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Identifying patients with high risk of hip fracture is a great challenge in osteoporosis clinical assessment. Bone Mineral Density
(BMD) measured by Dual-Energy X-Ray Absorptiometry (DXA) is the current gold standard in osteoporosis clinical
assessment. However, its classification accuracy is only around 65%. In order to improve this accuracy, this paper proposes the
use of Machine Learning (ML) models trained with data from a biomechanical model that simulates a sideways-fall. Machine
Learning (ML) models are models able to learn and to make predictions from data. During a training process, ML models learn
a function that maps inputs and outputs without previous knowledge of the problem. The main advantage of ML models is that
once the mapping function is constructed, they can make predictions for complex biomechanical behaviours in real time.
However, despite the increasing popularity of Machine Learning (ML) models and their wide application to many fields of
medicine, their use as hip fracture predictors is still limited. This paper proposes the use of ML models to assess and predict hip
fracture risk. Clinical, geometric, and biomechanical variables from the finite element simulation of a side fall are used as
independent variables to train the models. Among the different tested models, Random Forest stands out, showing its capability

to outperform BMD-DXA, achieving an accuracy over 87%, with specificity over 92% and sensitivity over 83%.

1. Introduction

The continuous increase in life expectancy also raises the
incidence of problems related to the weakening of the body
due to age. Among the diseases and medical conditions that
afflict the countries of the first world, next to the cardiovascu-
lar and nervous system ones, but very underestimated in
comparison, there are the problems related to bones. In par-
ticular, one of the biggest problems for people over 65 is hip
fracture due to osteoporosis. Osteoporosis is a skeletal disease
primarily characterized by reduced bone mass [1].
According to data from the International Osteoporosis
Foundation (IOF), approximately 1.6 million hip fractures
occur around the world each year, and in 2050, this number
will increase to figures between 4.5 and 6.3 million, due
mainly to the aging population [2]. In addition, it is also esti-

mated that about 75% of all fractures occur in women, due to
the accumulation of certain risk factors that are linked to
gender. In the case of Spain, in 2015, this disease was suffered
by 2.2 million women and 0.6 million men, which is practi-
cally 1% of the current Spanish population. According to
the IOF, it is also estimated that around 330,000 fragility frac-
tures occurred in this country in 2017.

The gold standard for osteoporosis diagnosis and hip
fracture risk assessment is currently the Bone Mineral
Density (BMD), which is measured by Dual-Energy X-Ray
Absorptiometry (DXA) [3]. However, its ability for discrim-
ination between fractured and control cases is limited. BMD
distributions for aged people of both groups overlap to a large
extent, reducing the classification accuracy to about 65% [4].
Alternative methods have been proposed to calculate the risk
of fracture as FRAX and the Garvan [5, 6]; they are statistical
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models based on clinical variables in which patient data are
compared to a large database from the USA population that
includes many clinical features: age, gender, previous frac-
tures, etc. The classification accuracy is about 70% [7], which
is not a significant improvement compared to BMD. Another
alternative method is measuring the volumetric distribution
of the BMD (vBMD) by quantitative computed tomography
QCT, which is considered to be more sensitive for osteo-
porosis [8]. However, although QCT allows to obtain the
three-dimensional geometry of the bone and provides the
volumetric distribution of BMD, QCT is not integrated
in the clinical routine because of its higher cost, processing
time, and radiation exposure [9].

Other radically different approaches are the data-based
strategies, which consist in training a Machine Learning
(ML) model from simulations (e.g., obtained from finite ele-
ment methods (FEM)) or directly from clinical data. ML
algorithms are able to automatically learn nonlinear map-
pings between several inputs (clinical data, biomechanical
data, etc.) and several outputs (e.g., fracture risk factors).
Although the training process is relatively slow, once trained,
these algorithms provide extremely quick inference times,
therefore fulfilling the requirement to predict solutions in
real time [10]. This situation opens a possibility to use FEM
to generate data off-line that ML models can use to estimate
a function that maps inputs (mechanical properties, geome-
try mesh, boundary conditions, etc.) and outputs (nodal dis-
placements, stresses, strains, etc.) [11] to provide valuable
fracture risk predictors in real time.

Machine Learning (ML) has become a robust and rela-
tively usual approach to use in dealing with complex data
in order to extract unexpected risk factors in the field of pre-
ventive medicine [12]. However, the literature only shows a
few studies related to the assessment of the osteoporosis hip
fracture. One of the mentioned works can be found in [13].
In this work, a clustering analysis for identifying subgroups
of osteoporosis Danish patients based on similarities of traits
was carried out. Nine patient clusters of different fracture
risks were identified making use of a dataset made up of
10,775 subjects. Four clusters represented postmenopausal
women with high-fracture risk profiles of low BMD and
between-group differences of poor versus good antiresorptive
treatment compliance. One cluster formed by 9% of the sub-
jects was particularly worrisome due to the poor treatment
compliance and the very low BMD. Three clusters represent-
ing the majority were women with average-fracture risk pro-
files. Finally, two clusters of perimenopausal and very young
women represented low-fracture risk subjects with high
BMD and low comorbidity. The authors claimed that for
patients older than 60 years a clear distinction between
groups of high-fracture risk and average-fracture risk was
achieved.

Another remarkable work can be found in [14], where
artificial neural networks (ANN) were used to predict hip
fracture. The data included information about age, BMD,
clinical factors, and lifestyle factors which had been obtained
from a longitudinal study that involved 1167 women aged 60
years and above from Dubbo, Australia. The women were
followed up for up to 10 years, and during the period, the
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incidence of new hip fractures was ascertained, although only
90 sustained a hip fracture. Two models were developed: the
former was produced by combining only lumbar spine and
femoral neck BMD and the latter non-BMD factors, with
accuracies of 82% and 84%, respectively. A third model was
produced by combining BMD and non-BMD factors, reach-
ing an accuracy of 87%. In summary, the authors showed that
ANNSs were able to predict hip fracture more accurately than
other existing statistical models. However, in spite of the
good results, no mechanical attributes were included into
the models; as they are considered the main responsible fac-
tors for bone failure, this might limit the accuracy of the
model if applied to a different dataset.

The mechanical behaviour of the femur during a side-
ways fall is the main responsibility of hip fracture. In fact,
the comparison of the impact load at the fall with the femur
strength will determine the bone failure. It is true that BMD
is the main contributor to the femur strength, but most of
the statistical models do not carry out this comparison to pre-
dict hip fracture. Obtaining the mechanical characteristics of
the bone has been commonly addressed in the literature by
finite element (FE) approaches. QCT-based models construct
a biomechanical model from the 3D geometry of the bone
and the 3D volumetric distribution of the BMD, which is
used to obtain the material properties of the bone [15, 16].
However, even though they are pretty accurate models, its
hard implementation, limitations, and computational cost
make them unfeasible to be used in clinical routine. In con-
trast, FE models based on DXA construct the biomechanical
model from a 2D representation of the bone and a 2D distri-
bution of the BMD. Therefore, its implementation is easier
and their computational cost is lower. In addition, they are
very attractive for clinical practice since they do not interrupt
the current clinical workflow. These models have provided
estimates of the bone strength and have increased the classi-
fication accuracy to about 80% [17-19]. Furthermore, frac-
ture risk and Hip Structural Analyses (HSA) derived from
both QCT and DXA-based models seem to be significantly
correlated [20].

There are some studies that have used ML techniques
combining both clinical data and mechanical data. Nishiyama
et al. [21] performed patient-specific QCT-based FE analyses
under multiple loading conditions to feed a Support Vector
Machine (SVM) classifier with a radial basis kernel to address
uncertainty in the fall configuration. Jiang et al. [22] investi-
gated the combination of clinical and FE-derived mechanical
attributes by means of SVM using a fully parameterized
three-dimensional FE model that was created using the given
values of geometric attributes; however, this model was
global instead of patient-specific. A recent study used high-
resolution Magnetic Resonance Imaging- (MRI-) derived
data to compare 15 ML classifiers at predicting any kind of
osteoporotic fracture [23]; the data comprised bone tissue
elasticity and topology of the proximal femur at specific vol-
umes of interest computed with microfinite elements;
although this study gave some insight into the relevance of
microstructural parameters, the dataset was small and it
was not specially focused on hip fracture. It is important to
notice that in all these studies the authors did not use a FE
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model including patient-specific data describing geometry or
BMD distribution. Our conjecture is that including mechan-
ical attributes into a ML model may enhance hip fracture
prediction rather than using clinical attributes alone.

In the field of osteoporosis and hip fracture risk assess-
ment, supervised Machine Learning has been scarcely
applied in conjunction with computationally driven mechan-
ical attributes. Our group recently published a study where
supervised Machine Learning was applied in conjunction
with clinical and computationally driven mechanical attri-
butes [24]. A total number of 137 postmenopausal women
aged 81.4 +6.95 were included in the study and separated
into a fracture group (n =89) and a control group (1 =48).
A semiautomatic and patient-specific DXA-based FE model
was used to generate mechanical attributes describing the
geometry, impact force, bone structure, and mechanical
response of the bone after a sideways fall. After preprocessing
the whole dataset, 19 attributes were selected as predictors.
SVM with radial basis function (RBF), Logistic Regression
(LR), Shallow Neural Networks, and Random Forests (RF)
were tested through a comprehensive validation procedure
to compare their predictive performance. The results showed
that SVM generated the best-learned algorithm for both
experimental setups, when clinical and mechanical attributes
were included and also when only clinical attributes were
taken into account. The first setup generated the best-
learned model outperforming the accuracy of BMD by
14pp (79%).

This paper enhances the study presented in [24] by mak-
ing use of clinical, geometric, and biomechanical variables of
the previous database followed by a relevance ranking to find
out which variables are the most important ones for the
problem. With the selected variables, different ML models
were trained. The results show that RF is the best option with
an accuracy over 87%, specificity over 92%, and sensitivity
over 83%. These values are much better than the current
BMD clinically used whose classification accuracy is around
65% and also better than the accuracy of our previous work
that was 79%. On top of that, the use of data generation tech-
niques is also remarkable to balance the number of samples
in the two classes that were biased originally.

The rest of the paper is outlined as follows. Section 2
presents the methods as well as the characteristics of the
dataset and the process to select attributes. The achieved
results are shown in Section 3, ending up the paper with
the concluding remarks and our proposals for the future
research in Section 5.

2. Material and Methods
2.1. Biomechanical Model

2.1.1. Study Population. The database was the same used in
[24]. A total number of 137 patients were included in the
study with a mean age of 81.4 + 6.95 years. The inclusion cri-
teria comprised postmenopausal women, older than 50 years,
with clinical risk factors related to osteoporosis. Women
showing evidence of hip fracture were recruited after being
admitted to the emergency room of Hospital Mutua Terrassa

(Terrassa, Spain). A densitometry exploration was indicated
for each subject.

The scans were performed at CETIR Medical Group,
after informed consent was obtained. The time between frac-
ture and DXA acquisition was less than two weeks. DXA
scans were taken on the opposite femur to the fractured
one using GE Healthcare Prodigy Advance bone densitome-
ter (GE Healthcare, Madison, WI, USA). Subjects were
placed on the DXA table in the prone position, with feet par-
allel to the table and a leg internal rotation of 25-30°, accord-
ing to the manufacturer’s recommendations. The image pixel
size was 0.6 mm X 1.05 mm. Patients were separated into a
fracture group (n=289), with fall-related incident hip frac-
ture, and a control group (n = 48). Within the fracture group,
45 accounted for a trochanteric fracture and 44 for a neck
fracture.

2.1.2. Patient-Specific FE Model. A 2D patient-specific FE
model was created aimed at obtaining the mechanical attri-
butes to be used in the ML models [24]. For each DXA scan,
the proximal femur was segmented manually (Figure 1).
Regions of interests (ROIs) defining the trochanteric and
neck region were defined semiautomatically. The inputs
required for the construction of the FE model were the seg-
mented image of the femur, along with the basic clinical
information of the patient (height, weight, and gender).

After the segmentation, the process does not require
human interaction. The femur shaft is rotated 10 degrees to
the physiological configuration. Pads are placed covering
the femoral head and the greater trochanter to avoid local
damage due to the applied boundary conditions [25, 26].
The femur, trochanteric pad, and femoral head pad are
meshed using TetGen [27]; following a convergence analysis,
the mesh size was defined with approximately 60,000 ele-
ments, depending on the subject. The model was built
under the assumptions of plane strain and linear elasticity
behaviour.

The bone material properties were calculated from the
BMD per pixel, using the empirical equations obtained in
[28-30]. The Poisson ratio was set to 0.3 [31]. Based on pre-
vious studies involving mechanical tests [32] and FE models
[33], the PMMA (Polymethylmethacrylate) material proper-
ties, 1.5 GPa for the Young modulus and 0.37 for the Pois-
son’s ratio, were used for the pads. The heterogeneous
material distribution obtained for the Young’s modulus is
shown in Figure 2(a). This figure shows how the elastic mod-
ulus varies according to the BMD distribution from the
femur shown in Figure 1.

To obtain the mechanical attributes, a sideway fall was
simulated with the FE patient-specific model for each patient.
The open-source FE package FEBio [34] was used to obtain
the numerical solution. Regarding the boundary conditions,
the displacement of the nodes at the distal end of the femoral
shaft was totally restricted, and the medial displacement
of the nodes at the femoral head pad was prevented.
Figure 2(b) specifies the location of the applied loads as well
as the location of the boundary conditions. The load was
applied to the greater trochanter through its pad, represent-
ing the fall-related impact force [35, 36]. This load was
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FIGURE 1: Original image from the iDXA densitometer database enhanced by a Gaussian filter (a). Manually segmented image (b).
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FIGURE 2: Material properties, loading, and boundary conditions automatically generated.

calculated with the mass-spring impact model of [37], whose
input variables were the weight, the height, and the gender of
the patient. Once the peak impact force (FPK) was obtained,
the attenuated impact force (FP) was calculated subtracting
the attenuation force: FAT =71-STH, based on previous
studies regarding the effect of soft tissue thickness (STH)
[38] and correlations between body mass index (BMI) and
STH [39]. Finally, the applied load pressure over the hip
(HP) was computed dividing the attenuated impact force
by the length of the greater trochanter pad (b) and a
subject-specific thickness (f) [24].

2.2. ML Models

2.2.1. Inputs to the ML Models. Five groups of attributes
where collected for each patient [24]: clinical, geometrical,
fall-related, bone tissue-related, and that derived from the
FE analysis (FEA). Table 1 shows the clinical attributes
obtained from the clinical report; mean values and standard
deviations (SD) are provided for each attribute and both
groups (fractured and control).

The general scheme to obtain the geometrical attributes is
shown in Figure 3. This figure graphically describes the geo-
metrical attributes to introduce in the model. These attri-
butes were obtained through a morphometric analysis
performed on the proximal femur geometry [19]. Their
values are shown in Table 2.

The fall-related attributes computed for each patient are
shown in Table 3. Regarding to bone tissue structural proper-
ties, the cortical bone was defined as having an apparent den-
sity greater than 1.0 g/cm3 [33]. The percentage of the
trabecular bone (TB) and cortical bone (CT) within the
femur bone was estimated using this threshold as well as
the average Young’s modulus within each tissue (TBE and
CTE). These values are shown in Table 4.

From the FE linear simulation of the side-fall performed
with FEBio, several mechanical attributes were selected and
they are shown in Table 5; some of them were computed to
define the failure of the whole bone as the load-to-strength-
ratio (LSR) and the femoral strength (FS), following the crite-
rium of [15]. LSR was defined as the minimum ratio in a con-
tiguous area of 9 mm?. This area comprised the elements with
the highest ratios between the Principal Compressive Strain
and the Compressive Yield Strain. The most common sites
for femur fracture are the neck and the trochanteric regions.
Because of this, mechanical attributes at each region were
computed (index N is used for the variables at neck region,
and index T for the variables at the trochanteric region).
The volume weighted average value of maximum and mini-
mum principal stresses (S; and S;), the maximum and min-
imum principal strains (E; and E;), the major principal
stress (MPStress), the major principal strain (MPStrain),
the strain energy density (SED), and the fracture risk index
(FRI) were computed. MPStress and MPStrain were defined
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TaBLE 1: Clinical attributes.

Clinical attributes

Attribute Description
Age (years)
Height (cm)
Weight (kg)
BMI (mm)

BMD (g/cm?)

Patient’s age
Patient’s height
Patient’s weight

Body mass index

Total Bone Mineral Density

Fractured (mean + SD) Control (mean + SD)

81.39+6.98 82.56 £ 3.88
152.67 £7.09 151.75£5.09
63.61 £14.03 65.21 £10.01
27.28+5.70 28.31 +4.02
0.70+0.13 0.8+0.1

FIGURE 3: Graphical description of geometrical attributes [24].

as the maximum eigenvalue in the stress and strain tensor,
respectively. FRI was computed as the weighted average ratio
between the Von Mises stress and the yield stress in the
region.

To build the model, the cohort (137 patients) was divided
into training (70% of the data) and test (the remainder 30%)
with an equal distribution of fractured and healthy patients.
Since the number of subjects used for training might be
insufficient to obtain conclusive results, Synthetic Minority
Over-sampling Technique (SMOTE) was used [40]. The goal
of using SMOTE is two-fold: the first one is to increase the
size of the dataset so that models can be trained with a more
meaningful information and have more parameters without
overfitting the data, and the second one is to balance both
classes (fractured and control). Classification models may
worsen their performance when dealing with unbalanced
classes; hence, by creating synthetic samples, both classes
can have a similar number of samples. In particular, the
number of samples was increased up to 400 distributed in
200 of healthy and 200 of fractured samples. For the sake of
reliability, the synthetic samples produced by SMOTE were
only applied to the training set in order to ensure that poten-
tially incorrect synthetic points did not affect the models
eventually obtained.

2.2.2. Attribute Selection Process. After a process of attribute
normalisation, the selection of the most significant attributes
was performed in two steps: Principal Component Analysis
(PCA) and correlation analysis. Table 6 shows the percentage
of variance included in the 39 components of the PCA. Thus,

the first principal component (with the 91.88% of the accu-
mulated variance) is clearly dominant compared to the rest.
Moreover, adding the second and the third components, we
can represent 99% of the total variance of the dataset. Since
PCA is a linear combination of all the attributes, it is neces-
sary to analyse the contribution of each one to the linear
combination. As most of the attributes have very low weights
(between 107 and 107'%), their contribution can be depre-
cated. Those principal attributes with significant contribu-
tion (weights =1) to the first six principal components are
the following:

(i) PCI1: TB and CT

(ii) PC2, PC3, and PC4: BMI, STH, FPK, FAT, and FP
(iii) PC5: BMD, HP, FRI_N, and FRI_T
(iv) PC6: BMD, HP, TBE, LSR, FRI_N, and FRI_T

Focusing on the three first principal components that, as
mentioned above, contain 99% of the variance, only seven
make a contribution:

(i) TB: ratio of trabecular bone
(ii) CT: ratio of cortical bone
(iii) BMI: body mass index
(iv) STH: soft tissue thickness
(v) FPK: peak impact force
(vi) FAT: force of attenuation

(vii) FP: attenuated impact force

Additionally, to the PCA Analysis, a correlation analysis
was performed: Pearson’s correlation index and Spearman’s
Rank correlation index were obtained. Figure 4 shows Pear-
son’s correlation index of all 39 attributes. The coloured
squares with ones inside mark the pair of attributes with cor-
relation higher than 0.9; all except one of the high-correlated
attributes were hence removed in order to reduce the dimen-
sionality of the problem.

Pearson’s correlation is based on two hypotheses: the
populations are normally distributed and the subpopulations
do not have the same variance. If at least one of the two
hypotheses fails, Pearson’s index should not be applied. To
avoid these limitations, we have also made use of Spearman’s
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TaBLE 2: Geometrical attributes.

Geometrical attributes
Attribute Description Fractured (mean + SD) Control (mean + SD)
NW (mm) Neck width 29.29 +2.02 29.68 +2.32
HAL (mm) Hip axis length 89.74 + 6.31 88.98 +5.48
NSA (°) Neck-shaft axis angle 126.48 £ 6.11 124.21 +6.24
SAL (mm) Shaft axis length 83.16 +5.34 85.79+5.19
ITW (mm) Intertrochanteric width 50.29 +3.12 50.15+3.32
STW(mm) Subtrochanteric width 27.65+£2.17 26.44+1.52
FA (mm?) Proximal femur area 4580.09 + 490.35 4574.10 + 372.61

TaBLE 3: Fall-related attributes.

Fall-related attributes
Attribute Description Fractured (mean + SD) Control (mean + SD)
STH (mm) Soft tissue thickness 30.43+13.43 32.85+9.42
FPK (N) Peak impact force 5206.08 + 641.10 5284.01 + 455.86
FAT (N) Attenuation force 2160.27 + 947.06 2332.19 + 668.80
FP (N) Impact force 3045.81 +518.10 2951.82 +371.04
HP (MPa) Hip pressure 6.74+1.14 6.46 +0.87

TABLE 4: Attributes related to the bone tissue.
Bone tissue related attributes

Attribute Description Fractured (mean + SD) Control (mean + SD)
TB (%) Percentage of trabecular bone 86.94 +9.04 82.10 + 8.92
TBE (GPa) Average Young’s modulus of trabecular bone 3.59+0.53 3.85+0.39
CT (%) Percentage of cortical bone 13.06 +9.04 17.90 + 8.92
CTE (GPa) Average Young’s modulus of cortical bone 10.89 + 1.96 11.57 £ 1.00

correlation that basically translates the values into ranges
before calculating the correlation coefficients. As in the previ-
ous case, Figure 5 shows the corresponding heat map.
Figure 6 joins Spearman’s and Pearson’s correlations in a sin-
gle visualisation.Starting from the seven variables selected by
the PCA, our proposal is to include some additional features
as the result of the correlation analysis. In particular, we con-
sidered those variables which correlated with (at least) four
other attributes not previously included by the PCA. The col-
umns of Table 7 show the most highly-correlated variables
not previously included by the PCA and the rows those fea-
tures linked to them with a correlation higher than 0.9
(marked with the check sign). These are HP, S3_N, FRI_N,
and FRI_T. It is remarkable that only four features can
include most of the information stored in 18 variables.

A final analysis was done for those features already
selected by the PCA but with a high interdependence
according to the corresponding correlation coefficients,
namely, BMI, FAT, and STH. In particular, FAT is calcu-
lated as follows:

FAT =71 x STH g/cm?), (1)

while STH is (for female patients) as follows:
STH = 2.3451 - BMI — 33.4440(g/cm”), (2)
And hence,
FAT =71-(2.3451 - BMI - 33.4440) (g/cm®).  (3)

Due to this high interdependence, FAT and STH were
removed because BMI is more easily and routinely collected.
Besides, it can also be observed that TB and CT are linked by
a strong correlation. In fact,

CT+TB=1. (4)

Therefore, only one attribute is enough to include the
information provided by the two. The variable TB was even-
tually selected. Summing up, eight attributes out of 39 were
finally used to build the ML models. These eight attributes
actually included information related to 26 out of the 39
attributes according to the correlation analysis (Table 8).



Applied Bionics and Biomechanics 7

TaBLE 5: Attributes obtained from the FE analysis of the side fall.

FE analysis attributes

Attribute Description Fractured Control

N = neck; T = trochanter (mean + SD) (mean + SD)
LSR Load-to-strength-ratio 0.98 £0.65 0.63+0.28

FS (N) Femoral strength 4421.34 + 2553.70 5285.70 £ 1718.72
S1_N (MPa) Maximum principal stress 1.49+0.40 1.46 £0.36
S3_N (MPa) Minimum principal stress -3.88+0.77 -3.81+0.68

E1_N (ustrain)

E3_N (pstrain)
MPStress_N (MPa)
MPStrain_N (ustrain)
SDE_N (J/m®)

S1_T (MPa)

S3_T (MPa)

E1_T (ustrain)

E3_T (ustrain)
MPStress_T (MPa)
MPStrain_T (ustrain)
SDE_T (J/m’)

FRI_N (ustrain)
FRI_T (ustrain)

Maximum principal strain
Minimum principal strain
Major principal stress
Major principal strain
Strain energy density
Maximum principal stress
Minimum principal stress
Maximum principal strain
Minimum principal strain
Major principal stress
Major principal strain
Strain energy density
Fracture risk index

Fracture risk index

1042.10 + 430.64

816.49 £180.71

—2250.30 £ 1016.03 —-1689.79 + 400.75

5.15+1.07 5.12+0.94
2353.53 £1034.01 1784.85 +414.42
7473.06 £ 4113.33 5669.81 +1903.91
0.40+0.13 0.38£0.11
-2.94+£0.55 -2.84+0.49
689.95 + 363.99 499.23 + 124
—1457.57 £ 875.67 —1105.74 +273.43
3.24+0.59 3.12+0.52

1571.41 + 883.43
3536.94 +2194.64
0.32+0.14
0.21 £0.12

1122.79 £ 276.95
2540.23 + 896.58
0.24 £ 0.06
0.15+0.04

TABLE 6: Percentage of variance included in the 39 components of
the PCA.

PC1 pPC2 PC3 PC4 PC5 PCe6 PC7-39
91.88% 528% 2.16% 0.38% 0.26%  0.04% 0%

Heat map for correlation greater than 0.9
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than 0.9.
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of 0.9.

2.2.3. Fracture Discrimination. To build the classifier, we
considered some of the most popular ML approaches: LR,
SVM, Decision Trees (DT) and RF. All the models were
trained considering that the positive class—coded as 1—cor-
responds with fractured patients and the negative class—-
coded as 0—with control samples. The goodness of the
models was assessed by means of sensitivity (Se), specificity
(Sp), and accuracy (Acc).
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threshold is not reached.

LR was obtained after 1000 trials, randomly selecting the
training and test sets. After this random selection, SMOTE
was applied to the training set to increase the number of
training samples. We also analysed if increasing the number
of predictive attributes could improve the prediction results.
The features that were added for this analysis were NW,
NSA, FA, and SAL that were the lowest correlated attributes
not previously considered. A clear degradation of the results
was observed when including even more attributes.

As the data set is considerably sparse, SVM could be a
good option to model it. Different kernels were considered:
linear; linear with posterior probability regions; sigmoid; sig-
moid with posterior probability regions; Gaussian; Gaussian
with posterior probability regions; and Bayesian with posterior
probability regions. As in the case of LR, each SVM was run
1000 times with random selection of training and test sets.

With respect to DT, the same experimental setup was
taken into account. The Gini score was used as a splitting cri-
terion. Finally, RF also followed the same training procedure.
Different architectures were considered trying to avoid over-
fitting by limiting the number of trees and their depth.

3. Results

The mean values, standard deviations, and best result among
the 1,000 runs are shown in the tables describing the perfor-
mance of the different models; all results correspond with the
test sets. The eight attributes selected as the result of applying
PCA and correlation were taken into account; besides, an
analysis with 12 features adding the four features mentioned
in Section 2.2.3 was also considered.

3.1. Logistic Regression. Tables 9 and 10 show the results
achieved by LR using eight and 12 predictive attributes,
respectively. Although the best model does yield a very pow-
erful result, the mean values of Se, Sp, and Acc slightly
improve the ones provided by the widely used BMD. There
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are no meaningful differences between the results obtained
with eight or 12 features.

3.2. SVM Models. The results obtained by the seven SVM
models described in Section 2.2.3 are shown in Tables 11-
17. There is a remarkable difference between Se and Sp. Obvi-
ously, a model capable of classifying well both classes is
always desired, but if the model has to be biased to one of
the classes and in order to have a model useful for its real
application, sensitive models are preferred. As a result, the
number of false negatives is very low, and hence, the predic-
tive capability to detect fractured patients is very high. This is
why in order to achieve an Acc as high as possible, we
decided to bias the model towards Se. The obtained models
are sensitive enough, but unfortunately, the Sp is so poor
(near 50%) that would not justify its actual use as a clinical
decision support system (CDSS). SVM in general do not ben-
efit from the inclusion of the four additional features.

3.3. Decision Trees. Table 18 shows the results achieved by
DT. They do not benefit from the use of the additional fea-
tures, likely because it reduces the density of branches in
the tree and hence its ability to find homogeneous groups
of patients. The results are slightly worse than those provided
by LR and quite close to what BMD can attain. The standard
deviations are too large suggesting the low reliability of the
modelling.

3.4. Random Forest. In the case of RF, the robustness of the
model is in its own design formed by many single DT so
the experimental setup of 1,000 runs was not considered
here. For the sake of a fair comparison, RF were made up
of 1,000 trees. Therefore, no mean values and standard devi-
ations are given in Table 19, which describes the RF results.
The inclusion of the four additional features has a positive
effect in the RF performance, slightly improving Se, Sp, and
Acc. RF provides the best results of all the tested models with
great prediction capabilities for both classes, turning out to
get an Acc of 87%, well above the Acc reported by BMD.

Although this work can be considered a pilot study, the
promising results yielded by RF encourage us to carry on
with the study, hopefully increasing the size of the dataset.
If RF performance is similar when applied to a large cohort
of subjects, we reckon that its use as CDSS should be taken
into account.

4. Discussion

As has been shown, the Linear Regression approximation has
quite poor results. The low ratios of sensitivity, specificity,
and accuracy only a little over 70% with extremely high stan-
dard deviation (higher than +10%) transform Logistic
Regression in a bad approximation. Bearing in mind, in addi-
tion, there can be no underfitting (we got 200 samples
because of the use of SMOTE) and neither overfitting, as 8-
12 features are less than a tenth of the number of subjects.
It can be observed that using more attributes does not signif-
icantly improve the behaviour of the model.

With regard to the SVM, it is clear that the sigmoid
totally misunderstands the “shape” of the hyperplane. The
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TaBLE 7: Variables whose correlation is higher than 0.9 and was not included by PCA are shown in the columns. The rows show variables that
are highly correlated with the column attributes, coded by the check sign.

HP S3_ N StressN StrainN E1.T E3. T StressT StrainT FRI_N FRLT Final

STW v v
HP v v v v
TBE v v
CTE v v
S3_N v v v
EI_N v v v
E3_N v v v
StressN v v v v
StrainN v v v
SED_N v v v v
S3_T v v v v
EI_T v v v
E3_T v v v
StressT v v v
StrainT v v v v
SED_T v v v v v
FRI_N v v
FRI_T v v v v
TABLE 8: Attributes directly included and those included because of TABLE 11: Results of SVM with a linear kernel.
their high correlation (>0.9).

Linear Mean St. deviation Best
Directly included ~ Correlation>0.9 Sensitivity (8 features) 61.22% 10.20% 83.33%
BMI Weight S3.T .

Specificity (8 features) 76.69% 10.85% 92.30%
FPK STH ELT Accuracy (8 features) 67.71% 8.81% 87.10%
FP TBE E3_T Sensitivity (12 features) 68.44% 9.76% 88.89%
HP CIE MPStress T qpecificity (12 features)  75.62% 13.35% 92.30%
T8 ELN MPStrain_T Accuracy (12 features) 71.45% 9.17% 90.32%
S3_N E3_N SED_T
FRI_N MPStress_N FAT
FRI. T MPStrain. N STH TaBLE 12: Results of SVM with a linear kernel and posterior

SED N CT probability regions.

TaBLE 9: Results for Logistic Regression with the selected 8 features.

8 features Mean St. deviation Best

Sensitivity 68.22% 12.61% 94.44%
Specificity 72.69% 12.77% 84.61%
Accuracy 70.10% 8.92% 90.32%

TaBLE 10: Results for Logistic Regression with 12 features.

12 features Mean St. deviation Best

Sensitivity 70.33% 12.31% 100.00%
Specificity 71.46% 13.62% 84.61%
Accuracy 70.81% 10.15% 93.54%

Linear + PPR Mean St. deviation Best

Sensitivity (8 features) 63.94% 9.75% 88.89%
Specificity (8 features) 75.08% 12.28% 100.00%
Accuracy (8 features) 68.61% 9.05% 93.54%
Sensitivity (12 features) 68.17% 9.63% 88.89%
Specificity (12 features) 77.23% 12.17% 92.31%
Accuracy (12 features) 71.97% 8.71% 90.32%

highest value given is 61% of specificity, for 12 features.
Accuracy does not move from values around 57-58% that is
quite lower that actual models based only on BMD that
achieves an accuracy around 65% (see Section 1). Linear ker-
nel returns sensibly higher results, but nothing considerable
good: while specificity increases around 75-77%, the sensitiv-
ity is still lower than 70%. Following, the maximum accuracy
is lower than 72%.
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TaBLE 13: Results of SVM with a sigmoid kernel. TaBLE 18: Results of Decision Trees.

Sigmoid Mean St. deviation Best Decision Tree Mean St. deviation Best

Sensitivity (8 features) 56.33% 12.61% 77.78% Sensitivity (8 features) 59.22% 13.91% 88.89%
Specificity (8 features) 60.62% 14.35% 84.61% Specificity (8 features) 73.08% 12.46% 84.62%
Accuracy (8 features) 58.13% 9.17% 80.65% Accuracy (8 features) 65.03% 8.85% 87.10%
Sensitivity (12 features) 56.50% 12.41% 66.67% Sensitivity (12 features) 59.67% 15.46% 99.44%
Specificity (12 features) 60.77% 14.36% 100.00% Specificity (12 features) 74.46% 18.09% 92.31%
Accuracy (12 features) 58.29% 9.16% 80.65% Accuracy (12 features) 65.87% 11.66% 93.55%

TaBLE 14: Results of SVM with a sigmoid kernel and posterior
probability regions.

Sigmoid + PPR Mean St. deviation Best

Sensitivity (8 features) 55.39% 12.37% 77.78%
Specificity (8 features) 59.23% 14.40% 84.62%
Accuracy (8 features) 57.00% 10.09% 80.65%
Sensitivity (12 features) 55.94% 11.23% 83.33%
Specificity (12 features) 58.38% 15.66% 69.23%
Accuracy (12 features) 56.97% 8.67% 77.41%

TaBLE 15: Results of SVM with a Bayesian kernel and posterior
probability regions.

Bayesian + PPR Mean St. deviation Best

Sensitivity (8 features) 56.67% 2.48% 55.56%
Specificity (8 features) 80.00% 6.88% 84.62%
Accuracy (8 features) 66.45% 2.89% 67.74%
Sensitivity (12 features) 71.11% 3.51% 77.78%
Specificity (12 features) 80.77% 8.31% 92.31%
Accuracy (12 features) 75.16% 4.57% 83.87%

TABLE 16: Results of SVM with a Gaussian kernel.

Gaussian Mean St. deviation Best

Sensitivity (8 features) 82.56% 9.24% 88.89%
Specificity (8 features) 66.31% 14.90% 100.00%
Accuracy (8 features) 75.74% 8.23% 93.54%
Sensitivity (12 features) 96.22% 5.05% 100.00%
Specificity (12 features) 58.08% 15.09% 76.92%
Accuracy (12 features) 80.23% 6.96% 90.32%

TaBLE 17: Results of SVM with a Gaussian kernel and posterior
probability regions.

Gaussian + PPR Mean St. deviation Best

Sensitivity (8 features) 86.22% 9.39% 100.00%
Specificity (8 features) 63.38% 15.35% 100.00%
Accuracy (8 features) 76.65% 8.97% 100.00%
Sensitivity (12 features) 93.67% 591% 100.00%
Specificity (12 features) 62.92% 16.56% 92.31%
Accuracy (12 features) 80.77% 7.57% 96.77%

TaBLE 19: Results of Random Forest.

8 features 12 features
Sensitivity 79.50 83.33%
Specificity 87.75 92.31%
Accuracy 82.66 87.10%

Bayesian kernel, along with PPR, increases a little bit the
numbers: considering 12 features, the sensitivity is around
71%, the specificity is 10% higher, and the accuracy over-
reaches the 75%. Finally, using a Gaussian kernel, the sensi-
tivity builds on a lot, reaching values up to 83% (8 features)
and for the simple elaboration, and almost 94% for the
Gaussian + PPR, handling 12 features. Both with and without
PPR, the accuracy overreached 80% of accuracy.This is the
best result obtained for the SVM modeling and reaches levels
of the state of the art published to date (see Section 1).

On the other hand, Decision Trees do not return good
results. Generally, the values for sensitivity, specificity, and
accuracy are lower than SVM (considering the best fitting
kernels). On the other hand, the standard deviation is sensi-
bly greater (in average) than all the previous models, being
the weak spot of this model. Accuracy is good, but sensitivity
and specificity are unbalanced, in favor of the latter. For both
8 and 12 predictive attributes selected, the accuracy is
around 65-66%.

Finally, Random Forest is the best among all the built
models. Although the model built with only 8 features is less
precise (around 5% for each value) than the one built with 12,
it outrages the results obtained by models published until
now. We have also observed that adding more attributes
(up to 15), the results do not improve significantly, so the best
move is to keep 12 features to grant a lighter dataset. In con-
clusion, neither of the previous models obtain such great
results: 83% for sensitivity, 92% for specificity, and an accu-
racy of 87%.

As it was commented in Section 1, this paper enhances
the study presented in [24]. The same clinical, geometric,
and biomechanical variables of the previous database were
used in this paper. However, this paper presents some novel-
ties that improve our previous work. One of them is the rel-
evance ranking carrying out to find out which variables are
the most important ones for the problem. In our previous
work, this ranking was performed only studying Pearson’s
correlation. In the present work, the relevance ranking was
performed in two steps: Principal Component Analysis
(PCA) and correlation analysis, analyzing both Pearson’s
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correlation index and Spearman’s Rank correlation. How-
ever, the true improvement was obtained by the Principal
Component Analysis.

As PCA is based on a reduction of the problem dimen-
sions keeping the maximum information, our models are
more precise, with more capability of generalization to be
applied to new data and with more capability of interpreta-
tion for the post-processing of the results.

Another improvement is related to the application of the
SMOTE technique in order to increase the number of train-
ing samples, which improved the results of our models.
Finally, ML models different to those used in our previous
work were used in this work as Decision Trees (DT) and Ran-
dom Forest (RF), which provided with better results in terms
of sensitivity, specificity, and accuracy. In fact, RF was the
best option with an accuracy over 87%, specificity over
92%, and sensitivity over 83%. These values are much better
than the current BMD clinically used whose classification
accuracy is around 65% and also better than the accuracy of
our previous work that was of 79%.

One of the main limitations of the present study was the
sample size. Although the sample size was larger than other
studies, it is still not larger enough, which might limit the
learning process. Another of the limitation of this study is
related to the resolution of the images. Pixel size was approx-
imately 8 times greater than in other commercial densitome-
ters (e.g., GE Healthcare iDXA Advance), thus providing low
resolution images. The discriminative power of FEM-derived
attributes highly depends on the material properties, which
are extracted from the BMD maps. The details of these maps
depend on the quality of the image, and if the image resolu-
tion is low, some information might have been lost.

There exits an inherent limitation in the present study
due to the 2D model, which is developed on the overlapping
of cortical and trabecular bone on the image plane. There-
fore, stress and strain distributions may be altered, and the
failure starting location might not be fully reliable. On the
other hand, as it was commented previously, we could not
construct ML models that differentiate between neck and tro-
chanteric fractures due to the size of the dataset. Finally,
although our study focused on prediction of hip fracture in
postmenopausal women, hip fracture also happens in the
male population [41]. Moreover, differences between male
and female fracture attributes, both clinic and biomechanical,
have been shown in the literature. This should be addressed
in order to build an effective predictive model for both
genders.

5. Conclusions

This paper proposes the use of Machine Learning (ML)
models trained with data from a biomechanical model that
simulates a sideway fall, aimed at improving the accuracy of
the current gold-standard in osteoporosis clinical assess-
ment. The current gold standard is Bone Mineral Density
(BMD) measured by Dual-Energy X-Ray Absorptiometry
(DXA), and its classification accuracy is only around 65%.
Among the different tested models, Random Forest stands
out, showing its capability to outperform BMD-DXA,
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achieving an accuracy over 87%, with specificity over 92%
and sensitivity over 83%.

This paper enhances the study presented in [24]. The
same clinical, geometric, and biomechanical variables of the
previous database were also used in this work. However, this
paper presents some novelties that improve it, as the rele-
vance ranking carried out to find out the most important
ones for the problem, which was performed by PCA. Thus,
the models developed in this work were more precise, with
more capability of generalization to be applied to new data
and with more capability of interpretation for the postpro-
cessing of the results.

The application of the SMOTE technique to increase the
number of training samples also improved the models. In
addition, different ML models to those used in our previous
work were used in this work: Decision Trees (DT) and Ran-
dom Forest (RF), which provided with better results in terms
of sensitivity, specificity, and accuracy. These values were
much better than the current BMD clinically used whose
classification accuracy is around 65% and also better than
the accuracy of our previous work that was of 79%.In conclu-
sion, this study has shown that hip fracture prediction can be
modelled by a multitechnique approach, considering clinical
and biomechanical data into a ML classifier. This approach is
economical and fast and could be integrated in the clinical
routine without changing the clinical workflow. Future
research works should include a greater 480 volume of sam-
ples, better image quality, and more specific predictions of
the fracture location.
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