

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/165721

Valderas, P.; Torres Bosch, MV.; Pelechano Ferragud, V. (2020). A social network for
supporting end-users in the composition of services: definition and proof of concept.
Computing. 102(8):1909-1940. https://doi.org/10.1007/s00607-020-00796-8

https://doi.org/10.1007/s00607-020-00796-8

Springer-Verlag

Noname manuscript No.
(will be inserted by the editor)

A Social Network for supporting End Users in the
Composition of Services. Definition and Proof of
Concept

Pedro Valderas · Victoria Torres ·
Vicente Pelechano

Received: date / Accepted: date

Abstract Nowadays, end users are surrounded by plenty of services that are
somehow supporting their daily routines and activities. Involving end users
into the process of service creation can allow end users to benefit from a
cheaper, faster, and better service provisioning. Even though we can already
find tools that face this challenge, they consider end users as isolate individu-
als. In this paper, we investigate how social networks can be used to improve
the composition of services by end users. To do so, we propose a graph-based
definition of a social structure, and analyse how social connections can be ex-
ploited to both facilitate end users to discover services through browsing these
connections, and recommend services to end users during the composition ac-
tivity. As proof of concept, we implement and evaluate the proposed social
network in the context of EUCalipTool, a mobile end-user environment for
composing services.

Keywords service composition · end-user development · social network

1 Introduction

Technologies and applications evolve to create new eco-systems of heteroge-
neous and distributed services that are available for people anytime and any-
where. Nowadays, your environment may be plenty of services that support
your daily life: services that track your activity through the mobile phone, that
allow you to do an efficient use of your home heating and lighting, that allow
you to interact with social networks, that provide you with the weather forecast
or traffic status in real time, and so on. Although these services can be used
individually, it is their composed usage what has the potential to create new
value-added services for end users. In addition, in a world where end users play

Pedro Valderas, Victoria Torres, Vicente Pelechano
Universitat Politècnica de València E-mail: {pvalderas,vtorres,pele}@pros.upv.es

2 Pedro Valderas et al.

a more and more important role in the development of content, it makes sense
to think about the possibility of end users creating new services by compos-
ing existing ones. By upgrading end users to prosumers (producer+consumer)
and involving them in the process of service creation, both service consumers
and service providers can benefit from a cheaper, faster, and better service
provisioning [1].

Currently, there exist a myriad of end-user environments that face this
composition challenge (e.g.[2] [3] [4] [5]). However, only a few of them consider
an aspect that end users demand on current software solutions: social support.
Nowadays, millions of people use social networks such as Facebook or Twitter
to share with others what is happening in their lives. Messages, images, videos
or links are continuously spread through the Internet in order to make people
feel that they are connected to others. In the same way, social networks allow
people to share their relationships: who are their friends and how many they
have, who are their relatives, whether or not they have a sentimental relation-
ship, and so on. Even more, they also share relations with things they have
or like. We can find applications that allow people to share books, products,
car journeys, homes, etc. So, considering this scenario, why not to share also
service compositions with other users through social networks?

Indeed, we think that a social structure created specifically to support end
users in the composition of services can introduce several benefits. First, it can
be a valuable mechanism to facilitate end users to discover services instead of
relying on typical internet discovery solutions that cannot scale to the increas-
ing amount of available services (e.g. [6], [7]). For instance, social relationships
can be used to allows end users to browse services within a structure they per-
fectly know (social networks are currently one of the most used mobile apps
[8]); and they can be also exploited to make service recommendations based
on friends’ interests. Second, a social network can help end users to share
knowledge with other end users to improve their skills in composing services.
Finally, it can also be a collaboration space among end users and developers,
allowing the combination of the innovation and creativity of end users with
the expertise of developers.

Considering the motivation presented above, the problem that this work
tries to improve can be stated by the following two research questions:

– How can we define a social structure that captures the intrinsic character-
istics of the composition of services by end users?

– How can this social structure be exploited to support end users in the
composition of services?

The main contributions of this work have been developed to answer the re-
search questions presented above:

– We propose a graph-based definition of a social structure that characterizes
the activity of composing services by end users.

– We analyze how the underlying connections that are defined in the social
structure can be exploited to both (1) help end users to discover services

Title Suppressed Due to Excessive Length 3

by browsing social structure’s connections; and (2) recommend services to
end users during the composition activity.

As proof of concept, we implement the proposed social network in the con-
text of EUCalipTool, a mobile end-user environment for composing services[5].
This implementation is evaluated through an experiment with end users.

The rest of the paper is organized as follows: Section 2 presents the related
work. Section 3 introduces some foundations about the service composition
by end users and an intuitive characterization of the proposed social network.
Section 4 presents the definition of the social network with graph theory. Sec-
tion 5 analyses the defined social structure to delimit how it can be used to
browse and recommend services. Section 6 presents the implementation of the
social version of EUCalipTool as a proof of concept. Section 7 introduces the
evaluation of our work. A discussion is presented in Section 8. Section 9 finishes
the paper with some conclusions and the analysis of further work.

2 Related Work

Some works face the challenge of supporting end users in the creation of service
compositions with solutions that include some social issues. These social end-
user composition approaches can be classified into: (1) community oriented
approaches, which introduce features to share the knowledge that is produced
within a community; and (2) social network oriented approaches, which are
those that create social structures to connect users with common interests.
Next, we introduce the related works of each type. Note that many other
works allow end users to compose services. However, we have only considered
those that include some social issue, single end-user oriented approaches have
been omitted.

2.1 Community-oriented approaches

As introduced above, approaches in this category introduce some features to
share knowledge within a community of users. These features generally consist
of mechanisms to annotate, rank or rate compositions as well as recommen-
dation capabilities. However, there is not a social structure underlying the
proposed solutions.

One of the most significant solutions in this category is IFTTT [9]. It is
based on trigger-action programming to provide a complete software platform
that allows end users to create what they call Applets (condition-action rules),
which connect apps, devices and services to trigger one or more automation
rules. This platform recommends users with Applets that are created by the
community in order to be used and rated, allowing also sharing them by send-
ing their URL through different apps installed in the device (e.g. email, what-
sapp, facebook, etc.). The main difference with our approach is that Applets
are explicitly shared among one user and another sending their URL. There is

4 Pedro Valderas et al.

not social structure that allows end users to follow others in order to browse
the Applets they create. In addition, our approach uses the connections cre-
ated in the social structure to recommend the composition of services done by
others according to similar interests.

Dlvr.it [10] is a web tool that allows end users to aggregate data feeds
from different websites, sort and filter out those feeds, as well as mash them
up into a single feed. It supports end users in the sharing of their feed ag-
gregations through existing social networks such as Facebook or Twitter. In
contrast to our approach, this platform is based on social networks of general-
purpose to share aggregation of data feeds. Our work proposes a social network
specifically designed to support the activity of service creation which allows
exploiting the generated connections to improve the discover of services and
their recommendation.

Zapier [11] is a web-environment that allows end user to create their own
applications (Zaps) by composing conditions and actions (apps) that are al-
ready predefined by professional programmers of several vendors. It allows
users to define interests on specific apps, and recommend Zaps (compositions)
of other users that include these apps. The recommended Zaps can be taken
as a basis to create new ones. The main difference with our work is that a
structure to socialize the creation of Zaps is not proposed. Thus, users cannot
share Zaps among them. This work shares with our proposal the possibility
of making recommendations based on interests. However, these recommenda-
tions seem to be supported by a typical content-based algorithm, i.e. they
recommend the content (in this case, Zaps) that is similar to the content that
a user has already consumed (in this case, zaps marked as interesting). Our
approach goes a step beyond and recommend services that may be of interest
to a user by considering the similarity among this user and others. This simi-
larity is calculated by analyzing the connections that are implicitly created in
the proposed social structure.

Node-RED [12] is a visual wiring tool to create action composition in an
Internet of Things (IoT) context. It provides a graphical web environment
where a user can define nodes that represent actions over IoT devices, and
connect these nodes in order to create a sequence. It provides a flow library
to share compositions with other users in JSON format. Their efforts to allow
users to share composition among them are limited to creating a repository
from which users can download compositions created by others. However, there
is not a structure that facilitates to follow users and share composition with
them. In the same way, there is not support to make recommendations based
on the affinity among users.

2.2 Social network approaches

There are a few solutions that specifically focus their efforts on proposing a
social network structure in order to improve the composition of services by end
users. One of the exceptions is [13] which presents the foundations to support

Title Suppressed Due to Excessive Length 5

a social-awareness web service composition and focuses on exploiting the so-
cial data to make recommendations. However, authors only use the frequency
that a user includes a service in their compositions in order to exploit social
data. We propose a social structure with a richer set of relationships. Soriano
et al. [14] proposed an inception idea for socializing the composition of ser-
vices through a user-generated catalog of resources founded on the Web 2.0
vision for user co-production and harnessing of collective intelligence. How-
ever, a social structure is not proposed. Jiang et al [15] study the idea of social
manufacturing and propose a preliminary solution to achieve that production
service providers and prosumers collaborate for production. This work analyzes
how specific production services can be shared in order to allow prosumers to
use them and create new products. However, the creation of new production
services is not considered from a social perspective.

Other works use the concept of social network or a similar one in the area
of service science, although they are not focused on end-user development.
Similar to our idea, Tamburri et al. [16] introduces the main pillars to create a
social network of developers and shows the potentials of this idea in practice,
by reporting on its application to a real-life industrial scenario. Maamar et
al. [17] introduce a social network of web services focusing on three types of
relations: recommendation, similarity, and collaboration. Yu & Woodard [18]
create a mashups API affiliation network by analyzing the APIs that were
used to create each mashup. This study concludes that the web APIs are
used in the creation of mashups by following a long-tail distribution. Chen et
al. [19] construct a global social service network and provide generic quality
criteria for social links which included dependency satisfaction rate, QoS pref-
erence, sociability preference, and preferential service connectivity in order to
improve the quality of service management. Ren et al. [20] describe a service
social network and five kinds of relationships, namely interactive transaction,
co-community, physical distance, resource-related, and social similarity rela-
tionship. They discuss how these relationships can create a synergy effect, and
develop a service selection model that support social collaboration between
services.

In the area of Social Internet of Things, we can find several works that focus
their efforts on the idea of converging social networks with IoT. For instance,
Kranz et al. [21] analyse the implications of a so-called ‘social-technical net-
work’; the concept of Blogject (objects that blog) is presented in [22]; Atzori
et al. [23] study the participation of smart objects in current social networks.
Guinard et al. [24] propose the use of existing social networks such as Face-
book to share data produced by services. Although all these works are not
focused on the composition of services, they have done an excellent job in the
analysis of social relationships between intelligent things, which has inspired
us in the definition of this work. Following the path of these works, Meissa &
Benharzallah [25] analyze social relations to determine the main challenges for
the composition of services in Social IoT contexts.

In the context of Cyber Physical Social Systems (CPSS), Wang et al. [26]
present an approach to dynamically create service composition. They intro-

6 Pedro Valderas et al.

duce an algorithm based on QoS fluctuation computation and Skyline com-
ponent computation that considers QoS constraints in order to satisfy users’
requirements.

Although not focused on service composition, social networks have been
also considered in the area of end-user development. Reuter et al. [27] propose
a EUD environment to analyze social network big data. This environment
includes a social media API and a quality assessment service as well as a web
application targeted at end users. Massa & Sapano [28] introduce FaceMashup,
an end -user development environment supporting the manipulation of the
Facebook graph and allowing end users to analyze their social data.

3 Socializing the Composition of Services

According to Boyd & Ellison [29], a social network allows individuals to con-
struct a public or semi-public profile within a bounded system and articulates
a list of connections that can be viewed and traversed. Considering this gen-
eral description, we introduce some foundations on service composition by
end users that helped us to intuitively characterize the social network that is
proposed in this work.

Characterization 1. Hung et al. [30] define a web service as an au-
tonomous unit of application logic that provides either some business func-
tionality or information to other applications through an Internet connection.
In Service-Oriented Computing (SOC), developers use services as fundamen-
tal elements in their application-development processes. Service composition
accelerates rapid application development, service reuse, and complex service
consummation [31]. In this way, developers can solve complex business prob-
lems by combining and ordering available basic services to best suit their
problem requirement.

Thus, the social network should consider services of two types: Basic Ser-
vices, which are executable logic units implemented by programming activities;
and Composed Services, which are created through the composition of other
services. In this sense, a service profile of the social network should differen-
tiate between these two types of services. In addition, there should exist a
connection among services that indicates that one Composed Service includes
another service in its definition.

Characterization 2. There exist several solutions to help developers in
the composition of services [32]. However, the explosion of the number of
web services and APIs exposed through the Web has accentuated the need
for allowing end users to create their service compositions [1]. We can find a
myriad of environments focused on allowing end users to compose services by
their own (e.g. [9] [11] [10]).

Thus, the social network should consider two types of users (End User
and Developer). End users should have the possibility of creating Composed
Services while Developers should be authors of both Basic and Composed

Title Suppressed Due to Excessive Length 7

Services. In this sense, the social network should include a connection between
a user and a service that indicates that this user is the author of the service.

Regarding the user profiles, the social network should differentiate between
End User and Developer. In addition, inspired by existing social networks, we
introduce the possibility of creating a connection between two users in order
to define the interest of a user in the composition activity of another one.

Characterization 3. In the context of end-user development [33] it is well
known that end users have many difficulties to create solutions from scratch.
It is a good practice to provide predefined elements that can be taken as a
basis to define new ones [34]. The composition of services is not an exception.
Environments that support the composition of service by end users usually
provide them with predefined compositions to facilitate the creation of new
ones (e.g. [35] [9] [11] [14]).

In this sense, a Composed Service should be taken as a basis to create a
new Composed Service. Thus, the social network should include a connection
that indicates that one Composed Service has been created from another one.

Characterization 4. Currently, the execution of services does not depends
only on the computer where they are deployed but also on the context they are
being executed (Dey, 2001). For instance, the rising of the Internet of Thing
(IoT) paradigm has introduced new services that depend on mobile devices or
wearables (e.g. smart phones and watches, glasses, devices incorporated into
clothing, and so on) and they must go with the user in order to provide their
service wherever the user is [36]. Other services, however, are highly coupled
with the physical environment where they are executed. For instance, smart
buildings [37] provide services to control lighting, temperature or the doors of
specific locations.

Thus, a service can be characterized, among other contextual data, by the
devices required for its execution, and the location they are coupled to (if any).
In this sense, a service profile should include this data.

Characterization 5. Independently of how end users create a composition
of services, from scratch or taking as a basis a predefined one, they need to find,
select and include the services they need. According to the analysis done in
the previous section, some approaches (e.g. [9] [11] [13]) introduce mechanisms
based on recommendations to help end users to discover the service they need.
In the context of recommendation systems, one of the most used techniques is
based on tags or keywords [38].

Thus, the social network should provide mechanisms to allow a tag-based
recommendation of services in order to help users to find those that fit their
interest. Thus, a service profile should include a set of semantic keywords that
describe its execution logic and can be used to make recommendations. In
the same way, a user profile should include a set of tags that describe service
domains in which a user is interested in.

Characterization 6. Finally, according to Boyd & Ellison [29] user pro-
files generally include data that can be used to characterize and “know” the
user. In addition to the data introduced above (user type and service do-
main tags), we consider that a name, one photo and a textual description is

8 Pedro Valderas et al.

enough data to create a user profile for our purpose. In the same way, based
on some existing service profiles [39][40][41][42], in addition to the data intro-
duced above (service type, device, location, and semantic keywords), we think
a service profile should include a name, a textual description, inputs required
to execute a service, and outputs obtained after the execution.

4 Social Network Definition

In this section, we present a semi-formal description of the profiles and con-
nections that define the social network that we propose to support end users in
the composition of services. Social networks are usually represented as graphs
(Wellman, 1988). We used a directed, typed, constrained and attributed graph
[43][44]. In particular, we define the proposed social network with the following
graph-based specification:

– There exists a set of vertices V and a set of directed edges E. The functions
source and target indicate the source and target vertex of an edge.

– There exists a set of types for vertices TV = {User, Service} and a function
typeV which indicates the type associated to a vertex.

– There exists a set of user subtypes TU = {EndUser,Developer} and a
function subtypeU which indicates the subtype associated with a vertex
whose type is User.

– There exists a set of service subtypes TS = {Basic, Composed} and a
function subtypeS which indicates the subtype associated with a vertex
whose type is Service.

– There exists a set of types for edges TE =
{follower, author, consumer, includes, definedFrom}; and a function
typeE which indicates the type associated to an edge.

– Some constraints are defined over types of edges. For instance, a follower
edge represents the interest of a user A on the service composition activity
done by a user B. Thus, they can only be defined between two users.

∀ e ∈ E | typeE(e) = follower → typeV (source(e)) = User
& typev(target(e)) = User

The rest of constrains have been omitted in order to not overload the paper.
They are defined analogously and can be found in [45].

– A Composed Service is defined as a set of includes edges.

∀s ∈ V | typeV (s) = Service & subtypeS(s) = Composed→
s = {e1, e2, ..eN} & ∀e ∈ s→ e ∈ E & typeE(e) = includes

– To represent the order in which services are included in a Composed Service
we complement each Composed Service the relation < that defines the
order among elements according to the edge creation time. Thus, e1 < e2
specifies that e1 was created before e2. The function definition returns the
ordered set associated with each Composed Service. Thus, the definition
of a Composed Service csi is defined by as an ordered set:

Title Suppressed Due to Excessive Length 9

definition(csi) = {e1 < e2 < e3 < ... < eN}
Functions first and last indicate the first and last includes edges of the
ordered set associated with a Composition Service. Functions previous and
next indicate the previous and next includes edges of another one included
into the ordered set associated with a Composed Service. Note that this
formalization defines a Composed Service as a sequence of Basic Services.
If we need to consider more complex compositions such as those done
with, for instance, BPMN, a Composed Service would also include other
elements such as conditions, loops or parallel executions. This could be
done including additional types of vertex and edges that represent these
elements and the relationships among them. However, this is out of the
scope of this paper.

– There is a set of data vertices VD and a set of vertex-attribute edges EV A to-
gether with the sourceV A and targetV A functions that indicate the source
and target vertex of each vertex-attribute edges.

– We include a set of types for vertex-attribute edges TV AE =
{name, location, interest, description, input, ouput, semantics, device}
and a function typeV AE which indicates the type associated to a
vertex-attribute edge.

∀ eae ∈ EV A | typeV AE(eae) = input→ typeV (source(eae)) = Service&
target(eae) ∈ VD

The rest of constraints have been omitted to not overload the paper. They
can be found in [45].

In order to better understand the proposed social structure Figure 1 shows
its definition in a UML Class Diagram. As we can see, there are Users and
Services with their properties. There are two types of users: Developers and
End Users. There are two types of Services: Basic and Composed.

All users can be followers of other users and consumers of any type of
service. Developers can be authors of any type of service. End users can be
authors of Composed Services. A Composed Service includes services of any
type, and there is a Previous association class that, given the services included
in a Composed Service, indicates the service that is previous to another. A
Composed Service can be defined from another Composed Service.

5 Exploiting social network’s connections to browse and discover
services

The main goal of the above-introduced social network is supporting end users
in the composition of services. One of the most interesting features that it
provides is the possibility of exploiting the set of connections that are created
to improve the problem of service discovery. The proposed social structure can
be used to allow end users to discover services by browsing profiles, but also
to recommend end users with services during the composition process.

10 Pedro Valderas et al.

Fig. 1 Class diagram of the proposed social network

5.1 Browsing services through the social structure

Efficiently supporting end users in exploring services created by other users
is a key requirement of the proposed social network. Exploring services is
the process of navigating through available services and acquiring important
knowledge of them [1] and it heavily relies on how the characteristics of services
are represented, organized, and rendered.

With the proposed social network, we provide end users with a tool that
allows them to find services by browsing a set of users and services profiles.
Social networks are currently one of the most used mobile apps [8] and the use
of a social structure is familiar to end users, which may facilitate the task of
finding services in comparison to current service repositories.

Thus, considering the social structure presented above, a given user can:

1. Browse its follower connections. The user can access the list of its followed
users and the data attributes that describe each of them (i.e. their user
profiles). To describe this, we propose de function Followed Users (FU):

FU(ui) = {uj ∈ V | typeV (uj) = User&∃ e ∈ E | typeE(ej) = follower&
source(e) = ui & target(e) = uj}

2. Browse the author connections of each followed user. The user can access
the services created by each followed user and the set of data attributes
that describe each of them (i.e. their service profiles). To describe this, we
propose the function Followed Created Services (FCS):

FCS(ui, uj) = {s ∈ V | typeV (s) = Service&∃ e ∈ E | typeE(e) =
author & source(e) = uj & target(e) = s&uj ∈ FU(ui)}

3. Browse the location, semantics, device, includes, and definedFrom con-
nections of each service created by a followed user. Thus, given a specific
service profile S, a user can browse:
(a) The services that are associated with the same location as S.
(b) The services that share some semantic keyword with S.

Title Suppressed Due to Excessive Length 11

(c) The services that depend on a same device as S.
(d) The services that include S in their definition.
(e) The services that have been defined taking S as a basis.

A formal definition of these browsing options can be found in [45]. As rep-
resentative example, we present the function Same Parent Services (SPS),
that define the browsing option 3e:

SPS(ui, si) = {sj ∈ V | typev(sj) = Service & ∃ ej ∈ E | typeE(ej) =
definedFrom & source(ej) = sj & target(ej) = si &∃ ek ∈ E |
typeE(ek) = author& target(ek) = sj & source(ek) ∈ FU(ui)}

Section 6.2 shows the implementation of these browsing options and their
practical usage in the context of EUCalipTool.

5.2 Recommending services in composition activities

As commented above, end-user environments usually provide the possibility
of composing services in two ways: (1) from scratch and (2) from a predefined
composition. We focus on analyzing how social network’s connections can be
used to recommend services to end users in these two situations:

1. End users are creating a Composed Service from scratch. In this case, we
want to provide end users with a list of services that can fit their needs
before starting the composition of a new service.

2. End users want to compose a service from an existing Composed Service
as a basis. In this case, we want to recommend the Composed Services that
better fit end users’ interests.

In addition to these two situations, service recommendations can also be
provided at any time during the composition process, independently of the
way end users create a composition:

3. End users have a Composed Service partially defined. In this case, recom-
mendations are focused on providing a list of the most suitable services to
be included after the last service included in the Composed Service.

In order to make recommendations in these three situations we propose the
following functions:

Composed Services (CS). This function returns the services composed by
a user ui.

CS(ui) = {s ∈ V |typeV (s) = Service & ∃ e ∈ E |typee(e) = author &

source(e) = ui & target(e) = s & = Composed}

Inclusion Number (IN). This function returns the number of times that a
user ui has included a service si when composing another service.

IN(ui, si) =| {ei ∈ E | typeE(ei) = inclusion & target(ei) = si & ∃ ej ∈ E |

12 Pedro Valderas et al.

typeE(ej) = author&target(ej) = source(ei) & source(ej) = ui)} |

Global Inclusion Number (GIN). This function returns the total amount
of services included by a user ui.

GIN(ui) =

N∑
k=1

IN(ui, sk)

Service Interest Level (SIL). This function returns the level of interest that
a user ui has in a service si. This level is calculated from the frequency that a
service si is included in the compositions done by a user ui. In case GIN(ui)
returns zero, the fraction is not calculated to avoid problems of division by
zero, and this function returns 0.

SIL(ui, si) =
IN(ui, si)

GIN(ui)
if GIN(ui) > 0, otherwise 0

Composed Service Interest Level (CSIL). This function returns the level of
interest that a user ui has in a Composed Service si in terms of the interest
that the services included in the Composed Service has for the user.

CSIL(ui, si) =

N∑
k=1

SIL(ui, sk)∀ sk | ∃ e ∈ E & typeE = includes&

source(e) = si & target(e) = sk

Service User Similarity (SUS). This function returns the level of similarity
that a user ui has with a user uj in relation to the interest in service si.

SUS(ui, uj , si) =
SIL(ui, si) ∗ (1− 0SIL(uj ,si))

SIL(uj , si) + 0SIL(uj ,si)
+
SIL(uj , si) ∗ (1− 0SIL(ui,si))

SIL(ui, si) + 0SIL(ui,si)

The SUS function should return the similarity level between two users from
the division of the values that return their SIL functions. Instead of that, note
that this function returns the result of adding two similar fractions in which the
values of the SIL functions are divided but alternating the users between the
numerator and the denominator. We do that to make the function symmetric,
i.e. the function returns the same value independently of the order in which
users are passed as arguments. Note also that to avoid problems of division by
zero in case the SIL function returns this value, the numerator of each fraction
is multiplied by 1−0SIL(uN ,si), and the denominator is added with 0SIL(uN ,si).

Global User Similarity (GUS). This function returns the level of similarity
that a user a ui has with a user uj globally, i.e. considering their interest of
both in every service.

GUS(ui, uj) =

N∑
k=1

SUS(ui, uj , sk)

Title Suppressed Due to Excessive Length 13

Next, we introduce three algorithms that use these function to make rec-
ommendations in the three proposed situations. Note that the main goal of
these algorithms is to provide contextualized recommendations, i.e. recommen-
dations that fit the end-user situation in a specific moment. To do so, these
algorithms try to predict the most probable actions that they can do in the
context of the three different situations presented above. For instance, when
end users are creating a Composed Service from scratch we want to predict
the most probable services that they may want to add at a first place.

In the area of prediction algorithms, the strategy that is usually followed to
predict actions is analyzing a sequence of past actions done by a user in order
to detect a pattern that matches with the current situation. The proposed
algorithms try to do something similar, but instead of having a narrow view
of a user’s past actions, they have a broader vision when considering what
the full list of followed users did before in each situation. For instance, if end
users want to add a first service, we analyze what other users did in the same
situation, and recommend the services they added first. Other solutions such as
recommending the most used service in each situation could be used. However,
we think that this solution does not consider properly the context of each
situation. In the same sense, other dimensions such as service consumption
(usage) are not considered by algorithms since they focus on the situations
created when end users are composing a new service. The usage should be
considered when recommending end users services to use.

End users are creating a Composed Service from scratch. This
algorithm recommends end users the first services used by their followed users
in the Composed Services. This last recommendation is defined in Algorithm
1: given a specific user ui, we obtain all the Composed Services created by
its followed users. For each of this Composed Services, we access the service
included in the first place. Note that a composition is defined as a sequence of
includes edges (see Section 4), so we access the target of the first edge to obtain
the first service. Next, we calculate for it a Recommendation Level (RL). RL
is calculated from the product between the interest of the followed user in the
service (Service Interest Level) and the Global User Similarity between both
users. Then, the list of services ordered by this level is returned.

Algorithm 1. Recommendation of first services

input ui ∈ V & typeV (ui) = User
for each uk ∈ FU(ui)

for each csk ∈ CS(uk)
sk = target(first(csk))
RLk = SIL(uk, sk) ∗GUS(ui, uk)
Add(sk, RLk) in RecList

end for
end for
Sort RecList in descending order o f RLk

output RecList = {(sk, RLk)}

End users want to compose a service by taking an existing Com-
posed Service as basis. This algorithm recommends end users the Composed

14 Pedro Valderas et al.

Services built by followed users with similar interests. This recommendation
is defined in Algorithm 2: given a specific user ui, we obtain all the Composed
Services created by its followed users. For each of these Composed Services,
a Recommendation Level (RL) is calculated from the product between the
Composed Service Interest Level of the followed user and the Global User
Similarity between both users. Then, the list of Composed Services ordered
by this level is returned.

Algorithm 2. Recommendation of Composed Services

input ui ∈ V & typeV (ui) = User
for each uk ∈ FU(ui)

for each csk ∈ CS(uk)
RLk = CSIL(uk, csk) ∗GUS(ui, uk)
Add(csk, RLk) in RecList

end for
end for
Sort RecList in descending order o f RLk

output RecList = {(csk, RLk)}

End users have a Composed Service partially defined. This algo-
rithm recommends end users the services included in the Composed Services
created by their followed users. This recommendation is defined in Algorithm
3. Given a specific user ui and a service si that is the last service included
in the composition that ui is currently creating: first, we access all the users
followed by ui; Next, we obtain all the includes edges that target si and whose
source is a Composed Service created by each followed user; for each edge,
we obtain the service associated to the next includes edge within the service
definition they belong; then, a Recommendation Level (RL) is calculated from
the product between the interest of the followed user in the service (Service
Interest Level) and the Global User Similarity between both users. Finally,
the list of Composed Services ordered by this level is returned. Note that
this algorithm is applied after a first service is added, each time end users add
a new service, independently of the position of the added service within the
composition. Thus, when end users want to add the second service, the last
added service (si) refers to the first service; when users want to add the third
service, the last added service (si) refers to the second service; and so on.

Algorithm 3. Recommendation of next services

input ui ∈ V \& type V (ui)=User
for each uk ∈ FU(ui)

for each ek ∈ { eh ∈ E | typeE(eh) = includes & target(eh) = si &
∃ ej ∈ E | typeE(ej) = author & target(ej) = source(eh) \& source(ej) = uk}

snext=t a r g e t (next (ek))
i f (snext != n u l l) then

RLnext = SIL(uk, snext) ∗GUS(ui, uk)
Add(snext, RLnext) in RecList

end i f
end for

end for

Title Suppressed Due to Excessive Length 15

Sort RecList in descending order o f RLnext

output RecList = {(snext, RLnext)}

6 Social EUCAlipTool. A proof of concept

In this section, we present an implementation of the social network presented
above. To achieve this, the first thing we need is an end-user environment
to compose services and extend it to create such a social structure. For this
purpose, we used EUCalipTool, an end-user mobile tool for composing services
[5].

6.1 Service Authoring Tool

EUCalipTool proposed a mobile authoring environment which allowed end
users to compose new services. The services that end users could compose
were those registered into the platform by developers. To do so, developers
were provided with a service registration form that allowed them to describe
a service [5]. This form has been reused to provide developers with a user
interface to create Basic Service profiles.

EUCalipTool also proposed an editor to allow end users to create new
services by composing those services that had been previously registered by
developers. In this work, we have extended this editor in order to allow users
from the social network to create services by composing both Basic Services
(created by developers) and Composed Services (created by developers or end
users). Figure 2 shows some snapshots of the first steps provided by the mobile
authoring tool to create a new Composed Service. Such service can be created
in two ways (see Figure 2A): from scratch or from an existing service. To
create a Composed Service from scratch users must introduce a name and a
description by using the proper form. To create a Composed Service from an
existing one (Figure 2B), users must select a service from the catalogue and
customize it according to their needs. The catalogue of the non-social version of
EUCalipTool provided end users with a list of: (1) predefined examples and (2)
previous services composed by the own user. In this work, we go a step further
providing a third option: (3) Composed Services created by followed users that
can be of interest to a given user. These Composed Services are provided by the
Recommendation Algorithm 2 (recommendation of compositions of interest)
introduced in Section 5.2.

We have also extended this tool in order to maintain the graph that repre-
sents the social network’s structure and automatically create the edges (con-
nections) that are inferred from the activity of composing services. Thus, note
that the creation of a Composed Service through the mobile authoring tool
results in the implicit definition in the social graph of an author edge between
the current user and the newly created service. In addition, if the user selects
an existing service to be used as a basis, a definedFrom edge is implicitly
created between both services.

16 Pedro Valderas et al.

Fig. 2 Creation of a service composition with Recommendations

A Composed Service is defined by using the metaphor of “adding an ele-
ment” to a container. The Composed Service is the main container and users
must include the services they want to compose to create the new service. The
workflow metaphor is used to represent the sequence of the services included
in a Composed Service. Graphically, it is represented by using the List lay-
out (see Figure 2C). The order in which services are displayed (from top to
bottom) represents the order in which services must be executed. Each ser-
vice included in a Composed Service is connected graphically to the next one
by a small inverted triangle. This aspect is inspired by the jigsaw metaphor,
which defines pieces inserted into others to reinforce the notion of connection
or combination of elements.

Users just need to click the ‘+’ button to access the list of available services
(see Figure 2D). This list includes: (1) the Basic Services created by develop-
ers, (2) the services composed by the own end user; and (3) the services used
by followed users in the composition of services. The third option corresponds
to the services that are recommended through the implementation of the Rec-
ommendation Algorithm 1 (recommendations of a first service for an empty
composition) or 3 (recommendation of a next service for a partial composition)
introduced in Section 5.2.

Note that each time a service is added to a Composed Service an includes
edge is implicitly created in the social graph between both services. In the same
way, the ordered set that is associated to the Composed Service is dynamically
updated.

6.2 Service Browsing

EUCalipTool has been extended with new user interfaces to browse services
according to the possibilities presented in Section 5.1. If we were users of the
proposed social network we would have the possibility of accessing the screen

Title Suppressed Due to Excessive Length 17

in Figure 3A, which shows a list of followed users (browsing option 1, see
Section 5.1). If we select a user from this list, we can access its profile (see
Figure 3B), which includes the information proposed in Section 4. From a user
profile, we can browse the services the user has created (browsing option 2),
which is shown in Figure 3C. In the same way, if we click on the plus button
from the screen in Figure 3A we access the screen in Figure 3D that allows us
to follow new users.

Fig. 3 Browsing followed users and their associated services

If we select a service from the list in Figure 3C we access its profile (see
Figure 3E). This profile includes all the information proposed in Section 3.2.
At the upper side of the screen, we can find a rounded icon next to the service’s
name. This button is indicating that it is a Composed Service. If we click it we
access the authoring tool in order to create a new service taking as a basis the
definition of this selected service (see Figure 2B). The rest of the information
allows us to browse services from the different options proposed in Section 5.1.

18 Pedro Valderas et al.

The location ((browsing option 3.a), the semantic tags (browsing option 3.b)
and the device dependencies (browsing option 3.c) allow us to access the list of
services that are related to this one according to these data. As a representative
example, Figure 3F shows the list of services that have a dependency on the
same location as the service in Figure 3E. In contrast to the list shown in
Figure 3C, this one includes services of several followed users. Finally, note
that a button labelled as “Similar Services” is located at the bottom side of
the screen Figure 3E in order to access a menu that allows browsing other
similar services. In particular, this menu presents two options to access the
services that include this one (browsing option 3.d) and the services defined
from this one (browsing option 3.e)

6.3 Service Execution

Although the execution of services is out of the scope of this paper, in this
subsection we briefly introduce how a service is executed within the EUCalip-
Tool platform. A detailed description of this issue can be found at [46]. Note,
however, that we faced how an end user can execute their services. The execu-
tion of services created by others users of the social network requires a detailed
analysis of all the security issues that may arise as well as how to solve the
problem of executing services that depend on a device or a location that only
have sense in the context of a specific user. This issue will be considered as
further work.

Figure 4 shows some snapshots of the screens that end users interact with
when executing services. Figure 4A shows the list of services that are available
for execution. Figure 4B shows an intermediate screen that informs about the
execution process. Figure 4C shows a screen that requests end users some data
required at runtime. Finally, Figure 4D shows the results of the execution,
indicating the services that have been executed and the outcome provided by
each of them.

Fig. 4 Execution of a Service

Title Suppressed Due to Excessive Length 19

7 Evaluation

In this section, we present an experiment done with some students of our
University, which were proposed to use the social network for one month.

In particular, we asked 177 students to participate in the experiment. The
experiment consisted of: (1) completing a pre-test questionnaire to collect some
data on students’ knowledge and skills, (2) using the proposed social network
for a month and (3) completing a post-test questionnaire to know the opinion
of the participants about the social network. Next, we introduce the details
about the experiment.

Participants. From the 177 students that participated in the experiment,
94 were studying the forth (and last) year from the Degree of Computer Sci-
ence. The other 83 students were studying the third (out of four) year in the
Degree of Audiovisual Communication. 124 were male while the rest were fe-
male. With some exception, most of the participants were between 20 and 25
years old.

Apart from this demographic data, we used the pre-test questionnaire in
order to know their technological habits. As expected due to the Degree they
were studying, all of them had a high experience using smartphones and com-
puters or laptops to browse the web, read e-mails, or use word processors or
spreadsheets. In the same way, 96% of them used some social network daily.
48.7% of the participants also indicated that they play games assiduously. All
of them had some experience in programming. As we can see, participants had
a high technological background and skills. This was not a problem to per-
form the experiment since we wanted to evaluate the usefulness of the proposed
social network. The usability of the composition environment provided by EU-
CalipTool to end users with little technological background was evaluated in
a previous work [46].

One of the most interesting data we wanted to know about participants
was their experience on composing services or automating some set of ac-
tions. We though the evaluation of participants with this experience would
be really interesting to estimate the acceptation of the proposed social net-
work. Therefore, we included some questions in the pre-test questionnaire that
asked if they had ever used a tool to automate tasks, including mobile apps
like IFTTT with their applets, or home assistants like Alexa or Google Home
with their routines. Around 31% of the participants (55 out 177) answered
affirmatively.

Design. To present the experiment to students, we used the online teaching
platform of our university as well as face to face classroom lessons.

The experiment was done during a month and it was conducted as follow:

1. We asked students to complete the pre-test questionnaire to collect the
data about participants presented above. This was a mandatory task that
all of them must to do.

2. We arranged a classroom session to talk to students about the composition
of services and present EUCalipTool. We prepared a case study to train

20 Pedro Valderas et al.

students in the use of EUCalipTool. We also sent them a video tutorial of
the tool in order to be further revised if they needed it.
Afterwards, we asked them to use the tool freely at any time they wanted
for a month. This was not a mandatory task. Not using it was an ac-
cepted option. We just proposed them to identify any situation in their
daily life in which a set of tasks could be automated, and describe them
with EUCalipTool. We reminded them that they had two options to do
that, creating a Composed Service from scratch or reusing an existing one
created by some followed friend. When composing services, we logged the
selections done by students in order to know if the recommendations done
by EUCalipTool were chosen. If students needed some service that was not
available in the platform they could ask us for registering it. Once a week,
we sent them an email remanding that they had EUCalipTool available
to create service composition when they needed. We also introduced some
remainder about EUCalipTool during the classroom lessons of the month
that last the experiment.

3. Finally, those participants who used EUCalipTool to create some Com-
posed Service were requested to complete a post-test questionnaire after
the given month went by. We prepared a questionnaire with questions that
focused on the experience of using the social network to compose services.
It includes two type of questions: some that were used with a seven-part
Likert scale from 1 (lowest score) to 7 (highest score) points to evaluate
them; and others that allow participants to introduce a free answer that
justify some of the previous evaluations. In particular, we asked partici-
pants about: (1) using a similar environment in a real scenario, (2) using
services composed by others when creating theirs, (3) share their services
with others; (4) reasons for sending following requests; and (5) the use-
fulness of the recommendation algorithms. Furthermore, we also included
some questions to apply the Microsoft Product Reaction Cards [47] in order
to evaluate the end-user satisfaction level. This method consists of provid-
ing participants with a list of words and asking them to choose the words
that they would use to describe a product. The list includes positive words
like ‘Useful’ and ‘Engaging’, but also negative words, such as ‘Frustrating’
and ‘Ineffective’.

Students were provided with an execution simulator that allowed partici-
pants to check the execution of services. This simulator is based on the user
interface shown in Section 6.3. This simulator can be also used to execute the
services of the followed users providing the possibility of testing these services
before reusing them.

Results. We analyzed the results of our experiment from two perspectives.
On the one hand, we studied the participation obtained during the month that
the experiment lasted. On the other hand, we analyzed the feedback provided
by students through the post-test questionnaire.

Regarding the participation, close to 57.6% of the students (102 out of 177)
created, at least, one Composed Service. From these students (see left side in

Title Suppressed Due to Excessive Length 21

Figure 5), 44.1% (45 out of 102) created only one Composed Service; around
30% (31 students) created two; 18.6% (19 students) created three; and finally,
only a 6.8% (7 students) created four or more Composed Services.

In absolute values, 193 Composed Services where created. Considering the
total amount of potential users (i.e. all the 177 students), we obtained, in
average, a little more of 1 Composed Service per user. In order to know if
these results can be considered good or bad from a participation point of view,
we compared them with a well-established platform of task automation. In
particular, we considered the data presented in [48] about the IFTTT platform,
which had, in 2018, 14 million registered consumers (although it was not said
how many were active) and 75 million of applets since launched in 2010. In
average, this means that each user created around 5 applets during 8 years.

It is true that the comparison between a tool validated in an academic
environment like ours and a platform used by millions of real users can be a
little difficult due to the multiple contextual variables that need to be con-
sidered. For example, IFTTT users were not asked to use the tool (they had
the option of using another) in contrast to our students who were explicitly
requested to use only EUCalipTool. However, we think that, on average val-
ues, it is a good point of reference to evaluate the participation of students
in the experiment. Thus, considering that students were not force to create
compositions, and that those created responded to a real situation identified
by them, we consider that 1 Composed Service per user in a month reflects a
good participation level if we compare this value with the 5 applets per user
created with IFTTT during 8 years.

Fig. 5 Participants and the number of services they created (left) and Amount of created
services along the whole month (right)

An additional interesting data that we studied was the participation of
those students with some experience in the automation of tasks. As commented
above, 31% of the students (55 out of 177) indicated to have ever used the
capabilities of tools such as IFTTT, Alexa o Google Home to compose an
automation of tasks. From these students, close to 85% (46 out of 55) created

22 Pedro Valderas et al.

two or more compositions, which illustrates a considerable interest in the use
of EUCalipTool by those who were previously interested in automating some
type of behaviour. This same data can be read from another perspective: 53.5%
of those participants who created two or more Composed Services (38 out of
71) had some experience in this activity, and 46.5% of them (33 out of 71)
used a tool for composing behaviour for the first time. Considering all the
students that created some Composed Service (102), the platform provided by
EUCalipTool was engaging enough to get 33 students who had never created
such a composition before to create two or more Composed Services after using
the platform.

From the 193 Composed Services that students created, 41% of them were
created from scratch and the other 59% were created by taking an existing
service as a basis. This result reinforce the idea of using a social network as a
valuable mechanism to create a repository of predefined elements for end users
as it is recommended in [34]. The usefulness of taking a Composed Service as a
basis to create a new one can be also appreciated in the right side of Figure 5.
This figure shows how the total amount of Composed Services evolved along
the month that the experiment lasted. We have identified four main periods,
which are depicted by dashed red lines and explained next. We can see how
the possibility of taking an existing service as a basis encouraged end users to
create new ones.

1. Period 1 corresponds to the first week after we presented the experiment
to students. As we can see, there was little activity in the creation of
Composed Service by students. In average, 1.28 Composed Services per
day were created.

2. Period 2 corresponds to the second week. After some reminders about the
possibility of using EUCalipTool, students started to use the platform more
intensively. In average, 6.28 Composed Service per day were created. An
interesting data is that 92% of the Composed Services that were created
during the first and second weeks of the experiment were created from
scratch. In this sense, we concluded that students identified a scenario
were some automation of tasks can be defined, searched for one that can
support this scenario, didn’t find any, and created a new one from scratch.

3. Period 3 corresponds to the next 10 days of the experiment. During these
days the amount of created Composed Services increases significantly. In
average, 11.72 Composed Service per day were created. In this case, how-
ever, 86% of them were created by taking an existing one as a basis. We
concluded that students followed identifying scenarios were some automa-
tion of tasks can be defined. However, after the first two weeks of the
experiment, there was a more extensive catalogue of existing Composed
Services that can be used by students to create a new one that supports
their need.

4. Period 4 corresponds to the last 5 days of the experiment. In this case, the
amount of created Composed Services per day decreased. On average, 2.2
Composed Service per day were created. We concluded that students were

Title Suppressed Due to Excessive Length 23

not able to identify more scenarios that can be supported by a Composed
Service.

As far as the situations for which Composed Services were created, we
detected that 35% of them were generally based on a smart home; 25% of
them were based on smart cities; another 25% were based on the integration
of mobile devices with social networks; and finally, a 15% supported some
sport activity.

Regarding the recommendations done by EUCalipTool, we suffered a well-
known problem in recommendation systems called the cold start problem dur-
ing periods 1 and 2. This problem appears when a system tries to make recom-
mendations and its knowledge base is empty. In our case, the problem appeared
because students had created too few follower connections for the recommen-
dation algorithms to provide valuable recommendations. This problem may be
improved by initially considering the actions done by all the users, not only
the followed ones. However, an exhaustive analysis of how solving this problem
is needed. Note also that this evaluation focused on studying the usefulness
of the proposed algorithms. An individual analysis of the functions that are
used by these algorithms (presented in Section 5.2) is out of the scope of this
paper. In [45], we studied the correctness and completeness of these functions
through a set of JUnit tests. Also, we did an experiment to evaluate the per-
formance of their implementation and we obtained an acceptable execution
time to achieve a good user experience when using EUCalipTool.

Considering the Composed Services created in periods 3 and 4 (see Fig-
ure 6, solid bars), around 68% of those that were created by taking another as
a basis were selected from the options recommended by EUCalipTool (Algo-
rithm 2). The first services recommended by EUCalipTool (Algorithm 1) were
selected almost 55% of times, and the recommendations for the next services
(Algorithm 3) were selected 73% of times. These results are reinforced by the
answer obtained in the post-test questionnaire, which was completed by the
102 students that created one or more Composed Service. Around 70% found
Algorithms 2 and 3 useful (they cored these questions between 5 and 7). Algo-
rithm 1 was found useful (cored between 5 and 7) by a 61% of the participants.
If we consider only those participants that had some experience on using tools
for automating behaviour (55 students, see Figure 6, dashed bars) the results
were the following: algorithm 1 was found useful by 69% of them, algorithm 2
by 76%, and algorithm 3 by 73%.

These results indicate that the proposed algorithms help end users in the
composition of services. However, they must be improved to obtain greater
acceptance from users. A way these recommendations can be improved is by
asking end users to describe the Composed Service they want to create in
natural language, before starting to create it. We can match this description
with the semantic keywords associated to the service recommended by algo-
rithms in order to highlight those that better fit the Composed Service end
users want to create. To do so, natural language processing techniques should
be integrated with EUCalipTool.

24 Pedro Valderas et al.

Following with the post-test questionnaire (see the left side of Figure 6),
around 80% of them stated (by coring this question between 5 and 7) that
they would use a tool like EUCalipTool if it was available in a market such as
Google Play or Apple Store. Regarding the questions about using the services
created by others, around 74% of the participants would feel comfortable both
sharing their services with others as and reusing services created by their
followed users. Around a 69% of the participants indicated that the social
network helped them to discover services (coring this question between 5 and
7). If we focus only on those participants that had some experience on using
tools for automating behaviour (55 students, see right side of Figure 6), the
results were the following: around 98% of them scored between 5 and 7 the
question that stated that they would use a tool like EUCalipTool if it was
available in a market. A 80% of the participants would feel comfortable sharing
their services with others, and close to a 88% of the participants would feel
comfortable reusing services created by their followed users. Finally, around
82% of the participants scored between 5 and 7 the question that indicates
that the social network helped them to discover services.

These results allow us to consider that, from a global perspective, the
capabilities implemented in EUCalipTool from the proposed social network
helped participants in the activity of creating services.

Fig. 6 Results of the post-test questionnaire: all participants (left, solid bars) and only
those with experience in automating behaviour (right, dashed bars)

An interesting issue commented by some participants was the possibility
of sharing only some Composed Service to do only specific actions with them.
Currently, an end user can access all the Composed Services created by their
followed users to both take it as a basis to create a new one and include it in
the definition of another service. The proposed idea consists in allowing end
users to indicate if a Composed Service is shared or not (it can be defined for
private use), and if shared, which actions can do their followers with it. We
found this idea really interesting and we are currently working on an extension
of the social network to include this possibility.

Title Suppressed Due to Excessive Length 25

Participants also detected a problem when they reused a Composed Ser-
vice that was published by a followed user and this service depended on a
specific location or device. The actions that depend on these locations or de-
vices cannot be directly reused and needed to be adapted. To improve this
problem we are working on defining abstract services (e.g. order a pizza) that
can be instantiated when they are included by a specific end user (e.g. selecting
the Italian restaurant with home service that is close to the current end-user
location).

Regarding the connections among end users, a total of 218 following con-
nections were created by the 102 students that create some composition. Ac-
cording to Figure 7(see left side), a 9.8% of these students (10 out of 102)
created one following connection; around a 32.3% (33 students) created two;
around a 42.1% (19 students) created three; and finally, around a 17.7% (16
students) created four or more following connections. In average value, we
obtained around 2 following connections per user, which represent a 1.9% of
the active users (i.e. 102). If we compare these results with a well-established
social platform like Twitter, we can consider them quite good. According to
[49], Twitter had in 2016 around 95 millions of active users (those who had
tweeted at least once in the last 6 months) and the average user had 707 fol-
lowers, which represent 0.0007% of the active users. This percentage is quite
lower than the one obtained in our experiment.

The right side of Figure 7 shows the reasons that participants indicated
to send a following request to another user. Two main answers were given: (1)
the user was a friend of mine (almost 48% of the times that a student sent
a following request), and (2) the user had services I was interested in (40.6%
of the times). Note that, initially, EUCAlipTool only allowed a user to know
the services other user had created if it was a followed user. However, during
the experiment, some students asked us to know the services that each user
had created before to decide whether or not to send it a following request.
Thus, we updated the EUCalipTool platform in order to show a preliminary
list of the service that each user has created. In this sense, the use of a social
platform seems to be an interesting mechanism to create trustworthiness and
encourage end users to reuse services created by others to define their ones.

As far as the end-user satisfaction level with the whole platform, which was
evaluated through the use of Microsoft Reaction Cards, Figure 8 shows the
words that got 10 or more occurrences. As we can see, “easy to use”, ”friendly”
and “intuitive” were the participant’s most selected keywords. These keywords
show that subjects were pleased with the functions provided by the social
platform and the way of using them.

Conclusions. We can state that sharing services and browsing those pub-
lished by others through a social structure is natural to most end users since
they are accustomed to using social networks. In addition, recommendations
done by analysing the social connections help end users in the activity of com-
posing services. Thus, we can consider that the proposed social network is
usefulness for end user to compose services. Of course, this is not a closed
research work and some issues identified in the evaluation experiment need to

26 Pedro Valderas et al.

Fig. 7 Participants and the number of connections they created (left) and reasons to create
a connection (right)

Fig. 8 Satisfaction evaluation with Microsoft React Cards

be considered as further work. However, we feel reinforced in the idea that a
social structure that support end users in the composition of services can be
a valuable mechanism to help them to become into prosumers of services.

Finally, as a representative example of the social network constructed in
the experiment, Figure 9 shows a partial view of its social graph. It includes
some fictitious Developers created by us (Amazon, Trip Advisor, Twitter, Tune
in, and AEMT, whose representative nodes are depicted as grey circles labelled
with a D). These developers provided several Basic Services (depicted by black
squares labelled with a B) that students could compose to create the composed
ones (depicted by black squares labelled with a C). The graph also includes
two End users (depicted as gray circles labelled with a EU) that represent two
students named Luis and Miguel. Luis created a Composed Service named
waking up. Miguel followed Luis and created his waking up service by taking

Title Suppressed Due to Excessive Length 27

as a base the one created by Luis. In addition, Miguel created a Composed
Service to support dinner at home.

Fig. 9 Partial view of the social graph created in the experiment

Threats of validity. This experiment was performed in an academic en-
vironment. We cannot assure the same results if the experiment is done in a
real environment. The main reasons to do this statement are:

1. Students may have felt comfortable using and reusing services created by
others because they all belong to the same group (students of the same De-
gree). Although unconsciously, a confidence relationship may exist among
them. We cannot ensure the same behaviour when users have the possibility
of reusing a service created by a totally strange user.

2. Our main goal was to have a set of users that can use our social network
in a scenario close to a real one. However, note that a real scenario implies
having users with a real need of creating a Composed Service. We cannot
discard that some of them may have created services just for satisfying
professor’s desires.

8 Beyond a matter of sharing services among end users. Discussion

In this work, we focused on improving the area of end-user development with
a social platform to help end users to create their services and share them with
others.

Segal [34] recommends that end users can access a library of predefined
components to use them as starting point. However, the same author demon-
strated in [50] that these repositories of components are very difficult to main-
tain by developers in real contexts. The proposed social platform allows end
users to access the services created by developers and other end users, and start
to compose new services by using these ”predefined examples” as a basis. In

28 Pedro Valderas et al.

this sense, the social network becomes a continuously increasing repository of
components that is maintained and improved by both end users and devel-
opers. Also, the proposed social network allows end users to find services by
browsing a set user and services profiles, which are notions that are familiar
for them. Social networks are currently one of the most used apps [8] and, as
we validated in the previous section, the use of a social structure is familiar
to end users, making the task of finding services easier than current service
repositories.

However, the idea of a social network in which end users and developers
live together can be generalized to other domains rather than service creation.
Even more, it can allow broader collaboration between end users and develop-
ers than only a shared creation of software artefacts. Regarding this last issue,
it is interesting to remind that End-User Development (EUD) focuses on al-
lowing users without programming skills become into producers of software
artefacts. From a Software Engineering perspective, EUD mainly focuses on
the implementation stage. Other approaches advocate for the participation of
end users in other phases of the development process. We can consider, among
others, areas such as End-User Software Engineering [51], Participatory Design
[52], Meta-Design [53], and so on.

In this sense, we think that a social platform for end users and developers
can be a valuable mechanism to allow them to collaborate not only in the
implementation of software artefacts but also in other software development
activities that focus on improving the quality of the developed artefacts. For
instance, a user can publish an initial product description to allow other users
of the social network to participate in the elicitation and management of re-
quirements; or a software product can be published to be tested and debugged
by others. This type of social platforms can support software development by
and for the crowd. Note that current crowd computing research is investigat-
ing the ability to aggregate and employ human time and talent to develop
specific tasks through digital media. We think that social platforms can be a
valuable tool to do so in the context of software development. In any case, it
requires an exhaustive analysis in order to properly define the social network
that is needed for each purpose, determining user profiles, artefacts that can
be shared, and the actions that each user profile can done with these artefacts.

Next, we present a general description of the main concepts we think that
are required to define a social network for developers and end users target
at some software activity. Note that this is only an initial effort of generaliz-
ing our work. Further analysis and research are needed, but they are out of
the scope of this paper. Figure 10 shows the concepts that we propose to
characterize a social network target at software development activities. Each
User of the social network is either a Professional, which is a user with skills
in some development phase, or an End user, which lacks from these skills al-
though have knowledge of the domain. Users are linked to each other through
a Connection, which may be characterized as symmetric or asymmetric if we
consider current trends in social networks. With a Symmetric connection, if a
user A is connected to a user B it means that user B is also connected to user

Title Suppressed Due to Excessive Length 29

A (e.g. friendship relationship supported by Facebook). With an Asymmetric
connection, the fact that a user A is connected to a user B doesn’t mean that
the user B is also connected to the user A (e.g. the follower connection used
in this work).

Fig. 10 Preliminary generalization effort

Users can create Publications in order to share some Artefact with other
users. We will need to precisely specify the artefact or artefacts that can be
shared. Each user and artefact must have a profile made up of a set of prop-
erties which should be defined according to the software domain and develop-
ment activities that must be supported by the network. These properties will
be a valuable mechanism to browse artifacts.

Each publication can have a Visibility in order to indicate which users
can access it (and then, the published artefact). Considering current social
networks and some conclusions obtained from the experiment presented above,
we can though of three types of visibility: Public, which indicates every user in
the network can access the published artefact; Friendly, which indicates that
the published artefact can only be accessed by connected users; and Private,
which indicates that the artefact can only be accessed by the author.

Each publication is associated with one or more phases of the development
process which should be associated with the list of Actions that can be done
with the published artifacts in each phase. For instance, if we define a social
network that supports the phases of implementation and testing of a software
product, we should define the actions that users can do with artefacts published
in these phases. Finally, note that the artefacts published in each phase may
be defined with tools specifically created for this purpose. Thus, the proposed
social platform should be integrated with these tools in order to provide the
proper working flow.

Considering the social network proposed in this paper, the artefact that is
shared among users of the social network is a Service. Each Service is published
in the context of the implementation phase and has friendly visibility. Users

30 Pedro Valderas et al.

are connected through asymmetric connections. The tool that supports the
implementation of services is the EUCAlipTool authoring environment which
is integrated with the new developed social platform. The actions that users
can do with the published artefacts are two: (1) taking it as a basis to create
a new one and (2) including it in the creation of another. If our social network
would have supported the testing of services, we would have to consider which
artefacts may be published for the testing phase (e.g. services to test and
testing reports), the actions that end users may do with them (e.g. execute a
service, add a report, validate a report, etc.), and the integration of the social
network with some execution and testing tool.

In order to have another representative example, let’s consider, for instance,
the domain of Web Augmentation [54]. In this area, end users usually add,
alter, or remove features of a web application interface by creating scripts
that run on their web browser. A social network focused on the creation of
these scripts would help end users to access scripts that may solve their needs,
and which would have been created by professional scripters or other end users
like them. This social network may be characterized, for instance, as follows:
the artefact to be shared is a Web Augmentation Script, which is published
for the implementation and testing phases. The actions that each user can do
with a published artefact are two: (1) the installation of the script in order
to be tested, and (2) the adaptation of a script in order to create a new
one. The social network should be tightly integrated with some web browser
and authoring tool in order to allow the deployment and edition of scripts.
If additionally, we also want to consider the analysis phase, as approaches
like CrowdMock [55] do, the artefact to be published can be, for instance,
user histories that describe the new requirements to be supported by a Web
Augmentation Script. The actions that other users can do with these histories
are: (1) to adapt or extend them in order to create new histories, (2) to be
associated to some existing script that solves it, or (3) to be supported with
the creation and publication of a new script.

9 Conclusions and further work

In this work, we have presented a social network to support end users in
the composition of services. We want to encourage end users to become into
producers of services and contribute to improving the research of end-user
service composition. We have provided end users with a solution not only to
build service compositions in an intuitive way but also to share the acquired
knowledge among them.

We have characterized the proposed social network and have defined it in
a semi-formal way by using graph theory. We have also analysed how social
connections can be exploited to (1) facilitate end users to discover services
through browsing these connections, and (2) recommend services to end users
during the composition activity.

Title Suppressed Due to Excessive Length 31

As proof of concept, we have extended EUCalipTool with social support.
This tool supports end users in the composition of services by using mobile
devices. We have extended it with social capabilities. This social version of
EUCalipTool has been evaluated with students of our university for a whole
month. The results of this experiment reinforced the idea that a social structure
can be useful for end users in the activity of creating services on their own.

However, there are still some challenges that need to be faced as further
work. For instance, instead of using a simulator to test services, it should
be interesting to allow end users to directly execute the services created by
others. This also needs to face the security aspect of the social network by
providing the possibility of defining grants over the shared Composed Services
or integrating security frameworks with social support such as Anahita or
Elgg to properly manage personal data. Furthermore, we are studying the
possibility of including natural language descriptions done by end users in
order to improve the recommendation process.

Another interesting issue that we want to face is to include the usage
dimension in the recommendations done by our social network. The main idea
is to recommend end users with services to be consumed depending on the
consumption done by their followed users in the same context (i.e. same time,
location, device, and so on). Furthermore, we are investigating how to apply
a previous research work focused on considerate computing [56] studied how
to achieve a considerate interaction with users (i.e. disturbing them as less as
possible) when executing services. We plan to apply this work to the presented
architecture to create social notifications in a considerate way. The main idea
is to propose a conceptual framework that allows us to characterize both: (1)
the notifications that a user can receive from a social network like the proposed
in this work, and (2) the communication resources that must be used to deliver
each notification to end users depending on their current situation.

Finally, note that, although implemented in the context of EUCalipTool,
the definition of the social structure can be applied to other end-user envi-
ronments for composing services to provide them with social support. In the
same way, we have presented a preliminary generalization effort to describe
the main concepts that characterizes a social network target at any software
development activity and any domain.

Acknowledgement

This work has been developed with the financial support of the Spanish State
Research Agency under the project TIN2017-84094-R and co-financed with
ERDF

References

1. J. Yu, Q. Z. Sheng, J. Han, Y. Wu, and C. Liu, “A semantically enhanced service
repository for user-centric service discovery and management,” Data & Knowledge En-

32 Pedro Valderas et al.

gineering, vol. 72, pp. 202–218, 2012.
2. F. Daniel, F. Casati, B. Benatallah, and M.-C. Shan, “Hosted universal composition:

Models, languages and infrastructure in mashart,” in International Conference on Con-
ceptual Modeling, pp. 428–443, Springer, 2009.

3. J. Danado and F. Paternò, “Puzzle: A mobile application development environment
using a jigsaw metaphor,” Journal of Visual Languages & Computing, vol. 25, no. 4,
pp. 297–315, 2014.

4. S. Aghaee and C. Pautasso, “End-user development of mashups with naturalmash,”
Journal of Visual Languages & Computing, vol. 25, no. 4, pp. 414–432, 2014.

5. P. Valderas, V. Torres, I. Mansanet, and V. Pelechano, “A mobile-based solution for sup-
porting end-users in the composition of services,” Multimedia Tools and Applications,
vol. 76, no. 15, pp. 16315–16345, 2017.

6. E. Al-Masri and Q. H. Mahmoud, “Wsce: A crawler engine for large-scale discovery
of web services,” in IEEE International Conference on Web Services (ICWS 2007),
pp. 1104–1111, IEEE, 2007.

7. A. Santanche, S. Nath, J. Liu, B. Priyantha, and F. Zhao, “Senseweb: Browsing the phys-
ical world in real time,” Demo Abstract, ACM/IEEE IPSN06, Nashville, TN, pp. 1–2,
2006.

8. J. Nielsen, “Tops of 2015: Digital. media and entertainment.” http://www.nielsen.com/

us/en/insights/news/2015/tops-of-2015-digital.html, 2015. [Last time accessed:
January 2019].

9. IFTTT, “If this then that.” https://ifttt.com/, 2015. [Last time accessed: January
2019].

10. Dlvr.it, “Social media auto posting & scheduling tool.” https://dlvrit.com/, 2018.
[Last time accessed: January 2020].

11. Zapier, “Connect your apps and automate workflows.” https://zapier.com/, 2018.
[Last time accessed: January 2019].

12. Node-RED, “Flow-based programming for the internet of things.” https://nodered.

org/, 2017. [Last time accessed: January 2019].
13. A. Maaradji, H. Hacid, J. Daigremont, and N. Crespi, “Towards a social network based

approach for services composition,” in 2010 IEEE International Conference on Com-
munications, pp. 1–5, IEEE, 2010.

14. J. Soriano, D. Lizcano, J. J. Hierro, M. Reyes, C. Schroth, and T. Janner, “Enhanc-
ing user-service interaction through a global user-centric approach to soa,” in Fourth
International Conference on Networking and Services (icns 2008), pp. 194–203, IEEE,
2008.

15. P. Jiang, K. Ding, and J. Leng, “Towards a cyber-physical-social-connected and service-
oriented manufacturing paradigm: Social manufacturing,” Manufacturing Letters, vol. 7,
pp. 15–21, 2016.

16. D. A. Tamburri, P. Lago, and H. v. Vliet, “Service networks for development commu-
nities,” in Proceedings of the 2013 International Conference on Software Engineering,
pp. 1253–1256, IEEE Press, 2013.

17. Z. Maamar, L. K. Wives, Y. Badr, and S. Elnaffar, “Even web services can socialize:
A new service-oriented social networking model,” in 2009 International Conference on
Intelligent Networking and Collaborative Systems, pp. 24–30, IEEE, 2009.

18. S. Yu and C. J. Woodard, “Innovation in the programmable web: Characterizing
the mashup ecosystem,” in International Conference on Service-Oriented Computing,
pp. 136–147, Springer, 2008.

19. W. Chen, I. Paik, and P. C. Hung, “Constructing a global social service network for bet-
ter quality of web service discovery,” IEEE transactions on services computing, vol. 8,
no. 2, pp. 284–298, 2013.

20. M. Ren, L. Ren, and H. Jain, “Manufacturing service composition model based on
synergy effect: A social network analysis approach,” Applied Soft Computing, vol. 70,
pp. 288–300, 2018.

21. M. Kranz, L. Roalter, and F. Michahelles, “Things that twitter: social networks and
the internet of things,” in What can the Internet of Things do for the Citizen (CIoT)
Workshop at The Eighth International Conference on Pervasive Computing (Pervasive
2010), pp. 1–10, 2010.

Title Suppressed Due to Excessive Length 33

22. J. Bleecker, “A manifesto for networked objects—cohabiting with pigeons, arphids and
aibos in the internet of things,” in Proc. of the 13th International Conference on
Human–Computer Interaction with Mobile Devices and Services, MobileHCI, pp. 1–
17, 2006.

23. L. Atzori, A. Iera, and G. Morabito, “Siot: Giving a social structure to the internet of
things,” IEEE communications letters, vol. 15, no. 11, pp. 1193–1195, 2011.

24. D. Guinard, M. Fischer, and V. Trifa, “Sharing using social networks in a composable
web of things.,” in PerCom Workshops, pp. 702–707, 2010.

25. M. Meissa, S. BENHARZALLAH, and L. KAHLOUL, “Service composition based on
the social relations in the internet of things,” in The 18th International Arab Conference
on Information Technology (ACIT’2017), 2017.

26. S. Wang, A. Zhou, M. Yang, L. Sun, C.-H. Hsu, et al., “Service composition in cyber-
physical-social systems,” IEEE Transactions on Emerging Topics in Computing, 2017.

27. C. Reuter, M.-A. Kaufhold, and T. Ludwig, “End-user development and social big
data–towards tailorable situation assessment with social media,” in New Perspectives
in End-User Development, pp. 307–332, Springer, 2017.

28. D. Massa and L. Spano, “Facemashup: An end-user development tool for social network
data,” Future Internet, vol. 8, no. 2, p. 10, 2016.

29. D. M. Boyd and N. B. Ellison, “Social network sites: Definition, history, and schol-
arship,” Journal of computer-mediated Communication, vol. 13, no. 1, pp. 210–230,
2007.

30. P. C. Hung, H. Li, and J.-J. Jeng, “Ws-negotiation: an overview of research issues,” in
37th Annual Hawaii International Conference on System Sciences, 2004. Proceedings
of the, pp. 10–pp, IEEE, 2004.

31. Z. Ding, L. Xiao, and J. Hu, “Performance analysis of service composition using ordinary
differential equations,” in 2008 12th IEEE International Workshop on Future Trends
of Distributed Computing Systems, pp. 30–36, IEEE, 2008.

32. N. Milanovic and M. Malek, “Current solutions for web service composition,” IEEE
Internet Computing, vol. 8, no. 6, pp. 51–59, 2004.

33. H. Lieberman, F. Paternò, M. Klann, and V. Wulf, “End-user development: An emerging
paradigm,” in End user development, pp. 1–8, Springer, 2006.

34. J. Segal, “Two principles of end-user software engineering research,” ACM SIGSOFT
software engineering notes, vol. 30, no. 4, pp. 1–5, 2005.

35. Workflow.is, “Workflow. spend less taps, get more done.” https://workflow.is/, 2018.
[Last time accessed: January 2019].

36. D. Steinbock, The mobile revolution: The making of mobile services worldwide. Kogan
Page Publishers, 2005.

37. D. Snoonian, “Smart buildings,” IEEE spectrum, vol. 40, no. 8, pp. 18–23, 2003.
38. A. K. Milicevic, A. Nanopoulos, and M. Ivanovic, “Social tagging in recommender sys-

tems: a survey of the state-of-the-art and possible extensions,” Artificial Intelligence
Review, vol. 33, no. 3, pp. 187–209, 2010.

39. V. Ermagan and I. H. Krüger, “A uml2 profile for service modeling,” in Interna-
tional Conference on Model Driven Engineering Languages and Systems, pp. 360–374,
Springer, 2007.

40. R. Amir and A. Zeid, “A uml profile for service oriented architectures,” in Companion to
the 19th annual ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications, pp. 192–193, ACM, 2004.

41. M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, “Semantic matching of web
services capabilities,” in The Semantic Web - ISWC 2002, (Berlin, Heidelberg), pp. 333–
347, Springer Berlin Heidelberg, 2002.

42. M. Klusch and K. Sycara, “Brokering and matchmaking for coordination of agent soci-
eties: A survey,” in Coordination of Internet Agents, pp. 197–224, Springer, 2001.

43. H. Ehrig and B. Mahr, Fundamentals of algebraic specification 1: Equations and initial
semantics, vol. 6. Springer Science & Business Media, 2012.

44. J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, “Attributed
graph transformation with node type inheritance,” Theoretical Computer Science,
vol. 376, no. 3, pp. 139–163, 2007.

34 Pedro Valderas et al.

45. P. Valderas, V. Torres, and V. Pelechano, “A graph-based definition of a social network
for the composition of services by end-users. technical report pros-tr-2019-01,” tech.
rep., Universitat Politècnica de València, 2019. [Last time accessed: October 2019].

46. P. Valderas, V. Torres, and V. Pelechano, “Towards the composition of services by
end-users,” Business & Information Systems Engineering, pp. 1–17, 2019.

47. J. Benedek and T. Miner, “Measuring desirability: New methods for evaluating desir-
ability in a usability lab setting,” Proceedings of Usability Professionals Association,
vol. 2003, no. 8-12, p. 57, 2002.

48. C. Smith, “Interesting ifttt statistics and facts.” https://expandedramblings.com/

index.php/ifttt-statistics-and-facts/, 2018. [Last time accessed: October 2019].
49. M. Ryan, “The average twitter user now has 707 followers.” https://kickfactory.com/

blog/average-twitter-followers-updated-2016/, 2016. [Last time accessed: January
2020].

50. J. Segal, “The nature of evidence in empirical software engineering,” in Eleventh annual
international workshop on software technology and engineering practice, pp. 40–47,
IEEE, 2003.

51. M. Burnett, C. Cook, and G. Rothermel, “End-user software engineering,” Communi-
cations of the ACM, vol. 47, no. 9, pp. 53–58, 2004.

52. D. Schuler and A. Namioka, Participatory design: Principles and practices. CRC Press,
1993.

53. G. Fischer, E. Giaccardi, Y. Ye, A. G. Sutcliffe, and N. Mehandjiev, “Meta-design:
a manifesto for end-user development,” Communications of the ACM, vol. 47, no. 9,
pp. 33–37, 2004.

54. N. O. Bouvin, “Unifying strategies for web augmentation,” in Proceedings of the tenth
ACM Conference on Hypertext and hypermedia: returning to our diverse roots: return-
ing to our diverse roots, pp. 91–100, Citeseer, 1999.

55. D. Firmenich, S. Firmenich, J. M. Rivero, L. Antonelli, and G. Rossi, “Crowdmock:
an approach for defining and evolving web augmentation requirements,” Requirements
Engineering, vol. 23, no. 1, pp. 33–61, 2018.

56. M. Gil, E. Serral, P. Valderas, and V. Pelechano, “Designing for user attention: A
method for supporting unobtrusive routine tasks,” Science of Computer Programming,
vol. 78, no. 10, pp. 1987–2008, 2013.

