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SOME METRIC AND TOPOLOGICAL PROPERTIES OF
NEARLY STRONGLY AND NEARLY VERY CONVEX SPACES

ZIHOU ZHANG!, VICENTE MONTESINOS?*, and CHUNYAN LIU?

ABSTRACT. We obtain characterizations of nearly strong convexity and nearly
very convexity by using the dual concept of S and WS points, related to the
so-called Rolewicz’s property («). We give a characterization of those points in
terms of continuity properties of the identity mapping. The connection between
these two geometric properties is established, and finally an application to
approximative compactness is given.

1. INTRODUCTION AND PRELIMINARIES

A Banach space (X, || -||) (whose closed unit ball and sphere are denoted by
Bx and Sy, respectively) is said to have property («) whenever

a(S(z*,1/n)) — 0, as n — oo,

for all * € Sx«, where a stands for the Kuratowski index of non-compactness
(i.e., a(S) is the infimum of numbers r > 0 such that S can be covered by a
finite number of subsets having diameter less that r) and S(z*,¢) := {z € By :
x*(z) > 1 —e} is the e-slice of By defined by x*. Property (a) was introduced by
S. Rolewicz. The second named author proved that it is equivalent to X having
the so-called drop property, which in turn is equivalent to X being reflexive and
having the Radon-Riesz property (H) [M87] (a Banach space X has the Radon—
Riesz property (H) whenever the w-convergence of a sequence in Sy to a point x
in Sx is equivalent to the || - [|-convergence to x).

In order to avoid the restriction of reflexivity —itself a consequence of James’
compactness theorem— in the previous concept, J. H. Wang and the first named
author introduced in [WZ97] the so-called nearly strong convezity, where the
() property is checked only on the set NA(X) of norm-attaining functionals.
Precisely, if D denotes the duality mapping, i.e., D(x) := {z* € Sx« : z*(z) = 1}
for x € Sx, the definition reads:

Definition 1.1 (Wang, Zhang). Let (X, ||-||) be a Banach space, and let zy € Sx.
The norm || - || is said to be strongly convez at xy (nearly strongly convez at xy) if
given zjy € D(x0) and a sequence {x,} in Bx such that z§(x,) — 1, then x, — zg
(respectively, the set {x,, : n € N} is relatively compact). If the set {z,, : n € N}
is just weakly relatively compact, the norm is said to be nearly very convezr at xg.
The norm is said to be strongly convez if it is strongly convex at every point of
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Sx. The same applies to the nearly strong convexity and nearly very convexity
concepts.

That the concept of nearly strong convexity can be written in terms of the
property («) is stated in Proposition 2.8 below. A trivial observation is that we
may replace Bx by Sy in the previous definition.

We follow the notation as in standard texts (see, e.g., [FHHMZ11]). For ex-
ample, if X is a Banach space and x € X, then B(xz,¢) denotes the closed ball
centered at x and having radius € > 0. The action of an element z* € X* on
an element z € X will be denoted by z*(x) or, alternatively, (z,z*). We shall
consider X canonically embedded in its bidual X**. The weak topology on X will
be denoted by w(X, X*) or just w if there is no risk of misunderstanding. The
same applies to the weak* topology on X* (denoted w(X*, X) or just, simply,
w*).

Remark 1.2. To place the concepts introduced in Definition 1.1 in a proper con-
text, and to see a few connections with some standard geometrical properties
of Banach spaces, notice the following almost trivial implications. (Below, LUR
is the usual acronym for locally uniformly rotund: The norm || - || of a Banach
space X is said to be locally uniformly rotund if given a sequence {x,} in X such
that ||z,|| — 1 and ||z, + zo|| — 2, then z,, — x¢; if the convergence of {x,} to
xg is in the weak topology, the norm is said to be wLUR.) Then we have LUR
= strongly convex = nearly strongly convex = nearly very convex, and these
four concepts are different (see [ZL11, Examples 2.5, 2.6, and 2.7]) (for exam-
ples outside the context of reflexive spaces —all of them nearly very smooth—
consider [Dr14, Theorem 1], where it is proved that every infinite-dimensional
Banach space with separable dual admits an equivalent wLUR norm which is
not LUR: It is obvious that every wLUR space is nearly very convex; this wLUR
equivalent norm cannot be nearly strongly convex, since this last property implies
property (H) that, together with wLUR, implies LUR, see below). The concepts
nearly strongly convex and nearly very convex are discussed, e.g., in [BLLNOS],
[FWO01], [GM11], [ZL11], [ZL12], [ZMLG15], and [ZS09], and they are related to
questions of approximation in Banach spaces. We may mention, for example, a
characterization of nearly strict convexity in terms of the preduality mapping:

(i) [ZMLG15] X is nearly strongly convex (respectively, nearly very convex)
& the predual mapping D=1 is (|| - ||-]| - ||-) (respectively, (|| - ||-w-)) upper semi-
continuous on S(X*) N NA(X) with norm-compact images (respectively, weak-
compact images),

and how in nearly strongly convex Banach spaces proximinality and approxima-
tive compactness agree:

(ii) [ZL12] X is nearly strongly convex = every proximinal closed convex subset

in X is approximatively compact (and conversely). ®

Remark 1.3. Observe that it is equivalent to say that || - || is nearly strongly
convex (nearly very convex) at xo that for every = € D(xy), every sequence {z,}
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in By such that z§(x,) — 1 has a || - [|-convergent (respectively, w-convergent)
subsequence. The statement for the norm topology is a simple consequence of the
|| - ||-compactness (and for the weak topology, of the Eberlein-Smulyan theorem).
®

Remark 1.4. Observe that the concepts introduced in Definition 1.1 are metric
in nature. Indeed, and as an example, if || - || is nearly very convex at some
xy € Sx, then every xj € D(x() defines a w-compact face {x € Sx : zj(z) = 1}
by the Eberlein-Smulyan theorem. Let us consider the space ¢, endowed with the
supremum norm || - ||o.. For n € N, let e, (€}) be the n-th vector of the canonical
basis of ¢y (respectively, of ¢1). Then e} (€ D(e,)) defines a face of B, that is
homeomorphic to B,,, hence not w-compact, so || - ||« is not nearly very convex
at e,. However, ¢y —as every separable Banach space— has an equivalent LUR
norm || - || by a result of M. I. Kadec, and, as it was mentioned in Remark 1.2,
|| - || is then nearly very convex. ®

The symbol ~ stands for the canonical embedding of a Banach space into its
bidual.

The following lemma has a simple proof. We provide it for the sake of com-
pleteness.

Lemma 1.5. Let {S,} be a decreasing sequence of subsets of a complete metric
space (M, d). Then, the following statements are equivalent:

(i) a(S,) — 0.

(i) If x,, € Sp, n € N, the sequence {x,} has a convergent subsequence.

(iii) If z, € Sn, n € N, the set {x, : n € N} is relatively compact.

Proof. (1)=-(ii) If S := {x,, : n € N} is finite we are done. Otherwise, find a
finite covering of Sy by sets of diameter less than «(S;) + 1. One of them must

contain an infinite subsequence {:cg)} of {z,}. This subsequence but its first

element is in Sy. The same argument gives a subsequence {:r:,(f)} of {xg)} in a set
of diameter less than «(S2) + 1/2. Continue in this way. A diagonal procedure
gives a Cauchy subsequence of {z,}, and we are done.

(ii)=(iii) The statement (ii) implies easily that the set S := {z,, : n € N} is
relatively sequentially compact, and so relative compact.

(iii)=(1) If «(S,) > € for all n € N and some ¢ > 0, take z; € S;. The
ball B(z1,e/4) cannot cover Ss, so there exists xo € Sy \ B(x1,¢/4). By the
same token, there exists x5 € S5\ i_, B(xx,/4). By induction we get an ¢/4-
separated sequence {z,} such that x, € S, for all n € N, and this contradicts
the relative compactness of {z,, : n € N}. O

Lemma 1.6 below is a simple but useful result. It appeared already in a re-
stricted form in [HMZ12] and more precisely in [ZMLG15], where the proof is
provided. Given n € N, put [, := {1,2,...,n}.
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Lemma 1.6. Given a non-empty subset A of a Banach space X, n € N, a subset
{fi: i€ l,} of X* and a set of real numbers {a; : i € I}, we have

{z* € a4 filz™) >, i € I,}
cleed: ) >a, icl)” (1.1)
C {a™ € v filx™) > ay, 1 € 1}, (1.2)

and the second inclusion is an equality if A is convex and the intermediate set in
(1.1) is non-empty.

Remark 1.7. (i) A straightforward consequence of Lemma 1.6 is that, if f € Sx-
and 0 < e < 1,

S(f,e) == {a™ € Bx=: f(a™)>1—¢}
c{weByx: f@) >1-c) ={z"€Bx: f(@)>1—c}=3(f2)

(ii) Note, too, that if A C X, then a(A) = a(Z“’*), where 4" denotes the
closure of A in (X**,w*). This is a consequence of the trivial fact that Bx« is
the w*-closure of By in X™**. ®

2. MAIN RESULTS

The following concepts are introduced for dualizing the nearly strong (respec-
tively, very) convexity.

Definition 2.1. Let X be a Banach space. Let x¢y € Sx. We say that xq is an
S-point (a WS-point) if given a sequence {z}} in By« such that z(x¢) — 1 then
the set {z¥ : n € N} is || - ||- (respectively, w-) relatively compact.

Remark 2.2. Observe that, according to Lemma 1.5 above, it is the same to say
that xg is an S-point that z( gives property (o) on Bx«, i.e., that a(S(x¢,1/n)) —
0 as n — oo. An easy consequence of Lemmata 1.5 and 1.6 is that = € Sx-
gives property («) on By~ if, and only if, it gives property («) on By, i.e., if
a(S(xf,1/n) N X) — 0 as n — oo. An observation similar to Remark 1.3 is
that xq is an S- (WS-) point if, and only if, any sequence {z}} in Bx+ such that
xf(zg) — 1 has a || - ||- (respectively, w-) convergent subsequence. ®

The connection between S- (WS-) points and points of continuity is given by the
following result. In a sense it is somehow surprising, since a sequential continuity
condition turns out to be equivalent to a continuity condition —even in absence
of metrizability—. This is true for the norm and for the weak topology as well.
Recall that if A is a subset of the dual X* of a Banach space X, a point z* € A
is said to be a w*-|| - ||- (respectively, a w*-w-) point of continuity of A if z* is
a point of continuity of the identity map from (A, w*) to (A, || - ||) (respectively,
from (A, w*) to (A, w)).

Proposition 2.3. Let (X, || - ||) be a Banach space, and let © € Sx. Then, the
following are equivalent:
(i) « is an S- (respectively, WS-) point.
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(i) Every x* € D(x) is a w*-|| - ||- (respectively w*-w-) point of continuity of
Bx~.

Proof. First, we shall prove the case of the S property and the w*-|| - || continuity.

(i)=(ii). Assume that x € Sx is an S-point. Note that, trivially, D(x) :=
{z* € Bx+: xz*(x) =1} is a || - ||-compact set. Fix z* € D(x). Let {z},i € I, <}
be a net in By« that w*-converges to z*. Let us choose an arbitrary subnet
of {z},1 € I,<}, that in order to simplify the notation will be written again
{zf,i € I,<}. In particular, z(z) — 1. Given n € N, we can find i, € I such
that zf(x) > 1 —1/n for all i > 7,. Without loss of generality, we may assume
that the sequence {i,}5°, is increasing. We have now two possibilities:

a) There exists iy € I such that i, < ig for all n € N. This shows, in particular,
that zf € D(X) for all ¢ > ip. Since D(x) is || - ||-compact, we conclude that
{zf,i € I,<} has a || - ||-convergent subnet.

b) Assume now the opposite: For all ¢ € I there exists n € N such that i < i,.
Then {z; ,n € N,<} is a subnet of {z},7 € I,<}. Since zj(z) — 1, we obtain

xj () — 1. Since z is an S-point we get that {z; : n € N} is a || - [|-relatively
compact subset of X*. This shows that {z; :n € N} has a || - |l-convergent
subnet, and this in turn is a || - ||-convergent subnet of {x},i € I, <}.

In both cases we got a || - ||-convergent (obviously to x*) subnet. Since this

applies to an arbitrary subnet of {x},i € I, <}, we get that 7 — z* in the norm
topology.

(ii)=-(i) Assume now that every z* € D(zx) is a w*-|| - ||-continuity point of
Byx-. Let {z}} be a sequence in By~ such that z}(z) — 1. We shall show that
{z} : n €N} is || - [|-relatively compact. It is enough to check that every infinite
subset A of {z¥ : n € N} has a || - ||-cluster point. The set A is w*-relatively
compact, hence it has a w*-cluster point xj. Obviously, zj(z) = 1, hence zj is a
w*-|| - ||-point of continuity. This implies that xf is a || - ||-cluster point of A.

The case of an WS-point and the w*-w continuity is similar. 0

We quote here a result in [GGS78|: For x € Sx, the w*- and w- topologies
agree on Sx« at points of D(x) if, and only if, (X*** D) D(z) = D(z) (C X*). In
view of Proposition 2.3, we readily obtain the following consequence (note that
the w*- and the w- topologies agree on Sy« at points of D(x), for a given x € Sy,
if, and only if, they agree on By« at those points).

Corollary 2.4. Let (X,|| - ||) be a Banach space. Let x € Sx. Then the two
following statements are equivalent:

(i) « is a WS-point.

(ii) (X*™* D) D(z) = D(z) (C X*).

Compare the characterization in Corollary 2.4 with the one in the following
Proposition from [ZMLG15]. In a sense, they are dual to each other.

Proposition 2.5 ([ZMLG15], Corollary 3.14). A Banach space X is nearly very
convez if, and only if, (X D) D(z*) = D=1 (a*) (C X) for all x* € D(Sx).
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Proposition 2.7 below is a local version of the previous proposition. In or-
der to prove it we need the following statement, that collects several results in

[ZMLG15]:

Theorem 2.6. Let (X, || -||) be a Banach space. Let o € Sx and x§ € D(zo).
Then, each of the following statements is equivalent to the fact that D' is || - ||-
w-usco at x;:

(i) [ZMLG15, Theorem 3.13] D=1(z§) = D(zf).

(i) [ZMLG15, Theorem 3.5] D=1 (x}) is w-compact and for every w-neighborhood
N of 0, the set D7'(x}) + N contains a nonempty slice of Bx defined by xj.

(iii) [ZMLG15, Theorem 3.6] For every net {x; : i € I, <} such that (x;, z§) —
L, there exists a subnet {x;, : j € J, 2} of {x;: i €I, <} that w-converges.

Proposition 2.7. Let (X, | - ||) be a Banach space. Let xqg € Sx. Then || - || is
nearly very convex at xo if, and only if, D(x§) = D=1 (xf) for all x§ € D(xp).

Proof. Assume that || - || is nearly very convex at zo, and let zfy € D(xg). If
{z,} is a sequence in D~!(x}), by definition the set {z,, : n € N} is w-relatively
compact. It follows then, by the Eberlein-Smulyan theorem, that the set D~ (z)
is w-compact. Assume now that there exists a w-neighborhood N of 0 (that can
be taken to be w-open) such that D~*(z%) + N does not contain any nonempty
slice of By defined by xj. Thus, there exists a sequence {z,} in By such that
(xp,zf) — 1 and x, € D' (x}) + N for all n € N. Again by definition, the
set {z, : n € N} is w-relatively compact, hence there exists a w-cluster point
r € Bx. Note that (z,z}) = 1, and that * € D~!(z}) + N, a contradiction. This

—

shows, thanks to the equivalence (i)« (ii) in Theorem 2.6, that D—!(zf) = D(x}).
Assume now that D=1(z}) = D(z}). Take a sequence {z,} in By such that

(n,a8) — 1, and let 2 € {z, : n € N} . Note that if #** & X then (z**, z) =
1. There exists a net {y; : i € I, <} in {x, : n € N} that w*-converges to x**.
Thus, (y;,z§) — 1. By the equivalence (i)<(iii) in Theorem 2.6, there exists,
then, a subnet {y;, : j € J, =} of {y; : @ € I, <} that w-converges (to some
element yo € X). Obviously, 2** = g, and we reach a contradiction. This shows
that ** € X, hence {z, : n € N} is a w-relatively compact subset of X. Thus,
|| - || is nearly very convex at x. O

We include down a simple proof of the necessary condition in Proposition 2.7
in a particular case, based just on the very definition of near very convexity, in
order to have a taste of the argument behind the general proof above.

Proof. (of the necessary condition in Proposition 2.7 for separable spaces that do
not contain an isomorphic copy of ¢;.) Assume that || - || is nearly very convex at
xg, and let xf € D(xg). Given z}* € D(xf), there exists, by the Odell-Rosenthal
theorem (see, e.g., [Di84, page 215]), a sequence {z,} in By that w*-converges to
xy*. Since (x,,x§) — 1, we know that {x, : n € N} is w-relatively compact in X.
It follows that af* € X (i.e., z§* € D~1(zf)). On the other hand (and note that

this implication holds without any restriction on the space), if D(xf) C X, let
{z,} be a sequence in By such that (z,,z;) — 1. Let z5* be a w*-cluster point
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of {x, : n €N} in X*™. We have 23" € D(zf), so zf* € X and {z,, : n € N} is
w-relatively compact. O

Proposition 2.8 below is somehow the “predual” version of Theorem 3.3 in
[ZMLG15], and collects some information that was given above.

Proposition 2.8. Let (X, || - ||) be a Banach space. Let xy € Sx. Then the
following are equivalent:
(i) || - || #s nearly strongly convex at x.
ii) For every x$ € D(zq), a(S(x),1/n)) — 0 as n — oo.
( ) Y 0 ) 0
iii) Fvery xf € D(xq) gives property (a) on Bxs«.
Y Lo 9 property
(iv) Every zf € D(xo) is an S-point.
v) For x}y € D(xg), every xz§* € D(x)) (C X™) is a point of w*-|| - ||-continuity
0 0 0
Of BX**.

Proof. (1)< (ii) is just the equivalence (i)<(iii) in Lemma 1.5 applied to the se-
quence {S(z§;€,) 102, where {£,}5°, is any decreasing sequence of positive num-
bers.

(i)« (iii) < (iv) was already mentioned in Remark 2.2.

(iv)<(v) is Proposition 2.3. O

Note that (i)<(v) in Proposition 2.8 above shows that if the norm is nearly
strongly convex then every x € Sy is a point of w*-|| - ||-continuity of By« (i.e.,
a point of w-|| - || continuity of By), in particular that every nearly strongly
convex norm has the Kadec property, i.e., the property that the weak and norm
topologies coincide on its unit sphere. (It is then very easy to give examples
of Banach spaces that are nearly very convex and not nearly strongly convex:
Every reflexive Banach space is obviously nearly very convex. However, every
infinite-dimensional Banach space has an equivalent norm that fails the Kadec
property:.)

It is precisely the Kadec property —or its sequential version, the Radon—Riesz
property (H), defined above— what makes the difference between the nearly
strong and very convexity, as the next result shows. As we mentioned above,
neither the Kadec property nor the (H) property can be removed from the state-
ment. Note in passing that the two properties, the Kadec property and property
(H), are in general different, and that they coincide if the Banach space has no
isomorphic copy of ¢; (for separable spaces this is a result of Troyanski; in fact,
it holds for arbitrary Banach spaces).

Proposition 2.9. Let X be a Banach space. Then, the three following conditions
are equivalent.

(i) X s nearly strongly convez.

(ii) X is nearly very convex and any x € Sx is a point of w*-|| - ||-continuity of
By,

(i) X is nearly very convex and has the Kadec property.

(iv) X is nearly very convex and has property (H).

Proof. (i)=-(ii)=>(iii) follows from the previous observation, and (iii)=-(iv) is ob-
vious. (iv)=(i) follows easily from the definition and Remark 1.3. O
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Remark 2.10. In [ZL12] (respectively, [ZMLG15]) it was proved that a Banach
space X is nearly strongly convex (respectively, nearly very convex) if, and only
if, the predual mapping D' is (|| - ||-|| - ||I-) (respectively, (|| - ||-w-)) upper semi-
continuous on S(X*)NNA(X) with ||-||-compact images (respectively, w-compact
images). ®

Remark 2.11. Note that Proposition 2.9 shows that (v) in Proposition 2.8 cannot
be substituted by checking w-|| - ||-continuity with respect to Bx at points in
D= (x}) (C X) instead of w*-|| - ||-continuity with respect to Bx« at points in
D(z§) (€ X*™). In fact, the former is just the Kadec property of the norm,
something that clearly does not imply nearly strong convexity. ®

Remark 2.12. (1) Note that (iv)<(v) in Proposition 2.8 holds when “S-point”
in (iv) is replaced by “WS-point”, and w*-|| - ||-continuity in (v) by w*-w-
continuity (this is just Proposition 2.3).

(2) In view of Proposition 2.8 and item (1) in this remark, it is natural to
conjecture that (i)<(iv) holds whenever “S-point” and “nearly strong
convexity” are replaced by “WS-point” and “nearly very convexity”, re-
spectively. This fails in general. For the right equivalence see Proposition
2.13, and for an example of a nearly very convex space with a point
xo € Sx that is not a point of w*-w-continuity of By« see Remark 2.14.

®

The following result is the right counterpart of Proposition 2.8 for nearly very
convexity (see also item (2) in Remark 2.12 above). In the proof we shall need
the local version of Proposition 2.5 above, given as Proposition 2.7.

Proposition 2.13. Let (X, || - ||) be a Banach space. Let xq € Sx. Then the
following are equivalent:

(i) The norm || - || is nearly very convex at xo and every x € D(xf) N X for
x§ € D(xg), is a point of w*-w-continuity of Bx.

(ii) Every point zf € D(xo) is a WS-point.

Proof. (ii)=(i). Assume that (ii) holds. By definition, given a sequence {z**} in
By« such that (x*, z5) — 1, the set {z* : n € N} is w-relatively compact in
X**. In particular, this happens for any sequence {x, } in Bx such that (x,, =) —
1, so {x, : n € N} is w-relatively compact in X**. Thus, {z,: n € N} is w-
compact in X**. Since conv“{z, : n € N} = convI'l{z, : n € N} (C X) by
Mazur’s theorem, we get that {z, : n € N} is w-relatively compact in X. This
shows that || - || is nearly very convex at x,. Proposition 2.3 above shows that
given zf € D(z), every point z** € D(xf) is of w*-w-continuity in Bx«. In
particular, this happens for every « € D(z§) N X.

(i)=(ii). Assume that (i) holds. Proposition 2.7 shows that for every xj €
D(zg) we have D(x}) = D7 '(x}). Let {z*} be a sequence in By« such that
(xr*, xf) — 1. Let af* be any w*-cluster point of {z%* : n € N}. Obviously,
zi* € D(xp). Thus, 23 € D7'(x}) (C X). Since z* is a point of w*-w-continuity
in Byx«, we get that the set {x* : n € N} is, in fact, w-relatively compact in
Bx+-. This proves that z(; is a WS-point. O
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Remark 2.14. We provide an example to show that the condition on w*-w-
continuity in item (i) of Proposition 2.13 cannot be dropped in order to get (ii)

there. In [MOTV09] an example of a (R), not LUR norm ||| - ||| on ¢y was given.
Later on, it was proved in [Drl4] that ||| - ||| is, in fact, wLUR (hence (co, ||| - |I|)
is nearly very convex). The norm ||| - ||| is defined as
~ 1/2
Il = ll#llee + (Z 2_”lﬂﬂ(”)|2> , for € ¢, (2.1)
n=1
where || - [|s stands for the supremum norm on ¢y. Observe that formula (2.1)
above gives also the norm on /,, that is bidual to ||| - |[[|. In order to show

that there are points in S, .| that are not of w*-w-continuity of B .y, put
(loo D) x* := €1 + (e, + €pi1 + ...) for n € N, where e, is the n-th canonical
basis vector of cy. Observe that |||z**||| — 1 + 1/v/2. Clearly, z** — ¢, in the
w*-topology of £o,, and ||le1]]| = 1+ 1/v/2.

Let us define now a particular vector in £% \ ¢;. The sequence {e}}, where e}
denotes the n-th canonical vector basis of /1, is clearly bounded, w*-null, and not
w-null (consider the vector (1,1,...) in £y), so it has a w(l% , {)-cluster point
™ € 5\ 1. Let us compute now the action of z:* on z§*™ for each n € N.
Fixing n € N, the sequence {(z}* e )}, is eventually 1, so (x}*, z5™) = 1 for
all n € N. However, the sequence {(ey,e’,)}>°_; is eventually 0, so (e, z5**) = 0.
It follows that {x}*/|||z*|[|} in B ) is w*-convergent to e;/|[||ei]|| € co, but
not w(4u, L%, )-convergent. ®

3. SOME APPLICATIONS TO OPTIMIZATION

The rest of the paper deals with some optimization results. Let us collect in
the next two definitions the relevant concepts related to approximation. If X is
a Banach space, C' is a nonempty subset of X, and x € X, then d(z,C) denotes
the distance from x to C.

Definition 3.1 ([ES61]). A subset C of a Banach space X is said to be proziminal
if Po(x) ={2€C:|z—z|=d(xz,C)} #0 for every x € X.

Definition 3.2. A nonempty subset C' of a Banach space X is said to be
approzimatively compact if for any {y,}:°, C C and any = € X satisfying
|z — yau|| — d(z,C), there exists a subsequence of {y,}5°, converging to an
element in C. X is called approximatively compact if every nonempty closed
convex subset of X is approximatively compact.

The following results relates the concepts of approximate compactness and
nearly strong convexity.

Theorem 3.3 ([ZS09, FW01, BLLNOS|). Let X be a Banach space. Then, the
following are equivalent:
(i) X is nearly strongly conver.
(ii) Every proximinal closed convex subset in X is approximatively compact.
(iii) Every proximinal closed subspace in X is approximatively compact.
(iv) Every proximinal hyperplane in X is approzimatively compact.
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In [HKLO6] it was proved the equivalence between (i) and (ii) in Theorem 3.4
below, that is the reflexive version of Theorem 3.3. Note that the class of spaces
verifying Theorem 3.4 coincides with the class of spaces having the drop property,
as it has been mentioned above.

Theorem 3.4. Let X be a Banach space. Then, the following are equivalent.
(i) X is approzimatively compact.
(ii) X is reflexive and has the property (H).
(iii) X s reflexive and has the Kadec property.
(iv) X is reflexive and nearly strongly conver.

Proof. As we mentioned above, the equivalence (i)<(ii) is in [HKL06]. That (ii)
implies (iii) follows from the trivial fact that every reflexive space is nearly very
convex and by Proposition 2.9, or alternatively from the fact that no reflexive
space contains an isomorphic copy of ¢; and then by using the result of properties
(H) and Kadec mentioned immediately before Proposition 2.9. (iii)=-(iv) is again
in Proposition 2.9. In a reflexive space, obviously every nonempty closed convex
subset of X is proximinal; then (iv)=>(i) follows from Theorem 3.3. O
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