notation of Fig. 14, the following equation holds for any consis-

tent set of virtual displacements δx and spins δω:∫Sj
Si

(−n−qn +ma) · δxdS

+

∫Sj
Si

(
−m ′ +n× γ−qm + i ω̇+ω× iω

)
· δωdS

+
[
nIj − fnIj

]
δxi +

[
mIj − fmIj

]
δωi

+
[
niJ − fniJ

]
δxj +

[
miJ − fmiJ

]
δωj = 0 (24)

Assuming that masses and inertias are lumped at the nodes, angular velocity and

acceleration terms vanish from the integrals. Rewriting the boundary conditions in

matrix form, we have:

∫Sj
Si

(−n) · δxdS +
∫Sj
Si

(
−m ′ +n× γ

)
· δωdS

−

∫Sj
Si

(qn · δx+qm · δω) dS

=
{
δxi δωi δxj δωj

}
fnIj
fmIj
fniJ
fmiJ

 (25)

3.4.2 Determination of element end forces

In Eq. (25), the �rst line is coincident with the expression of the internal virtual

work in static equilibrium. Introducing a Lagrangian linear interpolation in Eq. (17),

the contribution of each element to the internal virtual work can be discretised. Con-

sidering two-node beam elements and using an intrinsic coordinate ξ, which takes
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ξ = −1 when S = Si and ξ = 1 when S = Sj, internal forces and moments can be

evaluated at their ends as follows:

δWint = δφ
T

∫1
−1


N0 1 0 1

JN
′
0 1 0

0 N0 1 0 1
JN
′
0 1

N1 1 0 1
JN
′
1 1 0

0 N1 1 0 1
JN
′
1 1




0 0
−γ̂ 0
1 0
0 1

{nm
}

Jdξ (26)

where N0 and N1 are the shape-functions for two-node beam elements based on

Lagrange polynomials and N
′
0 and N

′
1 their derivatives:

N0 =
1

2
(1− ξ) and N1 =

1

2
(1+ ξ) (27)

δφT is

{
δxi δωi δxj δωj

}
and J is the Jacobian of the transformation that relates

S and ξ, where S ∈ [0,Le]:

J (ξ) =
dS

dξ
=
[
N
′
0 (ξ) N

′
1 (ξ)

]{Si
Sj

}
=
Le

2
(28)

Finally, the out of balance forces/moments (disregarding external forces) are ob-

tained computing the previous equation in the elements connected to node J:{
f̃nJ
f̃mJ

}
= −

{
fniJ
fmiJ

}
−

{
fnJk
fmJk

}

= −

∫1
−1

[
N1 1 0 1

JN
′
1 1 0

0 N1 1 0 1
JN
′
1 1

]
0 0

−γ̂ij 0
1 0
0 1

{nijmij
}

Jdξ

−

∫1
−1

[
N0 1 0 1

JN
′
0 1 0

0 N0 1 0 1
JN
′
0 1

]
0 0

−γ̂jk 0
1 0
0 1

{njkmjk
}

Jdξ (29)

3.4.3 Strains associated to rotations

The next step is to calculate the rotation and twist rate in each element. Following

Cris�eld and Jelenic [28, 49], a spherical interpolation of rotations throughout the

element will be used for that purpose. For a 2-node element with nodes i, j and

actual length Le, the local rotationΘij, between i and j is computed as follows:

exp Θ̂ij = ΛTiΛj (30)

The rotation Λr at the midpoint of each element is used as element’s reference

rotation (Fig. 15); it is de�ned as:

Λr = Λ|ξ=0 = Λi exp
(
1

2
Θ̂ij

)
(31)

Spherical interpolation is de�ned through the local rotation Ψ̂e = 1
2Θ̂ij and the

reference rotation, for ξ ∈ [−1, 1] as follows:

Λ (ξ) = Λr exp

(
ξ Ψ̂e

)
(32)
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Making use of the de�nition of the rate of rotation K:

K̂ (ξ) = ΛT
d

dS
Λ = ΛT

d

dξ
Λ
dξ

dS

= exp

(
−ξ Ψ̂e

)
ΛTr Λr

d

dξ
exp

(
ξ Ψ̂e

) 2

Le

= T
(
ξ Ψ̂e

)T
Ψ̂e

2

Le
(33)

Where T is an operator that acts on a skew symmetric matrix θ̂ as follows [80]:

T
(
θ̂
)
= 1+

1− cos θ
θ2

θ̂+
θ− sin θ
θ3

θ̂
2

(34)

In this expression, θ is the modulus of the associated axial vector. Assuming that

the strain is constant in each element and evaluating it at ξ = 0, the rate of rotation

K, Ψ̂e results:

K =
2

L0
Ψe (35)

and the deformational part is:

Kd =
2

L0
Ψe −K0 (36)

where L0 is the prescribed target centreline length for each element.

Figure 15: A typical element showing the nodal frames and the reference frame. Λr is

computed through spherical interpolation between Λi and Λj.

3.4.4 Strains associated to translations

In contrast to the change of orientation, the strain associated to the traslations is

computed in a straightforward way, only taking into account the spatial position of

the nodes i,j:

γ =
1

L0

(
xj − xi

)
(37)

where xi, xj are the position vectors of the nodes i,j in spatial form. For rewriting

it in material form, γ will be pre-multiplicated by the transpose of the reference

rotation matrix of the element. Finally, the deformational part is:

Γd = ΛTr
1

L0

(
xj − xi

)
− {1, 0, 0}T (38)
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3.5 numerical implementation

The numerical solution of the dynamic equations is carried out via a one-step

explicit algorithm based on Newmark’s algorithm [98]. According to the laws of

motion Eqs. (22a) and (22b), the dynamic equations in spatial con�guration for node

J at time t are:

f̃
t
nJ

=mJ a
t
J + cJ

(
ẋtJ +a

t
J

1

2
∆t

)
(39a)

f̃
t
mJ

= iJ ω̇
t
J + ωtJ × iJω

t
J + cJω

t
J (39b)

Matrices mJ and iJ represent the �ctitious nodal masses and inertias. Matrix cJ

represents damping. The obtention of mJ and iJ is based on the relation between

the mechanical properties of the rod and the timescale ∆t of the dynamic process;

it ensures fast stability and avoids slow simulations. Based on reference [7], the

following expressions in the material form are given:

MJ =
∆t2

2


∑k
ne=1

(
EA
L0

)
0 0

0
∑k
ne=1

(
GAQ2
L0

)
0

0 0
∑k
ne=1

(
GAQ3
L0

)
 (40a)

IJ = β
∆t2

2


∑k
ne=1

(
GJ
L0

)
0 0

0
∑k
ne=1

(
EI2
L0

)
0

0 0
∑k
ne=1

(
EI3
L0

)
 (40b)

Moreover, an additional coe�cientβ can be introduced to increase the damping and

prevent non-convergence. Pulling back material variables, the spatial description of

the �ctitious nodal properties is:

mJ = ΛJMJΛ
T
J (41a)

iJ = ΛJ IJΛ
T
J (41b)

Manipulating equations (39a) and (39b), it is possible to assess the translational atJ
and rotational ω̇tJ accelerations of the nodes xJ at time t:

atJ =

(
mJ + cJ

1

2
∆t

)−1 (
f̃
t
nJ

− cJ ẋ
t
J

)
(42a)

ω̇tJ = i
−1
J

(
f̃
t
mJ

−ωtJ × iJω
t
J − cJω

t
J

)
(42b)

With the obtained translational accelerations, positions xt+∆tJ and translational ve-

locities ẋt+∆tJ are updated as:

xt+∆tJ = xtJ + ẋ
t
J ∆t+

1

2
atJ ∆t

2
(43a)

ẋt+∆tJ = C1 ẋ
t
J +C2 a

t
J ∆t (43b)

where C1 and C2 ∈ [0, 1] are the terms of viscous damping used to avoid large os-

cillations in the free nodes, which can produce numerical instabilities [30]. Angular

velocitiesωtJ andωt+∆tJ are not additive because they belong to di�erent frames.
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To overcome this problem, a strategy based on the one proposed by Ibrahimbegovic

[46] to represent the change of orientation of sections is used:

ωt+∆tJ = T
(
∆ω̂tJ

)
∆ω̇tJ + exp

(
∆ω̂tJ

)
ωtJ (44)

with:

∆ωtJ =ω
t
J ∆t (45a)

∆ω̇tJ = ω̇
t
J ∆t (45b)

The operator T has been de�ned in Eq. (34) and exp (∆ω̂) can be calculated using

Rodrigues’s formula:

exp (∆ω̂) = 1+
sin∆ω
∆ω

∆ω̂+
1− cos∆ω
∆ω2

∆ω̂2 (46)

where ∆ω is the incremental nodal rotation vector, ∆ω is its modulus and ∆ω̂ is

the antisymmetric matrix associated to ∆ω. The update of the nodal rotation is

therefore:

Λt+∆tJ = exp
(
∆ω̂J

t
)
ΛtJ (47)

3.5.1 Criterium for convergency

The DR algorithm must iterate up to reach the criterium for convergency, based

on the evaluation of translational and rotational kinetic energies:

KtJ =
1

2
ẋTJ J ẋJ (48a)

KrJ =
1

2
ωTJ JωJ (48b)

KtJ and KrJ are the kinetic energies corresponding to node J. When all energies

reach a prescribed limit value, the solution is regarded as a static equilibrium con-

�guration and the algorithm stops.

3.5.2 Boundary conditions

The choice of the geometrically exact rod model allows to introduce kinematic

constraints in a straightforward way by the de�nition of the cross-section orienta-

tion. Moreover, neither �cticious extensions of the rod nor additional constraints

are required, as in other models with 3 or 4 degrees of freedom [31]. In this work,

the concept of form-�nding is understood as a ’design-oriented’ procedure [31], in

which equilibrium is found after de�ning a target centreline length and the corre-

sponding kinematic constraints. In other words, the proposed form-�nding method

is based on geometrical restrictions. The algorithm has been designed to deal with

two possibilities: either positions and rotations at the beam ends are �xed, or posi-

tions are �xed and rotations are free.
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30º

Figure 16: Form-�nding of the elastica and the circular beam de�ned by the same local

reference frames at the beam ends.

3.6 numerical tests

3.6.1 The elastica and the circular beam

The �rst example is a beam clamped at both ends; the distance between them is

10 m. The mechanical properties of the beam are shown in Table 2 and correspond

to a rectangular cross-section with 2 cm width and 0.5 cm depth; only I2 and AQ3
are relevant because the weak axis is assumed to be the bending axis. The modulus

of elasticity is E = 104 MPa, the relation E/G is 2.5 and the time increment is

∆t = 0.0001 s. The additional imposed kinematic boundary condition is the cross-

section orientation at beam ends where the centreline of the curve forms an angle

of 30º with the x-axis. Non-�xed nodal frames are initially de�ned by spherical

interpolation.

Among the wide range of possible curves with di�erent prescribed target lengths

L0 that ful�l the established constraints, the elastica is de�ned by L0 = 10.725 m

and the circular beam with radius R = 10 m is de�ned by L0 = 10.47 m. Fig.

16 shows the equilibrium geometries in both cases using 10 elements. The errors

registered for the y-coordinate at the midspan of the elastica and the circular beam

are 0.05 % and 0.04 % respectively. Another straightforward way of validating these

models is to assess curvatures κ of the beams. Fig. 17 shows an excellent correlation

between numerical and analytical curvatures in both tests. The circular beam has a

constant curvature of value κ = −0.1 m−1
de�ned by the relation 1/Rwhereas the

curvature of the elastica can be calculated analitically [59, 67]. It is worth remarking

that curvatures are computed at the Gauss’s point of each element (at the middle

of the element), not at nodes, as outlined above. For this reason, in the elastica,

curvature values at elements 1 and 10 are very low but non-zero, since they do not

correspond with the beam end nodes. Fig. 18 shows how the curve lengths grow to

the target value L0 during the form-�nding process.

A AQ2 AQ3 J I2 I3
(cm2) (cm2) (cm2) (cm4) (cm4) (cm4)

1 0.8333 0.8333 0.4621 0.0208 0.3333

Table 2: Section properties of the elastica and the circular beam.
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Figure 17: Curvatures for the elastica (Elas.) in blue and curvatures for the circular beam

(Cir.) in brown. Form-�nding (F.F.) and theoretical solutions (T.).

Figure 18: Evolution of the curve lengths for the elastica and the circular beam during the

form-�nding process.
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A AQ2 AQ3 J I2 I3 E E/G

(in2) (in2) (in2) (in4) (in4) (in4) (lb/in2)

1 1 1 1/6 1/12 1/12 107 2

Table 3: Material and section properties of the Bathe and Bolourchi cantilever beam.

In parallel, Fig. (19) shows the form-�nding process at di�erent stages, indicating

both the number of the step and the actual curve length. Finally, this example allows

to show that the method also works when the orientations of the beam ends are

not restricted: allowing free rotations at both ends and establishing L0 = 10.725 m

(length of the elastica), the start/�nal angle of the curve in the equilibrium state is

30.05º, practically the exact solution. In other words, allowing free rotations at both

ends of the rod, the obtained curve is the elastica associated to the prescribed target

length L0.

3.6.2 Bathe and Bolourchi cantilever beam

The second example is well-known in the �nite-element literature [9]. The orig-

inal problem is a circular cantilever beam clamped at the origin and subject to a

force at its free node (Fig. 20). The units of the original problem have been kept

for consistency. Initially, the curved beam is contained within the plane z = 0, the

curve has a radius of 100 in comprising an angle of 45º and the material and section

properties are shown in the Table 3. Bathe and Simo solved this problem taking into

account a transverse force of 600 lb at the free end of the beam using 8 two-node

elements in their models.

Knowing the solution by means of a implicit numerical tool based on Simo’s

model [89], it is possible to transform a load analysis example into a ’design ori-

ented’ form-�nding problem by imposing the target kinematic constraints at both

beam ends. Fig. (21) shows the evolution of the translational and rotational kinetic

energies in the form-�nding process. Moreover, three captures of the geometry at

di�erent stages show how initially the beam is practically straight (a) whereas and

at the end of the process, when the kinetic energies are close to zero, the equilibrium

geometry is reached according to the imposed orientations at both beam ends (c).

Fig. (22) shows the high correspondency between the nodal coordinates of the

obtained solution by the implicit and the form-�nding method using 8 two-node

elements.

3.6.3 Combined bending and torsion

This example simulates the behaviour of a 10 m bent beam when its ends are

clamped at a distance of 4.56 m and twisted 30º. For that purpose, the kinematic

constraints at both ends are speci�ed by setting the orientation of each cross-section

through the de�nition of the corresponding reference frames (see Fig.23). By means

of two elemental rotations, �rstly, the tangent vectors are rotated an angle of 90º for

simulating bending e�ects. When convergence is reached, a second form-�nding

step is carried out rotating the end frames about the tangent vectors an angle of 30º

to evaluate twisting e�ects. Cross-section properties are shown in the Table 4. The

modulus of elasticity is E = 104 MPa, the relation E/G is 2.5 and the selected time
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(a) Step 0; L = 10 m.

(b) Step 100; L = 10.17 m.

(c) Step 890; L = 10.69 m.

(d) Step 1780; L = 10.725 m.

Figure 19: Evolution of the form-�nding process of an elastica curve and its length (L) at

di�erent stages.
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Figure 20: Original problem of the Bathe and Bolourchi cantilever beam.
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Figure 21: Evolution of the kinetic energies for the Bathe and Bolourchi cantilever beam.

Figure a) shows the initial geometry. Figure b) corresponds to the geometry at

step 100. Figure c) shows the �nal equilibrium geometry.
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Figure 22: Coordinates X-Y-Z using the form-�nding method (F.F.) and the implicit numeri-

cal solution based on Simo’s theory (I.M.) for the Bathe and Bolourchi cantilever

beam.

A AQ2 AQ3 J I2 I3
(cm2) (cm2) (cm2) (cm4) (cm4) (cm4)

2400 2000 2000 91.147 32 72

Table 4: Section properties for the case of bending and torsion e�ects.

interval is ∆t = 0.0001 s. To assess the reliability of the method, the form-�nding

solution is compared with the obtained results by the same numerical implicit tool

used in the example 2, based on Simo’s procedure. Both models are discretised into

an increasing number of elements (from 8 to 20) and ratios between coordinates

corresponding to the node ’P’ and the beam length are shown in Table 5.

The algorithm stops when both translational and rotational kinetic energies are

under 10−7 kN·m, after approximately 100.000 steps. As it can be seen in Table 4, the

form-�nding method provides reliable results; the error diminishes as the number

of elements increases.

∆yp/L ∆zp/L

Num. of elements I.M. F.F. I.M. F.F.

8 0.3796 0.3876 -0.0357 -0.0390

16 0.3795 0.3862 -0.0343 -0.0365

20 0.3795 0.3861 -0.0341 -0.0355

Table 5: Vertical and horizontal relative de�ection for the bent and twisted beam taking

into account di�erent number of elements in both form-�nding method (F.F.) and

implicit method based on Simo’s theory (I.M.).
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90º

30º

x

y

P

Figure 23: An initially straight rod is bent up to reach vertical tangents at supports and

then twisted by rotating 30º its ends.

A AQ2 AQ3 J I2 I3
(cm2) (cm2) (cm2) (cm4) (cm4) (cm4)

1 0.5 0.5 0.0137 2.0416 0.0416

Table 6: Section properties of the beam used in the shear deformability test.

3.6.4 Shear deformability test

This example is intended to study a case where shear e�ects are not negligible and

can be simulated by the form-�nding method presented in this work. The bench-

mark for this shear deformability test is the elastica of the �rst example with the

same prescribed target length (L0 = 10.725 m) and distance between beam ends

(10 m). The modulus of elasticity is E = 104 MPa, the relation E/G is 2.5 and the

selected time interval is ∆t = 0.0001 s. The mechanical properties of the beam

under study are shown in Table 6. Such properties have been chosen to get a lower

ratio between the shear sti�ness and the bending sti�ness than in the case of the

elastica, being both cross-sectional areas equivalent. The relation between shear

factors α = 12EI2
/
(GAQ3L

2
0) in both cases is:

α
shear test

/
α

elastica
= 163.5 (49)

Fig. 24 shows the transverse shear deformations corresponding to both, the elastica
case (blue) and the shear deformable case (brown). As expected, shear deformations

are much larger than in the elastica case. Therefore, this example highlights the

ability of the proposed form-�nding method to reproduce shear deformable cases.
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Figure 24: Shear deformations for the elastica and a beam where transverse shear is not

negligible.

3.7 summary

A form-�nding method for bending-active structures implementing the so-called

geometrically exact rod model into a DR procedure has been developed. The geo-

metrically exact beam model was designed by Reissner, Simo and other authors to

handle mechanical problems of slender rods undergoing large displacements and

rotations, therefore it has been selected as underlying mechanical model in our

implementation. The use of 6 DoFs per node to update translations and rotations

provides a complete description of the kinematics and allows for a straightforward

de�nition of rotational boundary conditions. Key points in the specialisation of

Reissner-Simo’s model to the DR procedure have been: the derivation of element

end forces from the internal virtual work equation (sect. 3.4.2); the derivation of the

expression of the change of orientation in the element (sect. 3.4.3); the de�nition of

the numerical step using Newmark’s algorithm and the full expression of the iner-

tial torques (Eq. 39b); and the update of angular velocities considering that nodal

frames are changing (Eq. 44).

The DR algorithm developed in this thesis provides reliable results in terms of

accuracy and computation time, as well as the possibility of monitoring the numer-

ical process through di�erent parameters: curve length, kinetic energies, number

of steps or residual forces. In contrast to the work of other authors, in the stud-

ied examples the form-�nding process is driven by kinematic constraints, de�ning

restrictions at end nodes and using the beam length as a design parameter. It has

been shown that the use of di�erent lengths or end restrictions lead to meaningful

solutions of the form-�nding problem. The numerical examples also illustrated the

ability and accuracy of the method to reproduce the con�guration of active members

starting from an initial geometry far from the equilibrium solution.

Despite the fact this method o�ers very promising results, the redirection of the

PhD guidelines to the �eld of practise and application (as mentioned in Chapter

1), has fostered a shift to other more direct form-�nding strategies. They will be

presented in the following chapters.
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”
The form is a system which organises itself in the
presences of both internal and external forces and
these organizations can shape patterns traced through
mathematical rules.

— D’Arcy Wentworth Thompson
(Biologist)

4.1 introduction

The development of computational form-�nding tools has been of crucial impor-

tance to advance knowledge in modelling and behaviour of very �exible structures.

As previously introduced in Chapters 2 and 3, numerical tools based on explicit

methods as DR are the main trend today. Alternatively, the availibity of FEM pack-

ages has also led to form-�nding procedures based on �nite element models [65].

Latest trends rely on the use of isogeometric �nite elements implemented into a

CAD environment [10, 11, 54].

Since the construction of the Mannheim Multihalle, these tools have served to

design and built a number of dome-shaped grid-shells; many of them as temporary

or experimental structures. However, the literature on their structural performance

and e�ciency in relation to their shape and member sizing is still limited. As it

can be seen in the literature, most attention has been directed to solve the pure

geometric problem.

Apart from the di�culty to �nd the equilibrium con�guration of the structure,

during the conceptual phase, the designer needs to �nd a compromise between

member strength and �exibility. Curved members must be slender enough to keep

activation stresses low. However, too slender members may be prone to local buck-

ling and may render a too �exible structure. Indeed, many bending-active gridshells

take advantage of double curvature to limit their deformability. For structures that

need to support heavier loads and serviceability conditions are more strict, such as

footbridges, the design space may be very limited, and this explains why there are

very few bending-active examples among them.

The largest elastic gridshell realisations (Multihalle and Creteil) were built follow-

ing Otto’s original idea: to assemble a grid of continuous members with rotation-

free connections on the ground, and then to lift it (hoisting or pushing up) until the

members’ ends can be �xed to the ground supports. The result is a lightweight shell-

like structure which is sti� enough due to its shape, but whose members are light

and easy to manipulate during the construction process. This design strategy has

been often used in the design of smaller gridshells built in recent years. Nonetheless,

39
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building with long continuous members is not free from drawbacks: a) the full asem-

bly on the ground and subsequent lifting is limited to small and medium scales; the

interferences between members and supports during the lifting process may cause

di�culties; b) the applicability in the case of structures with larger loads is limited,

like bridges or footibridges, mainly because of sti�ness requirements. Recent con-

tributions and methods are being proposed in this research �eld. Brancart et al. [23]

have experimented an alternative type of reciprocal dome-shaped construction that

makes use of the bending active principle, but is conceived as an assembly of in-

dividual elements that are sequentially put together to form the structure. Every

element is made of two timber laths of slightly di�erent lengths that are pre-bent

and �xed together at their ends. This is a �rst approach to build three-dimensional

bending active structures as kit-of-parts systems to avoid the need of a complete

pre-assembly of a grid.

In this PhD thesis a new perspective for a well-established structural type which

has been used at various scales is explored: the beam string [83]. It consists of a

beam with an attached lower tie in tension and bracing struts (deviators) balancing

the forces between them. The idea goes back to the gutter beams of the Crystal

Palace (1851) and has been widely used to the present for large-scale structures. If

a slender beam is used, the tension in the tie induces curvature in the beam and

increases the structural depth of the system; this opens new formal possibilities and

results in lightweight structures at the expense of increasing their overall �exibility.

Systems of this type fall within the realm of active bending. The author will refer to

them as bending-active braced (or tied) arches: a simple planar structure composed

of a continuous �exible member that is activated by the action of main cables pulling

at both ends of the rod, and secondary struts or cables that deviate the main cable

and act at certain cross-section of the rod (Fig. 25). Secondary members will be re-

ferred to as deviators, no matter if they work under compression or under tension.

The structure is activated by tensioning the cables and is stable under a certain state

of self-stress. The geometry of the activated system cannot be fully prescribed in

advance, as it depends on the length of the rod, its bending sti�ness and the forces

that are in equilibrium with the bent rod. The interest of simple tied arch systems

lies in their applicability as individual structural modules to design lightweight foot-

bridges [26] or roo�ng applications [70], these ones favored by moderate loads and

less strict serviceability conditions.

Figure 25: Bending-active tied arch.

In this structural system, assuming that the rod is slender and neglecting self-

weight, a key observation is that each segment of the activated rod between devia-

tors behaves as a segment of an in�exional elastica, whose scale is determined by the

ratio between bending sti�ness and compressive force [59]. A second key observa-

tion is that to each elastica segment corresponds a cable segment, and the axis of the

cable segment joins the ideal in�exions of the corresponding elastica segment (Fig.
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26). This enables the use of the closed-form expressions of the elastica to evaluate

the shape and induced stress level in the active member.

Taking advantage of this idea, it is possible to devise an analyitical method to

generate shapes for bending-active braced arches by adequately choosing the design

parameters in a sequential way. In other words, the process does not require to

solve any system of equations since the solution is fully de�ned by compatibility

and equilibrium conditions.

Figure 26: Full (notional) elastica corresponding to segment i.

4.1.1 Outline of the chapter

The main purposes of this chapter are: (a) to present the bending-active tied arch

as a proposal of application for the design of lightweight structures; (b) to devise

an analytical method to determine activated shapes for such kind of structures. For

a better comprehension of the core topic, the problem will be approached starting

with a brief review of the in�exional elastica. The necessary equilibrium and compat-

ibility conditions to obtain the self-stress states of the elastica are shown in section

4.2. The proposed methodology is presented in sections 4.4 and 4.5. At the end of

each section, some examples demonstrate the capacities of the method.

4.2 a brief review of the inflexional elastica1

The problem of planar bending of an initially straight rod subject to compressive

forces at its ends, assuming non-extensibility and non-shear deformability, and ne-

glecting self-weight is known as the elastica problem. It was �rst studied by Euler,

based on Bernoulli’s assumption of proportionality between �exural moments M

and centreline curvatures κ at each cross-section. In order to simplify the descrip-

tion, the analysis is restricted to the fundamental aspects of the elastica problem.

The full development of this theory can be found in the classical work by Love [67].

1 This section is based on the article: Bessini, J.; Lázaro, C.; Casanova, J.; Monleón, S. (2019) "E�ciency-

based design of bending-active tied arches". Engineering Structures. Vol. 200, 1 December 2019, 109681.
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Figure 27: In�exional elastica.

The constitutive equation for the elastica is M = EI κ where the curvature is

expressed as κ = dθ/ds, ds is an arc-length parameter, θ is the cross-section

rotation and EI the �exural sti�ness. The analytical solution for the arc-length is:

s =
1

2

√
EI

P

∫θ
−θ0

1√
sin2 θ02 − sin2 θ2

dθ (50)

The applicability of this expression is bounded into the interval −θ0 6 θ 6 θ0,

where θ0 is the cross-section rotation at the in�exion. In order to handle this issue,

Love [67] introduced the variableω, de�ned by:

ω =
sin θ2
sin θ02

(51)

substituting in 50, the expression for the arc-length reads as follows:

s =

√
EI

P

∫ω
−π/2

1√
1− k2 sin2ω

dω (52)

where k = sin θ02 is the reference parameter of the dimensionless solution of

the elastica. The integral can reproduce arbitrarily long elasticas, because the new

variableω is not bounded. The solution can be expressed in terms of the incomplete
and the complete elliptic integrals of the �rst kind

F(ω,k) =
∫ω
0

dω√
1− k2 sin2ω

K(k) =

∫0
−π/2

dω√
1− k2 sin2ω

(53)

as:

s(ω,k) =

√
EI

P

(
F(ω,k) +K(k)

)
(54)

4.2.1 Configuration of the elastica

Using the incomplete and complete elliptic integrals of the second kind

E(ω,k) =
∫ω
0

√
1− k2 sin2ω dω E(k) =

∫π/2
0

√
1− k2 sin2ω dω (55)
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the coordinates of the elastica are expressed as follows (note the di�erence in nomen-

clature between E and E):

x(ω,k) = 2

√
EI

P

(
E(ω,k) + E(k)

)
− s(ω,k) (56a)

y(ω,k) = 2

√
EI

P
k cosω (56b)

4.2.2 Section forces

Normal forces and shear forces are obtained as projections of the compressive

force, and bending moments as the product of the compressive force times the elas-

tica ordinate:

N = −P cos θ (57a)

V = P sin θ (57b)

M = −Py (57c)

They can be expressed in terms of the elastica parameters as:

N(ω,k) = −P(1− 2k2 sin2ω) (58a)

V(ω,k) = −2Pk sinω
√
1− k2 sin2ω (58b)

M(ω,k) = −2
√
P
√
EIk cosω (58c)

4.2.3 Scalability of the solution

The parameter critical length is introduced:

lc = π

√
EI

P
(59)

de�ned as the length of a rod with bending sti�ness EI for which P is Euler’s critical

load —this de�nition was previously introduced by Lázaro et al. in [59]. Using this

de�nition, the arc-length and the coordinates of the elastica can be expressed as

dimensionless quantities:

ζ = s/lc ξ = x/lc η = y/lc (60)

Therefore, the non-dimensional arc-length parameter is:

ζ(ω,k) =
1

π

(
F(ω,k) +K(k)

)
(61)

and the non-dimensional coordinates are:

ξ(ω,k) =
2

π

(
E(ω,k) + E(k)

)
− ζ(ω,k) (62a)

η(ω,k) =
2

π
k cosω (62b)

These equations show that the shape of an elastica is fully determined by the param-

eter k —or in other words, by the angle at the in�exion (Fig. 28).
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Figure 28: Elasticas (non-dimensional coordinates) for θ0 = nπ/20 and n ∈
{2, 3, . . . , 17, 18}.

On the other hand, the size of the elastica is determined by the critical length lc,

which acts as a scaling parameter.

Finally, from equation (58) can be noted that section forcesN,V are directly scaled

by the compressive force P, and bending moments M are scaled by the product of

P and the critical length.

To sum up, the shape of the elastica –de�ned by the parameter k– is fully deter-

mined by the angle at the in�exion θ0, and is totally independent from the value

of the compressive force P or the bending sti�ness EI. Once the shape is obtained,

the size of the elastica can be scaled by means of the critical length lc (Eq. 59). It

involves the relation between the bending sti�ness EI and the compressive force P.

For example, once lc has been �xed, the magnitude of the internal forces can be

chosen by selecting P, and the bending sti�ness EI should then be adjusted to be

consistent with lc:

EI = P
(lc
π

)2
(63)

Alternatively, EI may be prescribed and the magnitude of the forces will be given

by:

P = π2
EI

l2c
(64)

4.3 self-stress states in bending-active tied arches

The simulation of the activation process of bending-active structures is of crucial

importance for their design. Due to the non-linearity of the structural response,

it is often not possible to prede�ne in advance the equilibrium con�guration and

computational form-�nding methods are required for modelling the bending e�ect.

However, in the case of bending-active tied arches, the fact that the rod segments

between deviators behave as elastica segments, enables the use of closed-form ex-

pressions to evaluate the stress level due to activation forces. The purpose of this

section is to determine the su�cient and necessary conditions for obtaining the self-

stress state of the arch using the equations of the exact solution of the elastica.

4.3.1 Notation

An intermediate node i on the rod separates two sections of the rod that will be

referred to as section i− 1, and section i. Variables associated to the section i will
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Figure 29: Notation.

be denoted by the superscript i (Fig. 29). Every section is part of a elastica de�ned

by the parameter ki, the magnitude of the compressive force Pi and the �exural

sti�ness EIi.

As each cable segment and the corresponding elastica section are in equilibrium,

the compressive force acting on the elastica and the traction in the cable must have

the same value: Pi = T i.

Angles between cable segments i− 1, i and elastica tangents at each side of node

i will be referred to as θi−1i and θii. Therefore a given elastica section i starts with

an angle θii and ends with θii+1, both angles referred to the orientation of cable

i. The corresponding elastica parameters are ωii and ωii+1, in agreement with Eq.

(51).

The angles formed by each cable segment i− 1, i and the prolongation of the axis

of the deviator are denoted αi, βi. The angular di�erence between cable segments

is denoted as ϕi. Then, the relation between angles at node i is:

αi +βi +ϕi = π (65)

4.3.2 Equilibrium and compatibility conditions at joints

Figure 30 shows the various equilibrium conditions at nodes. Equilibrium of mo-

ments at joints requires thatMi−1
i =Mi

i. Substituting the expression for moments:

√
T i−1

√
EIi−1 ki cosωi−1i =

√
T i
√
EIi ki cosωii (66)

equivalently:

T i−1EIi−1(ki−1)2(1− sin2ωi−1i ) = T iEIi(ki)2(1− sin2ωii) (67)

Introducing the de�nition of ω and rearranging, the equilibrium condition can be

expressed in terms of the rotations:

T i−1EIi−1
(
(ki−1)2 − sin2

θi−1i
2

)
= T iEIi

(
(ki)2 − sin2

θii
2

)
(68)

An alternative expression using critical lengths is:

1

π2
(T i−1)2(li−1c )2

(
(ki−1)2 − sin2

θi−1i
2

)
=
1

π2
(T i)2(lic)

2
(
(ki)2 − sin2

θii
2

)
(69)

The equilibrium of forces at each node on the elastica is de�ned by the compres-

sive forces acting on each segment Pi−1,Pi and the force in the deviator Qi. The
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Figure 30: Equilibrium of nodes and elastica sections.

Figure 31: Cables, deviators and force polygon.

triangle of forces at this node is the same as the triangle of forces at the correspond-

ing node joining cable segments and deviator, acted by forces T i−1, T i,Qi. The law

of sines

T i−1

sinβi
=

T i

sinαi
=

Qi
sinϕi

(70)

leads to the following equilibrium equations:

T i−1 sinαi = T i sinβi (71a)

T i−1 sinϕi = Qi sinβi (71b)

Compatibility of tangents to the elastica at both sides of a joint requires:

θii = θ
i−1
i +ϕi (72)

A problem with n elastica sections, and therefore N− 1 intermediate nodes in

the rod, is considered. Following the previous discussion, the intervening variables

are classifed into three groups. The �rst group is re�ected in Table 7 and gathers

variables which are directly related to the self-stressing state: angles between cables

and between deviators and cables, cable forces relative to the force in the �rst cable

and deviator forces relative to the same magnitude. They can be visualised by means

of a force polygon composed by cable forces and deviator forces (Fig. 31). Note that

the choice of the magnitude of the force T0 determines the scale of the force polygon.

The second group (Table 8) comprises the variables that de�ne the geometry

(shape and relative size) of the sequence of elasticas: elastica parameters, critical

lengths relative to the critical length of the �rst elastica section and angles at both

sides of a node.



4.4 direct determination of self-stress configurations 47

Type Notation Number of variables

Angle ϕi i ∈ {1 . . . n−1} n− 1

Angle αi i ∈ {1 . . . n−1} n− 1

Force T i/T0 i ∈ {1 . . . n−1} n− 1

Force Qi/T
0 i ∈ {1 . . . n−1} n− 1

Total 4(n− 1)

Table 7: Variables related to self-stressing forces.

Type Notation Number of variables

Angle θi−1i , θii i ∈ {1 . . . n−1} 2(n− 1)

Angle-related ki i ∈ {0 . . . n−1} n

Length lic/l
0
c i ∈ {1 . . . n−1} n− 1

Total 4(n− 1) + 1

Table 8: Variables related to the form of the elastic rod.

The third group (Table 9) is formed by the size and force scaling parameters: the

critical length of the �rst elastica section and the force in the �rst cable.

Altogether, there are 8n− 5 variables de�ning the con�guration: 4(n− 1) self-

stress related variables; 4(n− 1) + 1 rod form related variables; one parameter l0c
to de�ne the size of the structure, and one parameter F0 to de�ne the magnitude of

internal forces and sti�ness of the structure.

As far as equations are concerned, there are three equilibrium equations and one

compatibility condition at each intermediate node of the rod (Table 10). This makes a

total of 4(n− 1) equations. Therefore, a given con�guration is de�ned by choosing

4(n− 1) + 3 parameters: 4(n− 1) + 1 for determining the shape, one for setting

the size and one for selecting the magnitude of forces and �exural sti�ness of cross-

sections.

4.4 direct determination of self-stress configu-
rations

In this section a direct method to obtain self-stress con�gurations of bending-

active tied arches is presented. This method is direct in the sense that a solution for

the 4(n− 1) unknowns is obtained in a sequential manner, after selecting 4(n−

1) + 3 = 4n− 1 parameters, and does not require to solve any system of equations.

Observing that the 2(n − 1) force equilibrium equations (71) at intermediate

nodes only involve the 4(n− 1) self-stress related variables of Table 7, the following

procedure solves the problem:

Type Notation Number of variables

Length l0c 1

Force T0 1

Total 2

Table 9: Size and force scaling variables.
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Type Notation Number of equations

Equilibrium T i−1 sinαi = T i sinβi n− 1

Equilibrium T i−1 sinϕi = Qi sinβi n− 1

Equilibrium (T i−1)2(li−1c )2
(
(ki−1)2 − sin2

θi−1i
2

)
= (T i)2(lic)

2
(
(ki)2 − sin2

θii
2

) n− 1

Compatibility θii = θ
i−1
i +ϕi n− 1

Total 4(n− 1)

Table 10: Equilibrium and compatibility equations.

1. De�ne a value for T0

2. De�ne values for αi, ϕi, i ∈ {1 . . . n−1}. In this step, 2(n− 1) parameters

are set.

3. Compute T i and Qi for, i ∈ {1 . . . n−1} using force equilibrium equations

(71). This is a direct computation considering that βi = π−αi −φi.

4. De�ne values for θi−1i , i ∈ {1 . . . n−1}. With this step n− 1 parameters are

additionally set.

5. Compute θii using compatibility equations (72).

6. De�ne values for k0 and EIi for i ∈ {0 . . . n−1}. This step sets n+ 1 addi-

tional parameters.

7. Compute ki for i ∈ {1 . . . n−1} using moment equilibrium equations (68).

8. Compute local coordinates of elastica i using equations (56).

9. Place each elastica segment by translating it to the end of the previous one

and rotating it to preserve tangents at intermediate nodes.

It is worth noting that steps 1 to 3 are equivalent to the de�nition of the force poly-

gon that corresponds to the system of cables and deviators. This graphical approach

has been already used by other authors. In Boulic et al. [22] proposed a graphical

method for the design of hybrid bending-active structures composed of active ele-

ments with non-constant sti�ness and tensile cable nets. Particularly, their method

makes use of a force diagram to obtain the non-constant distribution of bending

sti�ness along the active members for a certain target bent geometry under given

loads.

Step 4 requires to check that angle θii is larger than θii−1 to avoid sense reversal

at elastica i. If this happens, 2π has to be added to θii.

In step 6, k0 is related to the angle between cable and elastica tangent at the

start of the structure. In addition, setting the n values of �exural sti�ness EIi is

equivalent to setting the n values of critical length lic because forces T i are already

known.
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Prescribed Computed

Variable Number Variable Number

T0 1 T i n− 1

ϕi n− 1 Qi n− 1

αi n− 1

θi−1i n− 1 θii n− 1

k0 1

EIi n ki n− 1

Total 4n− 1 Total 4n− 4

Table 11: Prescribed and computed variables in the direct method.

Once a con�guration is found, its size and the magnitude of the forces can be

adjusted to the desired values by changing EI0 and T0. A convenient procedure is

to initially set T0 = 1 and EI0 = 1/π2, so that l0c = 1. After computing the solution

and the coordinates of the structure, the size of the structure can be scaled to the

desired value. If the scale factor is assumed as l; then the �rst critical length shall

be l0c = l. If EI0 = EI is chosen as a desired value, then all forces shall be scaled by

T0 = π2EI/l2. Another possibility is to choose the magnitude of forces by setting

T0 = T and then obtain the required �exural sti�ness scale factor as EI0 = Tl2/π2.

Table 11 summarises the prescribed variables and the computed variables for this

direct method.

4.4.1 Examples

generic case A generic case with n = 5 elastica sections with the following

data (Table 12) is shown here. Adopting T0 = 1, EIi = 1/π2 ∀i

Figure 32: Generic bending-active tied arch with n = 5 elastica sections.

perpendicular deviators Perpendicularity between deviators and rod can be

prescribed adding the following condition:

θi−1i = π/2+αi (73)
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Variable Prescribed Computed Variable Prescribed Computed

T0 1 θ01 30π/180

T1 0.9430 θ12 10π/180

T2 0.9623 θ23 −5π/180

T3 0.9595 θ34 −15π/180

T4 0.8601 θ11 0.2616
Q1 0.2600 θ22 0.0435
Q2 0.1261 θ33 −0.1742
Q3 0.1258 θ44 −0.5229
Q4 0.2572 k0 sin(12

40π
180 )

ϕ1 −15π/180 k1 0.2645
ϕ2 −7.5π/180 k2 0.2482
ϕ3 −7.5π/180 k3 0.2625
ϕ4 −15π/180 k4 0.3532
α1 −70π/180 EI0 1/π2

α2 −95π/180 EI1 1/π2

α3 275π/180 EI2 1/π2

α4 −60π/180 EI3 1/π2

EI4 1/π2

Table 12: Prescribed variables and computed unknowns for the generic case.

Figure 33: Bending-active tied arch with n = 5 elastica sections and perpendicular devia-

tors.
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Variable Prescribed Computed Variable Prescribed Computed

T0 1 θ01 30π/180

T1 0.8964 θ12 10π/180

T2 0.8836 θ23 −5π/180

T3 0.9016 θ34 −15π/180

T4 1.0056 θ11 0.2616
Q1 0.2681 θ22 0.0435
Q2 0.1172 θ33 −0.2182
Q3 0.1182 θ44 −0.5229
Q4 0.2696 k0 sin(12

40π
180 )

ϕ1 −15π/180 k1 0.2697
ϕ2 −7.5π/180 k2 0.2580
ϕ3 −7.5π/180 k3 0.2743
ϕ4 −15π/180 k4 0.3451
α1 −1.0471 EI0 1/π2

α2 −1.3962 EI1 1/π2

α3 −1.6579 EI2 1/π2

α4 −1.8316 EI3 1/π2

EI4 1/π2

Table 13: Prescribed variables and computed unknowns corresponding to the generic case

with perpendicular deviators.

symmetric structure with even number of elastica sections The fol-

lowing additional conditions lead to a symmetric solution for a n even number of

elastica sections:

• Conditions on the polygon of forces:

ϕn−i = ϕi for i ∈ {1 . . . n/2− 1} (74a)

αn−i = π−ϕi −αi for i ∈ {1 . . . n/2− 1} (74b)

αn/2 = (π−ϕn/2)/2 (74c)

• Conditions on the geometry of the rod:

θn−i−1n−i = −θii for i ∈ {1 . . . n/2− 1} (75a)

θ
n/2−1
n/2

= −ϕn/2/2 (75b)

EIn−i−1 = EIi for i ∈ {0 . . . n/2− 1} (75c)

Therefore, symmetry addsn− 1 conditions to the force polygon andn conditions

to the form of the rod. This leaves (4n− 1) − (2n− 1) = 2n free variables to de-

termine a con�guration. A di�erent approach to symmetry is to reduce the number

of unknowns and equations from scratch. In the symmetric case with even number

of elastica sections there are 4n− 2 variables.

Table 14 shows the splitting between prescribed and computed variables with the

direct method. The equations and their number are shown in Table 15.

Let’s consider a structure with n = 4 rod sections. Table 16 includes the 2n = 8

prescribed parameters and the 2n− 1 = 7 computed unknowns following the pro-

cedure described in the preceeding section. The resulting geometry is represented

in Figure 34.
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Prescribed Computed

Variable Number Variable Number

T0 1 T i n/2− 1

ϕi n/2 Qi n/2

αi n/2− 1 αn/2 1

θi−1i n/2− 1 θ
n/2−1
n/2

1

k0 1 θii n/2− 1

EIi n/2 ki n/2− 1

Total 2n Total 2n− 1

Table 14: Prescribed and computed variables in a symmetric structure with even number

of elastica sections (direct method).

Type Notation Number of equations

Equilibrium T i−1 sinαi = T i sinβi n/2− 1

Equilibrium T i−1 sinϕi = Qi sinβi n/2− 1

Symmetry αn/2 = (π−ϕn/2)/2 1

Equilibrium Tn/2−1 sinϕn/2 = Qn/2 sinβn/2 1

Equilibrium (T i−1)2(li−1c )2
(
(ki−1)2 − sin2

θi−1i
2

)
= (T i)2(lic)

2
(
(ki)2 − sin2

θii
2

) n/2− 1

Compatibility θii = θ
i−1
i +ϕi n/2− 1

Symmetry θ
n/2−1
n/2

= ϕn/2/2 1

Total 2n− 1

Table 15: Equations in a symmetric structure with even number of elastica sections.

Variable Prescribed Computed Variable Prescribed Computed

T0 1 θ01 30π/180

T1 0.9659 θ11 0.2617
Q1 −0.2588 θ12 0.0654
Q2 −0.1263 k0 sin(12

40π
180 )

ϕ1 −15π/180 k1 0.2622
ϕ2 −7.5π/180 EI1 1/π2

α1 105π/180 EI0 1/π2

α2 1.6362

Table 16: Prescribed variables and computed unknowns in the symmetric example.

Figure 34: Symmetric bending-active tied arch with n = 4 elastica sections.
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Prescribed Computed

Variable Number Variable Number

T0 1 T i (n− 1)/2

ϕi (n− 1)/2 Qi (n− 1)/2

αi (n− 1)/2

θi−1i (n− 1)/2

k0 1 θii (n− 1)/2

EIi (n+ 1)/2 ki (n− 1)/2

Total 2n+ 1 Total 2n− 2

Table 17: Prescribed and computed variables in a symmetric structure with odd number of

elastica sections (direct method).

Type Notation Number of equations

Equilibrium T i−1 sinαi = T i sinβi (n− 1)/2

Equilibrium T i−1 sinϕi = Qi sinβi (n− 1)/2

Equilibrium (T i−1)2(li−1c )2
(
(ki−1)2 − sin2

θi−1i
2

)
= (T i)2(lic)

2
(
(ki)2 − sin2

θii
2

) (n− 1)/2

Compatibility θii = θ
i−1
i +ϕi (n− 1)/2

Total 2n− 2

Table 18: Equations in a symmetric structure with odd number of elastica sections.

symetric structure with odd number of elastica sections This case

can be solved using the following additional constraints:

ϕn−i = ϕi for i ∈ {1 . . . (n− 1)/2} (76a)

αn−i = π−ϕi −αi for i ∈ {1 . . . (n− 1)/2} (76b)

θn−i−1n−i = −θii for i ∈ {1 . . . (n− 1)/2} (76c)

EIn−i−1 = EIi for i ∈ {0 . . . (n− 3)/2} (76d)

Alternatively, a reduced number of variables and equations can be used. Variables

and equations can be found in Tables 17 and 18.

4.5 computation of self-stress configurations un-
der additional constraints

In section 4.4 it was shown that 4(n− 1) + 3 = 4n− 1 variables can be indepen-

dently selected in a pure form-�nding problem. The remaining 4(n− 1) = 4n− 4

unknown variables that de�ne a con�guration can be calculated using the same

number of equations: 3(n− 1) equilibrium and n− 1 compatibility equations.

In the event that additional constraints are imposed, the number of independent

parameters to determine the equilibrium con�guration is reduced. For instance,

when searching symmetric con�gurations or solutions with perpendicularity be-

tween rod and deviators. However, when alternative choices for the parameters

are selected, the problem becomes non-linear and can be solved using suitable tech-

niques.
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Among the set of search strategies, heuristic algorithms are well known for pro-

viding good approximate solutions to problems that cannot be solved easily using

other techniques. Within heuristics, evolutionary algorithms have been deeply de-

veloped in the last decade. They mimic the theory of evolution using the same trial-

and-error procedures that nature uses in order to arrive at an optimised outcome.

Using this idea, Rutten [82] created a tool called Galapagos, which facilitates this

process within Grasshopper (a graphical algorithm editor). By the de�nition of the

form-�nding variables and constraints, this evolutionary solver �nds in an iterative

manner, the exact solution of the problem (or at least, a near-optimal solution).

example 1 In this �rst example, the target is to �nd the shape of a symmetric

bending active arch with four rod sections (n = 4) of equal �exural sti�ness and

length. Cable and rod forces are prescribed, as well as the angle between �rst cable

and �rst tangent to the rod.

Firstly, it will be checked that the number of prescribed variables and conditions

allows to �nd a solution. As shown in the previous section, a symmetric bending

active arch with even number of rod sections leaves 2n = 8 parameters to be chosen.

T0 = 1 and EI0 = 1/π2 are chosen as starting values, and will be modi�ed at the

end of the process to achieve the desired size of the structure. This leaves freedom

to de�ne six additional parameters and/or conditions. Once T0 has been chosen, the

other forces T1,Q0 and Q1 and the angle α2 are determined if the angles ϕ1,ϕ2
andα1 are selected, as shown in the example of the previous section. Table 16 shows

the values of angles and forces.

Three conditions remain to be set in order to �nd the solution:

• The angle between the �rst cable and the �rst tangent:

θ00 = −40π/180 (77)

Therefore:

k0 = sin
(1
2

40π

180

)
(78)

• Equal sti�ness values in all rod sections: n/2− 1 = 1 condition.

EI1 = EI0(= 1) (79)

• Equal length in all rod sections: n/2− 1 = 1 condition.

s1 = s0 (80)

From equation (50), the lengths of each elastica segment can be expressed as fol-

lows:

s0 =

√
EI0

T0

(
F(ω01,k0) +K(k0)

)
(81a)

s1 =

√
EI1

T1

(
F(ω12,k1) − F(ω11,k1)

)
(81b)

Therefore, equations (79) and (80) result in:

T1
(
F(ω01,k0) +K(k0)

)
− T0

(
F(ω12,k1) − F(ω11,k1)

)
= 0 (82)
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with:

sinω01 =
1

k0
sin

θ01
2

(83a)

sinω11 =
1

k1
sin

θ11
2

(83b)

sinω12 =
1

k1
sin

θ12
2

(83c)

The previous equations together with: (a) the moment equilibrium equation; (b) the

compatibility condition in node 1 and (c) the symmetry condition in node 2:

T0(k0)2(1− sin2ω01) − T
1(k1)2(1− sin2ω11) = 0 (84a)

θ11 = θ
0
1 −ϕ1 (84b)

θ12 = ϕ2/2 (84c)

allow to calculate the four unknowns θ01, θ11, θ12 and k1. In this case, the solution

has been found iterating over θ01 using the plug-in Galapagos until:

s1 − s0 = 0 (85)

The result is shown in the Fig. 35 and Table 19.

Figure 35: Symmetric bending-active arch with n = 4 elastica sections of equal length

(example 1).

Variable Prescribed Computed Variable Prescribed Computed

T0 1 θ11 0.3202
T1 0.9659 θ12 0.0654
Q1 −0.2645 k0 sin(12

40π
180 )

Q2 −0.1262 k1 0.2440
ϕ1 −15π/180 EI0 1/π2

ϕ2 −7.5π/180 EI1 1/π2

α1 105π/180 θ01 0.5880
α2 1.6361

Table 19: Prescribed variables and computed unknowns in the example 1.

example 2 Here, the objective is to reproduce the �rst example adding the con-

dition of perpendicularity between deviators and rod. Due to this condition, the

solution can be found iterating over α1 instead of θ01. The solution is shown in the

Fig. 36 and Table 20.
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Figure 36: Symmetric bending-active tied arch corresponding to the example 2.

Variable Prescribed Computed Variable Prescribed Computed

T0 1 θ01 0.5868
T1 0.8769 θ11 0.3191
Q1 0.2785 θ12 0.0654
Q2 −0.1460 k0 sin(12

40π
180 )

ϕ1 −15π/180 k1 0.2513
ϕ2 −7.5π/180 EI0 1/π2

α2 1.6361 EI1 1/π2

α1 −0.9839

Table 20: Prescribed variables and computed unknowns in the example 2.

example 3 In the last example, the purpose is to form-�nd the shape of a sym-

metric bending active arch with n = 5 rod sections, with perpendicular deviators

and same distance between deviator-rod joints projected over the x-axis. The cable

and rod forces as well as the angle between �rst cable and �rst tangent to the rod

are prescribed. Relations EI0/EI1 and EI0/EI2 are iteratively searched in two steps

through Galapagos until achieving:

d1x
d0x

=
x2 − x1

x1 − x0
= 1 (86a)

d2x = d0x/2 (86b)

Figure 37: Symmetric bending-active tied arch corresponding to the example 3.
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Variable Prescribed Computed Variable Prescribed Computed

T0 1 θ01 0.5236
T1 0.8963 θ11 0.2609
T2 0.8835 θ12 0.1745
Q1 0.2688 θ22 0.0432
Q2 0.1174 k0 sin(12

40π
180 )

ϕ1 −15π/180 k1 0.1719
ϕ2 −7.5π/180 k2 0.1423
α1 −π/3 EI0 1/π2

α2 −80π/180 EI1 0.4466
EI2 0.5029

Table 21: Prescribed variables and computed unknowns in the example 3.

4.6 summary

The bending-active braced (or tied) arch has been presented. The system is a

hybrid between a tied arch and a cable-strut beam: a simple planar structure com-

posed of a continuous �exible member that is activated by the action of main cables

pulling at both ends of the rod, and secondary struts or cables that deviate the main

cable and act at certain cross-section of the rod. The target shape of the system

is achieved as a result of the tensioning process and needs to be pre-determined by

means of a speci�c analysis, typically involving dynamic relaxation or optimisation-

based methods. In this chapter, a speci�c design procedure for this structural type

has been proposed. The method is based on the observation that each segment of the

activated rod between deviators behaves as a segment of elastica; this makes possi-

ble the use of closed-form expressions to evaluate the shape and induced stress level

in the active member.

First of all, a brief review of the in�exional elastica has been presented. In this

study the relationship between the shape, the activation forces and the scalability of

the solution has been stated. Taking advantage of this idea, the self-stress states in

bending-active tied arches can be evaluated in terms of non-dimensional parameters,

which make the results applicable to a wide variety of scales and cross-sectional

sizes.

In section 4.4, a direct method to obtain self-stress con�gurations of bending-

active tied arches has been presented. The shaping process is carried out in a se-

quential way by adequately choosing the design parameters, and does not require

to solve any system of equations since the solution is fully de�ned by compatibility

and equilibrium conditions. When alternative choices for the parameters are se-

lected, the number of independent parameters is reduced and the problem becomes

non-linear. In that case, the use of heuristic algorithms has been proposed as a suit-

able technique to �nd an optimised solution. Finally, some examples with di�erent

design constraints have been reproduced to illustrate the possibilities of the method.





5 E F F I C I E N C Y- B A S E D D E S I G N O F
B E N D I N G -A C T I V E T I E D A R C H E S

”
Form follows function.

— Louis Henry Sullivan
(Architect)

This chapter is an adaptation of the published peer-reviewed paper: Bessini, J.;

Lázaro, C.; Casanova, J.; Monleón, S. (2019) "E�ciency-based design of bending-

active tied arches". Engineering Structures. Vol. 200, 1 December 2019, 109681.

5.1 introduction

Traditionally, the design of a bending-active structures has been oriented to the

determination of the initial geometry of the system, and in some cases, to the eval-

uation of the e�ects due to the self-weight and activation forces. However, once

the target shape has been reached and stabilised, the structural response to exter-

nal loads is considerable in�uenced by the inherited stress state. Therefore, the

assessment of the structural performance is crucial to ensure the appropriateness of

the solution as resistant scheme as well as its structural e�ciency. In the analysis

stage, when external loads are applied, the structure generally has a quasi-linear

behaviour, but the stress state inherited from the activation stage, in addition to in-

�uencing the structural behaviour, has a direct impact in the structural capacity of

the bending-active rods. In spite of that, there is a large number of references deal-

ing with form-�nding methods for bending-active structures, whereas the literature

on their performance in relation to their shape and member proportioning is scarce.

The observation that each segment of the rod behaves as an elastica segment was

presented in Chapter 4. It allows to make use of the exact solution of the elastica

to evaluate the shape and in�uence of the choice of the cross-section and bending

sti�ness on the initial stress level. One of the main conclusions of this study is the

established relationship between shape, activation forces and scalability. Taking

adavantage of this, it is possible to �nd the equilibrium con�guration of the system

in terms of non-dimensional magnitudes and to generalise the results for �exible

members of any length and sti�ness. However, this analytical methodology does

not allow evaluating the structural response of the system when external loads are

applied. Therefore, non-linear �nite element models are needed to assess the appli-

cability and e�ciency of braced arches as structural modules to design lightweight

structures.

59
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This chapter addresses the relationship between con�guration �nding and struc-

tural performance in bending-active braced arches. Starting from a �xed length

and given cross-sections, and introducing prestressing forces in cables, di�erent

structural con�gurations for a three-strut tied arch with perpendicular deviators

are simulated. From these results, stress levels after the activation of the structure

as functions of the rise-to-span ratio and the slenderness of the active member are

obtained. Finally, further numerical analysis has led to establish relationships be-

tween shape, length and slenderness associated to the serviceability limit state and

the ultimate limit state limitations imposed by the Eurocode for footbridges.

5.1.1 Outline of the chapter

The chapter is structured as follows: In section 5.2, an analytical expression to

evaluate the self-stress after activation in elastica semi-waves is detailed. The cor-

respondence between the structural behaviour of a rod segment between deviators

in tied arches and the exact solution of the elastica curve is numerically exempli-

�ed in section 5.3. In section 5.4 numerical experiments are carried out to evaluate

the structural performance due to activation forces and loading models. Section 5.5

shows an example of how to design a particular bending-active tied arch using the

developed methodology. Finally, a procedure to extend the previous results to tied

arches with an arbitrary number n of deviators is described in section 5.6.

5.2 stress levels after activation in elastica semi-
waves

In this section, an analytical expression based on the equations of the elastica

to quantify the utilisation of the material due to the activation process is proposed.

Moreover, the in�uence of the inteverning variables, such as the slenderness of the

rod, the shape of the cross-section or the selected material is examined.

5.2.1 Evaluation of the utilisation ratio

According to the EN 1993-1-1 (Eurocode 3) and as a conservative approximation,

the linear summation of the utilisation ratio for each stress resultant may be used to

veri�cate the ultimate strength of the cross-section (see equation (6.2) in [42]). This

criterium can be written as:

N

Nu
+
M

Mu
6 1 (87)

whereN andM are the section forces produced by bending of a initial straight rod;

Nu andMu are the design values of the ultimate axial forces and bending moments

respectively, without considering buckling reduction factors. Substituting (58) in

(87) leads to the expression of the utilisation ratio in terms of elastica parameters:

P

fuA
g(ω,k) +

P lc

fuW
h(ω,k) (88)

where fu is the ultimate strength of the selected material, A is the cross-sectional

area andW is the elastic section modulus. The functions g(ω,k) and h(ω,k) read

as follows:
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Ψ = 0.25 Ψ = 0.31 Ψ = 0.55 Ψ = 0.71

Table 22: Shape factor for circular hollow cross-sections.

g(ω,k) = 1− 2k2 sin2ω (89a)

h(ω,k) =
2

π
k cosω (89b)

We introduce the parameter Ψ as the shape factor of the cross-section: a dimen-

sionless value that characterises the cross-sectional shape and points out the rela-

tionship between the moment of inertia and the cross-sectional area of the active

member:

Ψ =
I

A r2
(90)

where r is the distance from the neutral axis to the outermost �bre. Table 22 provides

shape factors for typical cross-sections used in the design of bending-active struc-

tures. The shape factor for rectangular cross-sections is equal toΨ = 0.33 regardless

of the proportion between height and width. For circular solid cross-sections, the

shape factor is equal to Ψ = 0.25. Shape factors for circular hollow cross-sections

depend on the thickness of the cross-section; the thinner the thickness, the higher

the shape factor. Lienhard [64] points out an optimal ratio De/Di = 2 (which is

equivalent to a shape factor Ψ of 0.31) for circular hollow cross-sections, where the

sti�ness is close to the maximum value and the cross-sectional area is minimised,

getting light members easy to manipulate during construction. In addition, the use

of a very thin wall increases the risk of local buckling under the e�ect of external

point-loads. Therefore, the most appropriate cross-sectional shape will be the one

that avoids local phenomena as crushing or local buckling.

The parameter λ̄ is used to characterise the slenderness of the rod. It takes into

account: the length of a semi-wave of elastica; the shape of the cross-section and

the mechanical properties of the material

λ̄ =
l

π

√
A

I

√
fu

E
(91)

This interpretation is inherited from the de�nition of mechanical slenderness stated

in the Eurocode 3 (see equation (6.5) in [42]). Using this de�nition of slenderness,

the utilisation ratio (88) can be rearranged as follows:(
l

lc

)2
1

λ̄2
g(ω,k) +

l

lc

√
E

fu

π√
Ψ

1

λ̄
h(ω,k) (92)

As introduced in the previous chapter (section 4.2), the quotient l/lc can be stated

in terms of the parameter k by means of the non-dimensional arc-length parameter
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ζ(ω,k). Concerning the problem of the in�exional elastica, the length between

in�exions is obtained whenω = π
2 , thereby ζ(π2 ,k) = 2

πK(k)

4

π2
K(k)2

1

λ̄2
g(ω,k) + 2K(k)

√
E

fu

1√
Ψ

1

λ̄
h(ω,k) (93)

This expression provides the utilisation ratio of any desired cross-section (de�ned

byω) in terms of the slenderness, the material properties and the shape of the cross-

section. The non-dimensional expression of the utilisation ratio of the cross-section

located at midspan –where higher stresses are expected– is obtained by settingω =

0:
4

π2
K(k)2

1

λ̄2
+
4k

π
K(k)

√
E

fu

1√
Ψ

1

λ̄
(94)

Additionally, a maximum allowable stress can be introduced to limit normal stresses

under the form-�nding stage. It is estimated that limiting the utilisation ratio after

activation to 30 % avoids further problems caused by long-term dynamic loading

4

π2
K(k)2

1

λ̄2
+
4k

π
K(k)

√
E

fu

1√
Ψ

1

λ̄
6 0.3 (95)

For example, equation (95) allows to select the minimum slenderness of the �ex-

ural member compatible with a prescribed stress level of 30 % by choosing: the

material (E, fu), the cross-sectional shape factor (Ψ) and the elastica shape (k).

Figure 38 depicts the utilisation ratio for the particular case of a elastica semi-

wave with rectangular cross-section with a shape factor Ψ = 0.33; E = 30 GPa and

fu = 400 MPa, in terms of the angle of the tangent to the elastica at the in�exion

θ0 and the rod slenderness. It can be seen that low values of the rod slenderness

lead to higher utilisation ratios.
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Figure 38: Utilisation ratio of elastica semi-waves with rectangular cross-section Ψ = 0.33,
angle at the in�exion θ0, material properties E = 30 GPa and fu = 400 MPa,

and di�erent values of rod slenderness λ̄.

Figure 39 shows how the cross-sectional shape Ψ in�uences on the utilisation ra-

tio of elastica semi-waves, for the same material properties chosen before and for dif-

ferent values of the rod slenderness. According to the diagrams, high shape factors

are more advantageous for keeping self-stresses low, however and, as mentioned be-

fore, very thin-walled cross-sections may be crushed when applying external loads.
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Figure 39: In�uence of the shape factor Ψ on the utilisation ratio of elastica semi-waves

with rectangular cross-section, angle at the in�exion θ0 and di�erent values of

rod slenderness λ̄.
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Figure 40: In�uence of the term relative to axial forces on the utilisation ratio of elastica

semi-waves with rectangular cross-section, angle at the in�exion θ0 and di�er-

ent values of rod slenderness λ̄.

Figure 40 shows the relative weight of the e�ect of axial forces on the utilisation

ratio for di�erent rod slenderness. For low values of the cross-section rotation at the

in�exion, the e�ect of axial forces is the most limiting. However, as the curvature

of the rod increases, stresses produced by bending moments play a more prominent

part. As expected, low values of rod slenderness lead to higher utilisation ratios due

to axial forces.

Assuming that the bent rod supports the deck of a footbridge, the maximum gra-

dient of the deck is restricted to 10% due to functional requirements, which approxi-

mately matchs with an angle at the in�exion θ0 = 0.1. Therefore, the e�ect of axial

forces is low but cannot be fully neglected in the analysis.

The relationship between the ultimate strength fu and the Young’s modulus E

has been widely used to measure how adequate a material is for bending-active

structures.

Figure 41 shows the in�uence of di�erent ratios fu/E on the utilisation ratio of

elastica semi-waves, with rectangular cross-section and for di�erent values of rod

slenderness.
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Ashby [6] represented in form of a diagram this relationship for di�erent ma-

terials; he gathered them by material classes and introduced guidelines to de�ne

design regions for certain applications. According to previous works by Lienhard

[64] and La Magna [53], suitable materials for bending-active structures have a ratio

fu/E > 2.5 (with fu in MPa and E in GPa). This requirement is ful�lled by certain

types of timber and GFRPs, having the latter ones a ratio fu/E > 10. As re�ected in

the diagrams, the use of materials with a high ratio fu/E allows to keep activation

stresses low.

Figure 41: In�uence of the ratio fu/E on the utilisation ratio of elastica semi-waves with

rectangular cross-section, angle at the in�exion θ0 and di�erent values of rod

slenderness λ̄.

5.3 shape of the rod between deviators after ac-
tivation

The observation that a rod segment between deviators can be modelled as a seg-

ment of elastica is one of the keys of this PhD thesis. It enables the use of closed-

form expressions (see equations from 92 to 95) to evaluate the stress level at the

tensioning stage, and allows to measure how the form-�nding parameters in�u-

ence on the structural con�guration. This observation has been already applied

in Chapter 4, where suitable solutions for bending-active braced arches have been

form-found by means of an analytical procedure based on the exact solution of the

elastica and whose assumptions are: non-extensibility, non-shear deformability and

the self-weight is neglected. The �rst restriction may be adopted without loss of

generality for the form-�nding problem since the extensional deformations can be

neglected compared to the deformations produced by the bending moment. The

non-deformability under shear is a physical consequence of the high slenderness of

the rod required for this kind of elements. This section aims to show by means of

an example that the observation that a rod segment behaves as an elastica segment

is su�ciently accurate also when considering these deformations (neglecting the

self-weight). For this purpose, the concept of static invariants of a non-linear bent

rod will be used: Kirchho� and Love noted that the equations of in-plane equilib-

rium of an initially straight, non-extensible and non-shear-deformable rod subject

only to forces and/or moments at the end sections are analogue to the equation of

movement of a planar pendulum with no restriction on the amplitude of the oscil-

lation. This fact is known as Kirchho�’s kinetic analogy [67]. The corresponding

analogues for the in�exional elastica expressed in terms of section forces are:

M2

2EI
+N = H (constant) N2 + V2 = P2 (constant) (96)
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where H is related with the potential energy density, P is the compressive force and

M, N and V are the section forces in the rod.

On the basis of the Kirchho�’s kinetic analogy and using a self-stressed con�gu-

ration, it is possible to show that the invariants predicted by the Kirchho�’s kinetic

analogy are kept for a segment of rod between deviators. In the following example,

the static invariants along the bent rod of a tied arch are calculated, using the inter-

nal forces resulting form a �nite element simulation of the activation process. (Note

that the FE beam model considers shearing and extensional deformations.) Then, it

is shown that the magnitudes H and P are practically equal to the invariants pre-

dicted by Kichho�-Love’s theory.

Figures 42, 43 and 44 show the section forces (N, M, V) obtained with FE model.

Bending sti�ness of the rod equals EI = 23.72 kN m and the force in cables is

equal to T = 50 kN. Table 23 shows the values corresponding to the section forces

and invariants at di�erent nodes of the rod segment A-E. As can be seen, static

invariants remain practically constant along the rod segment (percent errors are

below 0.5%). This error can be attributed to the fact that the software calculation

model takes into account axial and shearing deformation as opposed to the elastica

theory. Furthermore, this example demonstrates that for the form-�nding of this

type of structures it is feasible to consider that the rod segments between deviators

are shaped like segments of elasticas.

Figure 42: Axial forces N due to activation process.

Figure 43: Shear forces V due to activation process.

Figure 44: Bending momentsM due to activation process.
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N [kN] V [kN] M [kNm] H [kN] P [kN]

A -6.97 1.05 2.09 -6.88 49.68

B -7.03 0.98 2.29 -6.87 49.68

C -7.03 0.91 2.47 -6.87 49.84

D -7.02 0.77 2.73 -6.87 50.2

E -7.03 0.69 2.82 -6.86 49.91

Table 23: Section forces and static invariants of the rod segment A-E.

5.4 numerical tests on bending-active tied arches
with three deviators

This section shows a set of simulations for bending-active tied arches with speci�c

dimensions of members and materials properties. This study aims to: (a) provide ex-

amples of the results given in Chapter 4; (b) provide examples of the scalability of the

solution and (c) �nd patterns of relationship between shape and the structural per-

formace of this kind of structures under the load models posed by the Eurocode for

footbridges. Simulations are carried out using the non-linear FE software SOFiSTiK.

To limit the number of cases and the complexity of the study, it focuses on sym-

metric structures with three equally spaced perpendicular deviators which remain

perpendicular to the rod. The following common data have been considered: the up-

per rod is 4m long continuous member with circular hollow cross-section with thick-

ness equal to 10% of the radius; the deviator lengths are: hq = 0.3 m at quarters

and hm = 0.4 m at midspan. The ratio between deviator lenghts hq/hm = 0.75
has been selected after carrying out a parametric study; this ratio provides practi-

cally equal axial forces in the deviators after activation and lower de�ection under

a frequent service load [17].

GFRP —material properties of GFRP are E = 30 GPa, fu = 500 MPa— has

been chosen as a material for the rod. Cables are not continuous; therefore, cable

forces can be di�erent in each cable segment. Steel is used for cables; the material

properties of the selected cables are: Es = 110 GPa, fus = 1570MPa (Fig. 45).

Figure 45: De�nition of the input parameters.
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1 2 3 4 5 6

T0 [kN] 2.475 7.211 11.678 15.892 19.890 23.629

T1/T0 0.967 0.977 0.988 1.000 1.012 1.027

a [m] 3.996 3.975 3.935 3.875 3.798 3.703

f/a 0.016 0.048 0.080 0.113 0.146 0.1811

Table 24: Values of activation forces and resulting geometric ratios for the sequence of

bending-active tied arches (1-6) shown in Fig. 46. The de�nition of the param-

eters can be found in Fig. 45.

5.4.1 Relationship between shape and activation forces

Six di�erent con�gurations for a bending-active tied arch with three equally spaced

and perpendicular deviators are generated. The cross-section of the upper rod is a

circular hollow cross-section with EI = 23.72 kN m
2
. Each self-stressed con�gura-

tion is obtained introducing a force T0 in the outer cable; perpendicularity between

rod and deviators is achieved selecting the corresponding force T1. In this simula-

tion, the force T1 is obtained by trial and error until the condition of perpendicular-

ity between rod and deviators is achieved
1
. Table 24 shows the values of activation

forces and the obtained geometric ratios for each structure (Fig. 46).

Figure 47 shows the relation between the non-dimensional shape ratio f/a and the

activation force ratio in cables T1/T0. Because of the scalability of elastica solutions,

these results can be generalised for �exible members of any length and sti�ness, as

long as deviators are equally spaced and perpendicular to the rod, where the length

of central deviator equals 10% of the length of the rod and the length of lateral

deviators equals 75% of the central deviator.

Using the Figure 47 and the results in Table 24, the con�guration associated to a

desired shape and size can be easily determined. For example, a 10m span and 1.5m

rise arch (f/a = 0.15), interpolating in Table 24, the force ratio T1/T0 = 1.014.
For this f/a ratio, in the reference structure used in the simulations and previously

de�ned in the beginning of the section, a = 3.770 m and T0 = 20.35 kN. The

scaling factor for the desired structure will be 10/3.77 = 2.65; therefore, applying

the scale factor stated in section 4.2, EI/T0 should be 2.652 = 7.0225 times larger

than in the reference structure. This can be done with a 2.65 · 4 = 10.6 m long rod,

using a stronger cross-section, or decreasing the activation force, or a combination

of both.

5.4.2 Stress levels in the rod a�er activation

The maximum normal stress (in absolute value) acting on the midspan cross-

section of the rod after activation has been evaluated for 20 values of rod slenderness

λ̄ = s
π

√
A
I

√
fu
E (from λ̄ = 0.2 to λ̄ = 2.5) and 40 values of the rise-to-span ra-

tio (from f/a = 0.01 to f/a = 0.2), with s = 1 m (the length of the rod segment

between deviators).

1 Further details about these relationships can be found in Chapter 4.



68 efficiency-based design of bending-active tied arches

(1) T0 = 2.475 kN

(2) T0 = 7.211 kN

(3) T0 = 11.678 kN

(4) T0 = 15.892 kN

(5) T0 = 19.890 kN

(6) T0 = 23.629 kN

Figure 46: Di�erent con�gurations for bending-active tied arches with three equally spaced

deviators.
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Figure 47: Relation between activation force ratios and non-dimensional shape ratios for a

bending-active braced arch with three deviators equally spaced and perpendic-

ular to the rod, where the length of central deviator equals 10% of the length of

the rod and the length of lateral deviators equals 75% of the central deviator.

The evaluation of the stresses takes into account the axial force and the bending

moment produced at midspan, where the curvature reaches its maximum and there-

fore the bending moment too. Figure 48 shows the curves corresponding to several

ratio of stress-to-ultimate-strength that have been elaborated using the stress values

provided by the simulations. Once the shape and size of the structure have been de-

�ned, the diagram allows to select the minimum slenderness of the �exural member

compatible with a prescribed stress level.

Figure 48: Stress ratio levels after activation in terms of rod slenderness and rise-to-span

for a bending-active braced arch with three deviators equally spaced and per-

pendicular to the rod, where the length of central deviator equals 10% of the

length of the rod and the length of lateral deviators equals 75% of the central

deviator.
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5.4.3 Structural performance of cables

The selection of the activating cables is crucial in the behaviour of the whole

structure. Cables must be carefully designed since oversized cross-sections lead to

insu�cient cable stresses after the activation stage and undersized cross-sections

may result in overall excessive �exibility.

The size of the cable is selected in terms of slenderness. The following de�nition

of cable slenderness is introduced:

λ̄c =
s

d

√
fus
Es

(97)

where s keeps being the length of the rod segment between deviators and d the

external equivalent diameter of the cable. Among di�erent commercial typologies

of steel cable, a wire rope 7x19+0 is chosen: 6 individual strands made up of 19 steel

wires wrapped around a core made up of the same strand. Although other wire rope

typologies are possible.

To evaluate the structural response of the rod and cables in order to satisfy the

design limit states, the loading value for footbridges de�ned by the Eurocode [41]

is used. For the evaluation of the serviceability limit state, a distributed load corre-

sponding to 40% of 5 kN/m
2

has been applied (frequent value of the service load).

The loading pattern consists in a uniform load on a width that we choose to be 10%

of the developed length of the rod (Fig. 49).

Figure 49: Loading model.

Two series of numerical experiments are carried out: in the �rst one the cable

has been selected so that its slenderness be 15 times the rod slenderness; in the sec-

ond, the cable slenderness is 5 times the rod slenderness. Within each set, stresses

in the rod and cables have been evaluated for 20 values of rod slenderness (from

λ̄ = 0.2 to λ̄ = 2.5) and 40 values of the rise-to-span ratio (from f/a = 0.01 to

f/a = 0.2). Using the cable-rod slenderness ratio λ̄c/λ̄ as a parameter to de�ne the

size of the cable makes it possible to avoid con�gurations with oversized or under-

sized diameters with respect to the size of the rod. For example, Fig. 50 shows two

con�gurations with the same rod slenderness value λ̄ = 1.5 but with di�erent cable-

rod slenderness ratios λ̄c/λ̄, which correpond with the lower and upper bounds 5

and 15 respectively.
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(a) (b)

Figure 50: Con�gurations with the same rod slenderness λ̄ = 1.5 and di�erent cable-rod

slenderness ratios: a) λ̄c/λ̄ = 5 and b) λ̄c/λ̄ = 15.

Results have been elaborated and summarised in Figure 51. It shows the region

of the slenderness-shape diagram where for a selected rise-to-span ratio, the dia-

gram allows to choose the cable-rod slenderness ratio compatible to reach at least

10% of the maximum allowable stress in cables after activation –in order to avoid

slack cables– and at most 70% because of service loads. As can be seen, the choice

of the cable-rod slenderness ratio restricts the choice of the rod slenderness for a

given rise-to-span ratio: higher cable-rod slenderness ratios allow to select large

slenderness rods, which may imply low global sti�ness, in contrast, lower cable-rod

slenderness ratios lead to oversized rod cross-sections, that are incompatible with

keeping activation stresses low.

Figure 51: Region where stresses in cables are in the interval between 10% and 70% of the

maximum allowable stress.
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5.4.4 Performance for serviceability limit state (SLS)

For checking the vertical displacement serviceability limit state, midspan de�ec-

tions have been evaluated using the same previous set of simulations. Results are

summarised in Figure 52. Using the diagram, for a selected rod slenderness, the ca-

ble can be chosen to achieve a threshold value of de�ection. As expected, higher

values of rod slenderness lead to larger de�ections for a given cable-rod slenderness

ratio.

For example, setting a rise-to-span ratio equals f/a = 0.10 and a threshold value

for the de�ection equal to L/500 –where L is the developed length of the rod–,

two con�gurations are exempli�ed, each one corresponding to one of the studied

cable-to-rod slenderness ratios: a) a rod slenderness λ̄ = 2 with a cable slenderness

λ̄c = 10 or b) a rod slenderness λ̄ = 1.15 with a cable slenderness λ̄c = 17.25.
However, solution a) is incompatible with a proper level of stresses in cables (Fig.

52).

Figure 52: Dimensionless de�ections from L/200 to L/1000 for di�erent cable-rod slender-

ness ratios and a given load in terms of slenderness and shape.

5.4.5 Performance for ultimate limit state (ULS)

A similar study has been carried out to assess the ultimate limit states, using

the same set of previous structural proportions and cross-section dimensions. To

obtain the design load value, the characteristic load value de�ned by the Eurocode

(5 kN/m
2
) is multiplied by the partial factor for actions γ = 1.35. The self-weight is

not considered in the simulations aiming at simplifying the analysis by isolating the

e�ect of external loads. Normal forces and bending moments in the rod have been

checked, performing a non-linear analysis of the structural model.

Figure 53 shows the region of the slenderness-shape diagram where according to

the Eurocode 3 the utilisation ratio is less than 1, for di�erent con�gurations and a

given design load. The shape of the graph is understood as follows: for more slender

members the admissible region is reduced by the active member being prone to

instability. Low values of the slenderness mean that activation is consuming a large

part of the strength, and therefore the admissible region becomes also more limited.

The larger values of the rise-to-span ratio corespond to a slenderness of 1.6.
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Figure 53: Region where the utilisation ratio in the rod is less than 1 for the ultimate limit

state.

5.5 example

This section shows an example of how the con�guration associated to a desired

shape and size can be easily determined using the results presented in the previous

section.

The design of the bending-active tied arch is based on the following requirements:

bending-active rods are designed as 10 m long continuous GFRP members with thin-

walled circular hollow cross-section, the height at midspan should be close to 10% of

the rod length (hm = 1 m), the rise-to-span ratio is restricted to 5%, the maximum

de�ection for frequent loading must be lower than L/500 and the structure has to

bear a service load of 5 kN/m
2
. The mechanical properties of GFRP rod and steel

cables correspond to the same setup as in section 5.4.

As shown in Figure 54, for the selected rise-to-span ratio and choosing the cable

slenderness as 15 times the rod slenderness, the maximum rod slenderness should

be in the range of 1. Nonetheless, multiple solutions are possible; any point within

the intersecting region (dark red) represents a feasible con�guration. It is worth

noting that for lower cable-rod slenderness ratios the structure becomes sti�er, but

the stress level in the cables restricts considerably the range of solutions; Figure 54

also shows the case where selecting a low value for the cable-rod slenderness ratio

(λ̄c/λ̄ = 5) may lead to incompatible performances of rod and cables.

Using the de�nition of slenderness (Eq. 91), the target con�guration is achieved

using a circular hollow cross-section with an outer diameter of 190 mm and a thick-

ness of 9.5 mm. Keeping the established structural proportions, the resulting steel

cable is a wire rope 7x19+0 with a nominal diameter of 20 mm.
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Figure 54: Design diagram for the example of the section 5.5.

5.6 procedure to design bending-active tied arches
with an arbitrary number of deviators

In this section, a methodology to design bending-active tied arches with n devia-

tors of any length, based on the results obtained in section 5.4 is shown.

The following procedure is a sequence of orderly steps to reach a feasible solution.

As shown in the example in section 5.5, the problem may have multiple solutions and

an iterative calculation would be necessary to reach the best of them. The process

is as follows:

1. De�ne the mechanical properties E, fu, for the rod and cables. Deviators can

be initially considered as rigid bodies.

2. De�ne the length of each segment of the rod si, for i ∈ {1 . . . n}, and the

lengths of deviators hi, for i ∈ {1 . . . n−1}

3. Select the cross-sectional shape Ψ and slenderness λ̄ for the rod. This choice

can be supported by the diagram 48 in a �rst step.

4. Select the typology and size of steel cables in terms of relative slenderness

with the rod λ̄c = k · λ̄, being k the multiplying factor. It is suggested that k

ranges from 10 to 20.

5. Obtain the con�guration associated to a desired shape f/a by means of in-

creasing or decreasing the tensioning force T0 (force in the outer cable). Per-

pendicularity between rod and deviators can be achieved introducing the cor-

responding force T1.

6. Check stresses in the rod σFF,r and cables σFF,c after the activation process.

Oversized cables cross-sections can lead to an insu�cient stress level (risk of

cables becoming slack) at the activation stage and the active member must be

slender enough to keep stresses low and limit further problems due to cycling

long-term loading. As explained in sections 5.2.1 and 5.4.3, it is suggested that

stresses be around 30% of the material strength in the rod and over 10% of the

cable strength after activation.
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7. Simulate the load models and check the serviceability limit state and the ul-

timate limit state for the rod and cables. Maximum de�ections at midspan

v(L/2) and stresses σULS,r, σULS,c must be lower than the threshold value

posed by codes.

Figure 55 shows the process outlined in a �ow chart.

Figure 55: Procedure to design a bending-active tied arch with an arbitrary number of de-

viators.
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5.7 summary

The design of bending-active structures is a challenging problem due to the non-

linearity of the activation process, the coupling between: cross-section dimensions,

structural shape and initial stress state, and the deformability and buckling sensitiv-

ity inherent to the resulting lightweight con�gurations. In this chapter, the activa-

tion process and the structural performance under external loads of bending-active

tied arches with three perpendicular deviators have been studied.

In section 5.2, the exact solution of the elastica has been used for the evaluation

of the self-stress state. Due to the scalability of the solution, the obtained results

are applicable to the design of bending-active structures of any size and sti�ness for

bending-active braced arches. Taking advantage of this idea, in section 5.4 a set of

simulations for a three-strut tied arch with perpendicular deviators are carried out.

Relationship patterns between shape and activation forces have been obtained in

terms of non-dimensional geometric ratios and rod slenderness, which demonstrates

and exempli�es the results shown in Chapter 4.

Secondly, the serviceability limit state and the ultimate limit state have been stud-

ied separately by means of two series of numerical experiments. Maximum de�ec-

tions and stresses in the rod and cables have been evaluated and compared to the

limitations posed by the Eurocode for footbridges. The results have been elaborated

and synthesised to produce non-dimensional diagrams useful for the design of of

bending-active tied arches with three deviators of any size and shape. The results

show that the design space is limited, mainly because the magnitude of the load

and limitations for de�ections in serviceability limit states posed by codes are very

restrictive. Less restrictive limitations would allow for wider design possibilities.

Section 5.5 shows an example that illustrates the way to obtain a feasible con�gu-

ration compatible to a desired shape and size of a bending-active tied arch with three

deviators, for the chosen materials and structural proportions. Finally, a procedure

to extend the previous results to tied arches with di�erent number and proportions

of deviators has been detailed.
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”
Engineering is the art of directing the great sources
of power in nature for the use and convenience of
man.

— Thomas Tredgold
(Engineer)

This chapter is an adaptation of the published peer-reviewed paper: Bessini, J.;

Shepherd, P.; Monleón, S.; Lázaro, C.; (2020) "Design of bending-active tied arches

by using a multi-objective optimisation method". Structures. Vol. 27, pp. 2319-2328.

doi: 10.1016/j.istruc.2020.07.045

6.1 introduction

The results obtained in the previous chapter for the performance of bending-

active tied arches for pedestrian bridge applications show that the region of the

design space where solutions comply with the design constraints is fairly limited,

due primarily to the magnitude of the design loads and the tight limitations on stress

and de�ection posed by codes. Solutions are dominated by instability in the active

members, minimum stresses in cables after activation and maximum allowable de-

�ections for the serviceability limit state.

In Chapter 5, a series of simulations using speci�c sizes of members and mate-

rial properties, for a certain length ratio between deviators were performed. With

these results, general non-dimensional relations between activation forces and struc-

tural shapes were established in terms of non-dimensional geometric ratios and rod

slenderness. Because of the scalability of the solutions, the results obtained from

this study are applicable to the design of bending-active tied arches of any size and

sti�ness. However, these results cannot be extended to other bending-active braced

arches with di�erent length ratio between deviators and then, it would be necessary

to replicate the numerical experiments for every potential structural con�guration.

Due to the large number of form-�nding parameters, and the restrictive limitations

posed by codes, the determination of the best structural con�guration is a challeng-

ing process.

This chapter aims to build on the work done in the Chapter 5 by presenting a

design procedure, that in an automated way, carries out the design process of the

structure for every potential con�guration. To achieve this, all the form-�nding

parameters involved in this problem are included as a variable input in the study.

77
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These parameters are: the size and cross-sectional shape of the rod, the diameter

of the cables and the deviator lengths at midspan and quarter-span sections. Addi-

tionally, a second load pattern with a non-symmetric uniform load on half-span has

been considered to better understand the response of the structure under service

loads.

For that purpose, a design tool to generate e�cient structural con�gurations for

braced bending-active tied arches using multi-objective optimisation strategies is

proposed. Initially, a non-linear FE analysis is performed for each plausible con�gu-

ration and at each generation of the optimisation algorithm. In a second step, a ge-

netic algorithm classi�es the solutions and establishes new structural con�gurations

according to best performance. Solutions are evaluated in terms of stresses in the ac-

tive member and cables, and maximum de�ections, as required by design codes for

pedestrian bridges. Finally, results are given in terms of non-dimensional param-

eters, which make them applicable to a wide variety of scales and cross-sectional

sizes.

6.1.1 Outline of the chapter

The outline of the chapter reads as: In section 6.2 the problem is introduced and

the considered variables in the multi-objective optimisation method are detailed. In

section 6.3 the genetic algorithm is described and a sensitivity study is carried out to

calibrate the method. The results obtained after the optimisation process are shown

in section 6.4. In section 6.5 the solution is analysed from a structural point of view.

6.2 problem description

To develop the proposed method, the topology of the bending-active tied arch

remains the same as in the previous Chapter 5 (three equally spaced deviators with

a 4 m long upper rod). The design of the deviators is beyond the scope of the present

study. They should be de�ned in a second stage once the shape of the structure and

the rod and cables have been obtained. The material properties of the rod and cables

are shown in Table 31, where E is the elastic modulus and fu is the ultimate strength

of the selected material.

Element Material E (MPa) fu (MPa)

Rods GFRP 30 000 400

Cables Steel 110 000 1570

Table 25: Material properties.

As introduced above, there are �ve form-�nding parameters in this problem: the

size and cross-sectional shape of the rod, the diameter of the cables and the deviator

lengths at midspan and at quarter-span sections. To populate the data set of the

multi-objective optimisation problem, some of these parameters are introduced as

non-dimensional variables. In the following, the input variables are detailed:

• The diameter and thickness of the circular hollow cross-section of the rod are

given by the selected outer De and inner Di diameters. The outer diameter
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can vary from s/20 to s/8, where s is the length of the rod segment between

deviators; the inner radius is given by the ratioDi/De, which can vary from

0.2 to 0.8. These limitations allow to get light active-members without risk of

local buckling or crushing under the e�ect of external loads.

• The length of the deviator at midspan hm can range from L/15 to L/5, where

L is the developed length of the rod. The length of the deviators at quarter-

points hq is de�ned by means of the ratio hq/hm. These geometrical con-

straints are selected from an aesthetic point of view.

• The diameter of cables d is determined by the cable-rod slenderness ratio

λ̄c/λ̄, using the same strategy as in Chapter 5.

Table 26 summarises the bounds chosen for the form-�nding parameters.

Variable Lower bound Upper bound

hm L/15 L/5

hq/hm 0.3 1

De s/20 s/8

Di/De 0.2 0.8
λ̄c/λ̄ 5 15

Table 26: Upper and lower bounds for the input variables in the multi-objective optimisa-

tion method.

The design of the bending-active tied arch must also meet the functional require-

ments for footbridges posed by codes. Therefore, the analysis is restricted to arches

with a rise-to-span ratio f/a close to 6%. This value corresponds with the maximum

allowable gradient of the deck.

With the aim of obtaining self-stressed con�gurations with a particular rise-to-

span ratio f/a to populate the data set of the multi-objective optimisation prob-

lem, each �at con�guration (generated randomly from the values of the Table 26) is

simulated for four values of activation forces T0 given by the relation between the

bending sti�ness of the rod EI and four critical lengths lc, ranging from lc = 1 to

lc = 4, which remain constant for all the experiments. The number of values and

their magnitudes have been selected after checking that with this number of shape

parameters lc and their corresponding activated shapes, at least one of them close

to the desired non-dimensional shape ratio f/a = 6%. Perpendicularity is achieved

introducing the corresponding force T1, as explained in Chapter 5. After activation,

stresses in the rod are evaluated at midspan using the axial force and bending mo-

ment. Stresses in the cables are also quanti�ed. Simulations have been carried out

using the non-linear Finite Element (FE) software SOFiSTiK.

The second consideration in the design of bending-active structures is the service-

ability limit state. To achieve this a distributed load corresponding to 40% of the 5

kN/m
2

service load is applied according to the loading model for footbridges posed

by the Eurocode [41]. De�ections are calculated at midspan (Dm) and at quarters

(Dq) using two loading patterns.

The �rst is a symmetric uniform load on a width choosen to be 10% of the devel-

oped length of the rod (Fig. 56). The second is a non-symmetric uniform load on

half-span with the same width (Fig. 57).
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For the evaluation of the ultimate limit state, the characteristic load value 5 kN/m
2

is multiplied by the partial factor for actions γ = 1.35 [41].

Normal forces and bending moments are assessed in the rod at the midspan cross-

section considering the symmetric loading pattern and performing a FE non-linear

analysis.

Due to the lightness of this kind of structures, the e�ects caused by the self-weight

can be neglected in the simulations. This simpli�es the analysis and allows to isolate

the e�ect of external loads.

Elevation

Plan view

Figure 56: Symmetric loading pattern.

Elevation

Plan view

Figure 57: Non-symmetric loading pattern.

6.3 the multi-objective optimisation problem

The computational framework presented in this paper combines two techniques

to obtain e�cient structural con�gurations: a non-linear FE analysis and a genetic

algorithm. The process starts with the de�nition of the set of feasible solutions

(population). Individuals are randomly initialised and composed of �ve genes that

correspond to the form-�nding parameters described in Table 26. Secondly, a non-

linear FE analysis is performed in each generation for each individual, in order to

evaluate the structural response of the tied arch. Finally, the genetic algorithm car-

ries out �tness-based selection and recombination to produce the next generation

of suitable structural con�gurations (Fig. 58).
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Initial population

Structural evaluation
Non-linear analysis 
using a FE software

Fitness-based selection

Recombination

Crossover MutationElitism

 Next population

Figure 58: Flowchart of the design method.
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6.3.1 Fitness

In the design of bending-active structures, the selection of member proportions

determines the behaviour of the whole structure. Oversized cable cross-sections can

lead to insu�cient stress at the activation stage, and undersized cross-sections may

result in an excessively �exible system. The active member is required to be slender

enough to keep stresses low after activation. Moreover, oversized rod cross-sections

lead to heavy solutions that are not interesting from an aesthetic point of view. To

satisfy these requirements, four �tness objectives (cost functions) are considered

in the proposed multi-objective minimisation problem to evaluate each structural

con�guration. Fitness function depends on: a) the utilisation ratio of the rod for the

ultimate limit state RULS; b) the utilisation ratio of cables after activation and for the

serviceability limit stateCFF−SLS, where the resulting cable cross-section should be

capable of reaching at least 10% of the maximum allowable stress after activation,

and at most 70% under service loads; c) the maximum de�ection at midspan Dm
and at quartersDq for serviceability limit stateDSLS, with the ratio L/1200 as the

target according to codes for footbridge applications; and d) the weight of the rod

and cablesW to guide the process towards structural con�gurations that are as light

as possible.

The utilisation ratio of the rod has been calculated according to EN 1993-1-1 (see

Eurocode 3, Eq. 62.2 [42]). The expression reads as follows:

N

Nu
+
M

Mu
(98)

where N and M are the axial force and bending moment at the midspan cross-

section respectively, produced either by the bending of an initial straight rod during

the tensioning process or the application of external design loads; Nu and Mu are

the design values of the ultimate axial forces and bending moments respectively,

without considering buckling reduction factors. For cables, the expression is simpli-

�ed due to the absence of bending moments:

N

Nu
(99)

The �tness score of each individual (i) and at each generation (t) is obtained as

the weighted summation of the �tness functions (eq. 100). The weight for each �t-

ness function has been selected according to the relative importance of the variables,

de�ned by the user. The part of the �tness score related to serviceability limit state

Fc (DSLS), has been obtained as the equally weighted summation of the �tness func-

tion Fc
(
Dl,p

)
for each non-dimensional de�ection Dl,p considering the di�erent

loading patterns (symmetric and non-symmetric) and positions (at midspan and at

quarters) (eq.101).

Fitnessti = 0.4Fa (RULS) + 0.1Fb (CFF−SLS)+

+ 0.25Fc (DSLS) + 0.25Fd (W)
(100)

Fc (DSLS) =
1

4
Fc1 (Dq,sym) +

1

4
Fc2 (Dm,sym)+

+
1

4
Fc3 (Dq,asym) +

1

4
Fc4 (Dm,asym)

(101)
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Figure 59: Fitness functions considered in the multi-objective optimisation problem.
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6.3.2 Selection

The selection component is based on the so-called proportional selection tech-

nique [48]. This selection strategy allocates each individual a probability of being

selected, proportional to its relative �tness score, which is computed by dividing the

�tness of each individual by the sum of all �tness values, normalising to 1. Since the

optimisation method is a minimisation problem, we cannot apply this technique di-

rectly. Instead we use 1− fitness, so that individuals with a lower �tness score will

be more likely to be chosen as a parent. Using this technique, the best individuals

can be selected multiple times for breeding.

6.3.3 Recombination and evolution

Among existing crossover techniques, the one-point crossover has been imple-

mented in this research. Every pair of parents are each cut at a random position

(crossover point) and the genes on one side of the crossover point are swapped to

generate two new individuals [45]. After recombination, each individual has a 40%

probability of mutation (see section 6.3.4). In this case, one of its genes, randomly

selected, adopts a new value within the initial prede�ned bounds. This technique in-

troduces diversity into the population, which prevents the algorithm from becoming

trapped in a local minimum [50]. Finally, the successor population is generated us-

ing replacement with elitism, where the best individual from the current population

is carried over unaltered to the next generation.

The genetic algorithm iterates until it reaches a con�guration whose �tness score

remains unimproved for at least 100 consecutive iterations.

6.3.4 Sensitivity study

To improve the genetic algorithm performance, a sensitivity study has been car-

ried out to determine an e�cient set of genetic algorithm parameters. The set of

experiments obtain the optimum population size and probability of mutation. It has

been considered that all �tness functions are equally weighted and a maximum num-

ber of iterations of 300. In Table 27, it can be observed that setting a large population

does not lead to a better solution. On the other hand, with small populations, a prob-

ability of mutation close to 40% o�ers the best outcome. In addition, setting small

populations is advantageous from the point of view of reducing the computational

cost.



6.4 results 85

Experiment Population Mutation [%] Fitness300i

E1 25 0 0.0200

E2 25 30 0.0155

E3 25 40 0.0151

E4 25 50 0.0156

E5 50 40 0.0156

E6 100 30 0.0154

E7 100 40 0.0155

Table 27: Experiments to select the population size and probability of mutation.

6.4 results

Results are given in terms of non-dimensional parameters and shown graphically

to better understand the evolution of the form-�nding variables through the multi-

objective optimisation process. Figure 60 shows the range of genome values for the

initial population considered in the problem, which has been randomly de�ned us-

ing a Sobol sequence [91]. This method distributes the points evenly and uniformly.

Figure 60 a) depicts the length of the central deviator and the length ratio between

deviators; Figure 60 b) provides information about the cross-section of the rod; Fig-

ure 60 c) establishes the member ratio between rod and cables. In Figure 61, the

population distribution and the results obtained (red points) are shown at iteration

number 500, which satis�es the design constraints. Figures 62 and 63 show the evo-

lution of the �tness function and the di�erent evaluated utilisation ratios during the

multi-objective optimisation process.

Table 28 shows the form-�nding variables obtained at di�erent stages of the multi-

objective optimisation process with geometries shown in Figure 64. Tables 29 and 30

show the utilisation ratios of the rod and cables and the maximum span-de�ection

ratios for the structural solution reached in the optimisation process.

Iter Fitness hm/s hq/hm λ̄ Di/De λ̄c

a) 1 0.0549 0.393 0.925 1.767 0.673 8.47

b) 5 0.0268 0.595 0.697 2.404 0.575 8.47

c) 150 0.0149 0.448 0.697 1.887 0.701 7.28

d) 500 0.0148 0.447 0.697 1.891 0.695 7.26

Table 28: Form-�nding variables for di�erent con�gurations.

After activation ULS

Rod Cable Rod Cable

0.3529 0.0771 0.9551 0.2233

Table 29: Utilisation ratios of the rod and cables for the solution reached.
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s

(a)

(b)

(c)

Figure 60: Initial population.

SLS [mm]

Dq,sym Dm,sym Dq,asym Dm,asym

2.88 3.30 0.83 2.70

Table 30: Maximum de�ections (in mm) for the solution reached.
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s

(a)

(b)

(c)

Figure 61: Distribution of the population and results (red points) at �nal iteration.
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Figure 62: Evolution of the �tness function.

Figure 63: Utilisation ratios of the rod and cables after activation (FF) and for the ultimate

limit state (ULS).
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(a) Iteration number 1

(b) Iteration number 5

(c) Iteration number 150

(d) Iteration number 500

Figure 64: Con�guration for bending-active tied arches at di�erent iterations.

As can be seen from the results shown in Tables 28, 29 and 30 the genetic al-

gorithm evolves towards e�cient solutions characterised by active members with

moderate values of slenderness, minimal cross-sections for the ultimate limit state

of the structure and cable cross-sections slightly oversized, that provide the required

global sti�ness to the tied arch, at the expense of a low, but su�cient, cable stress

after activation (Fig. 63).

Regarding the cross-sectional shape of the rod, the genetic algorithm tends to

converge on solutions with ratiosDi/De ≈ 0.6. This value maximises the sti�ness

and minimises the cross-sectional area, which favors light structural schemes and

supports the assumption made in previous work [18] and Chapter 5.

The evaluation of the stress in the �exible member after activation is another im-

portant aspect in the design of bending-active structures. High stresses can lead to

the emergence of long-term strains due to creep in GFRP materials. Consequently,

stresses after activation should be within 30% - 60% of the maximum allowable stress

to avoid this phenomenon [34, 64]. In the solution obtained, stresses in the rod after

activation are limited to 35% of the allowable stress, which is a moderate and desir-

able value. For the evaluation of de�ections the limitation posed by the Eurocode

for footbridges has been considered. The maximum value for de�ections must be

lower than L/1200, where L is the span length. In the solution reached, the active

member is 4 m long L and maximum de�ections are shown in Table 30. For each

value, the limitation L/1200 is ful�lled.

The outcomes of the experiment are expressed in terms of non-dimensional pa-

rameters. As shown in [18], for a given member cross-section, outcomes can be

generalised for �exible members of any length and sti�ness, as long as: the shape
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of the bending-active arch is equivalent. This means that the deviators are equally

spaced and perpendicular to the rod; deviator at midspan are 44% of the developed

length of the rod; the length of the other two is 70% of the central deviator (Table

28, con�guration C) and the relation between external loads remains constant. For

example, for the design of a footbridge consisting of a 12 m long continuous active

member with a rise-to-span ratio f/a of 6%, according to the rod slenderness (1.891)

and cable slenderness (13.728) obtained in the study, the tied arch can be built using

a circular hollow cross-section with an outer diameter of 190 mm and a thickness

of 30 mm and a steel cable with a diameter of 26 mm.

6.5 structural analysis and verification

From a structural point of view, it is crucial to understand why the obtained so-

lution is optimal. This section aims to explain why the algorithm tends to this con-

�guration and how the form-�nding parameters in�uence the structural behaviour

of the solution. For that purpose, the analysis focuses on the �nal solution after

500 iterations. In order to better understand the outcomes, the optimal solution is

compared with a ’bad’ solution (�rst iteration of the algorithm). In this way, it is

possible to appreciate the improvement of the structural solution.

Among the di�erent form-�nding parameters, the length of the deviators are the

most critical to the behaviour of the whole structure. Comparing the structure with

a truss girder, the length of the deviator at midspan de�nes the height of the beam,

which directly in�uences on the overall sti�ness of the system. As expected, higher

values of the deviator length at midspan lead to smaller de�ections (Figs. 65 and 66).

Figure 65: Vertical de�ections (mm) due to the non-symmetric loading pattern for the ser-

viceability limit state (optimal solution).

Figure 66: Vertical de�ections (mm) due to the non-symmetric loading pattern for the ser-

viceability limit state (bad solution).
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Another important aspect is the ratio between deviator lengths hq/hm. Figures

67 and 68 show the bending moments in the rod obtained from a FE model at the

form-�nding stage. As can be seen, for a ratiohq/hm ≈ 0.7, the maximum value for

the bending moment is located at midspan, where higher curvatures are expected,

and decreases gradually until zero at the ends. This behaviour is the expected struc-

tural response in elastica-shaped active arches.

Figure 67: Bending moments M (kN.m) in the rod due to activation process (optimal solu-

tion).

Figure 68: Bending moments M (kN.m) in the rod due to activation process (bad solution).

As can be observed in Figures 69 and 70, the ratio between deviator lengths

hq/hm also in�uences their behaviour. For example, in the con�guration corre-

sponding to the ’bad’ solution (Fig. 70), the deviator at midspan works under tension,

and it could therefore be replaced by a cable. However, this structural scheme is not

the most e�cient to bear the action of the design loads posed by the Eurocode for

footbridges. Therefore, it seems desirable to obtain con�gurations where deviators

work under compression.

Figure 69: Axial forces N (kN) in the rod and deviators due to activation process (optimal

solution).

The selection of the cables is also crucial in the behaviour of the whole struc-

ture. As mentioned in the previous section, solutions are characterised by cable

cross-sections slightly oversized. The optimisation method evolves towards solu-

tions where cables are designed to avoid cable slackness and provide maximum sti�-
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Figure 70: Axial forces N (kN) in the rod and deviators due to activation process (bad solu-

tion).

ness to the whole system, since higher values of cable-rod slenderness ratio lead to

larger de�ections [18].

Regarding the cross-sectional shape of the rod, a compromise between a high

sti�ness and minimum cross-sectional area has been reached. As can be seen in

Figures 71 and 72, for the ultimate limit state, stresses produced by bending moments

play a more prominent part. However, the e�ect of axial force cannot be neglected

due to their contribution to the buckling of the rod segments. In addition, other local

phenomena such as crushing or local buckling must be avoided. As expected, the

optimisation method has driven towards a high value of rod slenderness, reducing

as much as possible the external diameter and optimizing the thickness to get an

utilisation ratio close to 1 (0.9551).

Figure 71: Bending moments M (kN.m) in the rod due to the design loads for the ultimate

limit state (optimal solution).

Figure 72: Axial forces N in the rod due to the design loads for the ultimate limit state

(optimal solution).
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6.6 summary

This chapter presents a design tool based on multi-objective optimisation for ob-

taining e�cient structural con�gurations for bending-active tied arches. The struc-

tural optimisation has been carried out by a genetic algorithm, in which each plau-

sible structural con�guration has been evaluated in terms of stresses in the active

member and cables, maximum de�ections for serviceability limit state and lightness

of the structure, according to the limitations posed by the Eurocode for footbridges.

A sensitivity analysis has been carried out to improve the performance of the genetic

algorithm. It is worth highlighting that it leads to genetic algorithms with small

population sizes, which is also advantageous to reduce the computational cost of

the simulations. Results are given in terms of non-dimensional parameters to make

them applicable to the design of bending-active structures of any size and sti�ness.

Results show that solutions are mainly dominated by the magnitude of the design

loads and limitations for de�ections for the serviceability limit state. Less restrictive

limitations or a di�erent structural application such as roo�ng module would allow

for a wider range of design alternatives. Section 6.4 shows an example based on the

scalability of the solution. Finally, in section 6.5 the optimal solution reached by the

algorithm has been analysed and veri�ed from a structural point of view.





7 E X P E R I M E N TA L F O O T B R I D G E B A S E D
O N T H E A C T I V E B E N D I N G P R I N C I P L E

”
For me, the most important part of the composition
is the structure. What interests me the most is the
expressive potential of structural forms.

— Félix Candela
(Architect, engineer, builder and structural artist)

7.1 introduction

Unlike the case of dome-shaped gridshells structures, active bending has hardly

been explored in the �ed of pedestrian bridges. The need to achieve a tradeo� be-

tween strength and �exibility of structural members, while meeting the tight ser-

viceability limitations posed by codes, becomes a design challenge whose solution

may not straightforward. This is probably the reason there are fewer examples and

built structures are practically non-existent [12, 26].

The results obtained in Chapters 5 and 6 regarding the performance for bending-

active tied arches show that the design space to built short footbridges is rather

narrow, however, it is open enough to explore the feasibility of some con�gurations.

Building on this idea, this chapter presents the design of a 5 m span footbridge

prototype using GFRP tubes, steel cables and steel deviating struts.

The design process comprises di�erent stages. Firstly, the structural concept and

the activation process have been tested by means of di�erent small-scale models

using glass-�ber rods and 3D printed joints. In a second step, structural propor-

tions and cross-section dimensions have been selected from the results of a para-

metric study, which takes into account the limitations posed by the Eurocode for

footbridges. Finally, the detail design has been carried out to fabricate and assembly

the structure.

7.1.1 Outline of the chapter

The outline of chapter is as follows: Section 7.2 introduces the basic principles

for the design and the determination of the structural con�guration. The numerical

analysis of the self-stress state and serviceability state for the three-dimensional

structure is developed in section 7.3. Finally, the fabrication and assembling process

of the prototype are detailed in section 7.4.

95
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7.2 design

7.2.1 Specifications

The design of the lightweight footbridge prototype is based on the following func-

tional requirements: the maximum gradient of the deck is restricted to 6% and the

width of the deck should be close to 1 m. The span should be in the range of 5 m, as

the prototype is intended to be handled by a small number of people. The structural

height at midspan should be close to 10% of the span, in accordance with the most

typical values of height-to-span ratios used for footbridges. The structure should be

also designed to resist the design load value posed by the Eurocode [41].

7.2.2 Materials

GFRP is selected for bending-active members, since it provides high �exural strength

and adequate sti�ness [36]. Steel is used for cables, deviators and custom-made

joints. As explained in Chapter 5, cables must be carefully designed since oversized

cross-sections lead to insu�cient stresses after the activation stage and undersized

cross-sections may result in overall excessive �exibility. Table 31 shows the material

properties of the di�erent elements involved in the design.

Element Material E (GPa) fy (MPa) fu (MPa)

Rods GFRP 35 500

Cable 7x7+0 Steel 105 1570

Struts and joints Steel 210 275

Table 31: Material properties of the prototype.

7.2.3 Conceptual design

The structural concept starts from a couple of planar bending-active tied arches

that are independently activated. In a �rst stage, conceptual models were built to

better understand the activation process and the three-dimensional behaviour.

Figure 73a shows the basic structural system: a �exible active member (white

element) is bent through the combined action of a lower cable and three deviators

(red elements). Additional diagonal members are added after activation to increase

the sti�ness of the system. To achieve a sti� three-dimensional system, deviators

were designed as X-shaped diaphragms in the conceptual model (Fig. 73b). With this

arrangement, the bending-active members were constrained to remain in vertical

planes. At this stage it was crucial to realise the importance of the ratio between

deviator lengths and the need to carry out a parametric study to select the structural

proportions and member dimensions.
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(a)

(b)

Figure 73: Conceptual model with 3D-printed joints and X-shaped deviators.
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Figure 74: Force diagram after connecting the bending-active arches. In red colour, internal

forces on the rod exerted by the struts. In pink colour, their resultant, which is

(ideally) vertical.

X-diaphragms were subject to signi�cant in-plane bending moments. To avoid

this situation, the design of transverse structural elements evolved to triangular

(and trapezoidal) cells (Fig. 74). This new design led to the following construc-

tion sequence: Initially, both �exible rods will be independently activated to form

two planar bending-active tied arches. After that, both arches will be connected by

hinged links at the level of the cable, and by means of horizontal members of equal

length at the level of the rods (to achieve a constant deck width); they pull the rods

inwards, forcing them to remain in vertical planes. Thereby, forces in deviators and

horizontal struts have vertical resultants acting on the activated rod. Finally, diago-

nal cables and braces will be added to increase the torsional sti�ness and complete

the three-dimensional system.

As starting point and before the manufacture of the prototype, the footbridge was

modelled by trial and error using a CAD software in order to assess the proportions

of the solution. With the goal of achieving a structure as slender as possible, dif-

ferent sets of rod and cable cross-sections were considered. Figure 75 shows the

side perspective rendered view of a very initial test, which stands out for a not very

slender aspect of the bent rods. These infographics were also useful to examine the

convenience of using wooden pallets (also called skids) for the deck. This wooden

element is typically used as a �at transport structure to hold and store goods in a

stable fashion. Their e�ciency (they can resist up to 60 times their own weight)

and sustainable character (most of them are recycled elements), make them an ideal

solution for use as footbridge pavement.

Figure 75: Side perspective rendered view of the prototype.
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7.2.4 Determination of the structural configuration

In this section, di�erent potentials con�gurations with speci�c dimensions of

members are analysed in order to de�ne the geometry of the most suitable planar

bending-active braced arch system. For that purpose, simulations have been per-

formed using the non-linear FE software SOFiSTiK.

The analysis focuses on symmetric structures with three equally spaced devia-

tors. This distribution is advantageous for limiting the length between deviators

(approximately 1.25 m) and is also suitable for supporting the deck. The following

common data have been considered: GFRP rods are designed as 4.90 m long con-

tinuous members with hollow circular cross-section; connections between rod and

deviators are free to rotate; the cross-section of the main cables is chosen to reach

10% of the maximum allowable stress after prestressing. The length of the deviator

at midspan hm is selected so that its vertical projection is equal to 0.5 m. The length

of quarter-span deviators hq is chosen as variable parameter de�ned by means of

the ratio hq/hm, which can range from hq/hm = 0.5 to hq/hm = 1. These last

boundaries are selected to obtain a harmonius and aesthetic structure. The the circu-

lar hollow cross-section of the rod is characterised by the rod slenderness parameter

λ̄ (see Chapter 5, equation 91). Therefore, the two variables to be determined in this

study are: (a) the slenderness of the rod λ̄ and (b) the ratio hq/hm. They de�ne the

size of the rod cross-section and the length of quarter-span deviators. Figure 76 is

included in order to clarify the de�nition of the form-�nding parameters.

Figure 76: De�nition of the parameters for the bending-active tied arch.

To evaluate each con�guration, stresses in the rod and cables after activation have

been assessed. Serviceability limit state has been also checked. For that purpose, a

distributed load corresponding to 40% of the 5 kN/m
2

service load is applied accord-

ing to EN 1991-2 [41]. With the aim of simplifying the evaluation of the serviceabil-

ity limit state, de�ections are only quanti�ed at midspan at this stage. The loading

pattern is a symmetric uniform load on a width chosen to be 10% of the developed

length of the rod, as it has been previously done in Chapters 5 and 6. Results are

expressed by diagrams in terms of rod slenderness λ̄ and the ratio hq/hm.

Figures 77 and 78 show the in�uence of the relation between deviator lengths

hq/hm on the structural response of the planar arch. In this set of simulations,

forces in cables have been adjusted to meet the functional requirement f/a ' 6%,

maximum allowable gradient of the deck. In this way, all solutions are comparable

to each other. Simulations have been replicated for two values of rod slenderness,

λ̄ = 1.5 and λ̄ = 3. The �rst diagram 77 shows the relation between axial forces

in deviators for di�erent ratios hq/hm. As can be seen, the results obtained are

practically independent from the rod slenderness value considered. It can also be

concluded that as the deviator length at quarters decreases, the deviator at midspan

is more loaded. The second diagram 78 represents the dimensionless inverse of the

de�ections at midspan. In this case, de�ections are minimised when the value of the
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rod slenderness is low. A ratio hq/hm = 0.75 has been selected: with it, axial forces

in deviators are practically equal after activation and the dimensionless de�ection

L/v under frequent load is minimised (in absolute value).

Figure 77: Relation between axial forces in deviators after activation for di�erent ratios

hq/hm.

Figure 78: Dimensionless inverse of the de�ections at mispan for di�erent ratios hq/hm
and rod slenderness.



7.2 design 101

Figure 79: Stress levels after activation in terms of rod slenderness λ̄ and rise-to-span of

the structure f/a.

Figure 78 gives the misconception that the choice of low rod slenderness values is

favourable because de�ections are lower. However, this diagram does not consider

the stress level produced as a result of the form-�nding process, which is the most

limiting restriction in the design of bending-active structures. In GFRP materials,

it is estimated that stresses after activation shall be limited to 30% - 60% of the

maximum allowable stress to avoid the emergence of long-term strains due to creep

[36, 64]. Figure 79 shows the evaluation of the normal stresses produced by the

bending e�ect at midspan –where maximum curvatures are reached–, in terms of

the ratio f/a and rod slenderness λ̄ for the selected ratio hq/hm = 0.75. It allows

to choose the rod slenderness compatible to reach the 60% of the design ultimate

strength
1 fud = fu/3, for a given rise-to-span rato f/a. As expected, lower values

of rod slenderness λ̄ lead to higher stresses as the curvature of the rod increases.

Using the diagram, two limit con�gurations are possible: (a) a rod slenderness λ̄ =

1.5 with a rise-to-span ratio f/a = 3%; (b) a rod slenderness λ̄ = 3 with a rise-to-

span ratio f/a = 6%.

Both con�gurations have been evaluated in terms of structural sti�ness K (Fig.

80). In this analysis, the structural sti�ness K is de�ned as the ratio K = F/v, where

v is the maximum de�ection of the system for a certain applied load F. The dia-

gram depicts the relationship between the rise-to-span ratio f/a and the increase

in sti�ness ∆K with respect to a �at con�guration, in other words, a conventional

structure with a straight rod. The diagram shows that the structural system is sti�er

as the curvature of the rod increases. A second key observation is that slender rods

are more advantageous in terms of increased sti�ness ∆K for a given structural

shape f/a. For example, setting a rod slenderness λ̄ = 1.5 and rise-to-span ratio

f/a = 3%, the di�erence in sti�ness ∆K when comparing the solution with a �at

structure is about 5%. However, choosing a rod slenderness value λ̄ = 3, which al-

lows to reach the prescribed functional requirement f/a = 6% in terms of stresses

(Fig. 79), the system is 15% sti�er than its equivalent straight con�guration. In par-

alell, it is necessary to check that in absolute terms the system is su�ciently sti� in

order to validate the design.

1 The partial safety factor of the GFRP material has been selected considering the short-term and long-

term e�ects [38].
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Figure 80: Increase in sti�ness ∆K after activation in terms of rod slenderness λ̄ and rise-

to-span of the structure f/a.

Moreover, active members with a high rod slenderness are advantageous because

they allow to reach higher curvatures during the form-�nding process and are easy

to manipulate during construction, which reduces labour and costs considerably.

These observations highlight the suitability of bending-active systems on the search

of e�cient uses of technological materials and high-tech concept-design-erection-

processes to produce aesthetic lightweight structures such as footbridges or roo�ng

applications.

On the basis of the foregoing, a rod slenderness λ̄ = 3 has been chosen. From

commercial solutions, it can be achieved using a circular hollow cross-section with

an outer diameter of 50 mm and a thickness of 3.5 mm. The cross-section of the

main cables has been chosen to reach a minimum level of stress after prestressing.

For the selected wire rope typology, the size of the cable selected is 4 mm. Struts are

thin-walled circular cross-section with an outer diameter of 22 mm and a thickness

of 2.5 mm.

7.3 verification of limit states

This section shows the evaluation of the self-stress state and serviceability state

for the three-dimensional structure. For that purpose, the simulations have been

also performed with the FE software SOFiSTiK.

7.3.1 Self-stress state

The equilibrium con�guration of the structure has been found simulating the ac-

tual erection process, which is divided in multiple steps. Initially, the form-�nding

process starts from a couple of unstressed tied arches that are separated from each

other by 1 meter at rod level and connected by a hinged joint at cable level. The

beam-ends nodes of the elements that simulate the deviators at midspan section are

fully �xed to achieve a stable system and to avoid numerical instabilities (Fig. 81a).

After that, both arches are independently activated to form two planar bending-

active tied arches (Fig. 81b). Then, the rods are forced outwards to reach the desired
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deck width. For that purpose, virtual cables that are shortened by prestressing forces

are used (Fig. 81c). This manoeuvre is carried out in two steps. First, rods are moved

outwards until a separation of 1 meter is reached at the quarter span sections. The

achieved distance between rods is then kept by introducing horizontal struts (Fig.

81d). The last adjustment is conducted at rods ends. In this case, the deck width

is �xed at 0.8 meters. Finally, diagonal cables and braces are added to become the

system sti�er (Fig. 81e).

Table 32 shows the evolution of the section-forces for the active members and ca-

bles during the activation process. Section forces diagrams are available in the Ap-

pendix A. The analysis of the structural response of the horizontal struts is another

interesting point, as they work in a di�erent way as the erection process progresses.

Table 33 shows how horizontal struts behave at the di�erent stages. As can be seen,

when struts are installed, they work in compresion (with the exception of the strut

at midspan, which only resists the horizontal component due to the activation of the

arches). However, as the rods are pulled outwards to add the successive horizontal

struts, the previous ones, already installed, change their response from a state of

compression to a state of traction.

Rod at midspan cross-section Outer cable Inner cable

N (kN) My (kN.m) Mz (kN.m) N (kN)

b) -0.66 0.33 0.35 0.70 0.66
e) -1.09 0.47 0.23 1.01 0.89

Table 32: Section forces in the rod and cables during the activation process.

Strut at midspan Strut at quarters Strut at rod ends

N (kN)

c) 0.34 - -
d) -0.16 -0.22 -
e) -0.24 0.10 -0.3

Table 33: Section forces in the horizontal struts during the activation process.

Stress levels in the rod and cables due to the activation process have been quanti-

�ed using the section forces previously shown in Table 32. The maximum stress in

the rod at the form-�nding stage is:

σr,FF =
N

A
+
My +Mz

I

d

2
= 149.6 MPa (102)

Cables are evaluated taking into account that both outer and inner positions are

working in a very similar stress range. The maximum stress is calculated for the

outer cable:

σc,FF =
N

A
= 97.5 MPa (103)

The utilisation ratios for the rod and cables are obtained according to the EN 1993-1-

1 [42], as previously explained in Chapters 5 and 6. The utilsation ratio for the rod

is calculated as follows:

σr,FF

fur
=
149.6
500

= 0.3 (104)
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Figure 81: Simulation of the assembling process of the stucture.
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The utilisation ratio for the cable is:

σc,FF

fuc
=
97.5
1570

= 0.06 (105)

As it can be seen, the activation process is consuming about the 30% of the ul-

timate strength of the material of the rod after activation, which is an acceptable

threshold to avoid long-term strains. Cables are slightly oversized, as their utilisa-

tion ratio is around 6%, which provides the required global sti�ness to the arch, at

the expense of a low, but su�cient, cable stress after activation. As expected, results

are similar to the ones shown in Chapters 5 and 6.

7.3.2 Dead load

Apart from the self-weight of the bending-active tied arches and service loads,

the structure has to resist the dead load caused by the installation of four standard

European pallets that act as the deck of the footbridge. The dead load of the deck

is 0.2 kN/m
2
. Table 34 shows the resulting section forces in the rod (at midspan

cross-section) and in cables. The maximum de�ection due to this load case is equal

to 6 mm. This de�ection is not considered in the calculations of the active de�ection,

which is only calculated with the service loads.

Rod at midspan cross-section Outer cable Inner cable

N (kN) My (kN.m) Mz (kN.m) N (kN)

-1.71 0.46 0.23 1.5 1.3

Table 34: Section forces in the rod and cables due to the installation of the pallets.

7.3.3 Serviceability state

As previously explained, the serviceability state has been evaluated according

to the loading models posed by the Eurocode for footbridges [41]. The magnitude

and position of the loads are adjusted so that a load testing can be performed in

the laboratory using 20 kg sandbags to verify the results. Sandbags are modelled

as vertical loads that act directly on the custom-made joints, since the pavement

(pallets) rests on them. Depending on the distribution of the sandbags over the

structure, di�erent load cases result. Three cases are evaluated: (a) a symmetric

load case; (b) a non-symmetric load case and (c) a torsional load case. They are

described in the following sections. All load models as well as the numerical results

can be consulted in the Appendix A.

7.3.3.1 Symmetric load case

The symmetric load case consists in placing 10 sandbags uniformly distributed

over the two most centered pallets of the footbridge, which is equivalent to a mass

of 200 kg, 100 kg per pallet. Table 35 shows the resulting section forces in the rod

(at midspan cross-section) and cables for this load case. The maximum vertical dis-

placement is located at midspan and is equal to 12 mm. This means an approximate

ratio f/a of L/400.
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Rod at midspan cross-section Outer cable Inner cable

N (kN) My (kN.m) Mz (kN.m) N (kN)

-2.87 0.44 0.23 2.5 2.2

Table 35: Section forces in the rod and cables due to the symmetric load case for the load

testing.

The stress levels in the rod and cables have also been calculated for the service

states, in order to evaluate the utilisation ratio of the structural elements when dif-

ferent external loads act. Using the section forces (Table 35), the maximum stress in

the rod due to the symmetric load case is obtained as follows:

σr,Sym =
N

A
+
My +Mz

I

d

2
= 126.1 MPa (106)

The maximum stress is obtained in the outer cables:

σc,Sym =
N

A
= 348.2 MPa (107)

The utilisation ratio for the rod is:

σr,Sym

fur
=
126.1
500

= 0.25 (108)

The utilisation ratio for the cable is:

σc,Sym

fuc
=
348.2
1570

= 0.22 (109)

It is worth noting that the utilisation ratio for the rod is slightly lower when

service loads are applied than after activation. This is because the application of an

external load causes in the active member a curvature increment of positive sign,

which compensates the negative curvature induced during the activation process,

resulting in a lower value of the bending moment.

7.3.3.2 Non-symmetric load case

The non-symmetric load case consists of loading half of the footbridge using 10

sandbags. This is equivalent to loading two pallets on one side of the footbridge. In

Table 36 the section forces in the rod (at midspan cross-section) and cables for this

load case are shown. The maximum vertical displacement is located at quarters and

is equal to 7.5 mm. At midspan, the maximum de�ection is equal to 6.1 mm. This

means approximate ratios f/a of L/600 and L/800.

Rod at midspan cross-section Outer cable Inner cable

N (kN) My (kN.m) Mz (kN.m) N (kN)

-2.52 0.45 0.23 2.4 1.9

Table 36: Section forces in the rod and cables due to the non-symmetric load case for the

load testing.

Stresses are calculated in the same way as in the previous cases. From Table 36,

the maximum stress in the rod for the non-symmetric load case is:
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σr,Non−sym =
N

A
+
My +Mz

I

d

2
= 127.2 MPa (110)

The maximum stress in cables is:

σc,Non−sym =
N

A
= 334.3 MPa (111)

The utilisation ratio for the rod is:

σr,Non−sym

fur
=
127.2
500

= 0.25 (112)

The utilisation ratio for the cable is:

σc,Non−sym

fuc
=
334.2
1570

= 0.21 (113)

As it can be observed, both symmetric and non-symmetric load cases lead to sim-

ilar results in terms of utilisation ratio.

7.3.3.3 Torsional load case

The torsional load case consists of loading the half area of the most centered

pallets of the footbridge using 10 sandbags. In this way, the global torsional sti�ness,

as well as the lateral stability can be checked. Table 37 shows the section forces in the

rod (at midspan cross-section) and in cables for this load case. For this analysis, the

maximum de�ection is located at midspan and is equal to 7.6 mm. As expected, this

load pattern causes rotation of footbridge cross-sections. The vertical displacement

due to the rotation of the central cross-section at one side is equal to 2.1 mm.

Rod at midspan cross-section Outer cable Inner cable

N (kN) My (kN.m) Mz (kN.m) N (kN)

-2.52 0.47 0.23 2.1 1.8

Table 37: Section forces in the rod and cables due to the torsion load case for the load testing.

Finally, from Table 37, the maximum stress in the rod is obtained as follows:

σr,Torsion =
N

A
+
My +Mz

I

d

2
= 130.8 MPa (114)

The maximum stress in cables is:

σc,Torsion =
N

A
= 292.5 MPa (115)

The utilisation ratio for the rod is:

σr,Torsion

fur
=
130.8
500

= 0.26 (116)

The utilisation ratio for the cable is:

σc,Torsion

fuc
=
292.5
1570

= 0.19 (117)

This load case leads to similar stress levels as in the previous load cases.
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7.4 fabrication

A detailed design of the prototype has been developed. Figures 82a and 82b show

rendered views of the transverse frames composed of inclined deviators, horizontal

struts between rods and bottom hinged links.

(a)

(b)

Figure 82: Detail of deviators; 82a at midspan, 82b at quarters.

The �nal structure weights around 1.2 kN and the resisted load-to weight ratio is

close to 17.
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Figure 83: Experimental footbridge based on the active-bending principle.

7.4.1 Fabrication of the nodes

The design of the nodes depends on their position and function. They have to

comply several conditions:

• Strength: the node has to transmit the tension and compression forces in a

safe way.

• Size: the optimisation of the node is crucial to keep a slender appearance and

to reduce as much as possible the �nal weight of the structure.

• Adaptability: special attention must be paid to the orientation of gusset plates

because in the �nal con�guration the di�erent parts of the main cables ar not

contained in a single plane.

Figures 84a and 84b show the �rst design of the nodes by using 3D printing. These

1:1 models were useful to validate the geometric interaction with the rest of the

structural elements. Afterwards, they were used by the manufacturer as a reference

to fabricate the �nal steel joints.

The manufacture of these nodes using steel as a material was not without di�-

culties; �nding a manufacturer willing to fabricate such a small quantity of complex

pieces became a challenge. After some iterations with di�erent technicians, a metal

shop o�ered a compromise solution. Figures 85a and 85b show the reached solution.
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(a)

(b)

Figure 84: Reproduction of the custom-made joints by using 3D printing.
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(a)

(b)

Figure 85: Detail of the custom-made steel joints.
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7.4.2 Assembling process

The assembly process involves the activation of the structure. Therefore, it should

reproduce the sequence described in section 7.3.1. It has been designed to be han-

dled by a small number of people and without the use of heavy tools. The erection

sequence is summarised as follows:

1. Each unstressed arch is prepared on a �at surface with all the necessary ele-

ments (Fig. 86).

2. The tensioning process starts with the installation of the ratchet at both ends

of the rod (Fig. 87).

3. The rod is bent by the action of the ratchet pulling at both ends. The designer

can control the curvature of the arch by modifying the ratchet tension (Fig.

88).

4. The main cables are connected taking advantage of the ratchet tension. After

that, the tensioning forces are transferred from the ratchet to the cables (Fig.

89). In this prototype, cables are adjusted by reaching the desired shape of the

arch, but for larger structures, the author suggests the use of tension measur-

ing instruments to ensure the level of pre-stress in the cables. It is also worth

mentioning the need for a tensioning plan for the cables to deal with the loss

of pre-stress over time.

5. The bending-active tied arches are placed at the �nal position (Fig. 90) and

connected by a hinged joint at cable level (Fig. 91).

6. The horizontal struts are installed to reach the desired deck width (Figs. 92,

93)

7. Diagonal cables and braces are added to sti�en the structural system.

The prototype has been assembled twice. The �rst time, it was assembled by only

one person in one day. The second assembly involved two people, spending around

�ve hours. As can be seen in the pictures, the �rst assembly was carried out with

wooden deviators and the second with steel deviators. This is because the wooden

deviators were not strong enough. From the point of view of robustness, all the main

cables that make up the primary system are important, however, the installation of

diagonal cables makes the overall system more robust. In this direction, the design

of the additional cables could be also addressed by taking into account the breakage

of a main cable.
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Figure 86: Erection process of the prototype (a).
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Figure 87: Erection process of the prototype (b).
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Figure 88: Erection process of the prototype (c).
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Figure 89: Erection process of the prototype (d).
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Figure 90: Erection process of the prototype (e).
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Figure 91: Erection process of the prototype (f).
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Figure 92: Erection process of the prototype (g).
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Figure 93: Erection process of the prototype (h).
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7.4.3 Future works

Static and dynamic experimental tests are planned to validate the FEM results

and the overall structural response. Unfortunately, the outbreak of the COVID-19

pandemic interrupted the activities in laboratories and the inclusion of these results

in the PhD thesis has not been possible.

7.5 summary

This chapter presents the design of a short span bending-active footbridge proto-

type. Starting with concept models, a parametric study has been performed to de�ne

the most suitable structural bending-active tied arch con�guration. Secondly, a FE

model has been built to evaluate the structural behaviour of the footbridge. This

model takes into account the assembling process of the structure and the evaluation

of the serviceability state. Stresses in the active member and cables and maximum

de�ections have been assessed. Finally, the fabrication and assembling process of

the prototype have described in detail. The prototype re�ects the current state of

the exploration process and emphasises that lightness and e�ciency can be achieved

through active bending.

Figure 94: The experimental footbridge prototype in service.





8 C O N C L U S I O N S A N D F U T U R E
R E S E A R C H

”
The technical literature on structural engineering abounds
with theoretical works of a mathematical nature, but
few publications are concerned with the various kinds
of structures or the fundamental reasons for their ex-
istence.

— Eduardo Torroja y Miret
(Structural engineer)

8.1 summary of results

As seen in the literature, elastic gridshells and other bending-active structures

have increasingly become focus of research and experimental realisations in recent

times because they exploit the following advantages:

• Low consumption of materials resulting in lightweight systems.

• Possibility to use bio-based materials (timber, bamboo).

• Original members are straight, and joints are repetitive.

• Curved structural shapes, not limited to canonical forms, can be achieved.

However, they are not free from drawbacks:

• The equilibrium con�guration cannot be determined beforehand due to the

non-linearity of the structural response of the active members.

• Some suitable materials have less-desirable properties (brittle failure modes

of GRFP, limited strength and/or durability of exposed bio materials, or high

prices in the case of high-strength steel).

• Full assembly on the ground and subsequent lifting is limited to small to

medium scales. Interferences between members and supports during the lift-

ing process may cause di�culties.

• Limited applicability in the case of structures with larger loads, like bridges

or footbridges, mainly because of sti�ness requirements.

123
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In this PhD thesis, the applicability of the active bending principle for the design

of lightweight structures, in particular pedestrian bridges, has been explored and

assessed. This has been carried out from three points of view:

• Computational form-�nding and simulation.

• Structural performance and e�ciency.

• Design and construction.

The �rst part of this work presents a novel form-�nding method based on the

geometrically exact rod model (or Reissner-Simo beam theory). The geometrically

exact model was designed to handle the mechanical problem of very �exible rods,

considering displacements of the beam centreline and rotations of the cross-sections

as independent variables and manipulating 6 degrees-of-freedom per node (3 trans-

lational and 3 rotational) to provide a complete description of the kinematics and a

straightforward de�nition of rotational boundary conditions.

In this context, the main contribution of the author has been the numerical imple-

mentation of this mechanical model into a dynamic relaxation (explicit) algorithm.

The specialisation of Reissner-Simo’s model to the dynamic relaxation procedure

relies on: (a) the derivation of element end forces from the internal virtual work

equation (sect. 3.4.2); (b) the derivation of the expression of the change of orienta-

tion in the element (sect. 3.4.3); (c) the de�nition of the numerical step using New-

mark’s algorithm and the full expression of the inertial torques (Eq. 39b); and (d)

the update of angular velocities considering that nodal frames are changing (Eq. 44).

In contrast to the work of other authors, a design strategy where the form-�nding

process is driven by kinematic constraints has been implemented. The equilibrium

con�guration is achieved by de�ning restrictions at end nodes and using the beam

length as a design parameter. The numerical examples have also shown the abil-

ity and accuracy of the method to simulate the deformation process of the active

members starting from an initial geometry far from the equilibrium solution.

Despite the dynamic relaxation algorithm developed in this PhD thesis has pro-

vided reliable results in terms of accuracy and computational cost, the redirection

of the PhD objectives to the �eld of practise and application has motivated the use

of other more direct form-�nding techniques, suited for the speci�c structural type

developed in the thesis. For this reason, this tool has not been used in the follow-

ing chapters of thesis, giving way to a semi-analytical method supported by FEM

modelling and, in a further step, enhanced by optimisation.

The second part of the thesis focuses on the development and structural analysis

of a promising structural type to build lightweight structures, in particular pedes-

trian bridges or roo�ng applications, named by the author as bending-active braced
(or tied) arch and consisting of a slender beam with an attached lower cable in ten-

sion and bracing struts (deviators) balancing the forces between them. This system

is based on the well-established structural type, the beam string, and takes advan-

tage of the possibilities o�ered by the active bending paradigm: when a slender

beam is used, the tension in the cable induces curvature in the beam and increases

the structural depth of the system. This opens new formal possibilities and results

in lightweight structures at the expense of increasing their overall �exibility. The

target shape of the system is achieved as a result of the tensioning process and needs

to be pre-determined by means of a particular analysis.
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In a �rst approach, a novel analytical design procedure has been proposed to gen-

erate shapes for this kind of structures. This procedure is based on the observation

that each segment of the activated rod between deviators behaves as a segment of

elastica; this enables the use of closed-form expressions to evaluate the shape and

induced stress level in the active member. This study made possible to establish a

direct relation between shape and activation forces for a given material and cross-

sectional shape in terms of non-dimensional magnitudes, which makes it applicable

to wide variety of scales and cross-section properties.

Once the target shape has been determined, the assessment of the structural per-

formance with regard to with the limitations posed by the Eurocode for footbridges

is crucial to ensure the appropiateness of the solution. For that purpose, a �nite

number of computer simulations have been conducted to �nd patterns of relation-

ship between structural shape, activation stress levels, and limits of utilisation, using

the non-linear �nite element analysis with the software package SOFiSTiK. With the

results of the study, general non-dimensional diagrams have been devised to design

bending-active tied arches with three deviators of a particular geometry and mem-

ber proportioning.

In order to obtain e�cient solutions without limitation of geometrical restrictions,

the author has automated the design process developing a multi-objective optimisa-

tion tool based on a genetic algorithm. This genetic algorithm assigns a �tness value

to each plausible structural con�guration considering the weight of the structure,

stresses in the active member and cables, and maximum de�ections in the service-

ability limit state, according to the limitations posed by the Eurocode for footbridges.

Then, the algorithm classi�es, selects, and combines the best specimens to reach a

con�guration that minimises the �tness function according to best performance.

The results obtained regarding the performance of simple tied arch systems for

pedestrian footbridge applications have shown that the limits of solutions for Eu-

rocode footbridge loads are dictated by (a) instability in the active members, (b)

maximum stress after activation, (c) minimum stresses in the activation cables and

(d) maximum allowable de�ections. Therefore, the resulting design space is rather

narrow, mainly because of the magnitude of the load and the severe limitations for

de�ections in service limit states posed by the code. A wider solution space should

be possible for structures subject to moderate loads and/or with less severe service-

ability conditions.

In the third last of the thesis, the design, fabrication and assembling of an ex-

perimental lightweight bending-active footbridge has been presented. Using the

knowledge earned along the development of the thesis, a 5 m span footbridge proto-

type has been designed and built. The design process has been carried out by using

di�erent techniques. Firstly, small-scale models using glass-�ber and 3D printed

joints have been used to better understand the activation process. Secondly, struc-

tural proportions have been selected using a parametric study. In order to validate

the feasibility of the system, numerical tests have simulated the assembling process

and load testing. The fabrication and assembling processes have been also described.

The erection process has demonstrated that the prototype can be e�ciently assem-

bled by just 1 (or 2) people. Currently, the prototype is awaiting laboratory tests.
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8.2 main conclusions

During the development of this PhD thesis, several research questions regarding

the applicability of active bending to the design of pedestrian bridges have been

raised. Some of these questions were already introduced in Chapter 1. This section

aims to answer them, from the author’s point of view and considering what was

learned during this research.

where are the limits of applicability for bending-active structures?
It is di�cult to say where the limits are, but it is easy to identify them. It can be said

that the main limitation when designing a bending-active structures is the overall

�exibility of the system. In most cases, the need to use slender members to keep

activation stresses low during the tensioning process results in overly light con�g-

urations that do not meet the limitations for de�ections posed by the codes. For

instance, the Eurocode establishes a maximum dimensionless de�ection of L/1200

for footbridges under frequent service loads; however, our prototype would have a

maximum de�ection of L/400 under the mentioned loading, which is quite far from

the Eurocode limitation. Therefore, active bending should be limited to those situa-

tions where �exibility is not an issue or where service loads are moderate.

is it possible to build structures with larger loads like pedestrian
bridges? Yes, it is possible. This has been demonstrated in this thesis. However,

as explained before, the �exibility of the system is not compatible with the restric-

tions for de�ections posed by the Eurocode. This observation must be understood

in the context of this work, since the study is limited to GFRP materials. The use of

other promising materials, such as an ultra-high performance concrete (UHPFRC)

could considerably improve the structural behaviour of the system regarding defor-

mations.

are bending-active structures advantageous over passive (standard)
ones? This is the key question... and there is still no clear answer. Each typol-

ogy has advantages and disadvantages. For example, bending-active structures are

easy to manipulate; they are made up of slender (light) elements, which are easy

to fabricate and transport. A passive structure with a curved shape is, in general,

more expensive. In addition, the comparison of solutions with equal weight (passive

vs. bending-active) is advantageous for the bending-active ones, because curvature

inrcreases the sti�ness. However, the shallow cross-sections of the bent members

required for the activation result in structures that are lighter, but at the same time

more �exible than conventional structures. As already mentioned, this can be dis-

advantageous for certain applications with strict deformability requirements.

is further research into active bending interesting? De�nitely, it is

interesting. The fact is that there is an increasing interest in investigating the be-

haviour of very �exible structures. However, a lot of attention has been directed to

the development of computational form-�nding tools and realisations of sculptural

nature. In my opinion, to advance knowledge in the �eld of structural performance

would be the most pro�table strategy in order to better understand how these struc-

tures can be applied taking into account all limitations.



8.3 future lines of research 127

8.3 future lines of research

The following theoretical and experimental areas are suggested for further re-

search in this area:

formulation of a large deformation model for slender beams The

recent interest in the �nite element implementation of beams undergoing very large

displacements has been already mentioned in the state of the art. One of the most

relevant results of this research is the numerical implementation of a dynamic re-

laxation algorithm using a geometrically exact beam model (6 degrees-of-freedom

per node). This tool has already shown promising results, but still has room for

improvement. An interesting development path is the adaptation of the numerical

framework to make the method applicable to structures composed of multiple active

members and cables. Another challenging line of research is the incorporation of

a shear-free model for non-linear �exible beams with 4 DoFs (Kirchho�’s theory)

into the �nite element model implementation. For very slender rods, shear de�ec-

tions are negligible, and the rotation of the cross-section is partially determined by

the tangent to the deformed centreline (Kirchho� rods). The number of rotational

degrees of freedom can be reduced to only one, but there are few non-linear imple-

mentations in the literature because the underlying mathematical modelling is far

from trivial. In this connection, there are previous works with di�erent approaches,

for example, Du Peloux et al. [39] proposed an element with 4 DoFs based on �nite-

di�erence discretisations.

development of an alternative concept to fabricate, assemble and
erect medium scale bending active systems A system composed of pro-

gressively activated individual elements (kit-of-parts) would be a practical alterna-

tive to building with long continuous members. The overall concept of this novel

system, as well as the detailing of member cross sections, joints and activation pro-

cedure must be developed.

application of ultra-high performance concrete (uhpfrc) as a mate-
rial to design bending-active members The concept of bending concrete

is not a new one: Dante Bini introduced a method to build domes in the 1960s by

casting the mixture on a membrane, and then in�ating it before the concrete has set.

Recently, Kromoser and Kolleger [52] have developed a variant of Bini’s method by

casting thin �at panels of textile reinforced concrete and bending them into a 3D

shape by means of an in�atable membrane, once the concrete has hardened. The

resulting domes show a smeared cracking pattern in the target curved shape. This

approach is close to active bending, the main di�erence being the fact that the ma-

terial cracks and is not working elastically during activation. UHPFRC in active

members is expected to lead to structural systems that are still lightweight and have

reduced material consumption, but have higher ductility and robustness as those

built with GFRP or even timber, and possibly, allow to achieve larger scales.

The research group is currently working on the design and manufacturing of an

experimental bending-active short footbridge made of ultra-high-performance con-

crete (UHPC). The footbridge is composed of a thin UHPC prestressed slab, UHPC

deviators and stainless-steel tensioning cables. The UHPC prestressed �exible slab

is cast in an initially �at shape; once the concrete hardens, it is elastically bent in the
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longitudinal direction by means of the strut-and-cable system to achieve the desired

structural con�guration. Figure 95a shows the slab casted in an initially �at shape

and Figure 95b shows the �nal shape upside-down after the tensioning process.

(a) Initial con�guration. (b) Final con�guration after the tensioning pro-

cess.

Figure 95: Bending-active short footbridge made of ultra-high-performance concrete

(UHPC).
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A N U M E R I C A L R E S U L T S F O R T H E
P R O T O T Y P E F E M O D E L

This appendix shows the resulting section forces diagrams and vertical de�ec-

tions from the simulation of the experimental bending-active footbridge in the FE

software SOFiSTiK.

a.1 form-finding process

Figure 96: Axial forces N (kN) in the rod and deviators due to activation process (stage (a)).

Figure 97: Bending momentsMy (kN.m) in the rod and deviators due to activation process

(stage (a)).

131
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Figure 98: Bending momentsMz (kN.m) in the rod and deviators due to activation process

(stage (a)).

Figure 99: Axial forces N (kN) in cables due to activation process (stage (a)).

Figure 100: Axial forces N (kN) in the rod and deviators due to activation process (stage

(e)).

Figure 101: Bending moments My (kN.m) in the rod and deviators due to activation pro-

cess (stage (e)).
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Figure 102: Bending momentsMz (kN.m) in the rod and deviators due to activation process

(stage (e)).

Figure 103: Axial forces N (kN) in cables due to activation process (stage (e)).

Figure 104: Axial forces N (kN) in midspan strut due to activation process (stage (c)).
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Figure 105: Axial forces N (kN) in midspan strut due to activation process (stage (d)).

Figure 106: Axial forces N (kN) in quarter strut due to activation process (stage (d)).

Figure 107: Axial forces N (kN) in midspan and quarter struts due to activation process

(stage (e)).
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Figure 108: Axial forces N (kN) in end struts due to activation process (stage (e)).

a.2 load testing

a.2.1 Dead load (pallets)

Figure 109: Loading pattern (kN) due to the installation of the pallets.
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Figure 110: Axial forces N (kN) in the rod and deviators due to the installation of the pallets.

Figure 111: Bending moments My (kN.m) in the rod and deviators due to the installation

of the pallets.

Figure 112: Bending moments Mz (kN.m) in the rod and deviators due to the installation

of the pallets.

Figure 113: Axial forces N (kN) in cables due to the installation of the pallets.



a.2 load testing 137

Figure 114: Vertical de�ections (mm) due to the installation of the pallets.

a.2.2 Symmetric load case

Figure 115: Loading pattern (kN) due to the symmetric loading pattern for the load testing.



138 numerical results for the prototype fe model

Figure 116: Axial forces N (kN) in the rod and deviators due to the symmetric loading

pattern for the load testing.

Figure 117: Bending moments My (kN.m) in the rod and deviators due to the symmetric

loading pattern for the load testing.

Figure 118: Bending moments Mz (kN.m) in the rod and deviators due to the symmetric

loading pattern for the load testing.

Figure 119: Axial forces N (kN) in cables due to the symmetric loading pattern for the load

testing.
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Figure 120: Vertical de�ections (mm) due to the symmetric loading pattern for the load

testing.

a.2.3 Non-symmetric load case

Figure 121: Loading pattern (kN) due to the non-symmetric loading pattern for the load

testing.
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Figure 122: Axial forces N (kN) in the rod and deviators due to the non-symmetric loading

pattern for the load testing.

Figure 123: Bending moments My (kN.m) in the rod and deviators due to the non-

symmetric loading pattern for the load testing.

Figure 124: Bending moments Mz (kN.m) in the rod and deviators due to the non-

symmetric loading pattern for the load testing.

Figure 125: Axial forces N (kN) in cables due to the non-symmetric loading pattern for the

load testing.
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Figure 126: Vertical de�ections (mm) due to the non-symmetric loading pattern for the load

testing.

a.2.4 Torsional load case

Figure 127: Loading pattern (kN) due to the torsional load case for the load testing.
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Figure 128: Axial forces N (kN) in the rod and deviators due to the torsional load case for

the load testing.

Figure 129: Bending moments My (kN.m) in the rod and deviators due to torsional load

case for the load testing.

Figure 130: Bending momentsMz (kN.m) in the rod and deviators due to the torsional load

case for the load testing.
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Figure 131: Axial forces N (kN) in cables due to the torsional load case for the load testing.

Figure 132: Vertical de�ections (mm) due to the torsional load case for the load testing.
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