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 1 

ABSTRACT 2 

 3 

Objective: To describe novel embryo features capable of predicting implantation 4 

potential used as input data for an artificial neural network (ANN) model. 5 

Design: Retrospective cohort study. 6 

Setting: University-affiliated private IVF center. 7 

Patients: This study included 637 patients from the oocyte donation program who 8 

underwent single blastocyst transfer during two consecutive years.  9 

Intervetion(s): None 10 

Main Outcome Measure(s): The research was divided into two phases. Phase 1, 11 

consisting of the description and analysis of the following embryo features in implanted 12 

and non-implanted embryos: distance and speed of pronuclear migration, blastocyst 13 

expanded diameter, inner cell mass area and trophectoderm cell cycle length. Phase 2, 14 

consisting of the development of an ANN algorithm for implantation prediction. Results 15 

were obtained for four models fed with different input data. The predictive power was 16 

measured using the area under the curve (AUC) of the receiver operating characteristic 17 

(ROC) curve.   18 

Results: Out of the five novel described parameters, blastocyst expanded diameter and 19 

trophectoderm cell cycle length had statistically different values in implanted and non-20 

implanted embryos. After the ANN models were trained and validated using 5-fold 21 

cross-validation, they were capable of predicting implantation on testing data with an 22 

AUC of 0.64 for ANN1 (conventional morphokinetics), 0.73 for ANN2 (novel 23 

morphodynamics), 0.77 for ANN3 (conventional morphokinetics + novel 24 

morphodynamics) and 0.68 for ANN4 (discriminatory variables from statistical test). 25 

Conclusion (s): The novel proposed embryo features affect the implantation potential 26 

and their combination with conventional morphokinetic parameters is effective as input 27 

data for a predictive model based on artificial intelligence. 28 

KEY WORDS: embryo parameters, implantation, Artificial Intelligence, time-lapse, 29 

Artificial Neural Network.  30 

 31 

 32 



INTRODUCTION 1 

The European IVF-monitoring Consortium (EIM) for the European Society of Human 2 

Reproduction and Embryology (ESHRE) recorded in the 18th annual report, more than 8 3 

million treatments with Assisted Reproductive Technology (ART) and nearly 1.5 million 4 

newborn children (1). Most treatments reported to EIM were performed through 5 

Intracytoplasmic Sperm Injection (ICSI) and subsequent in vitro embryo culture. The 6 

selection of the most appropriate embryo of an entire cohort is a relevant factor for the 7 

successful outcome of an infertility treatment. 8 

From the very beginning of the In Vitro Fertilization (IVF), morphology has been the 9 

criterion par excellence to evaluate the development of the embryo (2). The assessment 10 

is usually performed under an optical microscope at x400 magnification to count the 11 

number of cells, fragmentation level or multinucleation, among other parameters. 12 

Limitations of this method are not only associated with the subjectivity of the 13 

embryologist (3) but also, with the evaluation per se. Even though the incubator has 14 

optimal culture conditions, gas concentrations and temperature are altered by 15 

removing the embryos from the incubator to allow a static observation (4). Therefore, 16 

embryos are evaluated in punctual occasions and a lot of information is missing among 17 

observations (5). It is well reported that the embryo stage and classification can vary in 18 

few hours (6,7), resulting in non-successful embryo selection. 19 

The introduction of time-lapse (TL) systems in IVF laboratories allows the continuous 20 

monitoring of embryo development in real time. This technology has become a useful 21 

tool to study the dynamic embryo development without disturbing the culture 22 

conditions and offering objective and precise information in a qualitative and 23 

quantitative way (8). It has been used to create predictive algorithms by applying 24 

morphological and morphokinetic parameters to choose the best embryo to transfer 25 

(9).  26 

Abnormal division patterns, multinucleation, fragmentation or collapse are some of the 27 

deselecting parameters used to categorize embryo quality  (10). These parameters have 28 

been associated with  inadequate blastocyst formation (11), low eupolid rate (12) and 29 

poor implantation and live birth rate (12–20). 30 

Over time, the final goal of the algorithms has changed from appropriate embryo 31 

development to healthy live birth. The most used morphokinetic parameters to predict 32 



blastulation were the duration of the second cell cycle (cc2), the time period to complete 1 

synchronous divisions (s2 and s3), the division time to two cells (t2) and the division time 2 

to five cells (t5) (13,21–28). The events more frequently used to predict implantation 3 

were cc2, t5 and s2  (13,28–32). Even though morphokinetic parameters are not enough 4 

to predict ploidy (33), most of the embryos with abnormal cell division times have 5 

chromosomal alterations (5,29,34). It is also reported that aneuploid embryos are 6 

delayed compared to euploid ones in different morphokinetic parameters, such as the 7 

timing of morula and blastocyst formation (35–37). Therefore, TL technology could 8 

reduce the risk of transferring aneuploid embryos in treatments with no 9 

Preimplantation Genetic Testing (PGT) (38).  10 

Nevertheless, there has been very little improvement in live birth rate over the last few 11 

years (1,39), raising the need to investigate new  approaches. The continuous recording 12 

of the embryo development provides high quality images that allow the embryologists 13 

to find precise markers to determine embryo quality.  14 

The problem of the existing algorithms is the incapacity of using the large amount of 15 

data provided by time-lapse systems. The innovative artificial intelligence (AI) 16 

techniques are capable of changing the subject of study from limited independent 17 

variables to Big Data. The AI could be defined as the development of algorithms with the 18 

capacity of creating learned models and exercising an intelligent behavior (40). The 19 

supervised machine learning is the AI methodology that uses mathematical techniques 20 

to give the computer systems the ability to learn from labelled data and make a 21 

prediction. The techniques most used in this field are the Artificial Neural Networks 22 

(ANNs) such as Convolutional Neural Network (41) or Multilayer Perceptron (42). 23 

Recently, the introduction of ANNs in the assisted reproduction investigations has 24 

increased seven-fold (43) with promising results (44,45).  25 

The main aim of the present study was to predict embryo implantation potential using 26 

novel non-invasive parameters observed by TL monitoring systems. In order to achieve 27 

this objective, we proposed new embryo morphodynamic parameters, which had not 28 

been evaluated so far by TL, and analyzed their association with the implantation 29 

probability. Finally, we developed a model using an artificial neural network to predict 30 

the implantation success.  31 

 32 



MATERIAL AND METHODS 1 

Study population 2 

This research is a single-center retrospective study carried out at IVI Valencia (Spain). 3 

We included recipients from the oocyte donation program who underwent ICSI cycles 4 

without PGT from the last two consecutive years. The exclusion criteria for recipients 5 

were: uterine pathologies, endometriosis, polycystic ovary syndrome or more than 30 6 

kg/m2 of Body Mass Index (BMI). Out of the 8.832 treatments with these characteristics, 7 

845 were included in the TL system EmbryoScope PlusTM (Vitrolife, Denmark). Single 8 

fresh embryo transfers were performed in 637 of them, whose embryos were assessed 9 

in this project.  10 

Ovarian stimulation and uterine receptivity 11 

Donors were stimulated using the conventional controlled ovarian stimulation protocol 12 

with gonadotropin-releasing hormone (GnRH) agonist treatment. GnRH agonist 13 

(Decapeptyl 1, Ipsen Pharma, Spain) was administered by intramuscular injection until 14 

more than eight follicles had reached a mean diameter of ≥18mm. Transvaginal oocyte 15 

retrieval was scheduled 36 hours later. The endometrial preparation of patients was 16 

undertaken using the hormone replacement therapy described by Cerrillo et al. 17 

2017(46). After embryo transfer, oocyte recipients received a daily dose of 400 mg of 18 

vaginal micronized progesterone (Progeffik, Lab. Effik, Madrid, Spain) every 12 hours as 19 

luteal phase support. 20 

Oocyte retrieval and ICSI 21 

Transvaginal oocyte retrieval was performed through follicular aspiration and oocytes 22 

were washed in gamete medium (Cook Medical®, Australia). Then, oocytes were 23 

cultured in fertilization medium (Origio, Cooper Surgical®, Denmark) at 5%CO2, 5%O2 24 

and 37ºC. Denudation was carried out just before ICSI, 4 hours after oocyte retrieval, by 25 

mechanical and chemical procedures (pipetting in 40 IU/mL hyaluronidase). ICSI was 26 

performed at x 400 magnification with the use of an Olympus IX7 microscope. Finally, 27 

oocytes were placed in preequilibrated EmbryoSlides® (Vitrolife, Denmark) with 16 28 

microwells divided into two groups, with 90 µl of single-step medium (Gems, Genea 29 

Biomedx®, Australia) per group and 1.6 mL mineral oil per dish. 30 

Embryo incubation, scoring and selection 31 



Embryos were cultured in the TL system EmbryoScope PlusTM up to the blastocyst stage. 1 

Images were taken automatically every 10-20 minutes and in up to eleven focal planes. 2 

Embryo development was assessed on an external computer with software for the 3 

analysis (EmbryoViewerTM workstation, Vitrolife, Denmark). Fertilization was evaluated 4 

at 16-19 hours post-ICSI and confirmed by the presence of two pronuclei and two polar 5 

bodies. The number of cells, fragmentation level, symmetry among blastomeres and 6 

compaction degree were annotated on day 2 and 3 of development. Later, blastocysts 7 

were assessed and selected by applying a hierarchical classification procedure based on 8 

a combination of standard ASEBIR’s morphological grading (Supplemental table 1, 9 

Supplemental table 2 and Supplemental table 3) and KIDScoreTM D5 algorithm 10 

(EmbryoViewerTM software, Vitrolife, Denmark).  Embryos were graded from A (high 11 

morphological quality) to D (low morphological quality) by senior embryologists and 12 

scored from 1 (low likelihood of implantation) to 9.9 (high likelihood of implantation) by 13 

the KIDScore D5 TM. The embryo with the highest score among those with good quality 14 

morphology was selected to transfer in each treatment. Implantation of transferred 15 

embryos was confirmed by ultrasound scanning for gestational sacs with fetal heart beat 16 

after 8 weeks of pregnancy. 17 

Experimental design 18 

The project was divided into two phases: 19 

Phase 1. Analysis of novel morphokinetic parameters: distance and speed of pronuclear 20 

migration (PNm), inner cell mass area (ICMa), blastocyst expanded diameter (BEd) and 21 

trophectoderm cell cycle (ccTroph) length. Not all the parameters could be analyzed on 22 

the total of transferred embryos, due to image failures such as darkness, presence of 23 

bubbles or out of focus images. The measurements were carried out by a designated 24 

embryologist, who was responsible for the annotation of morphokinetic variables (to 25 

avoid inter-operator variations), with the drawing tools provided by the 26 

EmbryoViewerTM (Vitrolife, Denmark). The distance of PNm was assessed drawing a line 27 

from the point of PN juxtaposition up to the position where pronuclei faded, in 505 28 

embryos (Figure 1A). The speed of PNm was calculated using the distance and the 29 

duration of this movement. The BEd was measured in 451 embryos in their maximum 30 

expansion and always before the embryo started hatching (Figure 1B). The ICMa was 31 

evaluated with a circle surrounding its perimeter when the ICM was compacted, in 477 32 



embryos (Figure 1C). To normalize data of BEd and ICMa in early and delayed embryos, 1 

we calculated a ratio with the time when the annotations were performed: BEd/tBEd 2 

and ICMa/tICMa. The ccTroph length was measured in 360 embryos. We selected one 3 

cell and made two marks, the first one when this cell divided into two daughter cells and 4 

the second one, when one of the daughter cells divided again (Figure 1D). Subtracting 5 

these two division times, we obtained cell cycles lengths in the trophectoderm. 6 

Phase 2. Development of the predictive model based on Artificial Neural Networks 7 

(ANN). Novel morphodynamical parameters (distance and speed of PNm, BEd, ICMa and 8 

ccTroph) and conventional morphokinetic parameters (the time of the second polar 9 

body emission, tpb2; the time of appearance of the two pronuclei, tPNa; the time of 10 

their fade out, tPNf; the division time to two cells, t2; the division time to three cells, t3; 11 

the division time to four cells, t4; the division time to five cells, t5; the division time to 12 

six cells, t6; the division time to seven cells, t7; the division time to eight cells, t8; the 13 

time from ICSI to early compaction, tSC; the time of the morula formation, tM; the time 14 

to early blastulation, tSB; the time to full blastocyst, tB; the time to expanded blastocyst, 15 

tEB; and the time to early hatching blastocyst, tHiB) were considered to develop the 16 

model.  17 

The ANN designed was a multilayer perceptron (MLP) and it involved the selection of 18 

several hyperparameters. The number of hidden layers and the number of hidden 19 

neurons were chosen empirically but starting from rule-of-thumb methods. Firstly, one 20 

or two hidden layers should be enough to solve any non-linear complex problem (47). 21 

In the present work, the selection of two hidden layers improved model performance. 22 

Secondly, the number of hidden layers neurons should be 2/3 of the size of the input 23 

layer (48,49). The best model was designed with 15 neurons in each hidden layer 24 

(Supplemental figure 1). Too many neurons can result in overfitting problems and not 25 

lead to correct generalization.  26 

Initially, the data was pre-processed by cleaning the database (removing samples with 27 

more than 5 missing values). Then, filling missing values with different techniques and 28 

standardizing the variables through Z Score. Conventional variables were temporal 29 

dependent. Therefore, we could approximate missing values by interpolation. Novel 30 

variables were filled by using their corresponding mean. In this way, 451 embryos were 31 

considered to feed ANNs. Afterwards, the parameters were randomized and split into 32 



two groups, 85% for the learning process (training and validation) and 15% for the blind 1 

test. In the learning process, the ANN was fed with the input data, the prediction was 2 

calculated, and the error was obtained by comparing the output value with the target 3 

value. Then, the backward propagation of the error allowed for the model parameter 4 

updates. A 5-fold cross-validation approach was performed in order to guarantee 5 

robustness to the model (50). In this way, the learning data was divided into 5 sets and 6 

the network was trained and validated with different sets of data in each iteration. 7 

Finally, the model was tested with the 15% of embryos, which were unknown for the 8 

model. It took the embryo parameters as input data and generated a confidence score, 9 

ranging from 0 to 1. Using the probability of belonging to each class, the sample was 10 

assigned to the majority class. 11 

The ANN was trained and tested by using distinct groups of variables resulting in four 12 

models with the same architecture and different input data: conventional 13 

morphokinetic parameters for ANN1, novel morphodynamical parameters for ANN2, 14 

conventional and novel parameters for ANN3 and those parameters which had 15 

significant differences between implanted and non-implanted embryos for ANN4. 16 

Statistical analysis 17 

The discriminatory capacity of each variable and the correlation among them was 18 

analyzed. Statistical tests were applied to probe significant differences in the values of 19 

each variable between implanted and non-implanted embryos. T-test was used for 20 

parameters with normal distribution and Wilcoxon Rank Sum test for those with non-21 

normal distribution. The subsequent results were expressed in terms of the 95% of 22 

Confidence Interval and significance. Also, a study of the correlation for each pairwise 23 

variable combination was performed. The Pearson’s correlation coefficients and their 24 

respective p-values were obtained to test the null hypothesis that they are independent. 25 

Finally, Receiver Operator Characteristic (ROC) curves were used to analyze the 26 

predictive power of the ANN. The resulting graph represents the ratio of true test 27 

positives to total positive (sensitivity) per the proportion of false positives (1-specificity). 28 

The higher the area under de curve (AUC), the more balanced the compensation 29 

between sensitivity and specificity. As a measure of the model performance, we also 30 

used the combined metric F-Score which considered the predictive positive values and 31 

the sensitivity. 32 



Ethical approval 1 

The procedure and protocol were approved by an Institutional Review Board (IRB 2 

reference: 1709-VLC-094-MM), which regulates and approves database analysis and 3 

clinical IVF procedures for research at IVI. Additionally, the project complies with the 4 

Spanish law governing assisted reproductive technologies (14/2006).  5 

 6 

RESULTS  7 

Phase 1. Analysis of novel morphokinetic parameters 8 

The mean and standard deviation for novel morphodynamical parameters from 9 

implanted and non-implanted embryos is shown in Table 1. 10 

Pronuclear migration: Pronuclei from the embryos analyzed travelled distances from 2 11 

to 38 µm. We found non-significant differences between implanted and non-implanted 12 

embryos, in terms of distance and speed. 13 

Blastocyst expanded diameter: Blastocysts reached sizes ranging from 114 to 225 µm. 14 

Implanted embryos had significantly higher diameters than non-implanted ones. The 15 

implantation rate also improved as the ratio BEd/tBEd was higher: 46.2% for ≤1.37, 16 

45.3% for 1.37-1.52, 66.7% for 1.52-1.64 and 70.7% for >1.64. 17 

Inner cell mass area: The ICM assessed ranging from 1 051 to 4 847 µm2. Non-significant 18 

differences were found related to implantation rate. The tendency was the following, 19 

embryos with larger ICM areas had better implantation rate. Similar results were found 20 

for the ratio ICMa/tICMa: 52.1% for ≤19.07, 61.00% for 19.07-23.87, 63.8% for 23.87-21 

28.90 and 57.4% for >28.90. 22 

Trophectoderm cell cycle length: Trophectoderm cell cycles were shorter than 23 

blastomeric cell cycles. Additionally, we found significant differences between 24 

implanted and non-implanted embryos.  25 

Phase 2. Development of the predictive model based on ANN 26 

The mean and standard deviation for conventional morphokinetic parameters from 27 

implanted and non-implanted embryos is shown in Table 1. 28 

Independent variables capable of discriminating between implanted and non-implanted 29 

embryos were: t4, t6, t7, t8, t9, tSC, tM, tSB, tB, tEB, blastocyst expanded diameter and 30 

trophectoderm cell cycle length. 31 



After the pre-processing of the dataset, 451 embryos were considered to develop the 1 

ANN architecture. The higher predictive power was achieved by ANN3 with an AUC of 2 

0.77 (Figure 2). The results in terms of sensitivity, specificity, accuracy, F-Score and area 3 

under the curve for the four models in the testing data set are represented in Table 2. 4 

DISCUSSION 5 

Novel embryo morphodynamical parameters described in this research could play an 6 

important role in the implantation potential prediction. Their combination with 7 

conventional morphokinetic parameters by using ANNs has resulted in an effective tool 8 

to predict the success of an IVF treatment. 9 

Since the introduction of time-lapse systems in IVF laboratories, several algorithms have 10 

been developed with morphokinetic parameters to improve embryo evaluation and 11 

selection (24,29). The efficacy of six time-lapse imaging embryo selection algorithms to 12 

predict implantation (5,25,35,51–53) showed AUCs ranging from 0.543 to 0.629 (54). 13 

The insertion of new embryo features and new methodologies of data analysis could 14 

improve the predictive power. 15 

The appearance, movement and fading of pronuclei had been previously studied (55–16 

57). Whereas the female pronucleus appears near the second polar body, in the cortex 17 

of the oocyte, the male pronucleus can emerge in the center (53.6%), in the cortex 18 

(15.2%) or in an intermediate point (31.2%) (55). The central position of PN juxtaposition 19 

and the presence of multinucleated blastomeres at 2-cell stage have been associated 20 

with the likelihood of live birth when transferring embryos on day 2/3 (57). As a general 21 

rule, both pronuclei move together, merge and fade (56). The distance and speed of 22 

pronuclei migration before fading were added as input data in our AI model. We did not 23 

find an association between implantation rate and multinucleation at 2-cell stage. 24 

However, we found the intermediate PN position at juxtaposition was associated with 25 

higher clinical pregnancy rate, but the inclusion of this parameter as input variable for 26 

ANN did not improve its performance (unpublished data). 27 

According to the ASEBIR criteria and Gardner grading, ICM, blastocyst expansion and 28 

trophectoderm are the criteria per excellence to evaluate and select embryos on day 5 29 

of development (Supplemental table 1, Supplemental table 2, Supplemental table 3 and 30 

Supplemental table 4). Therefore, we wanted to analyze these parameters in an 31 

objective and quantitative way by using measurements of BEd, ICMa and ccTroph 32 



length. Two decades ago, Richter et al. were the first group in demonstrating that 1 

embryos with bigger ICM areas had higher implantation rates (58). Although we did not 2 

find statistical difference regarding the impact of the ICM size over the implantation 3 

potential as independent variable (Table 1), the most predictive ANNs include this 4 

parameter (Table 2). The relation between the blastocyst diameter and the clinical 5 

outcome was first described through an ocular micrometer in 2008 (59). Although the 6 

blastocyst diameter and the ICM dimension had been already assessed with the tools of 7 

the Embryo Viewer TM (60), this is the largest retrospective cohort study with time-lapse 8 

system including these blastocyst features. In agreement with our results, the transfer 9 

of fully expanded blastocysts yielded greater implantation rates in fresh (61,62) and 10 

frozen embryo transfers (63). Blastocyst expansion has been also associated with 11 

embryo ploidy, as euploid blastocysts usually expand earlier than aneuploid ones (64). 12 

To our knowledge, this is the first time that the trophectoderm cell cycle length is 13 

measured, although the rapid expansion has been associated with an integrative cellular 14 

mitosis in trophectoderm cells (64). To ensure that the ccTroph length was 15 

representative of each embryo, we performed the measurement on two different cells 16 

for 100 embryos without obtaining significant variations (unpublished data). 17 

The development of AI algorithms has become a common practice in embryological 18 

investigations (43). Most of them are focused on image analysis through computer 19 

vision. Although, computer vision is a promising tool to use all the data hidden in time-20 

lapse images, it is still improving in the field of human embryology. There is one tool, 21 

called STORK, proposed to predict blastocyst quality as an embryologist with high 22 

predictive value (AUC=0.98), based on time-lapse images (45). Nevertheless, in their 23 

classification, good and bad quality embryos had little difference in the probability to 24 

lead a birth, 61.4% and 50.9% respectively. Complete videos of the whole embryo 25 

development have also been tested in a software called IVY with high capacity of 26 

predicting fetal heart (AUC=0,93) (44). However, the predictive power was calculated 27 

using all kind of embryos, even non-viable (7,063 discarded embryos out of 10,683). We 28 

are aware that it is an easy population for being classified, also by embryologists. The 29 

main goal should be to distinguish among viable embryos with similar appearance, those 30 

which have possibility of being transferred.  31 



Currently, there is no doubt that Artificial Intelligence techniques such as ANNs are more 1 

powerful than conventional statistical methodologies for data analysis. Among the 2 

models of ANN performed in this research, the third one was the most successful. It 3 

means that all the characteristics together are more predictive than individually. 4 

Additionally, we found that the new parameters analyzed were responsible for the 5 

increase in the predictive power for implantation, as the AUC for conventional 6 

morphokinetics was 0.64 and 0.77 for their combination with the novel parameters. 7 

Also, the accuracy for implantation prediction was higher with new parameters than 8 

with conventional ones, 0.75 and 0.71 respectively. Digging deeper into the predictive 9 

results, the highest sensitivity was found with those parameters which were significantly 10 

different in implanted and non-implanted embryos (Table 2). It means they had higher 11 

capacity of discriminating the implanted embryos, but not the non-implanted ones, as 12 

the specificity was too low. Thus, the most balanced model was the ANN3, which had 13 

the highest specificity and an excellent sensitivity (0.67 and 0.82 respectively). 14 

The predictive value of implantation would be likely higher with the addition of 15 

parameters related to the patients. We recognize that the implantation is not only 16 

dependent on the embryo quality, the characteristics of the endometrium and the 17 

reproductive history also play an important role in the IVF treatments. Regardless of the 18 

patient demographics, our further aim is to apply this ANN tool to improve the embryo 19 

selection in the laboratory prior to transfer.  20 

We used morphodynamical annotations, which are more consistent, robust and 21 

objective than morphological ones (65). However, the inter-observer variability of time-22 

lapse annotations limit the generalizability of our findings and especially with the new 23 

described parameters. Additionally, although we used a high-quality TL system supplied 24 

with different focal planes, the embryonic three-dimensional morphology made the 25 

evaluation of some events difficult, mainly those related to pronuclei. In the near future, 26 

these annotations could be performed automatically by using computer vision to reduce 27 

the subjectivity. This study is also limited by its retrospective nature, which is necessary 28 

before using a new embryo selection model in the IVF laboratory.  29 

 30 

CONCLUSION  31 



From our study, we can underline the identification of non-conventional embryo 1 

parameters involved in the implantation potential. The use of Artificial Intelligence to 2 

analyze big data provided by time-lapse systems, showed that the most predictive 3 

model was made up of all the variables described and not only those that were 4 

individually discriminatory. The further step will be to compare our model prospectively 5 

against standard selection methodologies. We expect that the imminent introduction of 6 

new technologies and the resulting use of these morphodynamical parameters may 7 

increase the objectivity in embryo evaluation.  8 

 9 
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 30 

FIGURE LEGENDS 31 



Figure 1. Measurement methodology carried out with the drawing tools provided by the 1 

EmbryoViewerTM (Vitrolife, Denmark). A) Measurement of pronuclear (PN) migration; 2 

the image on the right represents the initial migration point and the image on the left 3 

represents the distance travelled by pronuclei at the end migration point. B) 4 

Measurement of blastocyst expanded diameter. C) Measurement of Inner Cell Mass 5 

Area. D) Measurement of trophectoderm cell cycle length; the image on the right 6 

represents the selected trophectoderm cell, the next image represents the two 7 

daughter cells from the selected cell, and the image on the left represents the four 8 

daughter cells from the two cells of the previous image. 9 

Figure 2. ROC curve for prediction of implantation on the testing dataset by ANN3 10 

(conventional morphokinetic and novel parameters as input data). ROC, Receiver 11 

operating characteristic. AUC, area under the curve. 12 

 13 

TABLES 14 

Table 1. Mean and standard deviation for each embryo parameter analyzed. The p value 15 

shows the statistical differences between implanted and non-implanted embryos. PNm, 16 

pronuclear migration; BEd, blastocyst expanded diameter; ICMa, inner cell mass area; 17 

ccTroph, trophectoderm cell cycle; tBEd, the time from ICSI to BEd measurement; tICMa, 18 

the time from ICSI to ICMa measurement. 19 

Table 2. Results obtained in terms of sensitivity, specificity, accuracy, F-Score and AUC 20 

for each ANN model on testing data set. ANN, artificial neural network; AUC, area under 21 

the curve; tpb2, the time of the second polar body emission; tPNa the time of 22 

appearance of the two pronuclei; tPNf, the time of their fade out; t2, the division time 23 

to two cells; t3, the division time to three cells; t4, the division time to four cells; t5, the 24 

division time to five cells; t6, the division time to six cells; t7, the division time to seven 25 

cells; t8, the division time to eight cells; tSC, the time from ICSI to early compaction; tM, 26 

the time from ICSI to morula formation; tSB, the time from ICSI to early blastulatio; tB, 27 

the time from ICSI to full blastocyst; tEB, the time from ICSI to expanded blastocyst; and 28 

tHiB, the time from ICSI to to early hatching blastocyst; PNm, pronuclear migration, BEd, 29 

blastocyst expanded diameter; ICMa, inner cell mass area; ccTroph, trophectoderm cell 30 

cycle. 31 

 32 



OTHER LEGENDS 1 

Supplemental table 1. Categories and characteristics of embryonic inner cell mass 2 

according to the ASEBIR criteria 2015. 3 

Supplemental table 2. Categories and characteristics of trophectoderm according to the 4 

ASEBIR criteria 2015. 5 

Supplemental table 3. Embryo classification on day 5 of development, according to the 6 

ASEBIR criteria 2015, based on expansion grade, inner cell mass (ICM) and 7 

trophectoderm quality. 8 

Supplemental table 4. Gardner’s system for grading human blastocysts on day 5 of 9 

development. 10 

Supplemental figure 1. Scheme of the designed architecture of Artificial Neural Network, 11 

where m is the number of input variables and h is the number of neurons in the hidden 12 

layers. 13 
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FIGURES AND TABLES 1 

Figure 1. 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 



Figure 2. 1 
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Table 1. 1 

Variable 
Unit 

(SI) 

Implanted embryos Non-implanted embryos 

P value 
Mean 

Standard 

deviation 
Mean 

Standard 

deviation 

tPB2 h 3.763 1.425 3.858 1.585 0.907 

tPNa h 8.559 2.187 8.735 2.283 0.926 

tPNf h 23.192 2.559 23.508 2.745 0.194 

t2 h 25.654 2.956 25.951 2.973 0.383 

t3 h 36.219 3.361 36.500 3.817 0.356 

t4 h 37.403 3.663 38.154 3.975 0.031* 

t5 h 48.801 5.109 49.104 5.812 0.526 

t6 h 50.386 5.006 51.519 5.779 0.023* 

t7 h 52.777 5.464 54.468 7.031 0.009* 

t8 h 56.607 7.817 59.840 10.137 0.003* 

t9 h 69.889 8.209 72.800 8.635 <0.001* 

tSC h 80.891 8.757 83.139 9.163 0.012* 

tM h 86.925 8.265 88.689 8.591 0.017* 

tSB h 96.843 6.712 98.978 6.979 0.001* 

tB h 102.436 6.740 104.326 7.216 0.005* 

tEB h 107.940 6.452 110.274 6.592 0.001* 

tHiB h 110.638 7.694 114.796 9.790 0.418 

Distance PNm µm 13.649 7.234 13.648 6.898 0.936 

Speed PNm µm/h 1.377 1.989 1.174 0.995 0.079 

BEd µm 177.090 21.374 170.830 18.575 <0.001* 

ICMa µm2 2763.036 707.134 2716.188 830.591 0.069 

ccTroph h 9.945 2.706 9.758 2.702 <0.001* 

tICMa h 113.369 5.419 114.252 9.046 0.184 

tBEd h 113.527 3.787 113.637 2.915 0.461 

 2 

*p<0.05; statistically significant differences for the mean value between implanted and 3 
non-implanted embryos. 4 
 5 
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 8 
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Table 2. 1 

 2 

Artificial 
Neural 

Network 
Input Data Sensitivity Specificity Accuracy F-Score AUC 

ANN1 
tpb2, tPNa, tPNf, t2, t3, t4, t5, t6, t7, t8, 

tSC, tM, tSB, tB, tEB, tHiB 
0.88 0.46 0.71 0.78 0.64 

ANN2 
Distance of PNm, speed of PNm, BEd, 

ICMa, ccTroph 
0.86 0.58 0.75 0.80 0.73 

ANN3 

tpb2, tPNa, tPNf, t2, t3, t4, t5, t6, t7, t8, 
tSC, tM, tSB, tB, tEB, tHiB, distance of 

PNm, speed of PNm, BEd, ICMa, ccTroph 
length 

0.82 0.67 0.76 0.80 0.77 

ANN4 
t4, t6, t7, t8, t9, tSC, tM, tSB, tB, tEB, 

Bed, ccTroph length 
0.85 0.57 0.74 0.79 0.68 


