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Abstract

Background and objective: A great challenge in osteoporosis clinical assessment is
identifying patients at higher risk of hip fracture. Bone Mineral Density (BMD) mea-
sured by Dual-Energy X-Ray Absorptiometry (DXA) is the current gold-standard, but
its classification accuracy is limited to 65%. DXA-based Finite Element (FE) models
have been developed to predict the mechanical failure of the bone. Yet, their contri-
bution has been modest. In this study, supervised machine learning (ML) is applied in
conjunction with clinical and computationally driven mechanical attributes. Through
this multi-technique approach, we aimed to obtain a predictive model that outper-
forms BMD and other clinical data alone, as well as to identify the best-learned ML
classifier within a group of suitable algorithms.

Methods: A total number of 137 postmenopausal women (81.4 ± 6.95) were in-
cluded in the study and separated into a fracture group (n=89) and a control group
(n=48). A semi-automatic and patient-specific DXA-based FE model was used to
generate mechanical attributes, describing the geometry, the impact force, bone struc-
ture and mechanical response of the bone after a sideways-fall. After preprocessing
the whole dataset, 19 attributes were selected as predictors. Support Vector Ma-
chine (SVM) with radial basis function (RBF), Logistic Regression, Shallow Neural
Networks and Random Forest were tested through a comprehensive validation proce-
dure to compare their predictive performance. Clinical attributes were used alone in
another experimental setup for the sake of comparison.

Results: SVM was confirmed to generate the best-learned algorithm for both ex-
perimental setups, including 19 attributes and only clinical attributes. The first, gen-
erated the best-learned model and outperformed BMD by 14pp.

Conclusions: The results suggests that this approach could be easily integrated for
effective prediction of hip fracture without interrupting the actual clinical workflow.
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1. Introduction

Osteoporotic hip fracture is a major health problem and tends to become

more prevalent as the population ages [1, 2]. By 2050, the worldwide annual

incidence could reach 6.26 million [3] and the associated burden on the health

system is estimated to be $131.5 billion [4]. For each patient, collateral effects

may include increased risk of mortality, disability, chronic pain and reduced

quality of life [5]. For this, a comprehensive assessment of relevant predictors is

necessary to accurately identify patients at higher risk and reduce the incidence

through patient-specific interventions [6, 7].

Osteoporosis is a skeletal disease primarily characterized by reduced bone

mass [8]. Bone mineral density, measured by Dual-Energy X-Ray Absorptiom-

etry, is the gold standard in current clinical practice for osteoporosis diagnosis

and hip fracture risk assessment [9]. However, its discrimination ability between

fractured and control cases is limited. BMD distributions for age-matched sam-

ples of both groups overlap for large amount, reducing the classification accu-

racy to about 65% [10]. On the other hand, quantitative computed tomography

(QCT) allows to obtain three-dimensional geometry of the bone and provides

with volumetric distribution of BMD (vBMD), which is considered to be more

sensitive for osteoporosis [11, 12]. Nevertheless, QCT is not integrated in clinical

routine due to its higher cost, processing time and radiation exposure [13].

Alternative methods have been proposed to obtain better predictors. Finite

Element (FE) models based on DXA include both BMD distribution and two-

dimensional proximal femur architecture in order to quantify the mechanical

strength of the bone. These models have demonstrated to provide patient-

specific estimates of strength and moderately increase the classification accuracy

[14, 15, 16]. These models are considered to be not as accurate as QCT-based

models [17, 18], but, from the above reasons DXA models are highly attractive

for clinicians as the current clinical workflow is not interrupted . Furthermore,
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fracture risk and Hip Structural Analyses (HSA) derived from both QCT and

DXA based models have been found to be significantly correlated [19], and DXA

models highly reduced the computational cost.

Statistical models have been developed to calculate the risk of fracture re-

lying on clinical factors. The fracture risk assessment tool (FRAX) and the

Garvan tool are the most popular ones [20, 21]. Patient data are compared to a

large database that includes many features, e.g. age, gender, previous fractures,

etc. The classification accuracy is similar for both, about 70% [22] and there is

not a significant improvement compared to BMD. Likewise, machine learning

(ML) techniques have risen as a suitable way of analysing complex data and

extracting unexpected risk factors for the field of preventive medicine.

Regarding osteoporotic hip fracture, some studies have collected a large

dataset and have combined several clinical attributes and DXA-derived mea-

surements in different classification models to outperform the predictive power

of BMD [23, 24]. These studies did not include mechanical attributes into their

models and were limited by their interpretability. Combination of clinical and

mechanical attributes has been most commonly addressed in the literature by

FE approaches. However, the majority of these studies did not explore ML clas-

sifiers beyond Logistic Regression. A recent study aimed to use high-resolution

MRI derived data to compare 15 ML classifiers performance at predicting any

kind of osteoporotic fracture [25]. The data comprised bone tissue elasticity and

topology of the proximal femur, at specific volumes of interest, computed with

micro-finite elements. Although this study gave insight into the relevance of mi-

crostructural parameters, the dataset was small and was not specially focused

on hip fracture.

On the other hand, patient-specific QCT-based FE analyses under multiple

loading conditions were used as input for a Support Vector Machine (SVM)

classifier to address uncertainty in the fall configuration [26]. Other authors in-

vestigated the combination of clinical and FE-derived mechanical attributes by

means of SVM augmented space [27]. However, their parametrized FE model

did not include patient-specific data describing the geometry nor the BMD dis-
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tribution. Even though, the results showed that including mechanical attributes

into a SVM model significantly enhanced hip fracture prediction rather than us-

ing clinical attributes alone.

In this work, we propose a novel methodology in which a semi-automatic and

patient-specific 2D Finite Element (FE) model based on Dual-Energy X-Ray Ab-

sorptiometry (DXA) is used to generate mechanical attributes that will serve

as input data for a ML classifier, together with basic clinical information. We

hypothesized that combining the predictive power of each attribute would im-

prove the accuracy of hip fracture classification compared to the gold-standard

Bone Mineral Density (BMD) and other clinical data alone. Additionally, the

study aimed to identify the best-learned ML classifier within a group of selected

algorithms suitable for this problem.

2. Material and methods

2.1. Study population

A total number of 137 patients were included into the study with a mean

age of 81.4 ± 6.95 years. Patients were separated into a fracture group (n=89),

with fall-related incident hip fracture, and a control group (n=48). Within

the fracture group, 45 accounted for a trochanteric fracture and 44 for a neck

fracture. Inclusion criteria comprised: postmenopausal women, older than 50

years, clinical risk factors related to osteoporosis and no artefacts within the

image.

The scans were performed at CETIR Medical Group, after informed consent.

The time between fracture and DXA acquisition was less than two weeks. DXA

scans were taken on the opposite femur to the fracture using GE Healthcare

Prodigy Advance bone densitometer (GE Healthcare, Madison, WI, USA). The

image pixel size in these scans was 0.6mm x 1.05mm.

2.2. Automated patient-specific FE model

For the purpose of determining mechanical attributes, a 2D patient-specific

FE model, was created using a set of MATLAB (The Mathworks Inc., Natick,
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Figure 1: Workflow of the implemented patient-specific FE model

MA, USA) in-house code. A workflow diagram is provided in Figure 1. The

model was built under the assumptions of plane strain and linear elasticity

behaviour. Previous studies developed DXA-based models following a plane

stress approach based on the femur dimensions [28, 16]. However, the authors

consider that plane strain is more suitable in the anterior and posterior plane, as

the Z dimension (perpendicular to the plane) is not negligible. The open-source

FE package FEBio [29] was used to obtain the numerical solution. The only

input required for the construction of the FE model was the segmented femur

taken from the DXA scan (Figure 2), along with the basic clinical information

of the patient (height, weight and gender).
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Figure 2: Proximal femur, neck region and trochanter region segmentation

For each DXA scan, the proximal femur was segmented manually. Regions

of interests (ROIs) defining the trochanteric and neck region were defined semi-

automatically (Figure 2). After that, the implemented workflow was completely

automated. Pads covering the femoral head and the greater trochanter were

placed to avoid local damage due to the applied boundary conditions [30, 31].

Finally, the femur shaft was rotated 10 degrees to the physiological configura-

tion.

In the meshing module, the open-source mesh generator TetGen [32] was

integrated. The generated mesh was separated into three regions: the femur,

the trochanteric pad and the femoral head pad. Following a convergence anal-

ysis, the mesh size was defined. For this, each mesh had approximately 60,000

elements, depending on the subject.

Bone material properties were derived from the BMD map within the image.

The relationship between grey values and areal Bone Mineral Density (aBMD)

was obtained using the values measured by the DXA scan software and reverse

engineering techniques. The mean BMD value at the proximal femur (Total

BMD) is available in the subject’s clinical records and its measurement process

is known from the literature [9]. A semi-automatic measurement method to

reproduce this process was developed. The mean grey value at the specific ROI

was obtained and correlated with the clinical record BMD values at the same
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site. A linear relationship was obtained (n=40, R2 = 0.988, p− value < 0.001).

Afterwards, aBMD of each pixel was mapped into the finite element mesh using

this relationship, as seen in Figure 3a. The femur was assumed to have a

constant subject-specific thickness (t) for the transverse direction [33, 28]. For

this, the area and moment of inertia were considered to be closest to that of a

circular section, at a cross-section in the middle femoral neck (with a width NW)

. This way, volumetric BMD (vBMD) was calculated as the division between

aBMD and t. For each element in the mesh, vBMD was converted to ash density

(ρash) and to apparent density (ρapp), according to previous studies [34]. Thus,

the apparent density could be calculated through equation (1):

ρapp =
aBMD

1.14 · 0.598 · t
(1)

Then, bone material properties were calculated using the empirical equations

obtained by Morgan and colleagues [35, 36, 37]:

E =

15010ρ2.18app ifρapp ≤ 0.280g/cm3

6850ρ1.49app ifρapp > 0.280g/cm3

 (2)

Syc =

85.5ρ2.26app ifρapp ≤ 0.355g/cm3

38.5ρ1.49app ifρapp > 0.355g/cm3

 (3)

Syt =

50.1ρ2.04app ifρapp ≤ 0.355g/cm3

22.6ρ1.26app ifρapp > 0.355g/cm3

 (4)

Eyc =

 0.7 ifρapp ≤ 0.27g/cm3

0.85 ifρapp > 0.27g/cm3

 (5)

Where E is the Modulus of Elasticity, Syc is the Compressive Yield Stress and

Syc is the Tensile Yield Stress, all of them in MPa. The Compressive Yield Strain
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Eyc was expressed in hundred percent (%). These variables were adjusted by a

factor of 1.28 to account for side-artefact errors that occur in the biomechanical

testing of cadaveric bone used to establish those equations [38]. As a result,

bone tissues were modelled as linear isotropic elastic materials [39] and Poisson’s

ratio was set to 0.3 [40]. PMMA (Polymethylmethacrylate) material properties

were considered for the pads (1.5 GPa for the Elastic Modulus and 0.37 for the

Poisson’s ratio), similar to previous studies involving mechanical tests [41] and

FE models [42]. Finally, a heterogeneous material distribution was obtained, as

shown in Figure 3b for the Young’s Modulus.

The boundary conditions (BC) applied to the femur simulated a sideways-fall

onto the greater trochanter (Figure 3c). Several studies investigated the influ-

ence of different boundary conditions in the stress-strain pattern of the bone

[43, 44]. On the basis of these studies, the nodes at the distal end of the femoral

shaft were fixed and medial displacement of the nodes at the femoral head pad

was prevented (Figure 3c). The load was applied to the greater trochanter

through its pad, representing the fall-related impact force. The load was cal-

culated by means of the peak impact force obtained with a mass-spring impact

model [45].

For this model, the load calculation scheme had as input variables the weight,

height and gender of the patient. The two-linked 45 degrees Jack-knife model

was implemented for the calculation of the impact velocity and the three-linked

3C model was implemented for the effective mass at impact. Segments proper-

ties distribution and angles at impact configuration were taken from the same

study. A value for the stiffness constant (K) of 71,060 N/m was considered

according to experiments in human volunteers [46]. Once the peak impact force

(FPK) was derived, the attenuated impact force (FP) was calculated consider-

ing the attenuation force (FAT = 71 ·STH), on the basis of previous published

studies regarding the effect of soft tissue thickness (STH) [47] and correlations

between body mass index (BMI) and STH [48].

FP = FPK − 71 · STH (6)
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(a) BMD mapping obtained from the DXA scan

(b) Young’s Modulus map

(c) Boundary conditions simulating a sideways fall

impact at the greater trochanter

Figure 3: Material properties, loading and boundary conditions automatically generated

The applied load pressure (HP) was computed dividing the attenuated im-

pact force by the length of the greater trochanter pad (b) and the subject-specific
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Figure 4: Graphical description of geometrical attributes

thickness (t):

HP =
FP

b · t
(7)

2.3. Input parameters to the predictive model

For each sample, we have collected five groups of attributes. The first group

was formed by attributes that are usually collected in clinical practice and the

rest were formed by attributes involved in the Finite Element Analysis (Ge-

ometrical, Fall-related, Bone density and FEA-derived). Table 1 shows each

attribute together with their mean and standard deviation.

Geometrical attributes were obtained through a morphometric analysis per-

formed on the proximal femur geometry [16]. Specifically, neck width (NW),

hip axis length (HAL), neck-shaft axis angle (NSA), shaft axis length (SAL),

intertrochanteric width (ITW) and subtrochanteric width (STW). Additionally,

the proximal femur area (FA) was computed. The general scheme to obtain

these attributes is shown in Figure 4.

Regarding the fall-related attributes, impact force (FP); peak impact force

(FPK); attenuation force (FAT); soft tissue thickness (STH); body mass index
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(BMI) and the hip pressure (HP) were computed for each patient.

As bone tissue structural properties are inherently an important factor re-

lated to bone fracture, we also decided to obtain attributes that represented

these properties. Cortical bone was defined as having an apparent density

greater than 1.0 g/cm3 [42]. We estimated the percentage of trabecular bone

(TB) and cortical bone (CT) within the femur bone using this threshold and

computed the average Young’s Modulus within each tissue (TBV and CTV).

From the FE linear analysis performed with FEBio, several mechanical at-

tributes were extracted for each patient. The Load-to-Strength-Ratio (LSR)

and the Femoral Strength (FS) were computed to define the failure of the whole

bone [17]. For this, a contiguous area of 9mm2, where the elements with high-

est ratios between the Principal Compressive Strain and the Eyc was identified.

LSR was defined as the minimum ratio in this area. Yet, the femur is a hetero-

geneous biological structure that can fracture in multiple sites, being the most

common the neck and the trochanteric regions. For this, it was decided to also

obtain mechanical attributes at each region (index N will be used for the vari-

ables at neck region, and index T for the variables at the trochanter region).

The volume weighted average value of maximum and minimum principal stress

(S1 and S3), maximum and minimum principal strain (E1 and E3), major princi-

pal stress (MPStress), major principal strain (MPStrain), strain energy density

(SED) and the fracture risk index (FRI) were computed. MPStress and MP-

Strain were defined as the maximum eigenvalue in the stress and strain tensor,

respectively. FRI was computed as the weighted average ratio between the Von

Mises stress and the yield stress in the region. The yield stress was computed

from equation (3) and (4), depending on the dominant principal stress in the

element.

Table 1: Descriptive statistics for baseline attributes used in this study

Category Attributes Fractured (mean± SD) Control (mean± SD)

(N=89) (N=48)

Clinical Age (years) 81.39 ± 6.98 82.56 ± 3.88
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Table 1 continued...

Category Attributes Fractured (mean± SD) Control (mean± SD)

Height (cm) 152.67 ± 7.09 151.75 ± 5.09

Weight (kg) 63.61 ± 14.03 65.21 ± 10.01

BMI (kg/m2) 27.28 ± 5.70 28.31 ± 4.02

BMD total

(g/cm2)

0.70 ± 0.13 0.80 ± 0.10

Geometrical NW (mm) 29.29 ± 2.02 29.68 ± 2.32

HAL (mm) 89.74 ± 6.31 88.98 ± 5.48

NSA (◦) 126.48 ± 6.11 124.21 ± 6.24

FA (mm2) 4580.09 ± 490.35 4574.10 ± 372.61

SAL (mm) 83.16 ± 5.34 85.79 ± 5.19

ITW (mm) 50.29 ± 3.12 50.15 ± 3.32

STW (mm) 27.65 ± 2.17 26.44 ± 1.52

Fall-related STH (mm) 30.43 ± 13.43 32.85 ± 9.42

FPK (N) 5206.08 ± 641.10 5284.01 ± 455.86

FAT (N) 2160.27 ± 947.06 2332.19 ± 668.80

FP (N) 3045.81 ± 518.10 2951.82 ± 371.04

HP (MPa) 6.74 ± 1.14 6.46 ± 0.87

Bone density TB (%) 86.94 ± 9.04 82.10 ± 8.92

TBV (GPa) 3.59 ± 0.53 3.85 ± 0.39

CT (%) 13.06 ± 9.04 17.90 ± 8.92

CTV (GPa) 10.89 ± 1.96 11.57 ± 1.00

FEA-derived LSR 0.98 ± 0.65 0.63 ± 0.28

FS (N) 4421.34 ± 2553.70 5285.70 ± 1718.72

S1 N (MPa) 1.49 ± 0.40 1.46 ± 0.36

S3 N (MPa) −3.88 ± 0.77 −3.81 ± 0.68

E1 N (µstrain) 1042.10 ± 430.64 816.49 ± 180.71

E3 N (µstrain) −2250.30 ± 1016.03 −1689.79 ± 400.57

MPStress N (MPa) 5.15 ± 1.07 5.12 ± 0.94

MPStrain N

(µstrain)

2353.53 ± 1034.01 1784.85 ± 414.42

SED N (J/m3) 7473.06 ± 4113.33 5669.81 ± 1903.91

S1 T (MPa) 0.40 ± 0.13 0.38 ± 0.11

S3 T (Pa) −2.94 ± 0.55 −2.84 ± 0.49

E1 T (µstrain) 689.95 ± 363.99 499.23 ± 124.25

E3 T (µstrain) −1457.57 ± 875.67 −1105.74 ± 273.43

12



Table 1 continued...

Category Attributes Fractured (mean± SD) Control (mean± SD)

MPStress T (MPa) 3.24 ± 0.59 3.12 ± 0.52

MPStrain T

(µstrain)

1571.41 ± 883.43 1122.79 ± 276.95

SED T (J/m3) 3536.94 ± 2194.64 2540.23 ± 896.58

FRI N 0.32 ± 0.14 0.24 ± 0.06

FRI T 0.21 ± 0.12 0.15 ± 0.04

All these predictor attributes were used to predict the dependent variable

Group that indicates if the sample belongs to the fractured group (Fracture) or

the control group (Control). In total, we had 39 attributes and 137 samples.

Therefore, we had an excess of attributes for a so small cohort. We decided

to keep only the ones with Pearson correlation lower than 0.8. Figure 5 shows

a heat map of the correlation matrix of the attributes described in Table 1.

As Figure 5 shows, there were groups of attributes (like FRI T, SED T, MP-

Straint T and E3 T) that were highly correlated. In these cases, keeping one

representative of each group is enough to learn an appropriate model. Table 2

shows the 19 predictor attributes left after removing the highly correlated ones.

Besides, the mentioned predictor attributes, in some cases, presented differ-

ences of several orders of magnitude. To avoid bias due to these differences, we

standardized all of them (Z-score normalization).
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Table 2: Non-correlated predictor attributes

Clinical Geometrical Fall-related Bone density FEA-derived

Attribute name

Age NW HP TB LSR

Height HAL CTV FS

Weight NSA S1 N

BMD total SAL E1 N

ITW S1 T

STW SED T

Figure 5: Heat map of the correlation matrix between attributes

2.4. Machine Learning Procedure

To look for the best classification algorithm, we compared the results of a set

of algorithms that fitted the characteristics of the problem like Support Vector

Machine (SVM) with radial basis function (RBF), Logistic Regression, Shallow

Neural Networks with only a hidden layer of 10 nodes and Random Forest.

For model building and evaluation, we decided to divide the samples in two

sets: 101 for training and 36 for test. These sets were built by taking random
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samples without replacement. Besides, 10 fold cross-validation was applied for

the training set in order to obtain the model.

Once the model was built, we checked its prediction capability with the test

set formed by samples unseen during the model construction. All this process

was repeated four times to avoid overfitting because of the reduce volume of

samples. Therefore, we built 16 models that were checked with the correspond-

ing test sets. Besides, to check the improvement introduced by the learned

models, we compared with a dummy model that assigned all samples to the

majority class.

Finally, to analyse if the use of Finite Element attributes improved the results

of the learned models, we performed the same experiments but, in this case,

using only the clinical attributes. This implied the building of 16 new models

that, again, were checked with the corresponding test sets.

3. Results

Table 3 shows the results of the described experiments conducted using 19

attributes. This table shows the percentage of accuracy in training and test

for each model in each experiment. On average, all the learned models are

over the performance of the dummy model. However, only the SVM is over

the performance of the dummy model in all the experiments. Besides, although

SVM is slightly under the average performance of Logistic Regression and Neural

Network during the training experiments, the mean of SVM outperforms the

others in the test experiments. These results are also shown in Figure 6. This

way, SVM was confirmed to generate the best-learned model for our problem

(78.35% accuracy at test).

For the purpose of evaluating the contribution of the patient-specific biome-

chanical attributes, we repeated the same experiments including only clinical

attributes in the model. Table 4 and Figure 7 show the results. These results

are worse than the ones obtained using all the attributes. In this case, on aver-

age, SVM model was slightly under the Logistic Regression performance, but it
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Table 3: Analysis of the learned models using 19 attributes. Values represent the percentage

of accuracy at each experiment for the training and test datasets

Logistic Reg. SVM Neural Network Random Forest Majority class

Training Test Training Test Training Test Training Test Training Test

1 83.17 66.67 72.28 86.11 77.22 83.33 63.37 83.33 65.35 63.89

2 81.18 66.67 80.20 75.00 81.18 58.33 70.30 66.67 61.39 75.00

3 66.34 88.89 74.26 77.78 74.26 72.22 76.24 69.44 62.38 72.22

4 77.23 72.22 76.24 75.00 73.27 69.44 68.32 75.00 65.35 64.00

Average 76.69 73.09 75.69 78.35 76.42 70.26 69.40 73.34 63.59 68.60

Table 4: Analysis of the learned models using clinical attributes. Values represent the per-

centage of accuracy at each experiment for the training and test datasets

Logistic Reg. SVM Neural Network Random Forest Majority class

Training Test Training Test Training Test Training Test Training Test

1 70.30 72.22 71.30 69.44 66.34 72.22 68.32 69.44 65.35 63.89

2 74.26 69.44 68.32 75.00 68.32 64.00 67.33 69.44 61.39 75.00

3 65.35 86.11 64.36 75,00 68.32 72.22 66.34 77.78 62.38 72.22

4 69.31 63.89 72.28 69.44 68.32 66.67 71.29 63.89 65.35 64.00

Average 69.73 72.47 68.99 72.17 67.82 68.68 68.29 69.96 63.59 68.60

was the only one with all results better than the dummy model. Hence, SVM

was confirmed again to generate the best-learned model (72.17 % accuracy).

Additionally, we compared our classification model to a Logistic Regression

model built with BMD alone, following the same training and test procedure

as before. We measured the accuracy metrics of this model, this giving rise

to 66.81% accuracy at training and 64.88% accuracy at test (Figure 8), which

are similar values to those found in the literature [10]. This means that our

best-learned model (SVM) has improved the gold-standard performance by ap-

proximately 14 pp. The results showed that hip fracture prediction can be sig-

nificantly enhanced beyond basic clinical attributes (including the gold-standard

BMD) by means of patient-specific biomechanical attributes and SVM.
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Figure 6: Accuracy for each trained and tested classification model when including 19 at-

tributes (Mean± 1SD)
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Figure 7: Accuracy for each trained and tested classification model using only clinical at-

tributes (Mean± 1SD)

Figure 8: Benchmark for BMD vs. learned algorithms (Mean± 1SD)

18



4. Discussion

To the best of our knowledge, we have presented the first approach to com-

bine clinical and 2D patient-specific biomechanical data through different Ma-

chine Learning classification algorithms to predict hip fracture. A previous work

attempted to combine clinical and 3D FEA-derived data with SVM [27]. In this

study, the parametrized FE model was based in a stochastic approach and did

not include patient-specific information from images describing the BMD dis-

tribution, the geometry or the impact force. However, it is discussed about the

possibility of using multiple failure criteria in conjunction, which we have ap-

plied to our model. Specifically, we have considered 9 different failure criteria,

due to the existing lack of agreement on a failure criterion for bone tissue [49].

We have considered two whole bone failure attributes (LSR and FS), whereas

we have considered 8 site-specific failure attributes for the neck site (e.g. S1 N,

S3 N,...) and the trochanter site (e.g. S1 T, S3 T,...). Site-specific attributes

were computed due to the difference in the etiology for fractures at both sites

[50]. After preprocessing the data, we found that 4 site-specific attributes and

the LSR were enough to describe the information obtained from the FE solution.

Moreover, we found that removing any of these attributes would decrease the

accuracy of our SVM classifier. This suggests that the multi-criteria approach

may improve hip fracture prediction and should be further explored.

Most of previous studies involving patient-specific FE modelling only focused

to predict hip fracture through univariate or multivariate linear classification

models. Although this kind of models are easy to implement, they may lead to

an underestimation of the predictive capabilities of the studied attributes, as the

decision boundary between classes (fractured and controls) might be non-linear.

For the linear approach, it has been reported a marginal increase in accuracy

metrics, compared to BMD, of 4-5pp when using the FE attributes alone [33, 51].

In this context, others found an increase of 17pp when integrating geometry,

height and femoral neck BMD together with a FE attribute [52], but the sample

size was relatively small and only included neck fractures. Nevertheless, this
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reinforced the idea that FE attributes should be combined with other kind

of attributes to enhance hip fracture prediction. This has been successfully

implemented in our current study for a wider sample population, using more

sophisticated classification methods. In fact, we found that accuracy metrics

at test for linear models as Logistic Regression were considerably lower than

for our best-learned model (SVM), which is non-linear, when including FEA-

derived attributes. This also suggests that non-linear functions may be required

in order to find an optimal decision boundary when including FEA attributes

into the learning procedure.

We have used as input patient-specific data describing the two-dimensional

geometry, the BMD distribution and loading conditions and built a linear elas-

tic finite element model. In this sense, we acknowledge the inherent limitations

of a 2D model at describing the mechanical response of bone tissue. Bone is a

three-dimensional heterogeneous and anisotropic structure subjected to complex

loading states. A better representation of bone shape and density distribution

could be obtained through 3D reconstruction from 2D images [53, 54]. This

would most likely enhance the FEA-derived attributes and increase the clas-

sification accuracy of the ML model. However, solving a 3D FE model can

be computationally demanding, whereas our FE model takes 2 seconds to be

solved. Besides, 3D models are expensive because it requires 3D CTs or MRIs

that are out of the actual clinical workflow. Therefore, the approach shown

in this study is more feasible to obtain fair estimates of patient-specific bone

mechanical attributes and drive a ML classifier during routine clinical practice.

The described methodology was applied to an age-matched population of

postmenopausal women, where the fractured group (n=89) accounted for a time

to fracture of less than 2 weeks. This is one of the strengths of our study. It

means that the BMD maps of our fractured patients were close to the fracture

instant, thus, less influenced by bone remodelling than other studies found in

the literature. Another strength is that the population included in the study

accounted for both neck and trochanteric fracture in a similar proportion, which

are the main types of hip fracture. This means that our methodology can predict
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the fracture event, no matter the fracture location. In addition, a comprehensive

validation procedure was used in order to avoid bias due to the modest sample

size. This helped to find the Machine Learning algorithm with the best bias-

variance trade-off for our problem.

The main limitation of the present study was the sample size and the im-

age acquisition. Although the sample size was larger than other studies, it was

still modest and this what limited the learning process. On the other hand,

pixel surface was approximately 8 times greater than in other commercial den-

sitometers (e.g. GE Healthcare iDXA Advance), thus, having significantly less

resolution. As the outcome of the FE analyses highly depend on the material

properties assigned to the mesh, the discriminative power of FEA-derived at-

tributes rely on how detailed BMD maps are. The authors have performed a

preliminary check on the identification of the fracture type using the LSR at-

tribute, this driven similar conclusions to that of previous studies [28, 16]. The

correct identification of fracture type is a challenge for 2D finite analyses due to

the inherent 2D limitation and the overlapping of cortical and trabecular bone

on the image plane. Therefore, stress and strain distributions may be altered,

and the failure starting location might not be fully reliable. This challenge has

remained unfulfilled in the literature due to the mentioned limitations. In our

study, due to the limited amount of data that is obtained after splitting the

dataset considering the fracture type, we could not differentiate in our learned

models between neck and trochanteric fractures. Finally, although our study

focused on prediction of hip fracture in postmenopausal women, hip fracture

also occur in the male population. Moreover, differences between males and fe-

males fracture attributes, both clinic and biomechanical, has been shown in the

literature [55, 56]. This should be addressed in order to build effective predictive

models for both genders.
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5. Conclusions

This study showed that hip fracture prediction can be modeled and im-

proved by a multi-technique approach, considering clinical and 2D patient-

specific biomechanical data into a ML classifier. Different classification algo-

rithms were tested through a comprehensive validation procedure in order to

find the best-learned model, that turned out to be Support Vector Machine

(SVM). The improvement in accuracy introduced by our model was 14pp over

the gold-standard BMD. The results suggests that the line to follow for an ef-

fective prediction of hip fracture is the combination of both clinical and biome-

chanical data. Besides, this approach is economical, fast and could be integrated

in the clinical routine without changing the clinical workflow.

Future research works should include a greater volume of samples, better

image quality and more phenotypic attributes into the dataset. This might

capture a larger part of the variance, as there are conditions, for example related

to high fall risk, that can not be addressed by FEM. In addition, we did not

explicitly include the fracture location into the learning procedure, because it

would have meant to split the dataset, therefore having even less volume of

data to learn an appropriate model. The correct identification of fracture type

is a challenge for 2D finite analyses due to the inherent 2D limitation and

the overlapping of cortical and trabecular bone on the image plane. With a

larger dataset, fracture location could be considered independently in order to

investigate into the etiology and the best predictive attributes for each fracture

type. Besides, other techniques such as meta-algorithms should be explored in

the future to improve classification accuracy.

Conflict of Interest

All authors state that they have no conflicts of interest.

22



Acknowledgements

This study was partially funded by two grants Cátedra UPV-Fundación
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