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Hausdorff-Young type inequalities for vector-valued Dirichlet
series

Daniel Carando ∗ Felipe Marceca† Pablo Sevilla-Peris‡

Abstract

We study Hausdorff-Young type inequalities for vector-valued Dirichlet series which allow to
compare the norm of a Dirichlet series in the Hardy spaceHp(X) with the q-norm of its coefficients.
In order to obtain inequalities completely analogous to the scalar case, a Banach space must satisfy
the restrictive notion of Fourier type/cotype. We show that variants of these inequalities hold for the
much broader range of spaces enjoying type/cotype. We also consider Hausdorff-Young type inequal-
ities for functions defined on the infinite torus T∞ or the boolean cube {−1, 1}∞. As a fundamental
tool we show that type and cotype are equivalent to hypercontractive homogeneous polynomial type
and cotype, a result of independent interest.

1 Introduction

The Hilbert space of Dirichlet series H2 was first defined in [17] as those
∑
ann

−s for which (an)n ∈
`2. This was later extended by Bayart, who in [1] defined a whole scale of Hardy spaces of Dirichlet
series Hp for 1 ≤ p ≤ ∞. Unlike the Hilbert space case, there is no general principle that allows to
decide whether or not a Dirichlet series belongs to a given Hardy space just by looking at the size of
the coefficients, but the classical Haussdorff-Young inequalities are a useful tool in this purpose. For
each 1 ≤ p ≤ ∞ the spaces Hp and Hp(T∞) (precise definitions are given below) are isometrically
isomorphic. A rather straightforward computation (using, for example, standard interpolation arguments)
shows that Hausdorff-Young inequalities also hold for these spaces and this immediately gives (here r ′

denotes the conjugate of 1 ≤ r ≤∞ so that 1
r +

1
r ′ = 1)

∥∥∥∑ann
−s
∥∥∥
Hp ′
≤ C

( ∞∑
n=1

|an|
p
) 1

p (1)

for every 1 ≤ p ≤ 2 and ( ∞∑
n=1

|an|
q
) 1

q ≤ C
∥∥∥∑ann

−s
∥∥∥
Hq ′

(2)

for all 2 ≤ q ≤∞.
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Hardy spacesHp(X) of vector-valued Dirichlet series (that is, the coefficients an belong to some Banach
space X) have been defined and studied in [4, 12]. Here the problem becomes more complicated. Once
again, each one of these spaces is isometrically isomorphic to the corresponding Hp(T∞, X), but in this
case the Haussdorff-Young inequalities do not hold for an arbitrary Banach space. Fourier type and
cotype are the notions to get vector-valued Haussdorff-Young inequalities, and for spaces enjoying those
properties (again, see below for the definition) we easily get in Propositions 2.1 and 2.2 inequalities that
are analogous to (1) and (2). However, these properties are very restrictive in the sense that a Banach
space has Fourier type or cotype with exponents p or q which are generally worse than those for the
usual (Rademacher) type and cotype. Furthermore, the actual values of p and q are often unknown.

In Theorems 3.5 and 3.7 we show that Banach spaces with cotype q (respectively type p) satisfy variants
of Hausdorff-Young inequalities which relate the norm of a Dirichlet series with a weighted `q norm of
the coefficients (respectively, a weighted `p norm). Analogous inequalities are obtained for functions on
T∞ and Walsh functions (i.e., functions on the infinite Boolean cube).

The main tool for these results is a polynomial reformulation of type and cotype (Theorems 3.1 and 3.2).
More precisely, we prove that Rademacher cotype is equivalent to the notion of hypercontractive homo-
geneous cotype defined in [5] (see Section 3 for the definition), answering in the positive a conjecture
that was open for a few years. An equivalence with an inequality concerning Walsh polynomials is also
established. Analogously, Theorem 3.2 shows the corresponding results for type and its hypercontrac-
tive homogeneous version. We feel that these results together with the techniques introduced to prove
them are interesting on their own and can find further applications. In [10] variants of vector-valued
Bonhenblust-Hille inequality with operators are shown to hold for Banach lattices nontrivial cotype.
In [5], results regarding monomial convergence sets and multipliers for Hardy spaces were presented
for Banach spaces with nontrivial cotype and local unconditional structure or with Fourier cotype. As
mentioned in Remark 3.4, thanks to Theorem 3.1 all these results readily extend to Banach spaces with
nontrivial cotype.

The proof of Theorems 3.1 and 3.2 are the most technical part of the article and are developed in Sec-
tion 4. A crucial part is to show that it suffices to prove the desired inequality for tetrahedral polynomials,
where the variables appear with at most power 1. We feel that this methodology (to reduce an inequality
for general polynomials to an inequality for tetrahedral polynomials) can be useful in different situations
and is, then, interesting on its own.

2 Definitions and first results

We denote by dz the normalized Lebesgue measure on the infinite dimensional polytorus T∞ =
∏∞
k=1 T,

i.e., the countable product measure of the normalized Lebesgue measure on T. For any multi index α =
(α1, . . . , αn,0, . . .) ∈ Z(N) (all finite sequences in Z) the αth Fourier coefficient f̂(α) of f ∈ L1(T∞, X)
is given by

f̂(α) =

∫
T∞ f(z)z

−αdz .

For 1 ≤ p <∞, the X-valued Hardy space on T∞ is the subspace of Lp(T∞, X) defined as

Hp(T∞, X) = {f ∈ Lp(T∞, X) : f̂(α) = 0 , ∀α ∈ Z(N) \ N(N)
0

}
(where N(N)

0 stands for the set of αs in Z(N) with αi ≥ 0 for every i). Observe that each f ∈ Hp(T∞, X)
is uniquely determined by its Fourier coefficients. With this in mind we consider the X-valued Bohr
transform BX that to each f assigns the Dirichlet series

∑
ann

−s where an = f̂(α) if n = pα1
1 · · ·p

αk

k is
the prime number decomposition of n. Then the Hardy space Hp(X) of Dirichlet series in X is defined
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as the image of Hp(T∞, X) under the Bohr transform BX. This vector space of Dirichlet series together
with the norm

‖D‖Hp(X) = ‖B
−1
X (D)‖Hp(T∞,X) (3)

forms a Banach space. In other words, Bohr’s transform gives the isometric identification

Hp(X) = Hp(T∞, X) for 1 ≤ p <∞.
A detailed account on this identification can be found in [9] or [25].

There are many equivalent definitions of Fourier type and cotype (see [15]). Let us give the ones that are
more akin to our framework. Given 1 ≤ p ≤ 2, we say that X has Fourier type p if there is a constant
C > 0 such that for each choice of finitely many vectors x1, . . . , xN ∈ X we have

( ∫
T

∥∥∥ N∑
k=1

xkz
k
∥∥∥p ′dz) 1

p ′ ≤ C
( N∑
k=1

∥∥xk∥∥p) 1
p
.

For 2 ≤ q <∞, X has Fourier cotype q if there is a constant C > 0 such that for each choice of finitely
many vectors x1, . . . , xN ∈ X we have

( N∑
k=1

∥∥xk∥∥q) 1
q ≤ C

( ∫
T

∥∥∥ N∑
k=1

xkz
k
∥∥∥q ′dz) 1

q ′
.

We refer to the comments after Proposition 2.2 regarding the equivalence of these two concepts and also
their connection with (4) and (5) below. It was shown in [5, Proposition 2.4] that a Banach space X has
Fourier cotype q ≥ 2 if and only if there exists C > 0 such that for every finite family (xα)α∈N(N)

0
we

have (∑
α

‖xα‖q
) 1

q ≤ C
( ∫

Tn

∥∥∥∑
α

xαz
α
∥∥∥q ′dz) 1

q ′
. (4)

The proof of [5, Proposition 2.4]) also works to show that X has Fourier type 1 ≤ p ≤ 2 if and only if
there exists C > 0 such that for every finite family (xα)α∈N(N)

0
in X we have

( ∫
Tn

∥∥∥∑
α

xαz
α
∥∥∥p ′dz) 1

p ′ ≤ C
(∑

α

‖xα‖p
) 1

p
. (5)

A straightforward argument using the Bohr transform (see (3)) allows to reformulate (4) and (5) in terms
of Dirichlet series as (

N∑
n=1
‖an‖qX

)1/q

≤ C
∥∥∥ N∑
n=1

ann
−s
∥∥∥
Hq ′ (X)

(6)

and ∥∥∥ N∑
n=1

ann
−s
∥∥∥
Hp ′ (X)

≤ C

(
N∑
n=1
‖an‖pX

) 1
p

, (7)

respectively, for every X-valued Dirichlet polynomial
∑N
n=1 ann

−s. Note that (7) and the density of
the finite sequences in `p(X) (the space of p-summing sequences in X) show that the operator `p(X) →
Hp ′(X) given by (an)  

∑
ann

−s is continuous. Analogously, by (6) and the density of the Dirichlet
polynomials in Hq ′(X) (see [9, 24.2.1e]), the operator Hq ′(X) → `q(X) given by

∑
ann

−s  (an) is
also continuous. This gives the equivalence between the first and third statements in each of the following
two results. The equivalence between the second and third statements is a straightforward consequence
of the definition of the Hardy spaces of Dirichlet series.
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Proposition 2.1. Let X be a Banach space. For 2 ≤ q < ∞ and C ≥ 1, the following statements are
equivalent:

(a) X has Fourier cotype q with constant C;

(b) every Dirichlet series D =
∑
ann

−s ∈ Hq ′(X) satisfies

( ∞∑
n=1
‖an‖qX

)1/q
≤ C‖D‖Hq ′ (X)

;

(c) every f ∈ Hq ′(T∞, X) satisfies( ∑
α∈N(N)

0

‖f̂(α)‖qX
)1/q

≤ C‖f‖Hq ′ (T∞,X).

Proposition 2.2. Let X be a Banach space. For 1 ≤ p ≤ 2 and C ≥ 1, the following statements are
equivalent:

(a) X has Fourier type p with constant C;

(b) for every (an)n ∈ `p(X) the Dirichlet series D =
∑
ann

−s converges inHp ′(X) and

‖D‖Hp ′ (X)
≤ C

( ∞∑
n=1
‖an‖pX

) 1
p
;

(c) for every (xα)α∈N(N)
0
∈ `p(X) there is a function f ∈ Hp ′(T∞, X) and so that f̂(α) = xα for every

α and

‖f‖Hp ′ (T∞,X) ≤ C
( ∑
α∈N(N)

0

‖f̂(α)‖pX
) 1

p
.

As a matter of fact, Fourier type and cotype can be seen as particular cases in the more general theory
of Fourier type with respect to groups (see [15], whose notation we follow now, for an excellent survey
on this and related subjects). Within this setting Fourier type p (as we have defined it) is Fourier type p
with respect to Z, and our Fourier cotype q is Fourier type q ′ with respect to T. Then [15, Theorem 6.6]
implies that X has Fourier type p if and only if it has Fourier cotype p ′, and hence both concepts are
equivalent. However, we have preferred to deal with them separately because we later work with other
notions of type and cotype (which are not equivalent to each other) and in this way the relationship
between these and the new ones becomes more apparent.

On the other hand, this abstract point of view allows a proof of Propositions 2.1 and 2.2 based on known
results on Fourier type on groups. We only sketch here the arguments. Regarding Proposition 2.1, simply
note that the statement (c) is Fourier type q ′ with respect to T∞. Then the equivalence between (a) and (c)
follows from [15, Theorem 6.14].

The argument for Proposition 2.2 is slightly longer. First of all X has Fourier type p if and only if X∗ has
Fourier type p with respect to T [15, Theorem 6.3], and this happens if and only if X∗ has Fourier type
p with respect to T∞ by [15, Theorem 6.14]. Again by [15, Theorem 6.3], this is equivalent to X having
type p with respect to the dual group of T∞, which is Z(N), and this is Proposition 2.2–(c).

Propositions 2.1 and 2.2 provide Hausdorff-Young inequalities for vector valued Dirichlet series which
are analogous to the original inequalities. However as mentioned in the introduction, Fourier type (or
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cotype) is a very restrictive property on the geometry of a Banach space. We work with the much weaker
notions of type and cotype.

A Banach space X is said to have cotype 2 ≤ q < ∞ if there is a constant C ≥ 1 such that for every
N ∈ N and every x1, . . . , xN ∈ X we have

( N∑
n=1
‖xn‖q

) 1
q ≤ C

( ∫
TN

∥∥∥ N∑
n=1

xnzn

∥∥∥qdz) 1
q

, (8)

and type 1 ≤ p ≤ 2 if there is a constant C ≥ 1 such that for every N ∈ N and every x1, . . . , xN ∈ X we
have ( ∫

TN

∥∥∥ N∑
n=1

xnzn

∥∥∥pdz) 1
p

≤ C
( N∑
n=1
‖xn‖p

) 1
p
. (9)

We denote the best constants in these inequalities by Cq(X) and Tp(X) respectively. Let us note that (see
e.g. [9, Theorem 6.8]) the ‖·‖Lr-norms appearing at (8) and (9) can be replaced by any other ‖·‖Ls-norm
at the only expense of modifying the constant.

Usually, type and cotype are defined in terms of Rademacher functions. It is well known that the def-
initions given above are equivalent to their Rademacher versions. Actually, this equivalence can be
seen as a particular case of Lemma 4.2, since linear combinations of Rademacher functions are just
1-homogeneous Walsh polynomials.

For spaces with finite cotype, translating [4, Theorem 1.1] to our setting provides a lower estimate of the
norm of a Dirichlet series in terms of its coefficients. More precisely, for a Banach space X with cotype
q, σ > 1/q ′ and 1 ≤ p ≤∞ there is a constant C ≥ 1 such that

∞∑
n=1

‖an‖X
nσ

≤ C‖D‖Hp(X), (10)

for every D ∈ Hp(X). In Corollary 3.6, we prove that for every δ > 0 there is a constant C ≥ 1 such
that ( ∞∑

n=1

‖an‖qX
nδ

) 1
q ≤ C‖D‖Hp(X),

for every D ∈ Hp(X). Notice that this inequality is stronger than (10) since taking δ = σ − 1/q ′ and
applying Hölder’s inequality to the left-hand side of (10) we get

∞∑
n=1

‖an‖X
nσ

=

∞∑
n=1

‖an‖X
nδ/q

1
n(δ+1)/q ′ ≤

( ∞∑
n=1

‖an‖qX
nδ

) 1
q
( ∞∑
n=1

1
nδ+1

) 1
q ′ ≤ C

( ∞∑
n=1

‖an‖qX
nδ

) 1
q
.

Following [24, Section 5.4] (see also [13, Chapter 13]), we consider {−1, 1}∞ with the probability mea-
sure given by the infinite product of the uniform probability (δ1+δ−1)/2. For ε = (εn)n ∈ {−1, 1}∞ and
A ⊂ N finite we denote

εA =
∏
n∈A

εn.

A finite sum
∑
A xAεA will be called a Walsh polynomial. Due to the probabilistic nature of the measure

space, when dealing with Lp({−1, 1}∞, X), we will write E (expected value) rather than integrals. For
f ∈ L1({−1, 1}∞, X), the corresponding Walsh-Fourier coefficients are defined by

f̂(A) = E[f(ε)εA] .
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With this at hand we may introduce another notion of type/cotype. A Banach space X has Walsh type
p if there is a constant C > 0 such that for every n and every family {xA : A ⊆ [n]} ⊂ X (here and all
through the text we denote [n] = {1, . . . , n} for each n ∈ N) we have(

E
∥∥∥∑

A

xAεA

∥∥∥p ′) 1
p ′ ≤ C

(∑
A

‖xA‖p
) 1

p
,

and has Walsh cotype q if here is a constant C > 0 such that for every n and every family {xA : A ⊆
[n]} ⊂ X we have (∑

A

‖xA‖q
) 1

q ≤ C
(
E
∥∥∥∑

A

xAεA

∥∥∥q ′) 1
q ′
.

Standard density arguments allow us to reformulate these concepts as inequalities analogous to Proposi-
tion 2.2(c) and Proposition 2.1(c). Indeed, X has Walsh type p if and only if there is C ≥ 1 so that

‖f‖Lp ′ ({−1,1}∞,X) ≤ C
( ∑

A⊂N
A finite

‖f̂(A)‖p
) 1

p

. (11)

Analogously, for X with Walsh cotype q, we have( ∑
A⊂N
A finite

‖f̂(A)‖q
) 1

q

≤ C‖f‖Lq ′ ({−1,1}∞,X). (12)

Once again, these notions of type/cotype sit in a more general framework, namely that of type/cotype
with respect to an orthonormal system (we refer again to [15]). The concepts of Walsh type p and Walsh
cotype p ′ coincide (see [15, Theorem 7.14]). To our best knowledge it is not known whether or not these
are the same as Fourier type and cotype.

We end this section addressing the notion of K-convexity which is closely related to the concepts of
type/cotype. A Banach space X is said to be K-convex if the Rademacher projection is bounded. More
precisely, the mapping defined on the finite sums in L2({−1, 1}∞, X) by

P1

(∑
A

xAεA

)
=
∑
|A|=1

xAεA

extends to bounded linear operator P1 : L2({−1, 1}∞, X)→ L2({−1, 1}∞, X).
If X is K-convex, we can also define for eachm the projection Pm : L2({−1, 1}∞, X)→ L2({−1, 1}∞, X),
which on finite sums is given by Pm

(∑
A xAεA

)
=
∑

|A|=m xAεA. By [23, Theorem 2.1] or [13,
Theorem 13.16], there exists K > 1 such that

‖Pm‖ ≤ Km (13)

for every m. Also, a Banach space is K-convex if and only if it has nontrivial type (see e.g. [13,
Theorem 13.3]).

3 Type, cotype and Hausdorff-Young inequalities

In this section we present a polynomial reformulation of type/cotype and use it to prove Hausdorff-Young
inequalities for Dirichlet series. We also provide a slightly stronger result for spaces enjoying uniform
C-convexity.
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3.1 A polynomial reformulation of type and cotype

In [5] the notion of hypercontractive homogeneous cotype was introduced, as an extension of the ‘usual’
(or, to be more accurate, Rademacher) cotype. For a multi-index α = (α1, . . . , αn,0,0, . . .) ∈ N(N)

0 we
write |α| = α1 + · · · + αn. With this notation, a Banach space X has hypercontractive homogeneous
cotype q if there exists C > 0 such that for everym ∈ N and every finite family (xα)|α|=m we have

( ∑
|α|=m

‖xα‖q
) 1

q ≤ Cm
( ∫

Tn

∥∥∥ ∑
|α|=m

xαz
α
∥∥∥2dz) 1

2
. (14)

Then, different conditions were presented in [5] which ensure that a Banach space X enjoys this property.
As a consequence of Theorem 3.1 (and Remark 3.3) below we see that, actually, every Banach space with
Rademacher cotype has hypercontractive homogeneous cotype.

Theorem 3.1. For a Banach space X and 2 ≤ q <∞ the following statements are equivalent:

(a) X has cotype q;

(b) there exists C > 0 such that for everym ∈ N and every finite family (xα)|α|≤m( ∑
|α|≤m

‖xα‖q
) 1

q ≤ Cm
( ∫

Tn

∥∥∥ ∑
|α|≤m

xαz
α
∥∥∥qdz) 1

q
; (15)

(c) there exists C > 0 such that for everym ∈ N and every finite family {xA : |A| ≤ m} ⊂ X we have(∑
A

‖xA‖q
) 1

q ≤ Cm
(
E
∥∥∥∑

A

xAεA

∥∥∥q) 1
q
. (16)

The proof of this theorem is rather technical, so we postpone it to Section 4. Although it was not
considered in [5], for our purposes we also need a hypercontractive homogeneous type. This, again,
turns out to be equivalent to the usual concept of Rademacher type, as follows from the next theorem.

Theorem 3.2. For a Banach space X and 1 ≤ p ≤ 2 the following statements are equivalent:

(a) X has type p;

(b) there exists C > 0 such that for everym ∈ N and every finite family (xα)|α|≤m( ∫
Tn

∥∥∥ ∑
|α|≤m

xαz
α
∥∥∥pdz) 1

p ≤ Cm
( ∑

|α|≤m

‖xα‖p
) 1

p
; (17)

(c) there exists C > 0 such that for everym ∈ N and every finite family {xA : |A| ≤ m} ⊂ X we have(
E
∥∥∥∑

A

xAεA

∥∥∥p) 1
p ≤ Cm

(∑
A

‖xA‖p
) 1

p
. (18)

The proof follows essentially the same trends as that of Theorem 3.1, so it is only sketched at the end of
Section 4.
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Remark 3.3. We want to stress the fact that the L2-norm in (14), the Lq-norm in (15) and the Lp-
norm in (17) can be replaced by any other Lr norm (in some cases with different constants, but still
of exponential growth in m). For homogeneous polynomials this is an immediate consequence of the
polynomial Kahane inequality shown in [5, Proposition 1.2]: for 1 ≤ s ≤ r <∞, if {xα : α ∈ N(N)

0 , |α| =
m} ⊂ X is a family with only finitely many nonzero elements, then∥∥∥∑ xαz

α
∥∥∥
Lr(T∞,X) ≤

(r
s

)m
2
∥∥∥∑ xαz

α
∥∥∥
Ls(T∞,X) (19)

These inequalities extend to general polynomials of degreem proceeding as in [9, Theorem 8.10].

Once we know that (19) holds for polynomials of degreem (not necessarily homogeneous), Lemma 4.2
below gives an analogous inequality for Walsh polynomials: for any family {xA : A ⊂ N, |A| ≤ m} ⊂ X
with only finitely many nonzero elements we have(

E
∥∥∥∑

A

xAεA

∥∥∥r) 1
r ≤

(
(1+
√
2)
√
r

s

)m (
E
∥∥∥∑

A

xAεA

∥∥∥s) 1
s
. (20)

This inequality should be compared to [24, Corollary 5.5], from which the homogeneous case of (20)
constants can be deduced, with better constants. As a consequence, the exponents p or q in the expecta-
tions in inequalities (16) and (18) can be also replaced by any other exponent r.

As we pointed out earlier, the proof of Theorem 3.1 is given in Section 4, but let us sketch here the main
ideas.

Structure of the proof. To begin with, let us recall that an X-valued polynomial of n variables is a
function P : Cn → X given by a finite sum

P(z) =
∑

α∈Λ⊆Nn
0

xαz
α ,

where xα ∈ X for every α. The degree of the polynomial is de maximum over Λ of |α| = α1 + · · ·+αn.
A polynomial ism-homogeneous if |α| = m for every α ∈ Λ. A quick thought shows that X has cotype
q (see (8)) if and only if (∑

α

‖xα‖q
) 1

q ≤ C‖P‖Lq

for every polynomial of degree 1 (note that the constant C does not depend on the number of variables
n). Also, (15) can be reformulated as(∑

α

‖xα‖q
) 1

q ≤ Cm‖P‖Lq (21)

for every polynomial of degree m (here C depends neither on n nor on m). We begin the proof of
Theorem 3.1 by showing that the inequality we aim at holds for a specific, easier to handle, class of
polynomials: tetrahedral. These are polynomials where no power bigger than 1 appears or, in other words,
the monomials involved consist only of products of different variables. More precisely, a tetrahedral
polynomial of n variables is of the form ∑

α∈{0,1}n
xαz

α .

Then, the first step towards the proof of Theorem 3.1 is to show in Lemma 4.1 that (21) (or, equivalently,
(15)) holds for m-homogeneous tetrahedral polynomials. The second step is to show that the same
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inequality holds for every homogeneous polynomial. It is this second step (to pass from tetrahedral
homogeneous to arbitrary homogeneous polynomials) that requires some work. In order to achieve this,
we have to translate our results to the Walsh setting.

Note that, given A ⊆ [n] we can define α = (αi)i ∈ {0, 1}(N) as αi = 1 if i ∈ A and 0 if i 6∈ A.
With this idea, to each finite set we can associate a tetrahedral multi-index (and vice-versa). Denoting
zA =

∏
i∈A zi for each A ⊆ [n] we may rewrite each tetrahedral polynomial as

∑
A⊆[n] xAzA. In this

way, we have a straightforward identification between tetrahedral and Walsh polynomials:∑
α∈{0,1}n

xαz
α =

∑
A⊆[n]

xAzA!
∑
A⊆[n]

xAεA .

In Lemma 4.2 we relate the Lp(T∞, X)-norm of the tetrahedral polynomial
∑
A⊆[n] xAzA with the

Lp({−1, 1}∞, X)-norm of the Walsh polynomial
∑
A⊆[n] xAεA and in this way obtain that (16) holds

for homogeneous Walsh polynomials. Then Lemma 4.3 shows how to pass from homogeneous to arbi-
trary Walsh polynomials, completing the proof of (a) implies (c). Finally, to deduce from (c) that (21)
holds for homogeneous polynomials goes through a convoluted description of a polynomial given in
Lemma 4.4. To pass from homogeneous to arbitrary polynomials is rather standard, and this finishes the
proof.

Remark 3.4. Following exactly the same arguments as in [10, Theorem 5.3] (see also [9, Proposi-
tion 25.29]) it can be shown that if Y is a cotype q space and v : X → Y is an (r, 1)-summing operator,
then there exists a constant C > 0 so that(∑

α

‖v(cα)‖
qrm

q+(m−1)r
Y

)q+(m−1)r
qrm

≤ Cm sup
z∈Dn

‖P(z)‖X

for every X-valued polynomial P(z) =
∑
α cαz

α of n variables of degree m. With this at hand, the
estimates in [10, Theorem 1.6–(2) and Theorem 5.4–(2)] hold for Banach spaces with cotype q.

Every f ∈ Hp(T∞, X) defines a formal power series in infinitely many variables
∑
α f̂(α)z

α. The
set of zs for which the power series of every f in Hp(T∞, X) converges is called the set of monomial
convergence:

monHp(T∞, X) = {z ∈ CN :
∑
α

‖f̂(α)zα‖X <∞ for all f ∈ Hp(T∞, X)} .
Then, the equivalence between cotype and polynomial cotype given Theorem 3.1 combined with [5,
(16)] shows that, if we denote cot(X) = inf{q : X has cotype q}, then

`cot(X) ′ ∩ Bc0 ⊆ monHp(T∞, X) ⊆ `cot(X) ′+ε ∩ Bc0
for every ε > 0. If X attains its optimal cotype (that is, if X has cotype cot(X)), then [5, Theorem 3.1]
gives

monHp(T∞, X) = `cot(X) ′ ∩ Bc0 . (22)

Also, let us recall that a sequence b = (bn)n is an `1-multiplier of Hp(X) if
∑∞
n=1 ‖an‖X|bn| < ∞ for

every
∑
ann

−s in Hp(X). As an immediate consequence of (22) (see [5, Theorem 4.3]) we have that if
X has cotype cot(X), then a multiplicative b (that is, bmn = bnbm for every m,n) is an `1-multiplier of
Hp(X) if and only if b ∈ `cot(X) ′ .

3.2 Hausdorff-Young inequalities

Let us note that Fourier cotype, as formulated in (4), implies (15) with universal constants, independent
of m. Under the much weaker assumption of cotype, the exponential dependence on m (as Cm) in The-
orem 3.1 still allows us to carry estimations from the polynomial to the Dirichlet setting at a reasonable
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price. An analogous situation holds for Banach spaces with type p. We obtain inequalities, not only for
Dirichlet series, but also for functions defined on T∞ or {−1, 1}∞, as in Proposition 2.1 or (12). Com-
paring what we obtain with those inequalities, we gather that the r factor in the following theorem is the
price we pay for loosening the hypothesis of Fourier or Walsh to just Rademacher cotype. Let us recall
that the number of prime divisors of n ∈ N, counted with multiplicity is denoted byΩ(n).

Theorem 3.5. For a Banach space X and 2 ≤ q <∞ the following statements are equivalent:

(a) X has cotype q;

(b) for some (every) 1 ≤ p < ∞, there exist constants C ≥ 1 and 0 < r < 1 such that every
vector-valued Dirichlet series D =

∑
ann

−s ∈ Hp(X) satisfies( ∞∑
n=1

rΩ(n)‖an‖q
) 1

q

≤ C‖D‖Hp(X).

(c) for some (every) 1 ≤ p < ∞, there exist constants C ≥ 1 and 0 < r < 1 such that every function
f ∈ Hp(T∞, X) satisfies ( ∑

α∈N(N)
0

r|α|‖f̂(α)‖q
) 1

q

≤ C‖f‖Hp(T∞,X);

In addition, the next statement (d) implies (a),(c) and (b) and is equivalent to them whenever X is K-
convex:

(d) for some (every) 1 < p < ∞, there exist constants C ≥ 1 and 0 < r < 1 such that every function
f ∈ Lp({−1, 1}∞, X) satisfies( ∑

A⊂N
A finite

r|A|‖f̂(A)‖q
) 1

q

≤ C‖f‖Lp({−1,1}∞,X).

Proof. Observe that (c) and (b) are equivalent via Bohr’s transform. The fact that (c)⇒(a) follows by
noticing that, given x1, . . . , xN ∈ X and defining P(z) =

∑N
n=1 xnzn, the sum at the left-hand side

becomes r1/q
(∑
‖xn‖q

)1/q. The same argument proves that (d)⇒(a) invoking Theorem 3.1.

Next we see that (a)⇒(c). Set f ∈ Hp(T∞, X) and for every m ∈ N let fm be its m-homogeneous
projection (see [4, Proposition 2.5]). By Theorem 3.1, there is a constant c ≥ 1 such that for every
(finite)m-homogeneous polynomial P =

∑
xαz

α we have( ∑
|α|=m

‖xα‖q
) 1

q ≤ cm‖P‖p.

Since polynomials are dense in Hp(T∞, X) and the m-homogeneous projection is a contraction, a
straightforward density argument yields( ∑

|α|=m

‖f̂(α)‖q
) 1

q ≤ cm‖fm‖p ≤ cm‖f‖p. (23)
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Taking r < 1/cq we get

( ∑
α∈N(N)

0

r|α|‖f̂(α)‖q
) 1

q
=
( ∞∑
m=1

rm
∑
|α|=m

‖f̂(α)‖q
) 1

q ≤
( ∞∑
m=1

(rcq)m
) 1

q ‖f‖p ≤ C‖f‖p,

which completes the argument.

We finally show that (a)⇒(d) for K-convex spaces . First assume that p = 2. In this case (13) gives a
constant K so that

‖fm‖2 ≤ Km‖f‖2 (24)

for every f ∈ L2({−1, 1}∞, X). This enables us to proceed exactly as in (23) to get the desired result. For
the general case when 1 < p < ∞, it only remains to show that an inequality analogous to (24) holds.
On the one hand, if 2 ≤ p <∞, using (20) we get

‖fm‖p ≤ Cm‖fm‖2 ≤ (CK)m‖f‖2 ≤ (CK)m‖f‖p,

for some constant C > 0.

On the other hand, it is a well-known fact that if X is K-convex, so is X∗ (see for example [13, Corol-
lary 13.7 and Theorem 13.15]). Therefore, for 1 < p ≤ 2,

‖fm‖p = sup
g∈Lp ′ (X∗)
‖g‖p ′=1

E[g(ε)(fm(ε))] = sup
g∈Lp ′ (X∗)
‖g‖p ′=1

E[gm(ε)(f(ε))]

≤ sup
g∈Lp ′ (X∗)
‖g‖p ′=1

‖gm‖p ′‖f‖p ≤ sup
g∈Lp ′ (X∗)
‖g‖p ′=1

K̃m‖g‖p ′‖f‖p ≤ K̃m‖f‖p,

for some constant K̃ > 0.

As a consequence of Theorem 3.5 we obtain the following result mentioned in the previous section.

Corollary 3.6. Let X be a Banach space with cotype q and set 1 ≤ p ≤ ∞. For every δ > 0 there is a
constant C ≥ 1 such that every D =

∑
ann

−s ∈ Hp(X) satisfies

( ∞∑
n=1

‖an‖q

nδ

) 1
q ≤ C‖D‖Hp(X).

Proof. From Theorem 3.5 we know that there exist constants C ≥ 1 and 0 < r < 1 such that every
D =

∑
ann

−s ∈ Hp(X) satisfies( ∞∑
n=1

rΩ(n)‖an‖q
) 1

q

≤ C‖D‖Hp(X).

Fix δ > 0 and let k ∈ N be such that 1/pδk ≤ r where pk denotes the k-th prime number. Notice that if
pk = 2 we are done since we would get 1/nδ ≤ rΩ(n). However if pk > 2 we must deal with the first k
primes where the estimation by r fails. This procedure is analogous to [8, Lemma 2] so we only sketch
the proof. Fix D =

∑
ann

−s ∈ Hp(X) and consider f = B−1
X (D) ∈ Hp(T∞, X). For α1, . . . , αk ∈ N0

define
fα1,...,αk

(z) =

∫
Tk

f(ω1, . . . ,ωk, zk+1, zk+2, . . .)ω
−α1
1 . . .ω−αk

k dω.
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An easy computation shows that fα1,...,αk
∈ Hp(T∞, X) and ‖fα1,...,αk

‖p ≤ ‖f‖p. Moreover, forβ ∈ N(N)
0

we have that

f̂α1,...,αk
(β) =

{
f̂(α1, . . . , αk, βk+1, βk+2, . . .) if β = (0, . . . ,0, βk+1, βk+2, . . .)

0 otherwise.

Applying (c) of Theorem 3.5 to fα1,...,αk
we get( ∑

β∈N(N)
0

r|β|‖f̂(α1, . . . , αk, β)‖q
) 1

q ≤ C‖f‖p.

Therefore we deduce

∞∑
n=1

‖an‖q

nδ
≤

∑
α1,...,αk≥0

p−α1δ
1 . . . p−αkδ

k

∑
β∈N(N)

0

r|β|‖f̂(α1, . . . , αk, β)‖q

≤ Cq
∑

α1,...,αk≥0
p−α1δ
1 . . . p−αkδ

k ‖f‖qp = Cq
( k∏
j=1

1
1− 1/pδj

)
‖f‖qp,

which completes the proof.

We now turn our attention to spaces with nontrivial type, and get an analogous result (compare it also
with Proposition 2.2 and (11)). The proof follows essentially the same lines as that of Theorem 3.5, so
we only sketch it, pointing out the differences.

Theorem 3.7. For a Banach space X and for 1 ≤ p ≤ 2 the following statements are equivalent:

(a) X has type p;

(b) for some (every) 1 ≤ q < ∞ there exist constants R,C ≥ 1 such that every X-valued Dirichlet
series D =

∑
ann

−s satisfies

‖D‖Hq(X) ≤ C

( ∞∑
n=1

RΩ(n)‖an‖p
) 1

p

;

(c) for some (every) 1 ≤ q < ∞ there exist constants C, R ≥ 1 and such that every function f ∈
H1(T∞, X) satisfies

‖f‖Hq(T∞,X) ≤ C
( ∑
α∈N(N)

0

R|α|‖f̂(α)‖p
) 1

p

;

(d) for some (every) 1 ≤ q < ∞ there exist constants C, R ≥ 1 such that every function f ∈
L1({−1, 1}∞, X) satisfies

‖f‖Lq({−1,1}∞,X) ≤ C
( ∑

A⊂N
A finite

R|A|‖f̂(A)‖p
) 1

p

.

The preceding inequalities should be understood as follows: if the sum at the right-hand side is finite,
then the Dirichlet series (or the function) belongs to the corresponding space and its norm is controlled
by the sum. But if the sum does not converge, then nothing can be said about the series or the function.
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Proof. The implications (b)⇔(c), (c)⇒(a) and (d)⇒(a) follow as in Theorem 3.5.
Regarding (a)⇒(c) notice that for f ∈ H1(T∞, X) we have

‖f‖Hq(T∞,X) ≤
∞∑
m=0
‖fm‖Hq(T∞,X).

From Theorem 3.2 and a density argument as in Theorem 3.5 we get

‖f‖Hq(T∞,X) ≤
∞∑
m=0

Cm
( ∑

|α|=m

‖f̂(α)‖p
) 1

p
.

Taking R > Cp and applying Hölder inequality we deduce

‖f‖Hq(T∞,X) ≤
∞∑
m=0

( C

R1/p

)m(
Rm
∑
|α|=m

‖f̂(α)‖p
) 1

p

≤
( ∞∑
m=0

( C

R1/p

)p ′m) 1
p ′
( ∞∑
m=0

Rm
∑
|α|=m

‖f̂(α)‖p
) 1

p ≤ C̃

( ∑
α∈N(N)

0

R|α|‖f̂(α)‖p
) 1

p

.

The implication (a)⇒(d) follow in the same way.

3.3 Uniform C-convexity

A Banach space X is q-uniformly C-convex [16] (for q ≥ 2) if there exists λ > 0 such that(
‖x‖q + λ‖y‖q

) 1
q ≤ max

z∈T
‖x+ zy‖,

for all x, y ∈ X and q-uniformly PL-convex (see [6] or [24, Chapter 11]) if

‖x‖q + λ‖y‖q ≤
∫
T
‖x+ zy‖qdz, (25)

for all x, y ∈ X. In fact these two concepts are equivalent (see [21]) and provide an analytic version of
the more familiar geometric property known as q-uniform convexity. A Banach space X is q-uniformly
convex (for q ≥ 2) if there exists λ > 0 such that

‖x‖q + λ‖y‖q ≤ E‖x+ εy‖q.

It is easy to check that q-uniform convexity implies q-uniform PL-convexity.

In [3, Proposition 2.1] it is proven that q-uniform C-convexity is equivalent to either of the following
conditions:

(a) there exists λ > 0 such that for every analytic function f : D→ X we have

‖f(0)‖q + λ‖f ′(0)‖q ≤ sup
|z|<1
‖f(z)‖q. (26)

(b) there exists λ > 0 such that for every analytic function f : D→ X we have

‖f(0)‖q + λ‖f ′(0)‖q ≤ sup
0<r<1

∫
T
‖f(rz)‖qdz. (27)
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Let us note that for every such function the mapping r ∈ [0, 1[ ‖f(r r)‖Hq(T,X) is increasing and, then,
the supremum at the right-hand side of (27) is in fact a limit as r→ 1−. With this, if f : C→ X is entire,
then

‖f(0)‖q + λ‖f ′(0)‖q ≤
∫
T
‖f(z)‖qdz . (28)

Since taking f(z) = x+ zy for given x and y gives (25), the equivalence with q-uniform C-convexity is
mantained.

Using (26) Blasco proved in [2, Theorem 2.4] that q-uniformly C-convex spaces have positive q-Bohr
radius. That is, there exists ρ > 0 such that( ∞∑

n=0
‖xn‖qρqn

) 1
q ≤ sup

|z|<1
‖f(z)‖, (29)

for every analytic function f =
∑
n xnz

n on D. Replacing (26) by (28) in his argument we deduce that
for q-uniformly C-convex spaces there exists ρ > 0 such that( ∞∑

n=0
‖xn‖qρqn

) 1
q ≤

( ∫
T
‖f(z)‖qdz

) 1
q
, (30)

for every entire function f =
∑
n xnz

n. The following theorem extends this fact to several variables.

Theorem 3.8. Let X be a q-uniformly C-convex Banach space. Then there exists ρ > 0 such that for
every n and every polynomial P =

∑
xαz

α of n variables with values in X we have(∑
α

‖xα‖qρ|α|q
) 1

q ≤
( ∫

Tn

‖P(z)‖qdz
) 1

q
.

Proof. We proceed by induction on n, the number of variables. The case n = 1 follows from (30).

Suppose now that the result holds for n− 1 and take some polynomial

P(z) =
∑
α∈F

xαz
α ,

for z ∈ Cn (where F ⊆ Nn0 is finite). Then we can write

∑
α

‖xα‖qρ|α|q =

N∑
k=0

ρqk
∑
α∈F
αn=k

‖xα‖qρ(|α|−αn)q .

Applying the inductive hypothesis to each polynomial

z ∈ Cn−1  
∑
α∈F
αn=k

xαz
α1
1 · · · z

αn−1
n−1 ,

we have

∑
α

‖xα‖qρ|α|q ≤
N∑
k=0

ρqk
∫
Tn−1

∥∥∥∑
α∈F
αn=k

cαz
α1
1 · · · z

αn−1
n−1

∥∥∥qd(z1, . . . , zn−1)

=

∫
Tn−1

N∑
k=0

∥∥∥∑
α∈F
αn=k

cαz
α1
1 · · · z

αn−1
n−1

∥∥∥qρqkd(z1, . . . , zn−1) .
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Finally, for each fixed (z1, . . . , zn−1) ∈ Tn−1 we may consider the polynomial C→ X given by

z 
n∑
k=0

(∑
α∈F
αn=k

cαz
α1
1 · · · z

αn−1
n−1

)
zk

and then use the case n = 1 of the induction to conclude

N∑
k=0

∥∥∥∑
α∈F
αn=k

xαz
α1
1 · · · z

αn−1
n−1

∥∥∥qρqk

≤
∫
T

∥∥∥ N∑
k=0

(∑
α∈F
αn=k

xαz
α1
1 · · · z

αn−1
n−1

)
zkn

∥∥∥qdzn =

∫
T

∥∥∥∑
α∈F

xαz
α1
1 · · · z

αn−1
n−1 z

αn
n

∥∥∥qdzn .
Fubini’s theorem completes the proof.

Let us note that Theorem 3.8 can be reformulated as(∑
n≤x
‖an‖qρqΩ(n)

) 1
q ≤

∥∥∥∑
n≤x

ann
−s
∥∥∥
Hq(X)

≤
∥∥∥∑
n≤x

ann
−s
∥∥∥
H∞(X)

, (31)

for every Dirichlet polynomial. This gives a version of the q-Bohr radius for vector-valued Dirichlet
series (although for better constants one should proceed to the multivariate setting directly from (29)).
Also, the first inequality in (31) gives the equivalence (b) of Theorem 3.5 with constant C = 1 (taking
r = ρq and p = q). Hence, for q-uniformly C-convex Banach spaces we have better Hausdorff-Young
inequalities than those for general spaces with cotype q.

4 Proof of Theorem 3.1

We face now the proof to Theorem 3.1. Let us recall that we are aiming at inequalities like (15) for every
polynomial of n variables of degree m. We begin by showing that such an inequality indeed holds for
homogeneous tetrahedral polynomials. But before we get into that let us note that given a vector space
V , a family {vA : A ⊆ [n], |A| = m} ⊆ V (where n,m ∈ N) and k ∈ N we have∑

B⊆[n]
|B|=k

∑
A1⊆B
|A1|=1

∑
A2⊆Bc

|A2|=m−1

vA1∪A2 =
∑
B⊆[n]
|B|=k

∑
A⊆[n]
|A|=m
|A∩B|=1

vA =
∑
A⊆[n]
|A|=m

∑
B⊆[n]
|B|=k

|A∩B|=1

vA

=
∑
A⊆[n]
|A|=m

∣∣{B ⊆ [n] : |B| = k, |A ∩ B| = 1}
∣∣vA = m

(
n−m

k− 1

) ∑
A⊆[n]
|A|=m

vA.

(32)

This is essentially equations (3.13) through (3.16) from [26]. Once we have this we can prove that the
inequality we aim at holds for homogeneous tetrahedral polynomials.

Lemma 4.1. Let X be a Banach space X of cotype 2 ≤ q < ∞. Then for every m,n ∈ N and every
family {xA : A ⊆ [n], |A| = m} ⊆ X we have

(∑
A

‖xA‖q
) 1

q ≤ (41/qCq(X))m
( ∫

Tn

∥∥∥∑
A

xAzA

∥∥∥qdz) 1
q

. (33)
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Proof. We prove this by induction on m. The case m = 1 is trivial just comparing (8) with (33) for
m = 1.
For the inductive step, let {xA : A ⊆ [n], |A| = m} be a family of vectors in X. Taking n larger if
necessary, we may assume n = km for some k ∈ N. Note that, in this case,

(
n−m
k−1
)
=
((k−1)m
k−1

)
. Let’s

recall the following version of Stirling’s formula, stated in [14, (9.15)]:
√
2πnn+

1
2 e−ne(12n+1)−1

< n! <
√
2πnn+

1
2 e−ne(12n)

−1
.

From this, a straightforward (but tedious) computation yields

1
2
≤

(
n
k

)
m
(
n−m
k−1
) ≤ 4.

Using (32) for vA = ‖xA‖q we get∑
A⊆[n]
|A|=m

‖xA‖q =
1

m
(
n−m
k−1
) ∑
B⊆[n]
|B|=k

∑
A1⊆B
|A1|=1

∑
A2⊆Bc

|A2|=m−1

‖xA1∪A2‖
q ≤ 4(

n
k

) ∑
B⊆[n]
|B|=k

∑
A1⊆B
|A1|=1

∑
A2⊆Bc

|A2|=m−1

‖xA1∪A2‖
q.

For a fixed A1 we can apply the inductive hypothesis to the family {xA1∪A2 : A2 ⊆ Bc, |A2| = m − 1}.
Let TBc denote |Bc| copies of the torus indexed in Bc. We get

∑
A⊆[n]
|A|=m

‖xA‖q ≤
4mCq(X)q(m−1)(

n
k

) ∑
B⊆[n]
|B|=k

∑
A1⊆B
|A1|=1

∫
TBc

∥∥∥ ∑
A2⊆Bc

|A2|=m−1

xA1∪A2zA2

∥∥∥qdz
≤ 4mCq(X)q(m−1)(

n
k

) ∑
B⊆[n]
|B|=k

∫
TBc

∑
A1⊆B
|A1|=1

∥∥∥ ∑
A2⊆Bc

|A2|=m−1

xA1∪A2zA2

∥∥∥qdz.
Notice that we are integrating over variables zi whose index i always lies in Bc, while A1 is always
included in B. In some sense, the variables zA1 remain unused. So, by the cotype inequality (8) we
obtain ∑

A⊆[n]
|A|=m

‖xA‖q ≤
4mCq(X)qm(

n
k

) ∑
B⊆[n]
|B|=k

∫
Tn

∥∥∥∑
A1⊆B
|A1|=1

∑
A2⊆Bc

|A2|=m−1

xA1∪A2zA1zA2

∥∥∥qdz. (34)

Regarding the last expression, observe that

∫
T

(min(k,m)∑
j=0

∑
A1⊆B
|A1|=j

∑
A2⊆Bc

|A2|=m−j

xA1∪A2ω
|A1|zA1zA2

)
ωdω

=

min(k,m)∑
j=0

∫
T
ωj−1dω

∑
A1⊆B
|A1|=j

∑
A2⊆Bc

|A2|=m−j

xA1∪A2zA1zA2 =
∑
A1⊆B
|A1|=1

∑
A2⊆Bc

|A2|=m−1

xA1∪A2zA1zA2 .

(35)

Using (35) in (34) and applying Jensen’s inequality we have

∑
A⊆[n]
|A|=m

‖xA‖q ≤
4mCq(X)qm(

n
k

) ∑
B⊆[n]
|B|=k

∫
T

∫
Tn

∥∥∥min(k,m)∑
j=0

∑
A1⊆B
|A1|=j

∑
A2⊆Bc

|A2|=m−j

xA1∪A2ω
|A1|zA1zA2

∥∥∥qdzdω.
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Finally, by rotation invarianceω|A1|zA1 may be replaced by zA1 . We get

∑
A⊆[n]
|A|=m

‖xA‖q ≤
4mCq(X)qm(

n
k

) ∑
B⊆[n]
|B|=k

∫
Tn

∥∥∥min(k,m)∑
j=0

∑
A1⊆B
|A1|=j

∑
A2⊆Bc

|A2|=m−j

xA1∪A2zA1zA2

∥∥∥qdz
=

4mCq(X)qm(
n
k

) ∑
B⊆[n]
|B|=k

∫
Tn

∥∥∥ ∑
A⊆[n]
|A|=m

xAzA

∥∥∥qdz = 4mCq(X)qm
∫
Tn

∥∥∥ ∑
A⊆[n]
|A|=m

xAzA

∥∥∥qdz.
In order to deal with Walsh polynomials in Theorem 3.1 (c) we need two lemmas. The first one shows that
tetrahedral Steinhaus polynomials and their Walsh counterparts have equivalent norms up to exponential
constants. The argument translates estimates from the scalar to the Banach setting applying a theorem of
Pełczyński. This result can also be proven using [20, Proposition 6.3.1] and checking the hypothesis by
hand.

Lemma 4.2. Let X be a Banach space and set 1 ≤ q <∞. For every tetrahedral polynomial P of degree
m and n variables we have

(1+
√
2)−m

(
E‖P(ε)‖qX

) 1
q ≤

( ∫
Tn

‖P(z)‖qXdz
) 1

q ≤ (1+
√
2)m

(
E‖P(ε)‖qX

) 1
q . (36)

Proof. In [18, p. 2764] it is shown that for every polynomial Q : Cn → C of degreem, we have

sup
z∈Tn

|Q(z)| ≤ (1+
√
2)m sup

x∈[−1,1]n
|Q(x)|.

If we assume Q to be tetrahedral, we observe as in [11] that

sup
x∈[−1,1]n

|Q(x)| = sup
ε∈{−1,1}n

|Q(ε)|,

since Q is affine in every coordinate. Thus,

sup
ε∈{−1,1}n

|Q(ε)| ≤ sup
z∈Tn

|Q(z)| ≤ (1+
√
2)m sup

ε∈{−1,1}n
|Q(ε)|.

Equivalently, for every finite choice of scalars {cA}|A|≤m ⊆ C we have

sup
ε∈{−1,1}n

∣∣∣ ∑
|A|≤m

cAεA

∣∣∣ ≤ sup
z∈Tn

∣∣∣ ∑
|A|≤m

cAzA

∣∣∣ ≤ (1+
√
2)m sup

ε∈{−1,1}n

∣∣∣ ∑
|A|≤m

cAεA

∣∣∣, (37)

where for simplicity we also used Walsh notation for the variable z. Consider the sets of characters
{εA}|A|≤m and {zA}|A|≤m of the compact abelian groups {−1, 1}n and Tn respectively. Since these sets
satisfy (37), the conditions of [22, Theorem 1] are met. So we get

(1+
√
2)−m

∥∥∥ ∑
|A|≤m

xAεA

∥∥∥
Lq({−1,1}n,X)

≤
∥∥∥ ∑
|A|≤m

xAzA

∥∥∥
Lq(Tn,X)

≤ (1+
√
2)m

∥∥∥ ∑
|A|≤m

xAεA

∥∥∥
Lq({−1,1}n,X)

,

for every choice of vectors {xA}|A|≤m ⊆ X. This concludes the proof since it is equivalent to (36).
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The following lemma estimates the norm of the homogeneous projection of a Walsh polynomial and can
be found in [19, Lemma 2] (see also [7, Lemma 3.2.4]). A proof is included since the constant is not
explicitly computed there, and we need it to grow exponentially on the degree of the polynomial (i.e., to
be of the form Bm for some B > 0).

Lemma 4.3. For every Banach space X there is a constant B > 0 such that for every 1 ≤ q < ∞ and
every X-valued Walsh polynomial P of degreem, its k-homogeneous projection Pk satisfies(

E‖Pk(ε)‖qX
) 1

q ≤ Bm
(
E‖P(ε)‖qX

) 1
q .

Proof. For each m we consider the functions {1, t, . . . , tm} in L2(0, 1). We show that there are polyno-
mials {p(m)

1 , . . . , p
(m)
m+1} of degree at mostm such that∫ 1

0
ti−1p

(m)
j (t)dt = δij,

for every 1 ≤ i, j ≤ m+ 1. Indeed, writing p(m)
j (t) =

∑m+1
k=1 a

(m)
kj t

k−1 we get

δij =

∫ 1
0
ti−1p

(m)
j (t)dt =

m+1∑
k=1

a
(m)
kj

∫ 1
0
ti+k−2dt =

m+1∑
k=1

1
i+ k− 1

a
(m)
kj ,

for every 1 ≤ i, j ≤ m+ 1. In other words, we obtain the matrix identity

I = HA,

where H is the well-known Hilbert matrix and A is the matrix defined by the coefficients a(m)
ij . Thus,

we have A = H−1, which provides a specific formula for the polynomials p(m)
j . Notice that |a(m)

ij | can
be easily bounded by the condition number of H, which is smaller than Cm for some C > 1 (see [28,
Equation 3.35]). Alternatively, using the explicit formula in [27] for the elements of H−1, it is easy to
check that there is a constant C > 1 so that supi,j |a

(m)
ij | ≤ Cm. Therefore, taking B = 2C we get

sup
0<t<1

|p
(m)
j (t)| ≤ (m+ 1)Cm ≤ Bm .

Notice that, if P is a polynomial of degreem, then

Pk(ε) =

∫ 1
0
P(tε)p

(m)
k+1(t)dt,

for every 0 ≤ k ≤ m. So we get

(
E‖Pk(ε)‖qX

) 1
q ≤
∫ 1
0

(
E‖P(tε)p(m)

k+1(t)‖
q
X

) 1
qdt ≤ Bm

∫ 1
0

(
E‖P(tε)‖qX

) 1
qdt.

Now, [7, Lemma 3.2.3] gives (
E‖P(tε)‖qX

) 1
q ≤

(
E‖P(ε)‖qX

) 1
q

for every 0 ≤ t ≤ 1, and this completes the proof.

For the last ingredient in the proof of Theorem 3.1, we need a rather convoluted description of a poly-
nomial in terms of the parity of the exponents of the variables. Fix an even m ∈ N. Given A ⊆ [n] we
define

ΛA = {α ∈ Nn0 : |α| = m,αi is odd if and only if i ∈ A}.
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Since m is even, it is clear that ΛA 6= ∅ if and only if A has even cardinality between 0 and m. In the
rest of this discussion we only consider A with ΛA 6= ∅. Note that for any ε ∈ {−1, 1}n and z ∈ Tn, we
have

(εz)α = εAz
α

for every α ∈ ΛA, where, as always, εA =
∏
i∈A εi.

Now, for anm-homogeneous polynomial of n variables P(z) =
∑

|α|=m xαz
α we write

PA(z) =
∑
α∈ΛA

xαz
α.

With this notation, we clearly have
P(εz) =

∑
A⊆[n]

εAPA(z).

As we can see from the expression above, P(εz) regarded as a polynomial on ε is tetrahedral. Also, we
may write P(εz) as the sum of its homogeneous components (as a function of ε). As we have already
mentioned, each A considered has even cardinality between 0 andm. So, if we define

Ak = {A ⊆ [n] : |A| = 2k},

we can write

P(εz) =

m/2∑
k=0

∑
A∈Ak

εAPA(z). (38)

Note that, whenever i belongs to some A, the exponents of zi are odd for every monomial in PA(z).
Also, since m is even, given α ∈ ΛA, we have that

∑
i∈A αi must be even and greater than |A| = 2k.

We then define
ΛA,l = {α ∈ ΛA :

∑
i∈A

αi = 2l},

which allows us to write, for A ∈ Ak,

PA(z) =

m/2∑
l=k

∑
α∈ΛA,l

xαz
α =

m/2∑
l=k

PA,l(z). (39)

Note that PA,l(z) is the 2l-homogeneous component of the polynomial PA(z) regarded as a function of
the variables zi with i ∈ A (that is, the variables with odd exponents). In other words, the polynomial
PA,l(z) consists of the monomials xαzα of PA(z) where the sum of the odd exponents equals 2l.
To conclude our description of P, for α ∈ ΛA define exponents β, γ and 1A by

βi =

{
0 if i ∈ A
αi
2 if i ∈ Ac

, γi =

{
αi−1
2 if i ∈ A

0 if i ∈ Ac
and 1A,i =

{
1 if i ∈ A
0 if i ∈ Ac

,

for every 1 ≤ i ≤ n. Note that α = 2β+ 2γ+ 1A where β ∈ Nn0 is supported in Ac and γ, 1A ∈ Nn0 are
supported in A. Moreover, for α ∈ ΛA,l we have

|β| =

n∑
i=1
βi =

∑
i∈Ac

αi
2

=
|α|

2
−
∑
i∈A

αi
2

=
m

2
− l,

and

|γ| =

n∑
i=1
γi =

∑
i∈A

αi − 1
2

=
2l− |A|

2
= l− k.
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Denote the set of all the exponents β supported in Ac with |β| = m/2 − l by BA,l and the set of all the
exponents γ supported in A with |γ| = l− k by ΓA,l. We get

PA,l(z) =
∑

α∈ΛA,l

xαz
α =

∑
γ∈ΓA,l

∑
β∈BA,l

x2β+2γ+1Az
2β+2γ+1A =

∑
γ∈ΓA,l

 ∑
β∈BA,l

x2β+2γ+1Az
2β

 z2γ+1A .

(40)

Gathering (38), (39) and (40) we get the full description of P(εz) proving the following lemma.

Lemma 4.4. For an evenm ∈ N, anm-homogeneous polynomial in n variables

P(z) =
∑
|α|=m

xαz
α,

and ε ∈ {−1, 1}n we have

P(εz) =

m/2∑
k=0

∑
A∈Ak

m/2∑
l=k

∑
γ∈ΓA,l

∑
β∈BA,l

x2β+2γ+1AεAz
2β+2γ+1A .

With the same argument we may deduce a similar formula when m is odd. For every m-homogeneous
polynomial in n variables P and ε ∈ {−1, 1}n, we get

P(εz) =

(m−1)/2∑
k=0

∑
A∈A ′k

(m−1)/2∑
l=k

∑
γ∈Γ ′A,l

∑
β∈B ′A,l

x2β+2γ+1AεAz
2β+2γ+1A ,

where

A ′k = {A ⊆ [n] : |A| = 2k+ 1},

Γ ′A,l =
{
γ ∈ Nn0 :

∑
i∈A

γi = l− k and γi = 0 for i ∈ Ac
}
, and

B ′A,l =
{
β ∈ Nn0 :

∑
i∈A

βi = (m− 1)/2− l and βi = 0 for i ∈ A
}
.

We are now in position to give the proof of Theorem 3.1.

Proof of Theorem 3.1. First notice that (b)⇒ (a) follows immediately by taking m = 1 in (b). Next we
show that (a)⇒ (c). Let {xA : A ⊆ [n], |A| ≤ m} be a family of vectors in X. Applying Lemma 4.1 to
the subfamilies {xA : A ⊆ [n], |A| = k} for each 0 ≤ k ≤ m and denoting C = 41/qCq(X) we get

∑
A⊆[n]

‖xA‖q =

m∑
k=0

∑
A⊆[n]

|A|=k

‖xA‖q ≤
m∑
k=0

Cqk
∫
Tn

∥∥∥∑
A⊆[n]

|A|=k

xAzA

∥∥∥qdz.
Using Lemmas 4.2 and 4.3 we obtain

∑
A⊆[n]

‖xA‖q ≤
m∑
k=0

((1+
√
2)C)qkE

∥∥∥∑
A⊆[n]

|A|=k

xAεA

∥∥∥q ≤ Bm m∑
k=0

((1+
√
2)C)qkE

∥∥∥ ∑
A⊆[n]

xAεA

∥∥∥q

≤ (m+ 1)((1+
√
2)BC)qmE

∥∥∥ ∑
A⊆[n]

xAεA

∥∥∥q ≤ (20BCq(X))qmE
∥∥∥ ∑
A⊆[n]

xAεA

∥∥∥q.
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This gives (16) and completes the argument.
It only remains to show that (c)⇒ (b). As a first step we show that the inequality holds for homogeneous
polynomials. Let Cε be the constant provided by (c) and B the constant in Lemma 4.3. Our aim is to
show that if C = max{C2

ε, B
4}, then( ∑

|α|=m

‖xα‖q
) 1

q ≤ Cm
( ∫

Tn

‖P(z)‖qdz
) 1

q

(41)

for every m-homogeneous polynomial P(z) =
∑

|α|=k xαz
α of n variables. We proceed by induction

on m. The case m = 1 is the well known equivalence between Rademacher and Steinhaus averages,
which is a particular case of Lemma 4.2. We fix some m ≥ 2 and suppose that (41) holds for every
k-homogeneous polynomial with k < m. We may assume thatm is even (being the case whenm is odd
completely analogous). Fix anm-homogeneous polynomial in n variables

P(z) =
∑
|α|=m

xαz
α.

Since our goal involves estimating an integral of P(z), we take advantage of the rotation invariance and
work with P(εz), but this requires some preparation. For a fixed 1 ≤ k ≤ m/2 and A ⊆ [n] with
|A| = 2k, take k ≤ l ≤ m/2 and define PA and PA,l as in (39). Intuitively, PA,l detaches the zi’s with
odd exponent from the zi’s with even exponent. This enables us to use the inductive hypothesis twice
(once for the odd and once for the even part) to assemble the polynomials PA,l. Let TAc

denote |Ac|

copies of the torus indexed in Ac. We get∑
γ∈ΓA,l

∑
β∈BA,l

‖x2β+2γ+1A‖
q ≤

∑
γ∈ΓA,l

Cq(m/2−l)
∫
TAc

∥∥∥ ∑
β∈BA,l

x2β+2γ+1Az
β
∥∥∥qdz

≤ Cq(m/2−l)
∫
TAc

∑
γ∈ΓA,l

∥∥∥ ∑
β∈BA,l

x2β+2γ+1Az
β
∥∥∥qdz

= Cq(m/2−l)
∫
TAc

∑
γ∈ΓA,l

∥∥∥ ∑
β∈BA,l

x2β+2γ+1Az
2β
∥∥∥qdz,

where the last step follows by a change of variables. Since β is supported in Ac, the variables zi with
i ∈ A do not appear in the expression above. So, we are still able to introduce them by applying the
inductive hypothesis again. We obtain∑

γ∈ΓA,l

∑
β∈BA,l

‖x2β+2γ+1A‖
q

≤ Cq(m/2−l)Cq(l−k)
∫
Tn

∥∥∥ ∑
γ∈ΓA,l

( ∑
β∈BA,l

x2β+2γ+1Az
2β
)
zγ
∥∥∥qdz

= Cq(m/2−k)
∫
Tn

∥∥∥ ∑
γ∈ΓA,l

( ∑
β∈BA,l

x2β+2γ+1Az
2β
)
z2γ
∥∥∥qdz

= Cq(m/2−k)
∫
Tn

∥∥∥z1A ∑
γ∈ΓA,l

( ∑
β∈BA,l

x2β+2γ+1Az
2β
)
z2γ
∥∥∥qdz

= Cq(m/2−k)
∫
Tn

‖PA,l(z)‖qdz,

(42)

where in the last step we used (40). Since PA,l is the 2l-homogeneous component of PA regarded as a
function depending only on the variables zi with i ∈ A, we have∫

Tn

‖PA,l(z)‖qdz ≤
∫
Tn

‖PA(z)‖qdz. (43)

21



From (42) and (43), we deduce

m/2∑
l=k

∑
γ∈ΓA,l

∑
β∈BA,l

‖x2β+2γ+1A‖
q ≤ (

m

2
− k)Cq(m/2−k)

∫
Tn

‖PA,l(z)‖qdz

≤ mCq(m/2−k)
∫
Tn

‖PA(z)‖qdz.

Finally we deal with P(εz) using (41) and (38). Taking Lemma 4.4 into consideration (and the definition
of C) we get

∑
|α|=m

‖xα‖q =

m/2∑
k=1

∑
A∈Ak

m/2∑
l=k

∑
γ∈ΓA,l

∑
β∈BA,l

‖x2β+2γ+1A‖
q

≤ m
∫
Tn

m/2∑
k=1

Cq(m/2−k)
∑
A∈Ak

‖PA(z)‖qdz

≤ m
∫
Tn

m/2∑
k=1

Cq(m/2−k)C2qk
ε E

∥∥∥ ∑
A∈Ak

εAPA(z)
∥∥∥qdz

≤ mCqm/2
∫
Tn

m/2∑
k=1

E
∥∥∥ ∑
A∈Ak

εAPA(z)
∥∥∥qdz.

Using now Lemma 4.3, we have (note thatm2 ≤ Bqm for everym, since B > 2 )

∑
|α|=m

‖xα‖q ≤ mCqm/2Bqm
∫
Tn

m/2∑
k=1

E‖P(εz)‖qdz

≤ m2Cqm/2BqmE
∫
Tn

‖P(εz)‖qdz ≤ Cqm
∫
Tn

‖P(z)‖qdz .

Hence (41) (and then (15)) holds for everym-homogeneous polynomial. To finish the argument, take an
arbitrary polynomial of degreem

P(z) =
∑
|α|≤m

xαz
α.

For 0 ≤ k ≤ m, denote by Pk its k-homogeneous projection. We have

∑
|α|≤m

‖xα‖q =

m∑
k=0

∑
|α|=k

‖xα‖q ≤
m∑
k=0

Cqk
∫
Tn

‖Pk(z)‖qdz ≤
m∑
k=0

Cqk
∫
Tn

‖P(z)‖qdz

≤ (m+ 1)Cqm
∫
Tn

‖P(z)‖qdz ≤ (2C)qm
∫
Tn

‖P(z)‖qdz.

This concludes the argument.

We end this paper with a few comments regarding the proof of Theorem 3.2. In order to get Theorem 3.1
we used Lemmas 4.1, 4.2, 4.3 and 4.4. For the proof of Theorem 3.2 we essentially have to reverse all
the inequalities. We use Lemmas 4.2 and 4.4 in the same way as before whereas Lemma 4.3 is simply
replaced by the triangular inequality. Regarding Lemma 4.1 we replace it by the following analogous
result.
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Lemma 4.5. Let X be a Banach space X of type 1 ≤ p ≤ 2. Then for every m,n ∈ N and every family
{xA : A ⊆ [n], |A| = m} ⊆ X we have( ∫

Tn

∥∥∥∑
A

xAzA

∥∥∥pdz) 1
p

≤ (4Tp(X))m
(∑

A

‖xA‖p
) 1

p
.

Sketch of the proof. This is deduced by induction on m. Proceeding as in Lemma 4.1 for the inductive
step we have( ∫

Tn

∥∥∥ ∑
A⊆[n]
|A|=m

xAzA

∥∥∥pdz) 1
p ≤ 4(

n
k

) ∑
B⊆[n]
|B|=k

( ∫
Tn

∥∥∥∑
A1⊆B
|A1|=1

∑
A2⊆Bc

|A2|=m−1

xA1∪A2zA1zA2

∥∥∥pdz) 1
p
.

Applying the type p inequality and the inductive hypothesis we get( ∫
Tn

∥∥∥ ∑
A⊆[n]
|A|=m

xAzA

∥∥∥pdz) 1
p ≤ (4Tp(X))m

1(
n
k

) ∑
B⊆[n]
|B|=k

(∑
A1⊆B
|A1|=1

∑
A2⊆Bc

|A2|=m−1

‖xA1∪A2‖
p
) 1

p
.

≤ (4Tp(X))m
1(
n
k

) ∑
B⊆[n]
|B|=k

( ∑
A⊆[n]
|A|=m

‖xA‖p
) 1

p

= (4Tp(X))m
( ∑
A⊆[n]
|A|=m

‖xA‖p
) 1

p
.
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