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Abstract

This work focuses on the investigation of advanced techniques to handle ground-

water and surface water problems in the framework of inverse methods and climate

change. The Ensemble Kalman filter methods, with particular attention to the

Ensemble Smoother with Multiple Data Assimilation (ES-MDA), are extensively

analyzed and improved for the solution of different types of inverse problems. In

particular, the main novelty is the application of these methods for the identifica-

tion of time series function.

In the first part of the thesis, after the description of the ES-MDA method,

the development of a Python software package for the application of the proposed

methodology is presented. It is designed with a flexible workflow that can be easily

adapted to implement different variants of the Ensemble Kalman filter and to be

applied for the solution of various types of inverse problems. A complemented

tool package provides several functionalities that allow to setup the algorithm

configuration suiting the specific analyzed problem.

The first novelty application of the ES-MDA method aimed at solving the

reverse flow routing problem. The objective of the inverse procedure is the es-

timation of an unknown inflow hydrograph to a hydraulic system on the basis

of information collected downstream and a given forward routing model that re-

lates inflow hydrograph and downstream observations. The procedure is tested by

means of two synthetic examples and a real case study; the impact of ensemble
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sizes and the application of covariance localization and inflation techniques are

also investigated. The tests show the capability of the proposed method to solve

this type of problem; the performance of ES-MDA improves, especially for small

ensemble sizes, when covariance localization and inflation techniques are applied.

The second application, in the context of surface water, concerns the calibration

of a hydrological-hydraulic model that simulates rainfall-runoff processes. The

ES-MDA is coupled with the numerical model by parallel way for the estimation

of roughness and infiltration coefficients based on the knowledge of a discharge

hydrograph at the basin outlet. The results of two synthetic tests and a real

case study demonstrate the capability of the proposed method to calibrate the

hydrological-hydraulic model with a reasonable computational time.

In the groundwater field, ES-MDA is applied for the first time to simultaneously

identify the source location and the release history of a contaminant spill in an

aquifer from a sparse set of concentration data collected in few points of the

aquifer. The impacts of the concentration sampling scheme, the ensemble size and

the use of covariance localization and covariance inflation techniques are tested;

furthermore, a new procedure to perform a spatiotemporal iterative localization

is presented. The methodology is tested by means of an analytical example and a

study case that uses real data collected in a laboratory sandbox. ES-MDA leads

to a good estimation of the investigated parameters; a well-designed monitoring

network and the use of covariance corrections improve the performance of the

method and help to minimize ill-posedness and equifinality.

A part of the thesis investigates the impact of climate change on the ground-

water availability. A surrogate model that describes the response of groundwater

levels to meteorological variables up to 2100 is presented. It is a simple statistical

approach based on the correlations between groundwater levels and two drought

indices that depend on precipitation and temperature data. The presented method

is used to evaluate the impact of climate change on groundwater resources in a
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study area located in Northern Italy using historical and regional climate model

data. The results denote a progressive increase of groundwater droughts in the

investigated area.
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Sommario

La tesi si sviluppa su diverse tematiche idrologiche relative alle acque sotterra-

nee e superficiali nell’ambito dei problemi inversi e del cambiamento climatico. I

metodi basati sul filtro di Kalman, con particolare attenzione al metodo Ensemble

Smoother with Multiple Data Assimilation (ES-MDA), sono analizzati e migliorati

per la soluzione di diversi tipi di problemi inversi. In particolare, una delle novità

è l’applicazione di tali metodi per l’identificazione di serie temporali.

Uno degli obiettivi della tesi è lo sviluppo di un pacchetto software scritto in

linguaggio Python per l’applicazione della metodologia presentata. Il software è

progettato in modo da poter essere facilmente adattato a diverse varianti del filtro

di Kalman e da poter essere applicato per la soluzione di differenti tipi di problemi.

Sono forniti diversi strumenti che consentono di impostare una configurazione

dell’algoritmo che meglio si adatta al caso specifico in esame.

La prima applicazione del metodo ES-MDA riguarda la determinazione

dell’idrogramma delle portate in ingresso ad un sistema idraulico, sulla base di

informazioni disponibili a valle (reverse flow routing) e un dato modello in avanti.

Al fine di accertare le capacità del metodo sono stati sviluppati preliminarmente

due esempi sintetici, per i quali viene valutata anche l’influenza delle dimensioni

dell’ ”ensemble” e l’applicazione di alcune modifiche all’algoritmo, come la localiz-

zazione e le tecniche di “inflation”. Infine, ES-MDA è applicato a un caso studio

reale. I risultati mostrano la capacità del metodo proposto di risolvere questo
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tipo di problema; le prestazioni di ES-MDA migliorano, soprattutto per “ensem-

ble” di piccole dimensioni, quando vengono applicate le tecniche di localizzazione

e “inflation”.

La seconda applicazione, nell’ambito delle acque superficiali, riguarda la cali-

brazione di un modello idrologico-idraulico che simula i meccanismi di formazione

di eventi di piena a partire da sollecitazioni idrometeorologiche e la successiva

propagazione. ES-MDA e il modello numerico sono accoppiati per la stima dei

coefficienti di scabrezza e infiltrazione sulla base di un idrogramma delle portate

noto in una sezione del dominio. I risultati di due test sintetici e un caso di

studio reale dimostrano la capacità del metodo proposto di calibrare il modello

idrologico-idraulico con un tempo di calcolo accettabile.

Nel campo delle acque sotterranee, ES-MDA viene applicato per la prima volta

per identificare simultaneamente la posizione della sorgente e la storia di rilascio

di un inquinante in una falda acquifera, noti alcuni dati di concentrazione rile-

vati in diversi punti del dominio. Numerosi test sono stati eseguiti per valutare

l’influenza della distribuzione spaziale e temporale dei dati di concentrazione, la

numerosità dell’ ”ensemble” e l’uso delle tecniche di localizzazione e “inflation”;

inoltre, viene presentata una nuova procedura per eseguire una localizzazione iter-

ativa spazio-temporale. La metodologia è validata mediante un esempio analitico e

un caso di studio per il quale sono utilizzati dati ottenuti in laboratorio mediante

una sandbox. ES-MDA porta ad una buona ricostruzione dei parametri inves-

tigati; una rete di monitoraggio ben progettata e l’applicazione delle modifiche

sull’algoritmo (localizzazione e “inflation”) migliorano le prestazioni del metodo e

aiutano a mitigare il possibile problema della non univocità della soluzione.

Una parte della tesi riguarda lo studio dell’impatto del cambiamento climatico

sulla disponibilità idrica delle falde acquifere. A tale scopo, viene sviluppato un

modello surrogato capace di descrive la risposta dei livelli di falda alle variabili

meteorologiche fino al 2100. Si tratta di un semplice approccio statistico basato
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sulle correlazioni tra i livelli di falda e due indici di siccità che dipendono dai dati

di precipitazioni e temperatura. Il metodo viene utilizzato per valutare l’impatto

del cambiamento climatico sulle risorse idriche sotterranee in un’area di studio

situata in Nord Italia, utilizzando i dati di serie storiche ed estratti da modelli

climatici regionali. I risultati denotano un progressivo aumento della siccità delle

acque sotterranee nell’area di studio.
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Resumen

El tema de la investigación se centra en técnicas avanzadas para manejar problemas

de aguas subterráneas y superficiales relacionados con métodos inversos y cambio

climático. Los filtros de Kalman, con especial atención en Ensemble Smoother with

Multiple Data Assimilation (ES-MDA), se analizan y mejoran para la solución de

diferentes tipos de problemas inversos. En particular, la principal novedad es la

aplicación de estos métodos para la identificación de series temporales.

La primera parte de la tesis, luego de la descripción del método ES-MDA,

presenta el desarrollo de un software escrito en lenguaje Python para la aplicación

de la metodología propuesta. El software cuenta con un flujo de trabajo flexible

que puede adaptarse fácilmente para implementar diferentes variantes del filtro de

Kalman y ser aplicado para la solución de varios tipos de problemas. Un paquete

complementar de herramientas proporciona varias funcionalidades que permiten

de configurar el algoritmo de acuerdo con el problema específico analizado.

La primera aplicación se refiere a un nuevo enfoque para la solución del prob-

lema inverso de flujo en ríos. Este es un procedimiento inverso destinado a estimar

el flujo de entrada a un sistema hidráulico en función de información recopilada

aguas abajo. El procedimiento se prueba mediante dos ejemplos sintéticos y un

estudio de caso real; se investiga el impacto de los tamaños de los conjuntos y la

aplicación de técnicas de localización e inflación de covarianzas. Los resultados

muestran la capacidad del método propuesto de resolver este tipo de problemas;
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el rendimiento de ES-MDA mejora, especialmente para tamaños de conjuntos pe-

queños, cuando se aplican técnicas de inflación y localización de covarianza.

La segunda aplicación en el campo de las aguas superficiales se refiere a la

calibración de un modelo hidrológico-hidráulico que simula los mecanismos de

formación de eventos de inundación a partir de tensiones hidrometeorológicas y

su posterior propagación. ES-MDA se acopla al modelo numérico de forma par-

alela para la estimación de los coeficientes de rugosidad e infiltración en base al

conocimiento de un hidrograma de flujo en una sección del dominio. Los resulta-

dos de dos casos sintéticos y un estudio de caso real demuestran la capacidad del

método propuesto para calibrar el modelo hidrológico-hidráulico con un tiempo

computacional razonable.

En el campo de aguas subterráneas, ES-MDA se aplica por primera vez para

identificar simultáneamente la ubicación de la fuente y el historial de liberación de

un contaminante en un acuífero a partir de un conjunto de datos de concentración

detectados en diferentes puntos del dominio. Se realizaron numerosas pruebas para

evaluar la influencia de la distribución espacial y temporal de los datos de con-

centración, el número del conjunto y el uso de técnicas de localización e inflación;

además, se presenta un nuevo procedimiento para realizar una localización itera-

tiva espacio-temporal. La metodología se valida mediante un ejemplo analítico y

un estudio de caso para el que se utilizan datos obtenidos en el laboratorio me-

diante una caja de arena. ES-MDA conduce a una buena reconstrucción de los

parámetros investigados; una red de monitoreo bien diseñada y la aplicación de

correcciones de covarianza mejoran el rendimiento del método y ayudan a mitigar

el posible problema de no unicidad de la solución.

Otro propósito de la investigación es investigar el efecto del cambio climático

en las aguas subterráneas. Se presenta un modelo simplificado que describe la

respuesta de los niveles de agua subterránea a las variables meteorológicas hasta

2100. Es un enfoque estadístico sencillo basado en las correlaciones entre los
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niveles de agua subterránea y dos índices de sequía que dependen de los datos

de precipitación y temperatura. El método se utiliza para evaluar el impacto del

cambio climático en los recursos de agua subterránea en un área de estudio ubicada

en el norte de Italia utilizando datos históricos y de modelos climáticos regionales.

Los resultados muestran un aumento progresivo de la sequía de aguas subterráneas

en el área de estudio.

xiii



xiv



Resum

El tema de la investigació se centra en tècniques avançades per a manejar prob-

lemes d’aigües subterrànies i superficials relacionats amb mètodes inversos i canvi

climàtic. Els filtres de Kalman, amb especial atenció en Ensemble Smoother with

Multiple Data Assimilation (ES-MDA), s’analitzen i milloren per a la solució

de diferents tipus de problemes inversos. En particular, la principal novetat és

l’aplicació d’aquests mètodes per a la identificació de sèries temporals.

La primera part de la tesi presenta el desenvolupament d’un programari escrit

en llenguatge Python per l’aplicació de la metodologia presentada. El programari

compta amb un flux de treball flexible que pot adaptar-se fàcilment per a imple-

mentar diferents variants del filtre de Kalman i ser aplicat per a la solució de di-

versos tipus de problemes. Un paquet complementar d’eines proporciona diverses

funcionalitats que permeten de configurar l’algorisme d’acord amb el problema

específic analitzat.

La primera aplicació es refereix a un nou enfocament per a la solució del prob-

lema invers de flux en rius. Aquest és un procediment invers destinat a estimar

el flux d’entrada a un sistema hidràulic en funció d’informació recopilada aigües

avall. El procediment es prova mitjançant dos exemples sintètics i un estudi de

cas real; s’investiga l’impacte de les grandàries dels conjunts i l’aplicació de tèc-

niques de localització i inflació de covariàncies. Els resultats mostren la capacitat

del mètode proposat de resoldre aquest tipus de problemes; el rendiment de ES-
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MDA millora, especialment per a grandàries de conjunts xicotets, quan s’apliquen

tècniques d’inflació i localització de covariància.

La segona aplicació en el camp de les aigües superficials es refereix al cal-

ibratge d’un model hidrològic-hidràulic que simula els mecanismes de formació

d’esdeveniments d’inundació a partir de sollicitació hidrometeorológicas i la seua

posterior propagació. ES-MDA s’acobla al model numèric de manera paral·lela

per a l’estimació dels coeficients de rugositat i infiltració sobre la base del coneixe-

ment d’un hidrograma de flux en una secció del domini. Els resultats de dos casos

sintètics i un estudi de cas real demostren la capacitat del mètode proposat per a

calibrar el model hidrològic-hidràulic amb un temps computacional raonable.

En el camp d’aigües subterrànies, ES-MDA s’aplica per primera vegada per a

identificar simultàniament la ubicació de la font i l’historial d’alliberament d’un

contaminant en un aqüífer a partir d’un conjunt de dades de concentració detectats

en diferents punts del domini. Es van realitzar nombroses proves per a avaluar

la influència de la distribució espacial i temporal de les dades de concentració, el

número del conjunt i l’ús de tècniques de localització i inflació; a més, es presenta

un nou procediment per a realitzar una localització iterativa espaciotemporal. La

metodologia es valguda mitjançant un exemple analític i un estudi de cas per al

qual s’utilitzen dades obtingudes en el laboratori mitjançant una caixa d’arena.

ES-MDA condueix a una bona reconstrucció dels paràmetres investigats; una xarxa

de monitoratge ben dissenyada i l’aplicació de correccions de covariància milloren

el rendiment del mètode i ajuden a mitigar el possible problema de no unicitat de

la solució.

Un altre propòsit de la investigació és investigar l’efecte del canvi climàtic en

les aigües subterrànies. Es presenta un model simplificat que descriu la resposta

dels nivells d’aigua subterrània a les variables meteorològiques fins a 2100. És

un enfocament estadístic senzill basat en les correlacions entre els nivells d’aigua

subterrània i dos índexs de sequera que depenen de les dades de precipitació i
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temperatura. El mètode s’utilitza per a avaluar l’impacte del canvi climàtic en

els recursos d’aigua subterrània en una àrea d’estudi situada en el nord d’Itàlia

utilitzant dades històriques i de models climàtics regionals. Els resultats mostren

un augment progressiu de la sequera d’aigües subterrànies en l’àrea d’estudi.
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Introduction

The thesis presents innovative techniques for the solution of surface and subsurface

hydrology problems in two main thematic areas: the inverse methods and climate

change.

The inverse problem is one of the most important mathematical problem as it

allows to estimate unknown parameters that can not be directly observed. It is the

process of identifying input parameters using output measurements; it has found

numerous applications in geophysics, communication theory, optics, radar, acous-

tics, medical imaging, meteorology, oceanography, astronomy, and other many

scientific fields. A huge number of approaches have been proposed in the litera-

ture to handle this issue. This thesis focuses on the solution of inverse problems

in the context of surface and subsurface hydrology using ensemble Kalman filter

techniques.

The Ensemble Smoother with Multiple Data Assimilation (ES-MDA, Emerick

& Reynolds (2013)) is extensively analyzed and improved for the solution of inverse

problems. The first application deals with the solution of an inverse problem in

the hydrology field: ES-MDA is used for the estimation of discharge hydrographs

at ungauged sections using information collected downstream. The indirect esti-

mation of the inflow to a river reach is often required since only few sections are

equipped to record data; this is particularly challenging for sections that do not

have reliable data upstream and the common forward flow routing cannot be used

1



INTRODUCTION

at this purpose. The proposed method is a new approach for the solution of the

reverse flow routing problem.

The second application in the hydrology field aims at the calibration to a

hydrological-hydraulic model that simulates rainfall-runoff processes. The rough-

ness and infiltration coefficients, which are input data required by the investigated

numerical model, are estimated on the basis of a discharge hydrograph observed

in the outlet section of the river.

Another novel application of ES-MDA is in the groundwater field and it deals

with the simultaneous reconstruction of the release history and the identification

of the source location of a groundwater contamination event from observed con-

centration data. This is an inverse problem whose solution is still open in the

literature and for the first time is solved with the proposed approach.

The final objective of this work is to develop a software package for the solution

of inverse problems based on ensemble Kalman methods. There are several open-

source codes for the application of these approaches, but they are usually challeng-

ing to use. The innovation of the developed software is the easy implementation

and the supply of useful tools to improve the performance of the method. The

open-source codes are written in Python programming language and accompanied

by supporting documentation. Python is one of the most popular programming

languages of the last decade: it has a simple syntax, it is platform-independent,

and it is free. The Ensemble Smoother with Multiple Data Assimilation is con-

sidered as reference for the development of the software, but it is kept as general

as possible so that it can be easily adapted to other ensemble-based methods and

extended to different tasks. A complete application example of the software is

provided: the solution of the inverse problem for the identification of the source

location and release history of a contaminant dispersion in groundwater.

Although this work focuses primarily on groundwater quality analysis, impor-

tant issues of subsurface hydrology concerns quantitative aspects. A part of the
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thesis focuses on the investigation of the impact of climate change on ground-

water resources. Groundwater represents about 98% of the available fresh water

on Earth and, in many cases, is the only resource of water in critical periods

of the year, especially in arid and semi-arid regions, where surface water are al-

most absent for several months. The evaluation of the effect of climate change

on groundwater resources in the future periods is thus a key issue. Despite its

importance, only a few works are presented in the literature aimed at analyzing

the impact of climate variability on groundwater resources, due to the difficulty to

set up a complete subsurface model. In this work, a simple statistical approach to

evaluate the impact of climate change on groundwater level, which is considered a

good indicator of the aquifer condition, is proposed. The response of groundwater

levels to projected meteorological variables is evaluated up to 2100 on the basis

of precipitation and temperature data extracted from several Regional Climate

Models under different climate scenarious.

The thesis is organized as follows: in the first chapter, the Ensemble Smoother

with Multiple Data Assimilation methodology is presented together with the pro-

posed modifications to the original algorithm. In Chapter 2, the software package

for the application of ES-MDA is described. Chapter 3 describes the application of

ES-MDA for the solution of the reverse flow routing problem; two synthetic cases

and a real one are provided to demonstrate the capability of the proposed inverse

procedure. Chapter 4 presents the analysis for the calibration of a hydrological-

hydraulic model. In chapter 5, ES-MDA is used for the estimation of hydraulic

and transport parameters of an aquifer and for the simultaneous identification of

the source location and the release history of a groundwater pollutant. Chapter

6 is dedicated to the analysis of the impact of climate change on groundwater

levels by means of a statistical approach. In the last chapter, the conclusions

of the thesis and some suggestions for future research are outlined. Finally, the

appendix reports an example of the Python codes written for the application pre-
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sented in Chapter 5 for the simultaneous estimation of the source location and

release history of a contaminant spill in an aquifer.
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1
Ensemble smoother with multiple
data assimilation

1.1. Introduction

The Ensemble Kalman-based methods are Monte Carlo implementations of the

Kalman filter (KF), introduced by Kalman (1960). The KF is an optimal linear

filter that allows to estimate unknown variables by using a series of measurements

that are typically noisy. Linearity is a strong constraint of this method and makes

it not applicable for many real cases, where complex systems can be nonlinear.

Linearized versions of KF, such as the extended Kalman filter (EKF), have been

proposed to overcome the linear assumption limitation. EKF uses the Kalman

filter and a linear approximation of the nonlinear model, but its applications are

restricted to small-scale problems and mild nonlinearities. Furthermore, the ad-
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ditional cost of linearization make all the linearized versions of KF impratical in

many cases.

The Ensemble Kalman-based methods derived from the ensemble Kalman fil-

ter (EnKF), initially proposed by Evensen (1994), allow to work with large-scale

and nonlinear systems. Since the introduction of the EnKF, many variants of the

method have been developed and widely applied in many scientific field for data as-

similation and the estimations of system states and parameters. The present work

focuses on the application of these methods for the solution of inverse problems.

The investigated parameters are estimated based on the knowledge of observed

measurements and a given forward model that relates parameters and observa-

tions. The main advantages of the ensemble Kalman-based methods, useful for

this purpose, are its capability to be coupled with almost any forward models,

the possibility of being implemented through parallel computing and assessing

the uncertainty associated with the estimations, due to the generation of mul-

tiple alternative realizations. Moreover, they are more computationally efficient

than other Monte Carlo inverse modeling methods due to the procedure used to

compute the covariance matrices.

Among the ensemble-based methods, the ensemble smoother with multiple data

assimilation (ES-MDA) has been analyzed in detail to solve the inverse problem. It

is a valid alternative to the EnKF, for the case in which the time sequence of state

observations is all available in full at the time of the analysis. ES-MDA, introduced

by Emerick & Reynolds (2012, 2013), is a variant of the Ensemble Smoother,

proposed by van Leeuwen & Evensen (1996). ES-MDA iteratively assimilates

the same data multiple times in order to improve the results of the ES, which

assimilates all data simultaneously in a single update step. The purpose of the

multiple assimilation is to avoid the problem of overcorrection detected by by

Evensen & van Leeuwen (2000) and Crestani et al. (2013) with the ES on its

application to highly nonlinear problems with a single global update.
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All the ensemble-based methods are affect to the fundamental undersampling

problem, which arise when the size of the ensemble is so small that do not accu-

rately reflect the statistics of the underlying population. Undersampling leads to

two main problems: filter divergence and the appearance of long-range spurious

correlations. Part of the thesis will focus on the analysis and improvement of the

main techniques developed to overcome this problem: covariance localization and

covariance inflation.

In this chapter, the implementation of ES-MDA and the corrections on the

algorithm will be discussed.

1.2. ES-MDA

The ES-MDA is an iterative data assimilation method that updates the unknown

parameters maintaining consistency with the observations. The inverse procedure

requires that a reliable forward model is available:

Y = g (X) . (1.1)

The model operator g (·) predicts the system state at measurement locations, Y ∈

<m, given a realization of the model parameters X ∈ <Np . Here, Np is the number

of parameters andm is the number of available observations. The parameter vector

X is estimated on the basis of a set of observations D ∈ <m of the system state

Y, which are assimilated N times.

The ES-MDA scheme consists of an initialization phase and two main iterative

steps: a forecast step and an update step.

0. Initialization step

Initially, the procedure requires to define an initial ensemble of parameters.
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The ensemble realizations should be generated using all the available infor-

mation, but often no prior data are available. It is suggested to generate

the ensemble semi-randomly on the basis of expert knowledge. For instance,

if the parameters represent a discretized function in time, imposing some

degree of continuity in the prior information can lead to a smooth solution

consistent with the available data. This can be achieved by generating the

prior ensemble as random discretized time functions. Else, if the parameters

to be estimated are discrete values, the ensemble can be generated using

random values selected over a range that guarantees the consistency of all

realizations with the considered problem.

The second preliminary step includes the choice of the number of iterations

N , the generation of an ensemble of observed data measurement errors and

the definition of inflated coefficients αi required by the ES-MDA procedure.

The observation errors are assumed to follow a Gaussian distribution of mean

zero and covariance matrix R ∈ <m×m. The coefficients αi applies to the

measurement error and its covariance matrix, at each iteration i, and help

to avoid overcorrections. They must satisfy the condition:

N∑
i=1

1

αi
= 1, (1.2)

which guarantees an exact equivalence between single and multiple data

assimilation methods at least for linear models. The scheme proposed by

Evensen (2018) is used for the computation of the αi, which ensures that

the constraint of Eq. 1.2 is satisfied. The procedure starts selecting any

nonzero value for α′1, then the following α′i are computed as:

α′i+1 = α′i/αgeo. (1.3)
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where the constant αgeo controls the extent of the change of αi from one

iteration to the next. At the end, the values from Eq. 1.3 are scaled to

obtain the final coefficients:

αi = α′i

(
N∑
i=1

1

α′i

)
. (1.4)

The simplest choice is to consider αgeo=1 that leads to constant αi=N .

However, a gradual decrease of αi, obtained with αgeo > 1, can improve

the performance of the method, since it reduces the magnitude of the initial

updates in which the misfit between observations and model predictions is

usually larger.

1. Forecast step

Predictions are obtained, by means of the forward model, for each realization

j of the parameter ensemble. For the first iteration, Y is generated using

the initial ensemble of parameters; for the following iterations, the ensemble

of predictions is generated using the updated parameters.

Yj,i = g (Xj,i) . (1.5)

2. Update step

Parameters are updated, for each realization of the ensemble j and iteration i

according to the following equation, based on the misfit between observations

D and corresponding model predictions Y:

Xj,i+1 = Xj,i +
Ci

XY

Ci
YY + αiR

(D +
√
αiεj −Yj,i) , (1.6)

where Ci
XY is the cross-covariance matrix between parameters and predic-
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tions and Ci
YYis the autocovariance matrix of predictions. They are com-

puted from the ensemble at each iteration i as:

Ci
XY =

1

Ne − 1

Ne∑
j=1

(
Xj,i −Xi

) (
Yj,i −Yi

)T
, (1.7)

Ci
YY =

1

Ne − 1

Ne∑
j=1

(
Yj,i −Yi

) (
Yj,i −Yi

)T
, (1.8)

where Ne is the total number of ensemble realizations and Xi and Yi are the

ensemble means, at iteration i, of parameters and predictions, respectively.

Then, return to the forecast step considering Xj,i = Xj,i−1 and repeat until

the last iteration.

At the end of each update step, it is possible to apply a linear relaxation on

the ensemble realizations. The linear relaxation, similarly to the effect of the α

coefficients, reduces the changes made to the parameters from one iteration to

the next and prevent the filter divergence The solution of Eq. 1.6 is modified as

follows:

X̃j,i+1 = (1− w)Xj,i+1 + wXj,i (1.9)

where w is the relaxation coefficient selected in the range 0-1.

When necessary, the update step can be performed in a transformed space

in order to prevent the appearance of unphysical negative values for some types

of problems. In these cases, the vector of parameters is transformed before the

update step and back transformed into the parameter space after the updating.

Covariances and cross-covariances must be computed in the transformed space,

too. The most common transformations used to handle non-negative data are the

logarithmic and the square root. Sometimes, it is useful to constrain the vector

of estimated parameters to a specific range; transformations can also be used

10
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for this purpose. The logarithmic and the square root transformations can be

modified to ensure the parameters are in the specific interval [a,b]. The modified

log-transformation, is given by:

f(x) = y = log

(
x− a
b− x

)
. (1.10)

The inversion of this expression gives the appropriate back-transformation:

f−1(x) =
(b− a) ey

1 + ey
+ a (1.11)

The modified square root transformation is defined as follows:

f(x) = y =

(
x− a
b− x

) 1
2

(1.12)

and the corresponding back-transformation is:

f−1(x) =
(b− a) y2

1 + y2
+ a (1.13)

It is noteworthy that a different transformation can be applied for each parameter

to be estimated.

1.3. Undersampling problems

Undersampling occurs when the size of the ensemble is so small that it is not

statistically representative of the variability of the unknowns and can cause the

appearance of long-range spurious correlations and filter divergence. The com-

putational burden depends on the ensemble size since the computation of the

prediction vectors Yj,i requires Ne simulations at each iteration. Therefore, the
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number of ensemble realizations should be kept as small as possible to reduce com-

putational time. Covariance localization and covariance inflation techniques have

been developed to overcome this problem.

1.3.1. Covariance localization

Covariance localization (CL) is a technique developed to mitigate the problem

of long-range spurious correlations. CL, at the same time, expands the degrees

of freedom available to assimilate data increasing the rank of the covariance ma-

trices computed from the ensemble, which are usually rank deficient even more

so when the ensemble size is lower than the number of unknown parameters or

observations. Different covariance localization approaches have been proposed in

literature (Houtekamer & Mitchell 1998, Hamill et al. 2001, Anderson 2007, Chen

& Oliver 2009) considering correlations among spatial dependent variables. How-

ever, parameters may be time dependent or both time-space dependent. In this

work, a new localization approach, which takes into account both spatial and

temporal distance, is presented.

CL is done by element-wise multiplication (Schur product or Hadamard prod-

uct) of the original covariance matrix and a distance dependent correlation func-

tion ρ that smoothly reduces the correlations between points for increasing dis-

tances and cuts off long-range correlations above a specific distance. The covari-

ances in Eqs. 1.7 and 1.8, computed in the update step, are modified as follows:

C̃i
XY = ρiXY ◦Ci

XY, (1.14)

C̃i
YY = ρYY ◦Ci

YY. (1.15)

where ◦ represents the elementwise multiplication and ρiXY and ρYYare corre-

lation matrices based on spatial and temporal distances between parameters and

12
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observations and between observations and observations, respectively. The correla-

tions in space (ρiXY,s, ρYY,s) and time (ρXY,t, ρYY,t) are computed independently

and then coupled via a Schur product:

ρiXY = ρiXY,s ◦ ρXY,t, (1.16)

ρYY = ρYY,s ◦ ρYY,t. (1.17)

The fifth-order correlation function introduced by Gaspari & Cohn (1999) is used;

it smoothly reduces the correlations between points for increasing distances and

cuts off long-range correlations above a specific distance:

ρ =


− 1

4

(
δ
b

)5
+ 1

2

(
δ
b

)4
+ 5

8

(
δ
b

)3 − 5
3

(
δ
b

)2
+ 1, 0 ≤ δ ≤ b;

1
12

(
δ
b

)5 − 1
2

(
δ
b

)4
+ 5

8

(
δ
b

)3
+ 5

3

(
δ
b

)2 − 5
(
δ
b

)
+ 4− 2

3

(
δ
b

)−1
, b ≤ δ ≤ 2b;

0 δ ≥ 2b;

(1.18)

where δ represents the parameter-observation or observations-observation distances

in space (δiXY,s, δY Y,s) or time (δXY,t, δY Y,t). The spatial distances between pa-

rameters and observations may be unknown if the location of the parameters

change over the iterative process, δiXY,s and δiXY,t can be updated at each itera-

tion i considering the update parameters at the previous iteration. The coefficient

b characterizes the space (bs) or time (bt) distance at which the covariances become

zero.

1.3.2. Covariance inflation

Covariance inflation is a technique developed to overcome the problem of filter

divergence. The filter divergence may occur when the variance is underestimated

leading to overconfidence in prior estimates and, as a consequence, the ensemble

13
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collapses into a set of too similar realizations, which could be different from the

true solution. This reduces the weight given to subsequent updates and can lead

to a divergence of the ensemble since the filter is not able to adjust an incorrect

estimation. Covariance inflation can be achieved by different ways (see e.g. An-

derson 2007, Li et al. 2009, Liang et al. 2011, Wang & Bishop 2003, Zheng 2009);

in this work, the scheme introduced by Anderson & Anderson (1999) has been

followed. Each realization of the ensemble at the end of each update step i, Xij ,

is linearly inflated around its mean, Xi, by an inflation factor (r) slightly larger

than 1:

X̃j,i+1 = r
(
Xj,i+1 −Xi+1

)
+ Xi+1 (1.19)
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2
Python software package

2.1. Introduction

One of the objectives of this thesis is to develop a software package for the easy

application of the proposed methodology to solve inverse problems. The codes

are written in Python programming language, which is one of the most popular

and used programming languages of the last decades. A Python software package

with a flexible workflow is presented; the codes focus on the application of the

Ensemble Smoother with Multiple Data Assimilation (ES-MDA), but they can be

easily adapted to any ensemble Kalman filter methods.

A tool package with various functionalities is provided in order to give the

possibility to implement different configurations of the algorithm that suit the

investigated problem. In particular, this package presents useful tools for the

solution of inverse problems aimed at identifying time series function, which is a
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novelty for these methods.

In this chapter, the Python codes are reported and described in detail. The

software consists of several modules which contain different functions. The Python

codes of the general part of the software package, which are not specific to the

study case, is presented in the following sections. The modules that are specific to

the analyzed problem and required to be modified by the user are here described

in a general way; then, the Appendix provides an example of the Python codes

written for solving the inverse problem aimed at the simultaneous identification of

the source location and release history of a contaminant spill in an 2D aquifer.

2.2. Software package structure

The software package structure is depicted in Fig. 2.1. The ESMDA.py is the

main module of the package containing the script for the implementation of ES-

MDA method; the codes are general and do not depend on the study case, but

they can be easily edited to adapt the software to another ensemble Kalman filter

method. Mod.py and InputSettings.py are subordinate modules that depend on

the investigated problem and allow to change the algorithm settings consistently

with the study case. The Tools package contains several modules that provide

useful utilities for the application of ensemble-based methods. All these files are

located in the same working directory, which must also include a folder called

"Model" that contains the forward model and its related files and some external

input files. Obs.txt and Par.txt are necessary input files holding information about

observations and parameters. Furthermore, three optional external input files can

be present: the ens.txt file that provides an initial ensemble of parameters and

the eps.txt and R.txt files that contain the measurement errors matrix and its

covariance matrix, respectively.

16
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All parts of the software package are detailed in the following sections.

Figure 2.1. Software package structure
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2.3. Input files

The input files must be present in the folder where ES-MDA is running. They are

text file that can be edit with any text editor:

- Obs.txt (mandatory)

The file contains the observation data with their spatial and temporal loca-

tion. It must be written as follows:

1st column: x-coordinates of the observed data

2nd column: y-coordinates of the observed data

3rd column: sampling times of the observed data

4th column: values of the observed data

If the space coordinates or the sampling time of the observations are not

defined or available, the columns must be filled with NaN.

- Par.txt (mandatory)

Par.txt file contains information about the parameter to be estimated; it

includes actual parameters, in case the reference solution is known.

1st column: x-coordinates of the parameters

2nd column: y-coordinates of the parameters

3rd column: sampling times of the parameters

4th column: values of the actual parameters

If the reference solution is not available, as in most cases, the 4th column

must be filled with NaN. Also, if parameters do not depend on time or space

the corresponding columns must be filled with NaN. It is noteworthy that

the Par.txt can contains multiple parameters type (for example, spatial coor-

dinates of a pollution source location, hydraulic conductivity and discretized

time function)
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- Ens.txt (optional) The file contains the initial ensemble of parameter re-

alizations; each row corresponds to the realizations of one parameter. It is

an optional file since the initial ensemble can be generated within the code

package.

- Errors.txt (optional)

The file contains the observation error ensemble ε; each row corresponds to

the errors of one observation. It is an optional file since the measurement

errors can be generated within the code package.

- R.txt (optional)

The file contains the observation error covariance matrix; it is a diagonal ma-

trix since the observation errors are assumed independent from one another.

It is an optional file related to the previous one.

2.4. Modules

Mod.py

Mod.py is the module related to the forward model; it depends on the analyzed

problem and must be changed according to each application. It must include 3

mandatory functions:

- write_input : it is the function that writes the parameters, unknowns of the

inverse procedure, into their proper location in the input files of the forward

model;

- run: it is the function that contains the command to run the forward model;

- read_output : it is the function that reads the output values from the forward

model that correspond to the observation data.
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An example of the Mod.py module is provided in Appendix; the codes written

for the solution of the inverse problem that aims to simultaneously estimate the

location and release history of a contaminant in groundwater are reported.

InputSettings.py

InputSettings.py is the module that includes all the input information, specific for

the investigated inverse problem, required to perform the inverse procedure. It

contains different functions, which must be modified by the user in order to adapt

them to the case study:

- Func_ens : it is the function used to set up the the generation of the initial

ensemble of parameters. The function makes use of the EnsembleGenera-

tor.py module of the Tools package described in the next section.

- Func_err : it is the function used to set up the generation of the ensemble

of observation errors and its covariance matrix. The function makes use of

the ErrorGenerator.py module of the Tools package described in the next

section.

- forward_transf : it is the function used to set up the parameter space trans-

formation, if necessary during the estimation. It allows to apply a different

type of transformation for each parameter. This function makes use of the

Transformation.py module.

- backward_transf : it is the function, dependent on the previous one, used

to back-transform the parameters in their physical space. Also the back-

ward_transf makes use of the Transformation.py module of the Tools pack-

age.

- localization: it is the function used to set up a covariance localization suitable

for the considered problem. It makes use of the Localization.py module of
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the Tools package.

- Metrics_obs : it is the function used to define the metrics for the evaluation of

the method performance. Metrics_obs is used to compute the metrics based

on the comparison between actual and predicted values of the observations.

It makes use of the Metrics.py module of the Tools package described in the

next section.

- Metrics_obs_par : it is a function similar to the previous one, which is used

when a reference solution is available. Performance metrics take into account

both the comparison between actual and predicted observations and actual

and estimated parameters. It uses the Metrics.py module.

An example of the InputSettings.py module, written for the inverse problem

of the simultaneous identification of the source location and release history of a

contaminant in groundwater, is provided in Appendix.

ESMDA.py

ESMDA.py is the main module of the software package; it contains the code block

to perform the ensemble smoother with multiple data assimilation method. It does

not require modifications by the user as it is written in a generic way and does

not depend on the analyzed problem. Hereafter, the Python codes are shown in

blue text.

The first part of the codes refers to the initialization step; after importing the

numPy and OS Python libraries and the Mod.py module,

import numpy as np

import os

import Mod

the user is asked to choose the ensemble size, the number of iterations, the αgeo

coefficient (Eq. 1.3) and the relaxation coefficient (Eq. 1.9). Moreover, it is asked
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whether to apply the covariance inflation and if so, to choose the inflation factor

(Eq. 1.19), and whether to apply the covariance localization and if so, to specify

to perform it in the standard or iterative form.

ens=int ( input ( ’ ensemble ␣ s i z e : ␣ ’ ) )

maxit=int ( input ( ’ number␣ o f ␣ i t e r a t i o n s : ␣ ’ ) )

alpha_geo=int ( input ( ’ alpha_geo : ␣ ’ ) )

w=f loat ( input ( ’ Re laxat ion ␣ c o e f f i c i e n t : ␣ ’ ) )

i n f l a t i o n=(input ( ’Do␣ i n f l a t i o n ?␣ (y ) yes ␣ or ␣ (n) not : ␣ ’ ) )

i f i n f l a t i o n==’y ’ :

r r=f loat ( input ( ’ I n f l a t i o n ␣ c o e f f i c i e n t : ␣ ’ ) )

l o c a l i z e =(input ( ’Do␣ l o c a l i z a t i o n ?␣ (y ) yes ␣ or ␣ (n) not : ␣ ’ ) )

i f l o c a l i z e==’y ’ :

i t e r_ l o c=(input ( ’Do␣ i t e r a t i v e ␣ l o c a l i z a t i o n ?␣ (y ) yes ␣ or ␣ (n) not : ␣ ’ ) )

space_transform=(input ( ’Work␣ in ␣ transformed ␣ space :

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ (y ) yes ␣ or ␣ (n) not : ␣ ’ ) )

Then, the observation information contained in the True_obs.txt file are loaded;

Obs_fi le=np . l oadtxt ( ’Obs . txt ’ , dtype=f loat )

x_obs=Obs_fi le [ : , 0 ]

y_obs=Obs_fi le [ : , 1 ]

time_obs=Obs_fi le [ : , 2 ]

Obs=np . at least_2d ( Obs_fi le [ : , 3 ] ) .T

N_obs=Obs . shape [ 0 ]

it is asked if the reference solution is available and the parameters information

contained in the Par.txt file are read;

r e f_so lu t i on=(input ( ’Do␣you␣have␣ the ␣ r e f e r e n c e ␣ s o l u t i o n ?\

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ (y ) yes ␣ or ␣ (n) not : ␣ ’ ) )

True_par_fi le=np . l oadtxt ( ’ Par . txt ’ , dtype=f loat )

x_par=True_par_file [ : , 0 ]

y_par=True_par_file [ : , 1 ]

time_par=True_par_file [ : , 2 ]

True_par=True_par_file [ : , 3 ]

Then, a new initial ensemble of parameters is generated or an available one is

loaded from the X.txt file.

new_ens=(input ( ’ Generate ␣a␣new␣ensemble : ␣ (y ) yes ␣ or ␣ (n) not␣ ’ ) )

i f new_ens==’n ’ :
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X=np . l oadtxt ( ’Ens . txt ’ )

e l i f new_ens==’y ’ :

from InputSe t t ing s import Func_ens

X=Func_ens ( ens )

else :

print ( ’ Error , ␣ i n v a l i d ␣ input ’ )

N_par=X. shape [ 0 ]

The following code block generates the ensemble of measurements errors and its

covariance matrix or upload this data from eps.txt and R.txt files.

new_err=(input ( ’ Generate ␣new␣random␣ e r r o r s : ␣ ( y ) yes ␣ or ␣ (n) not␣ ’ ) )

i f new_err==’n ’ :

R=np . l oadtxt ( ’R. txt ’ )

eps=np . l oadtxt ( ’ Errors . txt ’ )

e l i f new_err==’y ’ :

from InputSe t t ing s import Func_err

eps ,R=Func_err (N_obs , ens )

else :

print ( ’ Error , ␣ i n v a l i d ␣ input ’ )

The next step of the initialization phase is the definition of the coefficients αi for

each iteration; the scheme of Eqs 1.3 and 1.4 is followed, which ensure that the

condition of Eq. 1.2 is satisfied.

al_i = np . ones ( ( maxit , 1 ) , f loat )

for i in range (1 , maxit ) :

a l_i [ i ]= al_i [ i −1]/ alpha_geo

sum_al_i=sum( 1 . / al_i )

alpha=al_i ∗sum_al_i

sum_alpha=sum( 1 . / alpha )

If the covariance localization is not performed iteratively, the correlation matrices

based on spatial or temporal distances between parameters and observations and

between observations and observations are computed before the iterative steps.

i f l o c a l i z e==’y ’ :

from InputSe t t ing s import l o c a l i z a t i o n

i f l o c a l i z e==’y ’ and i t e r_ l o c==’n ’ :

( rho_yy , rho_xy , rho_xx)= l o c a l i z a t i o n (X, True_par_file [ : , 0 : 3 ] ,

Obs_fi le [ : , 0 : 3 ] , i t e r_ l o c )
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Then, the iterative process starts. At the beginning of each iteration, the correla-

tion matrices to apply the iterative localization are computed.

r =[ ]

pred=np . z e ro s ( (N_obs , ens ) )

Xprev=np . copy (X)

for i in range (0 , maxit ) :

R_corr=alpha [ i ]∗R

r . append (R_corr [ i , i ] )

i f l o c a l i z e==’y ’ and i t e r_ l o c==’y ’ :

( rho_yy , rho_xy , rho_xx)= l o c a l i z a t i o n (Xprev ,

True_par_fi le [ : , 0 : 3 ] ,

Obs_fi le [ : , 0 : 3 ] , i t e r_ l o c )

The following code block describes the forecast step (Eq. 1.1).

os . chd i r ( ’Model ’ )

for j in range (0 , ens ) :

Mod. write_input (Xprev [ : , j ] )

Mod. run ( ) #run forward model

pred [ : , j ]=Mod. read_output ( )

os . chd i r ( ’ . . ’ )

Next, the vector of parameters is transformed before the update step, if necessary.

i f space_transform==’y ’ :

from InputSe t t ing s import forward_transf

Xprev=forward_transf (Xprev )

In the following code block, the update step is performed. The covariance matrices

are computed from the ensemble (Eqs. 1.7 and 1.8) and, if required, the covariance

localization is applied.

xm=np . at least_2d (Xprev .mean ( 1 ) ) .T

ym=np . at least_2d ( pred .mean ( 1 ) ) .T

Qx=Xprev−xm∗np . ones ( ( 1 , ens ) )

Qy=pred−ym∗np . ones ( ( 1 , ens ) )

Qxy=Qx@Qy.T/( ens−1)

Qyy=Qy@Qy.T/( ens−1)

Qxx=Qx@Qx.T/( ens−1)
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i f l o c a l i z e==’y ’ :

Qxy=rho_xy∗Qxy

Qyy=rho_yy∗Qyy

Qxx=rho_xx∗Qxx

The parameters are updated based on the Kalman gain matrix and the misfit

between observations and corresponding model predictions.

Gain=Qxy @ np . l i n a l g . inv (Qyy+R_corr )

Xnew=Xprev+Gain@(Obs@np . ones ( ( 1 , ens ))+( alpha [ i ] ) ∗∗ ( 1/2 )∗ eps−pred )

Then, the linear relaxation is applied (Eq 1.9), if the relaxation coefficient w is

nonzero.

Xnew=(1−w)∗Xnew+w∗Xprev

After the update, the parameters are back-transformed to their physical space, if

the transformation was performed.

i f space_transform==’y ’ :

from InputSe t t ing s import backward_transf

Xnew=backward_transf (Xnew)

Xprev=backward_transf (Xprev )

The covariance inflation is applied (Eq. 1.19), if required.

i f i n f l a t i o n==’y ’ :

Xnew_mean=np . at least_2d (np .mean(Xnew , ax i s =1)) .T

Xnew=Xnew_mean∗np . ones ( ( 1 , ens ))+ r r \

(Xnew−Xnew_mean∗np . ones ( ( 1 , ens ) ) ) ;

At the end of each iteration, the performance metrics are computed and collected

in a dictionary. Then the process repeats until the last iteration.

Xprev=np . copy (Xnew)

Xp=np .mean(Xprev , ax i s=1)

pred_mean=np .mean( pred , ax i s=1)

i f r e f_so lu t i on==’y ’ :

from InputSe t t ing s import Metrics_obs_par

met r i c s_ i t e r=Metrics_obs_par (Xprev , pred , True_par , Obs)

else :
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from InputSe t t ing s import Metrics_obs

met r i c s_ i t e r=Metrics_obs (Xprev , pred , True_par , Obs)

i f i ==0:

metrics_name=l i s t ( met r i c s_ i t e r . keys ( ) )

metr i c s_dict=met r i c s_ i t e r . copy ( )

else :

for m in metrics_name :

metr i c s_dict [m]=metr i c s_dict [m]+met r i c s_ i t e r [m]

2.5. Tools package

The tools package includes different modules that provide the instrument to build

the initial ensemble of parameters, generate the observation errors, apply the lo-

calization, perform the transformation of the parameter space and calculate the

evaluation metrics.

EnsembleGenerator.py

The EnsembleGenerator.py module contains several functions that allow to gen-

erate the initial realizations of parameters in different ways consistently with the

type of analyzed problem. All the functions return the initial ensemble matrix of

dimensions (Np ×Ne) as output, where Np and Ne are the number of parameters

and the number of realizations, respectively. The numeric python library NumPy

is used and imported at the beginning of EnsembleGenerator.py as:

import numpy as np

The available functions to generate the initial ensemble are:

- Random: the realizations of the parameters are uniformly distributed ran-

dom values selected over a range of values. The function requires the fol-

lowing input arguments: the boundary values of the range, the number of
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parameters and the number of ensemble realizations.

def Random(Min ,Max,N_par , ens ) :

X=np . random . uniform ( low=Min , high=Max, s i z e=(N_par , ens ) )

return X

- PdfGamma: each realization of the parameters follow a gamma distribution;

it is defined as:

f(t) = A+
1

knΓ (n)
tn−1e−t/k, (2.1)

where t is time (or space), A represents a base amount of the considered vari-

able, B is the volume under the Gamma function, n is the shape coefficient,

k the scale coefficient and Γ (n) is the gamma function. The coefficients

are generated randomly from uniform distributions over ranges of values.

The function requires the following input arguments: the range limit values

for coefficients A, B, n and k, the vector of the variable t, the number of

parameters and the number of ensemble realizations.

def PdfGamma(aMin , aMax , kMin , kMax ,nMax , nMin ,

bMin , bMax , x ,N_par , ens ) :

from s c ipy . s t a t s import gamma

a=np . random . uniform ( low=aMin , high=aMax , s i z e=(ens ) )

k=np . random . uniform ( low=kMin , high=kMax , s i z e=(ens ) )

n=np . random . uniform ( low=nMin , high=nMax , s i z e=(ens ) )

b=np . random . uniform ( low=bMin , high=bMax , s i z e=(ens ) )

X=np . z e ro s ( (N_par , ens ) )

for i in range (0 , ens ) :

X[ : , i ]=gamma. pdf (x , n [ i ] , l o c =0, s c a l e=k [ i ] ) ∗ b [ i ]+a [ i ]

return X

- PdfGammaNpeaks : each realization of the parameters is given by the sum-

mation of gamma functions:

f(t) = A+
M∑
r=1

Br ·
1

knrr Γ (nr)
tnr−1e−t/kr , (2.2)
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where M denotes the number of summed gamma functions and the other

coefficients are the same as those defined for the function PdfGamma; each

gamma function is generated using coefficients selected randomly over the

same ranges of values. The function requires the following input arguments:

the number of Gamma functions M , the range limit values for coefficients

A, B, n and k, the vector of the variable t, the number of parameters and

the number of ensemble realizations.

def PdfGammaNpeaks(aMin , aMax , kMin , kMax ,nMax , nMin ,

bMin , bMax , x ,N_par , ens , N_peaks ) :

from s c ipy . s t a t s import gamma

a=np . z e ro s ( ( ens , N_peaks ) )

k=np . z e ro s ( ( ens , N_peaks ) )

n=np . z e ro s ( ( ens , N_peaks ) )

b=np . z e ro s ( ( ens , N_peaks ) )

for i in range (0 ,N_peaks ) :

a [ : , i ]=np . random . uniform ( low=aMin , high=aMax , s i z e=(ens ) )

k [ : , i ]=np . random . uniform ( low=kMin , high=kMax , s i z e=(ens ) )

n [ : , i ]=np . random . uniform ( low=nMin , high=nMax , s i z e=(ens ) )

b [ : , i ]=np . random . uniform ( low=bMin , high=bMax , s i z e=(ens ) )

X=np . z e ro s ( (N_par , ens ) )

for j in range (0 , ens ) :

for i in range (0 ,N_peaks ) :

X[ : , j ]+=gamma. pdf (x , n [ j , i ] , l o c =0, s c a l e=k [ j , i ] ) ∗\

b [ j , i ]+a [ j , i ]

return X

- PdfNormal : The realizations of parameters are Gaussian functions described

by the following expression:

f (t) = A+B · 1

σ
√

2π
e−

1
2 ( t−µσ ) (2.3)

where t is time (or space), A is a base amount of the considered variable, B

is the volume under the Gaussian function and µ and σ are the mean and

variance used to define it. These coefficients are selected randomly, for each
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realization of the ensemble, from a uniform distribution over fixed ranges.

The function requires the following input arguments: the range limit values

for coefficients A, B, µ and σ, the vector of the variable t, the number of

parameters and the number of ensemble realizations.

def PdfNormal (aMin , aMax ,muMin ,muMax, sigmaMin , sigmaMax ,

bMin , bMax , x ,N_par , ens ) :

from s c ipy . s t a t s import norm

a=np . random . uniform ( low=aMin , high=aMax , s i z e=(ens ) )

mu=np . random . uniform ( low=muMin , high=muMax, s i z e=(ens ) )

sigma=np . random . uniform ( low=sigmaMin , high=sigmaMax , s i z e=(ens ) )

b=np . random . uniform ( low=bMin , high=bMax , s i z e=(ens ) )

X=np . z e ro s ( (N_par , ens ) )

for i in range (0 , ens ) :

X[ : , i ]=norm . pdf (x , mu[ i ] , sigma [ i ] ) ∗ b [ i ]+a [ i ]

return X

- ConstantRandom: each ensemble realization of parameters is made of a

unique constant value, which is different for each realization and generated

randomly from a uniform distributions over a fixed range. The function

requires the following input arguments: the limit values of the coefficients

range, the number of parameters and the number of ensemble realizations.

def ConstantRandom(Min ,Max,N_par , ens ) :

va lues=np . random . uniform ( low=Min , high=Max, s i z e=(ens ) )

va lues=np . at least_2d ( va lues )

vec to r=np . ones ( [ N_par ] )

vec to r=np . at least_2d ( vec to r ) .T

X=vector@values

return X

- ConstantNormal : The realizations of parameters are constant values, which

are different for each realization and generated randomly from a Gaussian

distribution. The function requires the following input arguments: the mean

and the variance of the Gaussian function, the number of parameters and

the number of ensemble realizations.
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def ConstantNormal (mu, sigma ,N_par , ens ) :

va lues=np . random . normal (mu, sigma , s i z e=(ens ) )

va lues=np . at least_2d ( va lues )

vec to r=np . ones ( [ N_par ] )

vec to r=np . at least_2d ( vec to r ) .T

X=vector@values

return X

The use of the functions PdfGamma, PdfGammaNpeaks and PdfNormal functions

is suggested when the parameters to be estimated are discretized time series.

ErrorGenerator.py

ErrorGenerator.py is the module that deals with the observation errors. It contains

two functions that returns as output the ensemble of observed data errors, which

is a matrix of dimensions (m×Ne), and the covariance matrix of the observation

errors of dimensions (m×m); where m denotes the number of observations. The

NumPy library is imported at the beginning of the module as:

import numpy as np

The two available functions are:

- NormalError : it generates random observation errors with normal distri-

bution, zero mean and fixed variance. The function requires the following

input arguments: the variance, the number of parameters and the number

of ensemble realizations.

def NormalError ( var_err ,N_obs , ens ) :

eps=np . z e ro s ( (N_obs , ens ) )

R=np . i d e n t i t y (N_obs)∗ var_err

for i in range (N_obs ) :

eps [ i , : ]= np . random . normal (0 , var_err , s i z e =(ens ) )

return ( eps ,R)

- PercNormalError : it generates observation errors expressed as a percent-

age of the measurement data. The errors of each observation are normally
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distributed with zero mean and variances defined so that the 99.7% of the

errors lies within the range defined by the selected percentage of the observed

value. It is possible to set a minimum variance threshold in order to avoid

too small values given by the percentage of small observed data. The func-

tion requires the following input arguments: the vector of the observations,

the percentage of the observed data, the lower limit of the variances, the

number of parameters and the number of ensemble realizations.

def PercNormalError ( obs , perc , var_err_lim ,N_obs , ens ) :

var_err=(perc /100∗ obs /3)∗∗2

var_err [ var_err < var_err_lim ]=var_err_lim

R=np . diag ( var_err )

eps=np . z e ro s ( (N_obs , ens ) )

for i in range (N_obs ) :

eps [ i , : ]= np . random . normal (0 , var_err [ i ] , s i z e =(ens ) )

return ( eps ,R)

Localization.py

Localization.py is the module used to apply the covariance localization. It contains

two functions that return as output the correlation matrices, computed following

Eq. 1.18, based on spatial or temporal observations-observations, parameters-

observations and parameters-parameters distances. The NumPy is imported at

the beginning of Localization.py module and renamed as "np":

import numpy as np

The two functions are:

- TimeLocal : it generates the correlation matrices based on time distances.

The functions requires the following input arguments: the correlation time

length characterizing the time distance at which the covariances become zero

(coefficient b in Eq. 1.18), the discrete time vector of parameters and the

discrete time vector of observations.
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def TimeLocal ( a , time_par , time_obs ) :

N_par=time_par . shape [ 0 ]

N_obs=time_obs . shape [ 0 ]

d_yy=np . z e ro s ( (N_obs ,N_obs ) )

d_xy=np . z e ro s ( (N_par ,N_obs ) )

d_xx=np . z e ro s ( (N_par ,N_par ) )

rho_yy=d_yy ;

rho_xy=d_xy ;

rho_xx=d_xx ;

for row in range (0 ,d_yy . shape [ 0 ] ) :

for c o l in range (0 ,d_yy . shape [ 1 ] ) :

d_yy [ row , c o l ]=abs ( time_obs [ row]−time_obs [ c o l ] )

i f d_yy [ row , c o l ]<=a :

rho_yy [ row , c o l ]=−1/4∗(abs (d_yy [ row , c o l ] ) / a)∗∗5+\

1/2∗(abs (d_yy [ row , c o l ] ) / a)∗∗4+\

5/8∗(abs (d_yy [ row , c o l ] ) / a)∗∗3−\

5/3∗(abs (d_yy [ row , c o l ] ) / a)∗∗2+\

1

e l i f d_yy [ row , c o l ]>a and d_yy [ row , c o l ]<=2∗a :

rho_yy [ row , c o l ]=1/12∗(abs (d_yy [ row , c o l ] ) / a)∗∗5−\

1/2∗(abs (d_yy [ row , c o l ] ) / a)∗∗4+\

5/8∗(abs (d_yy [ row , c o l ] ) / a)∗∗3+\

5/3∗(abs (d_yy [ row , c o l ] ) / a)∗∗2−\

5∗(abs (d_yy [ row , c o l ] ) / a)+\

4−\

2/3∗a/abs (d_yy [ row , c o l ] )

e l i f d_yy [ row , c o l ]>2∗a :

rho_yy [ row , c o l ]=0

for row in range (0 ,d_xy . shape [ 0 ] ) :

for c o l in range (0 ,d_xy . shape [ 1 ] ) :

d_xy [ row , c o l ]=abs ( time_par [ row]−time_obs [ c o l ] )

i f d_xy [ row , c o l ]<=a :

rho_xy [ row , c o l ]=−1/4∗(abs (d_xy [ row , c o l ] ) / a)∗∗5+\

1/2∗(abs (d_xy [ row , c o l ] ) / a)∗∗4+\

5/8∗(abs (d_xy [ row , c o l ] ) / a)∗∗3−\

5/3∗(abs (d_xy [ row , c o l ] ) / a)∗∗2+\

1

e l i f d_xy [ row , c o l ]>a and d_xy [ row , c o l ]<=2∗a :

rho_xy [ row , c o l ]=1/12∗(abs (d_xy [ row , c o l ] ) / a)∗∗5−\

1/2∗(abs (d_xy [ row , c o l ] ) / a)∗∗4+\

5/8∗(abs (d_xy [ row , c o l ] ) / a)∗∗3+\
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5/3∗(abs (d_xy [ row , c o l ] ) / a)∗∗2−\

5∗(abs (d_xy [ row , c o l ] ) / a)+\

4−\

2/3∗a/abs (d_xy [ row , c o l ] )

e l i f d_xy [ row , c o l ]>2∗a :

rho_xy [ row , c o l ]=0

for row in range (0 ,d_xx . shape [ 0 ] ) :

for c o l in range (0 ,d_xx . shape [ 1 ] ) :

d_xx [ row , c o l ]=abs ( time_par [ row]−time_par [ c o l ] )

i f d_xx [ row , c o l ]<=a :

rho_xx [ row , c o l ]=−1/4∗(abs (d_xx [ row , c o l ] ) / a)∗∗5+\

1/2∗(abs (d_xx [ row , c o l ] ) / a)∗∗4+\

5/8∗(abs (d_xx [ row , c o l ] ) / a)∗∗3−\

5/3∗(abs (d_xx [ row , c o l ] ) / a)∗∗2+\

1

e l i f d_xx [ row , c o l ]>a and d_xx [ row , c o l ]<=2∗a :

rho_xx [ row , c o l ]=1/12∗(abs (d_xx [ row , c o l ] ) / a)∗∗5−\

1/2∗(abs (d_xx [ row , c o l ] ) / a)∗∗4+\

5/8∗(abs (d_xx [ row , c o l ] ) / a)∗∗3+\

5/3∗(abs (d_xx [ row , c o l ] ) / a)∗∗2−\

5∗(abs (d_xx [ row , c o l ] ) / a)+\

4−\

2/3∗a/abs (d_xx [ row , c o l ] )

e l i f d_xx [ row , c o l ]>2∗a :

rho_xx [ row , c o l ]=0

return ( rho_yy , rho_xy , rho_xx )

- SpaceLocal : it generates the correlation matrices based on spatial distances.

The functions requires the following input arguments: the correlation length

characterizing the spatial distance at which the covariances become zero

(coefficient b in Eq. 1.18), the location of parameters and the location of

observations.

def SpaceLocal ( a , pos_par , pos_obs ) :

x_par=pos_par [ : , 0 ]

y_par=pos_par [ : , 1 ]

x_obs=pos_obs [ : , 0 ]

y_obs=pos_obs [ : , 1 ]

N_par=pos_par . shape [ 0 ]
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N_obs=pos_obs . shape [ 0 ]

d_yy=np . z e ro s ( (N_obs ,N_obs ) )

d_xy=np . z e ro s ( (N_par ,N_obs ) )

d_xx=np . z e ro s ( (N_par ,N_par ) )

rho_yy=d_yy ;

rho_xy=d_xy ;

rho_xx=d_xx ;

for row in range (0 ,d_yy . shape [ 0 ] ) :

for c o l in range (0 ,d_yy . shape [ 1 ] ) :

d_yy [ row , c o l ]=np . sq r t ( ( x_obs [ row]−x_obs [ c o l ])∗∗2+\

(y_obs [ row]−y_obs [ c o l ] ) ∗∗2 )

i f d_yy [ row , c o l ]<=a :

rho_yy [ row , c o l ]=−1/4∗(abs (d_yy [ row , c o l ] ) / a)∗∗5+\

1/2∗(abs (d_yy [ row , c o l ] ) / a)∗∗4+\

5/8∗(abs (d_yy [ row , c o l ] ) / a)∗∗3−\

5/3∗(abs (d_yy [ row , c o l ] ) / a)∗∗2+\

1

e l i f d_yy [ row , c o l ]>a and d_yy [ row , c o l ]<=2∗a :

rho_yy [ row , c o l ]=1/12∗(abs (d_yy [ row , c o l ] ) / a)∗∗5−\

1/2∗(abs (d_yy [ row , c o l ] ) / a)∗∗4+\

5/8∗(abs (d_yy [ row , c o l ] ) / a)∗∗3+\

5/3∗(abs (d_yy [ row , c o l ] ) / a)∗∗2−\

5∗(abs (d_yy [ row , c o l ] ) / a)+4−\

2/3∗a/abs (d_yy [ row , c o l ] )

e l i f d_yy [ row , c o l ]>2∗a :

rho_yy [ row , c o l ]=0

for row in range (0 ,d_xy . shape [ 0 ] ) :

for c o l in range (0 ,d_xy . shape [ 1 ] ) :

d_xy [ row , c o l ]=np . sq r t ( ( x_par [ row]−x_obs [ c o l ])∗∗2+\

(y_par [ row]−y_obs [ c o l ] ) ∗∗2 )

i f d_xy [ row , c o l ]<=a :

rho_xy [ row , c o l ]=−1/4∗(abs (d_xy [ row , c o l ] ) / a)∗∗5+\

1/2∗(abs (d_xy [ row , c o l ] ) / a)∗∗4+\

5/8∗(abs (d_xy [ row , c o l ] ) / a)∗∗3−\

5/3∗(abs (d_xy [ row , c o l ] ) / a)∗∗2+\

1

e l i f d_xy [ row , c o l ]>a and d_xy [ row , c o l ]<=2∗a :

rho_xy [ row , c o l ]=1/12∗(abs (d_xy [ row , c o l ] ) / a)∗∗5−\

1/2∗(abs (d_xy [ row , c o l ] ) / a)∗∗4+\

5/8∗(abs (d_xy [ row , c o l ] ) / a)∗∗3+\

5/3∗(abs (d_xy [ row , c o l ] ) / a)∗∗2−\

34



CHAPTER 2. PYTHON SOFTWARE PACKAGE

5∗(abs (d_xy [ row , c o l ] ) / a)+4−\

2/3∗a/abs (d_xy [ row , c o l ] )

e l i f d_xy [ row , c o l ]>2∗a :

rho_xy [ row , c o l ]=0

for row in range (0 ,d_xx . shape [ 0 ] ) :

for c o l in range (0 ,d_xx . shape [ 1 ] ) :

np . s q r t ( ( x_par [ row]−x_par [ c o l ])∗∗2+\

(y_par [ row]−y_par [ c o l ] ) ∗∗2 )

i f d_xx [ row , c o l ]<=a :

rho_xx [ row , c o l ]=−1/4∗(abs (d_xx [ row , c o l ] ) / a)∗∗5+\

1/2∗(abs (d_xx [ row , c o l ] ) / a)∗∗4+\

5/8∗(abs (d_xx [ row , c o l ] ) / a)∗∗3−\

5/3∗(abs (d_xx [ row , c o l ] ) / a)∗∗2+\

1

e l i f d_xx [ row , c o l ]>a and d_xx [ row , c o l ]<=2∗a :

rho_xx [ row , c o l ]=1/12∗(abs (d_xx [ row , c o l ] ) / a)∗∗5−\

1/2∗(abs (d_xx [ row , c o l ] ) / a)∗∗4+\

5/8∗(abs (d_xx [ row , c o l ] ) / a)∗∗3+\

5/3∗(abs (d_xx [ row , c o l ] ) / a)∗∗2−\

5∗(abs (d_xx [ row , c o l ] ) / a)+4−\

2/3∗a/abs (d_xx [ row , c o l ] )

e l i f d_xx [ row , c o l ]>2∗a :

rho_xx [ row , c o l ]=0

return ( rho_yy , rho_xy , rho_xx )

Transformation.py

Transformation.py is the module used to perform the transformation and back-

transformation of the parameters space in different ways. The NumPy is imported

at the beginning of the module:

import numpy as np

Transformation.py contains the following functions:

- Log_forward : the parameters are log transformed. The function requires

the vector of parameters in their physical space as input and returns it in

the transformed space.
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def Log_forward ( xx ) :

X_t=np . l og ( xx )

return X_t

- Log_backward : the parameters are back transformed from the log space.

The function requires the vector of parameters in the transformed space as

input and returns it in their physical space.

def Log_backward ( xx ) :

X_bt=np . exp ( xx )

return X_bt

- LogLim_forward : the parameters are log transformed in a bounded space

following the modified log-transformation (Eq. 1.10). The function requires

the vector of parameters in their physical space and the bounded space in-

terval as input and returns the parameters in the transformed space.

def LogLim_forward (xx ,Xmin ,Xmax) :

X_t=np . l og ( ( xx−Xmin)/(Xmax−xx ) )

return X_t

- LogLim_backward : the parameters are back transformed from the modified

log space (Eq. 1.11). The function requires the vector of parameters in the

transformed space and the bounded space intervals as input and returns it

in their physical space.

def LogLim_backward (xx ,Xmin ,Xmax) :

X_bt=(np . exp ( xx )∗Xmax+Xmin)/(1+np . exp ( xx ) )

return X_bt

- SquareRoot_forward : the parameters are transformed using the square root

transformation. The function requires the vector of parameters in their phys-

ical space as input and returns it in the transformed space.

def SquareRoot_forward ( xx ) :

X_t=xx ∗∗(1/2)

return X_t
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- SquareRoot_backward : the parameters are back transformed from square

root space. The function requires the vector of parameters in the transformed

space as input and returns it in their physical space.

def SquareRoot_backward ( xx ) :

X_bt=xx ∗∗ (2)

return X_bt

- SquareRootLim_forward : the parameters are transformed using the square

root transformation in a bounded space (Eq. 1.12). The function requires the

vector of parameters in their physical space and the bounded space interval

as input and returns the parameters in the transformed space.

def SquareRootLim_forward (xx ,Xmin ,Xmax) :

X_t=((xx−Xmin)/(Xmax−xx ) )∗∗ (1/2 )

return X_t

- SquareRootLim_backward : the parameters are back transformed from the

modified square root space (Eq. 1.13). The function requires the vector

of parameters in the transformed space and the bounded space intervals as

input and returns it in their physical space.

def SquareRootLim_backward (xx ,Xmin ,Xmax) :

X_t=(Xmax−Xmin)∗xx∗∗2/(1+xx∗∗2)+Xmin

return X_t

Metrics.py

This module contains the functions that are used to compute the metrics for the

evaluation methodology performance. The numpy and math libraries are used,

which are called at the beginning of the codes as:

import math

import numpy as np

The metrics.py module contains five metrics:
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- RMSE : it is the function that calculates the root mean square error between

the actual and predicted values, which can be parameters or observations.

RMSE =

√∑n
i=1

(
Si −Oi

)2
n

, (2.4)

where n is the sample size, Oi is the i-th actual value and Si is the ensemble

mean of the i-th estimated value. The function requires the vector of the

actual values and the ensemble mean of the predicted ones as input.

def RMSE( actual , p r ed i c t ed ) :

N=actua l . shape [ 0 ]

rmse=math . sq r t (np .sum( ( pred icted−ac tua l )∗∗2)/N)

return rmse

- AES : it is the function that calculates the average ensemble spread; it is

defined as:

AES =

√∑n
i=1 σ

2
i

n
, (2.5)

where n is the sample size of parameters or observations and σ2
i is the en-

semble variance of the i-th value. The function requires the ensemble of

parameters or predicted values of observations as input.

def AES( ensemble ) :

N=ensemble . shape [ 0 ]

aes=math . sq r t (np .sum(np . var ( ensemble , ax i s =1))/N)

return aes

- NSE : it is the function that calculates Nash-Sutcliffe efficiency criterion de-

fined as

NSE =

(
1−

∑n
i=1

(
Si −Oi

)2∑n
i=1

(
Oi −O

)2
)
· 100, (2.6)

where n is the sample size, Si is the ensemble mean of the i-th estimated
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value, Oi is the i-th actual value and O is the average of the actual values.

The function requires the vector of the actual data and the ensemble mean

of predicted values as input.

def NSE( actual , p r ed i c t ed ) :

nse=(1−(np .sum( ( pred icted−ac tua l )∗∗2))/\

(np .sum( ( actual−np .mean( ac tua l ) )∗∗2) ) )∗100

return nse

- RSS : it is the function that calculates the residual sum of squares between

actual and estimated data.

RSS =
n∑
i=1

(
Si −Oi

)2
, (2.7)

where n is the sample size, Si is the ensemble mean of the i-th estimated

value and Oi is the i-th actual value. The function requires the vector of the

actual values and the ensemble mean of the predicted ones as input.

def RSE( actual , p r ed i c t ed ) :

r s e=sum( ( pred icted−ac tua l )∗∗2)

return r s e

- spatial_distance: it is the function that calculates the spatial distance be-

tween actual and estimated locations. It can be used when spatial coordi-

nates are parameters to be estimated.

L =

√
(xs − x0)

2
+ (ys − y0)

2 (2.8)

where xs and ys are the ensemble means of the estimated spatial coordinates

of the parameter and (x0, y0) is the actual location. The function requires

the vector of the actual locations and the ensemble mean of the predicted

ones as input.
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def spa t i a l_d i s t anc e ( actual , p r ed i c t i on ) :

dd=math . sq r t (np .sum( p r ed i c t i on−ac tua l )∗∗2)

return dd
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3
Reverse flow routing

3.1. Introduction

The knowledge of discharge hydrographs at specific river sections is essential for

flood-risk assessment, planning and management of water resource systems, or

optimization of existing hydraulic infrastructures and design of new ones, among

others. However, only few river sections are equipped to record data; therefore, an

indirect determination of discharge hydrographs is often required. When a flood

wave propagates along a river reach or passes through a reservoir, it usually expe-

riences a delay and an attenuation. Although the forward flow routing (estimation

of downstream discharge hydrographs based on information available upstream) is

common and widely used by practitioners, the estimation of discharge hydrographs

at ungauged sections that do not have reliable data upstream is still challenging.

Discarding the use of rainfall-runoff models, due to their high uncertainty, a tech-
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nique that could overcome this problem is the reverse flow routing process that

couples the information recorded downstream (discharges or water levels) and the

channel or reservoir characteristics to estimate the upstream inflow. The two main

approaches to solve this problem in open channels are the application of hydro-

logical routing models (see e.g. Das 2009, Koussis & Mazi 2016) in a reverse form,

and the backward solution in time of the de Saint Venant equations (see e.g. Eli

et al. 1974, Szymkiewicz 1993, Bruen & Dooge 2007). A more recent approach

makes use of optimization procedures to determine the hydrograph that, once

propagated downstream, reproduces the available observations. Saghafian et al.

(2014) and Zucco et al. (2015) coupled a Genetic algorithm with a one-dimensional

forward hydraulic model and with a simplified routing model, respectively. D’Oria

& Tanda (2012), D’Oria et al. (2014) and Ferrari et al. (2018) applied a Bayesian

Geostatistical Approach (BGA) to perform the reverse flow routing in combination

with hydraulic models that solve the one-dimensional or two-dimensional shallow

water equations. Zoppou (1999) faced the problem of reverse routing of flood

hydrographs in reservoirs inverting a simple storage equation under a level pool

approximation. Spurious oscillations arise in some circumstances; D’Oria et al.

(2012) and Leonhardt et al. (2014) solved this problem applying a stochastic ap-

proach based on BGA.

Here, reverse flow routing problem is solved by means of the ensemble smoother

with multiple data assimilation (ES-MDA). The objective is the estimation of an

unknown inflow hydrograph discretized in time by coupling ES-MDA with a given

forward routing model that relates inflow hydrograph and downstream observa-

tions. Two realistic synthetic examples are presented to show the capabilities of the

methodology. The first case is an application of the reverse flow routing problem to

a linear reservoir, where the outflow hydrograph and the reservoir characteristics

are known; the second one focuses on the estimation of the inflow hydrograph to an

open channel from water level information recorded downstream. For the second
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problem, which is nonlinear, the impact of the ensemble size and covariance local-

ization and inflation techniques are also tested. Then, the ES-MDA was applied

for the solution of a real case study; an inflow hydrograph in the Parma–Baganza

river confluence at the city of Parma (Italy), was estimated on the basis of water

levels information collected downstream on the main reach.

This Chapter is derived in part from Todaro et al. (2019).

3.2. Synthetic examples

For the synthetic examples, the inflow hydrograph I, to be estimated is a multi-

peak wave modeled as the summation of M gamma functions, that is:

I(t) = A+
M∑
r=1

Br · fr (t | nr, kr) , (3.1)

where t is the time, A [L3T−1] represents the base flow, B [L3] the flood volume

of each gamma wave r, and f [T] is a gamma distribution function of coefficients

n (shape) and k (scale):

f(t | n, k) =
1

knΓ (n)
tn−1e−t/k, (3.2)

where Γ (n) is the gamma function.

The synthetic test cases allow the comparison between the results of the inverse

algorithm and the reference solution. The performance of the methodology is

evaluated using three different metrics: the root mean square error (RMSE), the

Nash-Sutcliffe efficiency criterion (NSE; Nash & Sutcliffe 1970) and the relative
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error in the peak discharge (Ep). RMSE is computed as:

RMSE =

√∑Np
d=1

(
Id −Xd

)2
Np

, (3.3)

where Np is the number of parameters, Id is the d-th true inflow discharge and Xd

is the ensemble mean of the d-th estimated inflow discharge.

NSE is defined as:

NSE =

(
1−

∑Np
d=1

(
Id −Xd

)2∑Np
d=1

(
Id − Id

)2
)
· 100, (3.4)

where Id is the mean of the true inflow hydrograph. NSE=100% indicates a

perfect match between estimated and actual discharges.

Ep is evaluated as:

Ep =

(
Ip

Xp

− 1

)
· 100 (3.5)

where Ip and Xp represent the true and estimated (ensemble mean) peaks of the

inflow hydrographs, respectively.

The results of the second synthetic example are also compared with those ob-

tained applying the Bayesian Geostatistical Approach (BGA) proposed by D’Oria

& Tanda (2012). BGA needs multiple iterations to reach an optimal solution

due to the nonlinearity of the forward problem and the need to estimate the hy-

perparameters of the prior covariance model, which control the structure of the

unknown hydrograph, in addition to the discharge values (parameters). At each

inner linearization iteration, the Jacobian matrix (sensitivity of observations to

unknown parameters) must be calculated and it requires, in a finite difference ap-

proximation, as many forward model runs as the number of parameters, Np, plus
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1. Therefore, the total number of forward model runs, Nt, required by BGA is:

Nt = (Np − 1)NoNi + 1, (3.6)

where No and Ni are the numbers of BGA iterations needed for hyperparameters

(outer loop) and parameters estimation (inner loop), respectively.

3.2.1. Reverse flow routing for a linear reservoir

The test aims to estimate the inflow hydrograph to a reservoir based on the knowl-

edge of the outflow hydrograph and the reservoir characteristics.

Under the level pool routing approximation (reservoir dynamics are negligible

and water surface inside the reservoir is horizontal), the inflow I(t) and the outflow

Q(t) in a reservoir are related by a simple continuity equation:

I(t)−Q(t) =
dS

dt
, (3.7)

where S is the instantaneous volume stored in the reservoir and t is the time. The

outflow discharge is related to the storage; for a linear reservoir it can be expressed

as:

S(t) = KQ(t), (3.8)

where the constant proportionality factor K[T ] is known as the storage coefficient.

The solution of the continuity equation for the linear reservoir (starting from a

steady state condition) on a continuous time scale is represented by the following

convolution integral (Chow 1988):

Q(t) =

∫ t

0

1

K
e−(t−τ)/KI(τ)dτ. (3.9)

A solution at discrete intervals of time can be obtained by means of a discrete
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convolution equation.

The synthetic test considers a reservoir with storage coefficient K=3 h and an

inflow hydrograph with two peaks as defined by Eq. 3.1 (M=2) and the coefficients

reported in Table 1. The resulting hydrograph has a first peak of about 500 m3/s

at 3.5 h and a second peak with a discharge of about 240 m3/s at 11.4 h.

Table 3.1. Case 1: coefficients of the two gamma functions used for the description of
the inflow hydrograph.

A [m3/s] B [m3] n [-] k [h]

50 f1 5.5·106 8 0.5

f2 4.5·106 20 0.6

The total simulation time is 30 h. The inflow hydrograph is discretized in equal

interval of 9 min resulting in a number of parameters to be estimated Np=201.

Preliminarily, the actual inflow hydrograph is forward routed through Eq. 3.9

to obtain the true outflow hydrograph; this last one was observed every 6 min

for a total of 301 observations (m=301) to be used in the inverse procedure. In

applying the ES-MDA procedure, it is considered an observation error ε equal to

5% of the true discharge values.

The initial ensemble (Fig. 3.1) is composed of 200 realizations of the inflow

hydrograph. They are all individual gamma functions generated using Eq. 3.1 with

M=1 and the other coefficients selected randomly over a wide range of values. In

particular, the range is [10, 150] m3/s for A, [1.5·105, 5.0·107] m3 for B, [3, 10] for

n and [0.7, 4.5] h for k; the extremes of the ranges, selected on the basis of expert

knowledge, guarantee that all the realizations are consistent with the considered

problem.
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Figure 3.1. Case 1: initial ensemble of inflow hydrograph (200 realizations).

For the ES-MDA, 5 iterations with a constant α equal to 5 (αgeo=1, Eqs. 1.3

and 1.4) are performed. In this case, no localization or inflation are applied, and

a large ensemble is considered with the aim to show the capability of the method.

Fig. 3.2 presents the results of the inversion at the end of the iterative process:

it shows the ensemble mean of the estimated inflow and outflow hydrographs with

their 95% confidence interval computed from the ensemble; the actual inflow and

outflow hydrographs are reported for comparison.

The ES-MDA method accurately reproduces the inflow hydrograph (NSE=

99.94%) with a very narrow confidence interval, as well as the simulated outflow

hydrograph. The RMSE at each iteration, shown in Fig. 3.3, slightly decreases

during the procedure reaching the lowest value of 2.9 m3/s at the end of the

simulation. The two inflow peaks and their timing are properly reproduced with

a slight underestimation (Ep,1=-1.1%; Ep,2=-0.4%, where the subscript 1 stands

for the first peak and 2 for the second one).
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Figure 3.2. Case 1: actual and estimated inflow and outflow hydrographs with 95%
credibility intervals.

Figure 3.3. Case 1: root-mean-square error (RMSE) of the estimated inflow hydrograph
at each iteration.
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3.2.2. Reverse flow routing in an open channel

The second test focuses on the estimation of the inflow hydrograph to an open

channel based on water level information collected in a downstream section using

a given numerical model for the forward routing. In this work, the Hydrologic

Engineering Center’s River Analysis System (HEC-RAS), developed by the US

Army Corps of Engineers (Brunner 2010), is used; it simulates one-dimensional

unsteady flow by solving the Saint-Venant equations.

It is considered a prismatic channel, 20 km long, with a longitudinal slope of

0.0005 and compound cross sections spaced by 250 m consisting of a trapezoidal

main channel and two symmetric floodplains (Fig. 3.4). The main channel has a

bottom width of 50 m, a side slope of 2 and a depth of 6 m; each floodplain has a

width of 50 m, horizontal bottom and vertical banks. Manning coefficients of 0.05

m−1/3/s and 0.1 m−1/3/s are adopted for the main channel and the floodplain,

respectively.

Figure 3.4. Case2: compound cross section of the prismatic channel.

The true upstream hydrograph is defined by Eq. 3.1 (M=2) with the coeffi-

cients reported in Table 3.2. The hydrograph has a first peak of about 1000 m3/s

at 5 h, a second peak with a discharge of about 500 m3/s at 14 h and a base flow

of 50 m3/s. The total simulation time is 30 h and the upstream hydrograph is

discretized in equal intervals of 30 min (Np=61).
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Table 3.2. Case 1: coefficients of the two gamma functions used for the description of
the inflow hydrograph.

A [m3/s] B [m3] n [-] k [h]

50 f1 1.6·107 8 0.7

f2 1.4·107 18 0.8

The initial condition is obtained from a steady-state simulation according to

the first inflow discharge value, assuming a steady-state condition before the flood

event. The upstream and downstream boundary conditions are represented by

the inflow hydrograph and the normal depth based on the Manning’s equation,

respectively.

The actual inflow hydrograph has been forward routed by means of HEC-RAS

to obtain the water levels used as observations, which are recorded in the section in

the middle of the channel, located 10 km downstream from the upstream section,

every 30 min (m=61). It is consider a random observation error ε with normal

distribution, zero mean and variance 2.8·10−4m2, that results in the 99.7% of the

cases in errors in the range 0.05 m.

In this work, different settings of the inverse algorithm have been tested in

the estimation of the upstream hydrograph; the impact of the ensemble size, the

choice of the coefficient α during the iteration process, the covariance localization

and the covariance inflation techniques are analyzed .

Three ensemble sizes have been analyzed, they are equal to: half the number

of parameters (Ne= 31), the number of parameters (Ne=61) and three times the

number of parameters (Ne=83). All the realizations of the initial ensembles are

individual gamma functions generated using Eq. 3.1 with M=1 and coefficients

randomly selected over the same wide range of values ([2, 180] m3/s for A, [8·104,

8·107] m3 for B, [3, 18] for n; [0.6, 4.8] h for k).

For each ensemble size, four tests are carried out: the first test (T1) is per-
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formed with a constant coefficient α used for all iterations and without other

modifications on the inverse algorithm; the second one (T2) attempts to evalu-

ate the effect of decreasing coefficient α as iterations progress; the third one (T3)

studies the effect of covariance localization and covariance inflation keeping α con-

stant; and the last test (T4), combines covariance modification (localization and

inflation) with a decreasing α.

For each test, 6 iterations were performed with a constant α equal to 6 (αgeo=1,

Eqs. 1.3 and 1.4), for test T1 and T3 and a decreasing α=[364; 121.33; 40.44;

13.48; 4.49; 1.50], obtained with αgeo=3 (Eqs. 1.3 and 1.4), for T2 and T4 (recall

that the sum of the inverses of α values should add up to 1 (Eq. 1.2). Covariance

localization and covariance inflation are applied using the coefficient b equal to 6

h (Eq. 1.18) and the inflation factor equal to 1.01 (Eq. 1.19), respectively. In this

case, the update step is performed in logarithmic space to avoid the appearance

of negative values.

The results of all tests are compared in term of the root mean squared error

(RMSE) between the estimated hydrograph and the reference solution (Fig. 3.5).

In all cases, the RMSE significantly decreases at each iteration, reaching low values

at the end of the inversion. For the smaller ensemble size (Fig 3.5a) the method

performs better when a decreasing α (T2) is used and when covariance inflation

and localization techniques are used (T3), with the best results obtained when

both options are used simultaneously (T4). For the larger ensemble size (Fig.

3.5b; Fig. 3.5c), the final RMSE is always smaller than for the smaller ensemble,

and in all four experiments the final hydrograph is very close to the real one. Yet,

the best performance, at the last iteration, is obtained for the experiment T4.

Tables 3.3, 3.4 and 3.5 report the RMSEs at the end of each test, together with

the Nash-Sutcliffe efficiency criterion and the relative errors in the peak discharge.
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Figure 3.5. Case 2: RMSE of the estimated inflow hydrograph for ensemble size Ne=30
(a), Ne=61 (b) and Ne=138 (c).

Table 3.3. Case 2: root mean square error (RMSE), Nash-Sutcliffe efficiency criterion
(NSE) and relative error in the peak discharge (Ep) between estimated and true inflow
hydrographs for the four different tests (T1-T4) and for ensemble size Ne=30 at the end
of the iterative process.

Ne=30 T1 T2 T3 T4

RMSE [m3/s] 25.47 12.12 8.57 3.32
NSE [%] 99.06 99.78 99.89 99.98
Ep,1 [%] 8.15 -0.18 1.79 -0.20
Ep,2 [%] -0.11 1.61 2.09 -0.24

Table 3.4. Case 2: root mean square error (RMSE), Nash-Sutcliffe efficiency criterion
(NSE) and relative error in the peak discharge (Ep) between estimated and true inflow
hydrographs for the four different tests (T1-T4) and for ensemble size Ne=61 at the end
of the iterative process.

Ne=61 T1 T2 T3 T4

RMSE [m3/s] 15.17 9.53 6.71 2.56
NSE [%] 99.67 99.87 99.93 99.99
Ep,1 [%] 0.73 2.13 0.27 -0.28
Ep,2 [%] 0.62 0.46 1.47 0.36
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Table 3.5. Case 2: root mean square error (RMSE), Nash-Sutcliffe efficiency criterion
(NSE) and relative error in the peak discharge (Ep) between estimated and true inflow
hydrographs for the four different tests (T1-T4) and for ensemble size Ne=183 at the end
of the iterative process.

Ne=183 T1 T2 T3 T4

RMSE [m3/s] 6.11 6.17 5.17 1.89
NSE [%] 99.95 99.94 99.96 99.99
Ep,1 [%] 1.28 1.53 -0.01 -0.66
Ep,2 [%] 0.65 0.73 0.87 -0.10

All the NSE values are above 99% indicating an accurate reproduction of the

shape of the upstream hydrograph; the peaks are properly reproduced with Ep

values lower than 2.15%, with only an exception (T1, Ne=30). Like RMSE,

the metrics NSE and Ep confirm that decreasing α during the iterative process

and adopting covariance modification techniques improve the performance of the

ES-MDA especially when a small ensemble size is used.

For the sake of brevity, it is shown only the hydrographs resulting from the

inversion obtained when the ensemble size is small and for two of the experiments,

the one with no modifications of the ES-MDA algorithm (T1) and the one using a

decreasing α and covariance localization and inflation techniques (T4). In Fig. 3.6

the true values and the ensemble means of the estimated inflow hydrographs with

their 95% confidence intervals are depicted. Fig. 3.7 shows the true observations

and the ensemble means of the estimated water levels with their 95% confidence

interval. In both figures the residuals between actual and estimated values are

also shown.
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Figure 3.6. Case 2: actual and estimated upstream hydrographs with 95% confidence
intervals (bottom) and residuals between actual and estimated values (top) resulting from
tests T1 and T4 with Ne=30.

Figure 3.7. Case 2: actual and estimated water levels with 95% confidence intervals
(bottom) and residuals between actual and estimated values (top) resulting from tests T1
and T4 with Ne=30.
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Test T1 reproduces the shape of the inflow hydrograph quite well (NSE=

99.06%), but with a larger error on the first peak (Ep,1=8.15); the observations

are not perfectly reproduced everywhere and the residuals are high in some points.

Meanwhile, test T4 leads to a good match between the true and estimated inflow

hydrograph (NSE=99.98%) and the true and estimated water levels with very

small residuals. The inflow peaks and their timing are properly reproduced with

negligible errors (Ep,1=-0.2%; Ep,2=-0.4%).

Comparison between ES-MDA and BGA

The results of test T4, obtained with the smaller ensemble size, are compared with

those of the Bayesian Geostatistical Approach. The test is performed coupling

BGA with the same forward model used for the solution of Case 2, considering

the same simulation time (30 h) and discretization of the unknown hydrograph

(Np=61). The true observations were perturbed with random errors with zero

mean and variance 2.8·10−4 m2. The number of iterations for the linearization

process (inner loop) are equal to Ni=5 and equal to No=4 for the outer loop

required to estimate the hyperparameters.

The results of the comparison are reported in Fig. 8. The BGA method

accurately estimates the inflow hydrograph (RMSE=4.2 m33/s, NSE=99.97%)

with small residuals and small errors in the estimation of the peaks (Ep,1=−1.0%;

Ep,2=−0.3%). The two approaches show fully comparable results, which are con-

firmed by a very similar residual range and the almost equal values of the perfor-

mance metrics. However, ES-MDA outperform BGA in terms of total number of

forward model runs required and hence computational time: 1241 (Eq 3.6) runs

and 182 for ES-MDA, given by the product of the number of ensemble realizations

and number of iterations (Ne ·Ni).
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Figure 3.8. Case 2: actual and estimated upstream hydrographs (bottom) and residuals
between actual and estimated values (top) resulting from BGA and ESMDA (T4, Ne=30)
approaches.

3.3. Real test case

In this section, the proposed inverse procedure is validated investigating a real

flood event occurred between the 10th and the 13rd of November, 2012, with a

total duration of 63 h. The studied domain is a portion of the Parma-Baganza

system, located in Northern Italy. The test case aims to estimate the inflow hy-

drograph on the tributary Baganza River based on the knowledge of the inflow

hydrograph on the Parma River (main reach), water level data collected down-

stream the confluence and a reliable calibrated HEC-RAS hydraulic model. The

same flood event was simulated by D’Oria et al. (2014) by means of the BGA
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approach allowing a comparison between the two methods.

The considered river system is sketched in Figure 3.9. The simulated part of

the Parma River has a length of about 10.7 km; the upstream boundary condition

(Section 1) is represented by the outflow hydrograph from a flood control dam

equipped with movable gates; the downstream boundary condition (Section 5) is

the normal depth as evaluated from the Manning’s equation. The hydrometric

site is located at Section 4 on the downstream side of the Parma River. The

selected part of the Baganza river has a total length of about 1.1 km and its

upstream boundary condition (Section 2) in terms of inflow hydrograph represents

the unknown of the problem. A level gauge is also available on the Baganza River

upstream the confluence (Section 3).

Figure 3.9. Case 3: Sketch of the Parma-Baganza reach system.

The dam gates were moved during the flood to control the released discharge

resulting in a unnatural shape of the inflow hydrograph on the Parma River de-

picted in Figure 3.13; the hydrograph was recorded with a temporal discretization

equal to 30 min.
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Figure 3.10. Case 3: Observed Parma River inflow hydrograph at the dam location
(Section 1).

The inverse procedure is performed assuming the tributary river completely

ungauged and only using the water level data collected at Section 4 as observa-

tions. The stage hydrographs were recorded with a temporal discretization equal

to 30 min (m=30). The unknown discharge hydrograph on the Baganza River is

discretized in equal interval of 1 h, therefore the total number of parameters to

be estimated is Np=63. The stage hydrograph recorded at Section 3 is used in

post-processing to assess the reliability of the proposed method.

The ES-MDA setting, used for this case, derived from the results of the second

synthetic example presented above. A small ensemble size (Ne=30), a number of

iterations equal to 6 and the configuration of test T4 are adopted: decreasing α

(αgeo=3, Eqs 1.3 and 1.4), covariance localization (b=6h, Eq 1.18) and covariance

inflation (r=1.01, Eq. 1.19). The observation error is considered, also in this

case, normally distributed with zero mean and variance 2.8·10−4 m2. The initial

ensemble is composed of individual gamma functions (M=1, Eq. 3.1) generated

using the coefficients selected randomly over the ranges: [1, 50] m3/s for A, [8·104,

8·107] m3 for B, [3, 18] for n; [0.6, 4.8] h for k.
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Following the results of the ES-MDA and the comparison with the BGA pro-

cedure are presented. Both methods are performed using the same forward model

and discretization times (for more detail, see D’Oria et al. 2014). Figure 3.11 shows

the estimated inflow hydrographs on the Baganza River with their 95% confidence

intervals by means of ES-MDA and BGA; the two approach leads to a very sim-

ilar result. In figure 3.12 the observed and estimated water depth recorded at

Section 4, which were not been used in the inverse procedures, are depicted with

the residuals between actual and estimated values. Both the method accurately

reproduced the observations, the Nash–Sutcliffe efficiency coefficient, calculated

using the water depths instead of the discharge data (Eq. 3.4) is 96.66% for ES-

MDA and 96.78% for BGA; the peak value and its timing is well reproduced for

both the methods. It should be noted that only ES-MDA allow to assess the un-

certainty of the predicted water levels, which results in a 95 %confidence interval

that contains almost all the actual values.

Figure 3.11. Case 3: Estimated Baganza River inflow hydrographs (with 95% credibility
interval) resulting from ES-MDA and BGA.
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Figure 3.12. Case 3: actual and estimated water levels, collected upstream the confluence
on the tributary Baganza River, with 95% confidence intervals (bottom) and residuals
between actual and estimated values (top) resulting from ES-MDA and BGA.

Figure 3.13 shows the observed and estimated water depth, used in the inverse

procedures, collected downstream the confluence at Section 4 (Figure 3.9). The

ES-MDA and BGA leads to almost the equal predicted values, which are very

close to the true ones. The residuals between actual and estimated water levels

are similar and small; the 95% credibility interval, estimated through ES-MDA, is

very narrow.
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Figure 3.13. Case 3: actual and estimated water levels, collected downstream the conflu-
ence, with 95% confidence intervals (bottom) and residuals between actual and estimated
values (top) resulting from ES-MDA and BGA.

Although, the two approaches lead to comparable results, ES-MDA requires

fewer runs of the forward model to reach the solution, leading to a significant

reduction of the computational cost. The total number of forward model runs are

1576 for BGA (Ni=5 and No=5, Eq 3.6) and 180 (Ne · Ni) for ES-MDA; which

means a reduction of the computational effort by a factor of about 9.

3.4. Concluding remarks

In this chapter, a new approach for the solution of the reverse flow routing problem

has been proposed. The Ensemble Smoother with Multiple Data Assimilation

(ES-MDA) has been applied for the estimation of the inflow to a hydraulic system

based information recorded downstream. Two synthetic examples were considered

to test the methodology, which was then applied for the solution of a real case
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study.

The first case shows the capability of the inverse procedure in estimating the

inflow hydrograph to a linear reservoir, where the outflow hydrograph and the

reservoir characteristics are known. It is noteworthy that for linear problems the

ensemble smoother methods should lead to the exact solution in a single update

step, provided that the observations are free of errors and the initial ensemble

is statistically representative of the variability of the unknowns. In this case,

due to the presence of corrupted observations, the ES-MDA updates the vector

of parameters in multiple iterations. At the end of the process, the true inflow

hydrograph is accurately reproduced; the Nash-Sutcliffe efficiency criterion (NSE)

is 99.94%, the errors in the peak discharges are less than 1.1% and the RMSE

reaches the small value of 2.9 m3/s.

The second case study validates the method for non-linear problems by esti-

mating the inflow hydrograph to an open channel based on water level information

collected in a downstream section and for given forward routing model. The effects

of different settings of the inverse algorithm were investigated: the ensemble size,

the decreasing α during the iterative process and the temporal localization and

inflation of the covariances. In all tests, the NSE exceeds 99% and, as expected,

the ES-MDA reaches a better solution increasing the ensemble size. However,

as the ensemble becomes larger, the computational time increases, since, at each

iteration, the method requires a number of forward runs equal to the number of

realizations. The results of our tests show that a significant improvement in the

inverse solution is obtained if a decreasing α and the covariance modifications

are applied, the ensemble size being equal. This is particularly clear working

with small ensemble sizes, since covariance localization and inflation overcome the

problem of undersampling that occurs when a low number of realizations is used.

The test performed with the smaller ensemble size using a decreasing α and the

covariance modifications reproduces very well the inflow hydrograph with negligi-
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ble errors. The NSE is 99.98% and the relative error in the peak discharges are

less than 0.3%; these values are fully comparable with those obtained with the

larger ensemble size. The RMSE is 3.32 m3/s, which corresponds to a reduction

of about 87% compared to test with constant α and the basic algorithm for the

same ensemble size.

The third case study analyzes a flood event occurred on the Parma-Baganza

reach system at the city of Parma, in Northern Italy. The setting of the inverse

procedure for the solution of the real case study make use of the information

derived from the several configurations analyzed for the second synthetic example.

Therefore, ES-MDA is performed, for this case study, using a small ensemble

size and applying the covariance localization and inflation. The results show the

capabilities of ES-MDA to reach a good solution also for complex river systems

with a small computational cost.

In summary, the modified ES-MDA method allows to solve the reverse flow

routing problems using also small ensemble sizes (with a total number of realiza-

tions less than the number of parameters) leading to a significant reduction of

the computational burden. The modified algorithm provides results comparable

with those of the other optimization methods presented in the recent literature,

although ES-MDA achieves the solution with a lower number of forward runs.

In addition, the forward runs related to the ensemble realizations can be easily

parallelized allowing an additional reduction of the computational time. More-

over, another important advantage of the method is the capability to assess the

uncertainty in the estimations from the realizations of the ensemble. It allows to

quantify the uncertainty associated with both the unknown parameters and the

reproduction of the observations, which is a novelty in the solution of the reverse

flow routing problem.

It is noteworthy to point out that one can handle non-Gaussian distributed

parameters, and it is well known that the ensemble Kalman filter methods are op-
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timal for multiGaussian distributed variables. The results, for the analyzed case

studies, show that ES-MDA was able to reach a good solution in all cases. How-

ever, for those cases in which the method may fail due to the non-Gaussianity of

the parameters, different approaches are presented in the literature to overcome

the problem; for instance, ES-MDA can be couple with the Normal-Score transfor-

mation, which it is shown to work properly with ensemble Kalman filter methods

(Zhou et al. 2011, Li et al. 2018).

Finally, another aspect that should be taken into account is the uncertainty

in the forward model. Since the inverse methodology requires a numerical model

able to accurately describe the forward processes, the errors in the model structure

could add to the measurement noise. Therefore, in real applications, a proper and

calibrated forward model is crucial to obtain a reliable inverse solution and a

careful check of the most uncertain model parameters is advisable.
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4
Calibration of a numerical
hydrological-hydraulic model

4.1. Introduction

Model calibration is a crucial step to obtain mathematical models able to well

reproduce the behaviour of natural systems. The calibration process is a type

of inverse problem in which unknown model parameters are to be inferred from

available data representing the calibration target. In this chapter, the ensemble

smoother with multiple data assimilation is applied to calibrate the Parflood Rain

model developed by Prost (2019) and Aureli et al. (2020) for the simulation of

rainfall-runoff processes.

The objective is the estimation of the Manning and infiltration coefficients,

which are some of the input data required by Parflood Rain, on the basis of a known
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discharge hydrograph in the outlet river section. In the literature, the roughness

and infiltration coefficients have been usually defined as physically interpretable

parameters identifiable on the basis of the system characteristics, such as soil type

and use. Nevertheless, an automatic calibration of these parameters, for each

specific case, can lead to more reliable numerical models.

The capability of the proposed methodology was firstly tested by means of two

synthetic cases and then applied to a real one. The first example is a V-shaped

rainfall-runoff test case, widely used in the literature; the second one is a synthetic

case study for which the real domain and rainfall event were used. Finally, the

ES-MDA is applied for the Parflood Rain calibration related to the real flood event

occurred on October the 13th, 2014 on the Baganza reach system located at the

city of Parma, in Northern Italy.

4.2. Forward model: Parflood Rain

Parflood Rain is a GPU-parallelized numerical scheme that solves the complete 2D

shallow-water equations (SWEs) allowing to fast simulate the flood propagation

process on a watershed. ES-MDA and Parflood Rain have been coupled to take

advantage of the parallel computing; the available high-performance computing

technology allow to simultaneously run several forward simulations, related to the

ensemble realizations, leading to a reduction of the computational burden.

For all the test cases, the calibration of the Parflood Rain model is performed

through the one factor method. The unknowns parameters to be estimated are

scale factors that apply to initial maps of roughness and infiltration obtained from

information on soil types and land use; this limits the parameter number and, as

a consequence, the computational time required to perform the inverse procedure.

Therefore, the spatial distributions of the input maps do not change, but they are
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only uniformly scaled in order to maintain the information derived from the soil

type and use.

The first calibration input is the map of the Manning roughness coefficients.

The parameter to be estimated through the ES-MDA procedure is the scale factor

(ck) that applies to the roughness values expressed according to the Strickler for-

mulation, which are subsequently transformed into Manning coefficients, according

to the relation:

n =
1

ck · k
, (4.1)

where n and k are the Manning and Strickler coefficients, respectively.

The second parameter to calibrate is the infiltration. The Soil Conservation

Service Curve Number method (SCS-CN) is used by Parflood Rain to evaluate the

infiltration for a given rainfall event; the map of the curve number values is used as

input to the model. The ES-MDA aims at estimating the scale factor that apply

to the potential maximum retention (S∞), which is related to the curve number

by the expression:

S∞ = 25.4 ·
(

1000

CN
− 10

)
. (4.2)

First, the values of S∞ corresponding to the map of the curve numbers are

computed; then, at each iteration, they are modified applying the scale factor

cs and, finally, the updated values of CN are obtained by inverting Eq. 4.2 and

rounding to the nearest integer:

CN = 1000 · 25.4

cs · S∞ + 254
(4.3)
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4.3. Test cases

In this section, the test cases used to investigate the ES-MDA capability to cali-

brate the Parflood Rain numerical model are presented. The methodology is first

applied to two synthetic cases and then to a real case study; for the second syn-

thetic case and the real one, the simulated domain is the Baganza river basin

located in Northern Italy.

4.3.1. V-shaped rainfall-runoff test case

The first synthetic example is an application of ES-MDA for the calibration of

Parflood Rain applied to solve a two-dimensional V-shaped rainfall-runoff case.

The V-shaped catchment, depicted in Fig 4.1, is characterized by two symmetric

hillsides that flow into a rectangular channel, 1000 m long and 20 m wide, with

a 0.02 slope in the y-direction. Each side has a width of 800 m and a 0.05 slope

in the x-direction. The domain is subject to a uniform rainfall with intensity 100

mm/h for a duration of 1.5 h.

Figure 4.1. V-Shaped rainfall-runoff test case: domain schematization.

The adopted infiltration distribution map is shown in Fig. 4.2; each index

corresponds to a value of CN as reported in Table 4.1.
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Table 4.1. V-Shaped rainfall-runoff test case: infiltration indices and related curve num-
ber.

Index 1 2 3

CN 99 80 60

Figure 4.2. V-Shaped rainfall-runoff test case: infiltration index map.

The adopted Manning coefficients are equal to 0.15 sm−1/3 and 0.1 sm−1/3 for

the main channel and the hillsides, respectively. The actual scale factors ck and cs,

which are the investigated parameters (Np=2), are assumed of unit value. They

are used as input to perform a forward run in order to obtain the observations of

the problem, which is a discharge hydrograph extracted in the downstream section

of the main channel. The total simulation time is 3 h and the observed hydrograph

is discretized in equal intervals of 3 min resulting in a total number of observations

m=61.

The inverse procedure is performed considering random observation errors ε

normally distributed with zero mean and variance 2.8· 10−4 (m3/s)2. The initial

ensemble consists of 18 realizations of the parameters ck and cs (Ne=18), which

are coefficients randomly selected from a uniform distribution over the same range

of values [0.5, 1.5]. The ES-MDA is run with 5 iterations and a decreasing α
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obtained with αgeo=3 (Eqs. 1.3 and 1.4).

Table 4.2 compares the reference and estimated scale factors ck and cs; the

ensemble means with their 95% uncertainty intervals are reported. The proposed

method accurately reproduces the actual factors as well as the observed discharge

hydrograph (Fig. 4.3). The estimated coefficients present percentage errors of

0.1% and 0.5% for cs and ck, respectively.

Table 4.2. V-Shaped rainfall-runoff test case: actual and estimated parameters with 95%
uncertainty interval.

Parameters Actual Estimated

ck 1.000 0.999±0.002
cs 1.000 0.995±0.005

Figure 4.3. V-Shaped rainfall-runoff test case: observed and estimated discharge hydro-
graph with its 95% uncertainty interval.
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4.3.2. Baganza basin cases

The ES-MDA method is applied for the calibration of Parflood Rain model for the

simulation of a flood event occurred in a real basin field. The studied domain is the

Baganza river basin, located in Northern Italy. The investigated event occurred

between the 13rd and the 15th of October 2014, with a total duration of 40 h. The

first 30 hours of the flood event are simulated, corresponding to a computational

time of 1.25 h. First, a synthetic case is performed assuming the coefficients known

and then a real calibration test is carried out.

The unknown parameters are represented by the scale factor of the infiltration

map cs (Table 4.3 and Fig. 4.4), and two multiplicative factors that apply to the

roughness map (Fig. 4.5), which differ for the area of the reach (ck1) and the rest

part of the basin (ck2); the total number of parameters to be estimated is Np=3.

Table 4.3. Baganza basin: infiltration indices and related curve number.

Index 1 2 3 4 5 6

CN 57 61 70 72 75 76

Index 7 8 9 10 11 12

CN 84 86 90 96 98 99
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Figure 4.4. Baganza basin: infiltration index map.
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Figure 4.5. Baganza basin: Manning’s roughness map.

Synthetic case

The synthetic case on the Baganza basin is performed considering the scale factors

equal to 0.87 for cs, 1.01 for ck1 and 1.51 for ck2; which represent the reference

solution and are used to obtain the observations through a forward run of the

numerical model. The observations consist of a discharge hydrograph collected in

a section of the Baganza river located upstream the flooded area; which is recorded

for the last 16.5 h of the simulation with a time step of 30 min, resulting in a total
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number of observations m=33.

The ES-MDA is performed considering an observation error equal to 5% of

the true discharge values: the errors are normally distributed with zero mean

and variances defined so that the 99.7% of the errors lies within the 5% of the

corresponding discharge value. The ensemble size is equal to 20 and the initial

parameter realizations are random values selected from a uniform distribution in

the following ranges: [0.8, 1.6] for ck1 and ck2, [0.7, 1.0] for cs. 5 iterations are

performed with a decreasing alpha coefficient obtained with αgeo = 3.

Table 4.4 summarizes the results of the inverse procedure, the actual coeffi-

cients and the ensemble mean with its 95% uncertainty interval are reported. The

estimated scale factors are in good agreement with the actual ones; the percentage

estimation errors are 1.6% for ck1, 6.2% for ck2 and 0.0% for cs. Figure 4.6 shows

the observed and estimated discharge hydrograph; the ES-MDA leads to a good

reconstruction of the observed values with a narrow confidence band.

Figure 4.6. Baganza basin synthetic case: observed and estimated discharge hydrograph
with its 95% uncertainty interval.
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Table 4.4. Baganza basin synthetic case: actual and estimated parameters with 95%
uncertainty interval.

Parameters Actual Estimated

cs 0.868 0.868 ±0.012
ck1 1.056 1.073±0.079
ck2 1.508 1.420±0.146

Real case

Finally, the ES-MDA is applied for the calibration of Parflood Rain model aimed

at simulate the Baganza flood event of October 2014. The objective is the iden-

tification of the scale factors cs, ck1 and ck2 (Np = 3) on the basis of a known

discharge hydrograph at the basin outlet. Since no gauging stations are available

on the study domain, the discharge hydrograph was estimated by other means

and it is treated hereafter as observation. To apply the inverse procedure, the

discharge values for the last 16 h of the simulation with a discretization of 15 min

are considered; the volume under the flood hydrograph is assumed as additional

observation, leading in a total number of observations m=66.

It was reported that the reconstructed flow hydrograph, used as calibration tar-

get, presents more reliable discharge data around the peak then those on the rising

and falling limbs; therefore, different measurement error ranges are considered in

applying the inverse procedure. The observation errors are normally distributed

with zero mean and variance equal to 0.2 (m3/s)2 for the discharge values greater

than 300 m3/s and 6 (m3/s)2 for the other ones; a variance equal to 5· 107 m3 is

considered for the volume. The initial ensemble is composed of 20 realizations of

random scale factors selected from a uniform distribution over the following range

of values: [0.5, 1.8] for ck1 and ck2 and [1.0, 2.0] for cs. The ES-MDA is performed

with 5 iterations and a decreasing α obtained with αgeo=4.

The estimated parameters with their 95% uncertainty interval are reported
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in Table 4.5. Fig. 4.7 shows the comparison between the actual and estimated

discharge hydrograph with its 95% uncertainty interval. The ES-MDA is able to

well reconstruct the shape of the flow hydrograph; the Nash–Sutcliffe efficiency

coefficient (Eq. 3.4) is equal to 93.58%. The peak timing is well reproduced, but

the error on the peak discharge is quite large (Ep=-14.36%, Eq. 3.5). This can

be due to errors in the reconstruction of the discharge hydrograph, used here as

observation, or in the rainfall input; it is known that a rain station was affected

by a technical problem during the event and, even if some corrections were ap-

plied, errors in the spatial and temporal distribution of the rainfall can be present.

Further analysis will be conducted to investigate these problems.

Table 4.5. Baganza basin real case: estimated parameters with 95% uncertainty interval.

Parameters Actual Estimated

cs - 1.899±0.009
ck1 - 1.867±0.007
ck2 - 0.651±0.004

Figure 4.7. Baganza basin real case: Observed and estimated discharge hydrograph with
its 95% uncertainty interval.
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4.4. Concluding remarks

In this chapter, the Ensemble Smoother with Multiple Data Assimilation (ES-

MDA) has been applied for the solution of the inverse problem that aimed at

calibrating a numerical hydrological-hydraulic model. The objective is to esti-

mate the input maps of roughness and infiltration parameters to the Parflood

Rain numerical model on the basis of a known observed discharge hydrograph in

a downstream section of the considered basin. Two synthetic examples, which

allow to compare the estimation with a reference solution, and a real case were

performed to test the methodology. The results of the synthetic tests prove the

capability of ES-MDA to deal with this type of inverse problem leading to an

accurate reconstruction of the investigated parameters. The application for the

calibration of the hydrological-hydraulic numerical model related to a real flood

event reaches satisfactory solutions; the shape of the discharge hydrograph, used as

calibration target, and the peak time are well reproduced. However, the estimated

peak value present a quite large error, which will be object of future investigation

in order to improve the solution.

The proposed methodology is a promising approach to perform an automatic

calibration of hydrological numerical models for each specific cases. The direct

estimation of roughness and infiltration coefficients may also allow to compensate

for different source of errors in the model setup leading to better results. In

the present literature, these parameters are often physically determined a-priori

since the calibration of complex numerical models is very time consuming. The

parallelization of the inverse procedure, which is one of the main advantage of the

ES-MDA method, leads to a reduction of the computational burden and allow to

perform the model calibration in an acceptable time.

Future development of the proposed methodology that couple ES-MDA with

Parflood Rain model will focus on the possibility to simultaneously perform the
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reverse routing for the estimation of an inflow hydrograph to the analyzed system

and the calibration of some model parameters, such as the Manning’s roughness

coefficients.
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5
Simultaneous identification of the
release history and the source
location of a pollutant in
groundwater

5.1. Introduction

Monitoring, protection and restoration of the groundwater quality have received

much attention in the past decades, thanks to the growing interest in environmen-

tal issues and the importance of groundwater for water supply. The first steps

in any remediation strategy are the identification of the source location and the

release history of the contaminant, since they allow to identify the cause of the

contamination, to implement an effective remediation strategy and to share the
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costs among the responsible parties.

When groundwater contamination is first detected, the source location and the

release history are usually unknown. Recovering these variables from sparse data

of the spatial distribution of the pollutant concentration in the aquifer is a type of

inverse problems. Inverse problems are inherently ill-posed, which means that the

solution is generally non-unique and could be not stable to small perturbations

in the data. Several deterministic and stochastic methods have been proposed to

solve this problem. The first category includes the Tikhonov regularization (Sk-

aggs & Kabala 1994), nonlinear optimization with embedding (Mahar & Datta

1997), non-regularized nonlinear least squares (Alapati & Kabala 2000), progres-

sive genetic algorithms (Aral et al. 2001), a constrained robust least squares (Sun

et al. 2006) and heuristic harmony search algorithms (Ayvaz 2010). The second

category adopts probability-based methods: statistical pattern recognition (Datta

et al. 1989); minimum relative entropy (Woodbury & Ulrych 1996, Woodbury

et al. 1998, Cupola et al. 2015); geostatistical approaches (Snodgrass & Kitanidis

1997, Michalak & Kitanidis 2004a,b, Neupauer et al. 2000, Butera & Tanda 2003,

Butera et al. 2006, 2012, Gzyl et al. 2014, Cupola et al. 2015); empirical Bayesian

methods combined with Akaike’s Bayesian Information Criterion (Zanini & Wood-

bury 2016); Bayesian global optimization (Pirot et al. 2019) and ensemble Kalman

filter methods (Xu & Gómez-Hernández 2016, 2018, Chen et al. 2018, Xu et al.

2020).

However, only a few of the presented studies allow to simultaneously identify

the source location and the release history of a groundwater contaminant. The

method proposed by Aral et al. (2001) used a progressive genetic algorithm to

solve an iterative nonlinear optimization problem, in which the source location

and release history were explicitly defined as continuous unknown variables and

contaminant concentrations were used as observations. Sun et al. (2006) combined

a constrained robust least squares estimator with a global optimization solver
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for iteratively identifying release histories and source locations on the basis of

concentration measurements. Ayvaz (2010) used an optimization method based on

the heuristic harmony search algorithm to identify locations and release histories

for pollution sources, minimizing residuals between the simulated and measured

contaminant concentrations. All these methods are deterministic and do not allow

to quantify the uncertainty of the results.

Butera et al. (2012) applied a Bayesian geostatistical approach for the simulta-

neous identification of the release function and the source location based on con-

centration data. The methodology has then been tested by Cupola et al. (2015) on

real data collected in a laboratory sandbox. The method requires a preliminary

delineation of possible sources and some hypotheses about the structure of the

unknown release function. The approach aims to recover the contaminant release

history considering all the possible sources simultaneously and selecting the loca-

tion where the highest amount of pollutant is estimated. The method adopts a

transfer function approach for the solution of the forward problem (Butera et al.

2006).

Here, the Ensemble Smoother with Multiple Data Assimilation (ES-MDA) is

proposed as a new approach for the joint identification of the source location and

the release history of a pollutant in groundwater. Compared with the Bayesian

geostatistical approach (Butera et al. 2012), the ES-MDA does not require the

explicit time-consuming calculation of sensitivity matrices to solve the inverse

problem, since they are embedded in the covariance matrices of the ensemble.

Moreover, it allows the simulation of groundwater flow and mass transport even

in complex cases.

In this study, the parameters are represented by the spatial coordinates of

the source and the temporal discretization of the release history; the observations

are sparse concentration data measured at different monitoring locations and time.

Notice that in other practical applications, piezometric head data may be available,
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which could also be assimilated and used in the solution of the inverse problem; it is

not the case in the laboratory experiment described next, for which no piezometric

head data were available.

Two applications of ES-MDA are presented. First, it is used for the solution of

a a synthetic case from the literature with the aim to show its capabilities and to

obtain guidelines for its application to real cases. Second, the ES-MDA is used to

validate the methodology on experimental data collected in a laboratory sandbox

that mimics an unconfined aquifer; it was also preliminary used for the calibration

of the numerical model required to perform the inverse procedure.

The synthetic case study allows to investigate in detail different settings of

the inverse procedure with a limited computational effort. In particular, it is

evaluated the impact of the observations sampling scheme and different algorithm

settings in the context of ill-posedness of inverse problems. The ill-conditioning

increases as uncertainties about the model increase and as the quantity and quality

of the observed data decrease. Therefore, it is important to design a monitoring

network that makes a good compromise between valuable information about the

concentration evolution and the costs of monitoring actions, which would limit the

number of monitoring points.

Localization and inflation techniques are applied to overcome the well-known

problem of undersampling in ensemble-based methods. In this study, parameters

and observations are both space and time dependent, furthermore the distance

between them is not fixed since the source position is unknown, what complicates

the use of standard localization techniques. The new localization approach, which

takes into account both spatial and temporal distance and iteratively update the

distance between the unknown parameters and observations, is used.

The manuscript is organized as follows: first, the forward problem is described;

then, the synthetic and the laboratory case study are presented and discussed.
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5.2. Forward problem: groundwater flow and
transport

The flow equation of an incompressible fluid in saturated porous media can be

written as

∇ · (K(x)∇h(x, t))− Ss(x)
∂h(x, t)

∂t
+Q(x, t) = 0, (5.1)

where h(x, t) [L] is the piezometric head at location x and time t, K(x)
[
LT−1

]
is

the hydraulic conductivity tensor, Ss(x)
[
L−1

]
is the specific storage coefficient,

and Q(x, t)
[
T−1

]
is the injection flow rate per unit volume.

In this study, the transport of a non-reactive contaminant injected in the aquifer

at a point source is considered, the advection-dispersion equation is:

∂ (φ(x)C (x, t))

∂t
=∇ · [φ(x)D (x)∇C (x, t)]−∇ [φ(x)v (x, t)C (x, t)]

+ s (x0, t) δ (x− x0) ,

(5.2)

where φ(x) [−] is the effective porosity, C (x, t)
[
ML−3

]
is the solute concentration,

D (x)
[
L2T−1

]
is the hydrodynamic dispersion coefficient tensor, v (x, t)

[
LT−1

]
is the effective flow velocity, obtained from the solution of the flow model, and

s (x0, t)
[
MT−1

]
is the the contaminant flux injected into the aquifer through the

source located at x0 given by

s (x0, t) = C0 (t) · q0 (x0, t) , (5.3)

where C0 (t)
[
ML−3

]
is the concentration of the released pollutant at time t and

q0 (x0, t)
[
L3T−1

]
is the injection flow rate. Assuming a uniform porosity, φ(x) =

φ, initial condition C (x, 0) = 0, and boundary condition, C(∞, t) = 0, Eq. (5.2)

can be solved by the convolution integral
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C (x, t) =

∫ t

0

s (x0, τ) g (x, t− τ) dτ (5.4)

where g (x, t− τ) is a Kernel function that represents the response at location x

and time t to a pulse injection at the source location x0 and time τ .

In two-dimensional cases, with uniform flow, vy = 0 and constant dispersion

coefficients, the Kernel function can be determined analyticall, and the solution of

Eq. (5.4) is

C (x, y, t) =

∫ t

0

s (x0, y0, τ)
1

4π
√
DxDy (t− τ)

· exp

[
− ((x− x0)− v (t− τ))

2

4Dx (t− τ)
− (y − y0)

2

4Dy (t− τ)

]
dτ

(5.5)

For complex cases in which the flow field is not uniform (for instance, non-isotropic

and heterogeneous aquifers), the advection-dispersion equation can not be solved

analytically and it is necessary to employ numerical methods. Here, for the second

case study for which the analytical solution cannot be used, the flow equation

(5.1) is solved using the numerical model MODFLOW (Harbaugh 2005), and the

transport equation (5.2) with MT3DMS (Zheng & Wang 1999).

5.3. Analytical case

ES-MDA is applied to an analytical case study with the aim to show the capabil-

ities of the method to simultaneously identify a contaminant source location and

its release history in an aquifer. This case requires a small computational time

and the results can be compared with a reference solution. This also allows to

investigate different configurations of the inverse algorithm, in order to determine

the optimal setting to be used for real cases.
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The analytical case simulates a pollution event in an infinite homogeneous two-

dimensional aquifer, with uniform flow, as result of the injection of a nonreactive

contaminant at a point (Butera & Tanda 2003). It is assumed that the water

discharge q0 (x0, t) is of unit value and small enough such that it does not affect

the uniform groundwater flow. Therefore, the release history s (x0, t), defined

in Eq. 5.3, is equivalent to the concentration history C0 (t). All quantities are

considered with unspecified but consistent units. The uniform velocity and the

dispersion coefficients are assumed known: v = 1, Dx = 1 and Dy = 0.1. It is

considered the same expression for the release function sr (x0, t) used elsewhere

(Skaggs & Kabala 1994, Woodbury & Ulrych 1996, Snodgrass & Kitanidis 1997,

Butera & Tanda 2003, Butera et al. 2012, Zanini & Woodbury 2016) to define the

reference solution

sr (x0, t) = exp

(
− (t− 130)

2

50

)
+ 0.3 exp

(
− (t− 150)

2

200

)

+ 0.5 exp

(
− (t− 190)

2

98

) (5.6)

The actual source location x0 is x0 = 50 and y0 = 20. The concentration

history has a total duration of 300; it is discretized into 101 intervals with a time

step of ∆t = 3 resulting in a total number of parameters to be estimated Np = 103

(the two spatial coordinates plus the 101 temporal solute fluxes). The reference

solution, depicted in Fig. 5.1, is used to obtain the reference observations, which

are computed by evaluating Eq. (5.5) using numerical integration.
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Figure 5.1. Analytical case: reference release history.

Different test cases are carried out to investigate the impact of the observation

sampling scheme, ensemble size, covariance localization and inflation techniques.

The test cases will be evaluated in terms of equifinality, that is, when different

source functions are identified that are consistent with the observations, and in

terms of sensitivity to the initial ensemble values. For this purposes, for each test

case, 100 experiments were performed to identify the source history changing only

the random component of the initial ensemble and the observation measurement

errors. At the end of each experiment, the performance of the method is evaluated

using the following metrics:

- The Nash-Sutcliffe efficiency criterion (NSE) to evaluate the agreement be-

tween the actual and estimated release history:

NSE =

(
1−

∑Np−2
i=1

(
Xi − sr,i

)2∑Np−2
i=1 (sr,i − sr)2

)
· 100 (5.7)

where Np − 2 is equal to 101, the number of intervals used to discretize

s(t); sr,i represents the discretized source function and is the i−th actual
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amount of released contaminant, sr,i is the time average of the reference

release history ( 1
Np−2

∑Np−2
i=1 sr,d) and Xi is the ensemble mean of the i-th

estimated amount of released contaminant ( 1
Ne

∑Ne
j=1X

j
i , with X

j
i the final

estimate of parameter Xi in realization j). The closer to 100, the better.

- The root mean square error (RMSE) between observations and model pre-

dictions:

RMSE =

√∑m
i=1

(
Di − Y i

)2
m

(5.8)

where Di is the i-th observed concentration and Y i is the ensemble mean of

the i-th predicted concentration ( 1
Ne

∑Ne
j=1 Y

j
i , with Y

j
i the prediction of Yi

in realization j). The closer to zero, the better.

- The spatial distance between the true and estimated source location (L):

L =

√
(xs − x0)

2
+ (ys − y0)

2 (5.9)

where xs and ys are the ensemble means of the estimated spatial coordinates

of the source and (x0, y0) is the true source location. The closer to zero, the

better.

These metrics are compared with reference threshold values to evaluate the

performance of the method. Three cases are considered: i) good performance

when the reproduction of the observed concentrations is good, the identification

of the source location is good and the identification of the release function is good;

ii) equifinality performance, when reproduction of the observed concentrations is

good, but neither the source location nor the release function are well identified;

iii) poor performance, otherwise:

i) Good performance when

RMSE < RMSEthr and NSE > NSEthr1 and L < Lthr

87



CHAPTER 5. GROUNDWATER POLLUTION IDENTIFICATION

ii) Equifinality performance when

RMSE < RMSEthr and (NSE < NSEthr2 or L > Lthr)

iii) Otherwise, fail.

The selected threshold values (RMSEthr, NSEthr1, NSEthr2, Lthr) are reported

in Table 5.1, where σ is the standard deviation of the observation errors. Two

NSE thresholds are defined to avoid identifying a solution that is close to the

good performance threshold as a multiple solution; equifinality is considered only

when the NSE is less than 60%. With these criteria, it is possible to define the

percentage of successful tests, tests with multiple solutions and failed tests for each

case, on the basis of the 100 experiments.

Table 5.1. Threshold values used to define test criteria.

RMSEthr1[−] 4σ

NSEthr1[%] 70

NSEthr2[−] 60

Lthr[−] 5

5.3.1. Impact of the concentration sampling scheme

The effect of the spatial distribution of the observation points. For this case, a large

ensemble was used to avoid the need of using localization or inflation techniques

in the implementation of ES-MDA. The observation network geometry, displayed

in Fig. 5.2, are:

A. Concentrations collected at 2 monitoring points, located on the same line

as the source (y = 20) at (150, 20) and (200, 20), and 31 sampling times

from T = 0 up to T = 450 with a time step ∆t = 15. The total number of

observations is m = 2 · 31 = 62.

B. Concentrations collected at 21 monitoring points distributed on the same
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line of the source (y = 20) at uniform intervals between x = 90 and x = 290;

only one observation from each location at time T = 300. The total number

of observations is m = 22 · 1 = 22.

C. Concentrations collected at 4 monitoring points distributed on the same line

of the source (y = 20) at x-coordinates (80, 115, 150, 185) and the same 31

sampling times of set A. The total number of observations ism = 4·31 = 124.

D. Concentrations collected at 4 monitoring points vertically distributed on the

line x = 150 and at y-coordinates (11, 16, 21, 26); the sampling times are the

same as for sets A and C. The total number of observations is m = 4 · 31 =

124.

Figure 5.2. Analytical case: location of the measurement points for sets A, B, C and D;
the red diamond is the actual source location.

The observation error ε is random and normally distributed with zero mean

and variance 5·10−8 for all the performed tests. The initial ensemble of parameters

is composed of 1000 realizations. The realizations of the source coordinates are

random values selected in the range [5, 80] for x and [10, 30] for y. The realizations
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of the release history are normal functions described by the following expression:

f (t) = ∆ + Γ · 1

σ
√

2π
e−

1
2 ( t−µσ ), (5.10)

where t is the time, ∆ is a base amount of released concentration, Γ is the volume

under the Gaussian function of mean µ and variance σ2. These coefficients are se-

lected randomly from uniform distributions, ∆ ∈ U [1·10−10, 1·10−3], Γ ∈ U [10, 40],

µ ∈ U [89, 210] and σ ∈ U [6, 59]. The ES-MDA is run with 10 iterations and a de-

creasing series of α values following the sequence [113.33; 75.55; 50.37; 33.58; 22.39;

14,92; 9.95; 6.63; 4.42; 2.95].

Table 5.2 summarizes the results of the four test cases, T denotes the per-

centage of successful tests over the 100 synthetic experiments and E indicates the

percentage of synthetic experiments in which equifinality is detected.

Table 5.2. ES-MDA performance for observations sets A, B, C and D and ensemble size
Ne=1000. T indicates the percentage of successful tests and E the percentage of tests that
present equifinality.

A B C D

T:10% T:19% T:21% T:98%
E:53% E:34% E:12% E:0%

The observation network geometry greatly impacts the final results. The syn-

thetic experiments that give reliable solutions (NSE>70 and L<5) are less than

21% for observation sets A, B and C. Furthermore, equifinality occurs in large

proportions for cases A and B, and to a lesser extent for case C. Only in case D,

the ES-MDA is able to identify successfully the source location and the release

function without equifinality.
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5.3.2. Impact of the ensemble size and application of local-
ization and inflation techniques

The test cases designed to investigate the impact of the ensemble size, covari-

ance localization and inflation techniques make use of the observation set D. Five

ensemble sizes are tested Ne of 1000, 500, 250, 100 and 50 with and without co-

variance corrections. The number of iterations, α values, and distributions used

to generate the initial ensembles are the same ones used in the previous section.

Covariance localization is applied using the coefficients bs equal to 210 and bt equal

to 300. The factor r used for the covariance inflation is equal to 1.01. The results

obtained from each set of 100 synthetic experiments are reported in Table 5.3. The

ES-MDA performs better for increasing ensemble sizes and when covariance infla-

tion and localization techniques are applied. The percentage of successful tests is

high for large ensembles, with even better numbers when covariance corrections are

applied. The presence of equifinality is detected when the ensemble size reduces,

but the corrections on the algorithm help to reduce it. The effects of covariance

and inflation techniques are more evident for small ensemble sizes; considering Ne

equal to 100, the percentage of successful tests is 46% for the experiments without

corrections and 64% for those with corrections; multiple solutions are detected for

43% of the experiments without corrections and for 14% of those with corrections.

The tests computed with the smaller ensemble size (Ne=50) lead to unsatisfactory

results with a percentage of successful tests lower than 45% and a high probability

of equifinality.
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Table 5.3. ES-MDA performance for observation set D and ensemble sizes of 1000, 500,
250, 100 and 50, with and without corrections on the covariance calculation. T indicates
the percentage of succesful tests and E the percentage of tests that present equifinality.

Ne without corrections with corrections

1000
T:98% T:100%
E:0% E:0%

500
T:85% T:96%
E:8% E:0%

250
T:71% T:87%
E:19% E:4%

100
T:46% T:64%
E:43% E:14%

50
T:20% T:45%
E:60% E:29%

The results of a test performed with a small ensemble size of 100 realizations

and with corrections in the computation of the covariance. Among the 100 syn-

thetic experiments, it is selected as the best estimate of the release function the

median of the successful tests, and the set of successful tests to build uncertainty

intervals about the median is used. In Fig. 5.3 the reference solution and the

ensemble mean with its 95% uncertainty interval are depicted. Fig. 5.4 shows

the comparison between observed and predicted concentrations at observation lo-

cations. The ES-MDA reproduces quite well the release history and the source

location estimate is very close to the true one (x0=50, y0=20). The NSE is

80.46% and the ensemble means of x and y coordinates are, respectively, equal to

52.66 (±1.78, 95% uncertainty interval) and 20.00 (±0.06, 95% uncertainty inter-

val). The test leads to a good match between observations and predictions with

an RMSE at the last iteration equal to 3.3·10−4 and a narrow 95% uncertainty

interval.
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Figure 5.3. Analytical case: actual and estimated release history with 95% uncertainty
interval resulting from a test performed with Ne = 100 and observation set D.

Figure 5.4. Analytical case: observed and predicted concentrations with 95% uncertainty
interval.
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5.4. Experimental case

The second case study uses a laboratory experimental dataset following the work

by Cupola et al. (2014). The experimental device, depicted in Fig. 5.5, is a

sandbox that reproduces an unconfined aquifer characterized by two-dimensional

flow in a vertical plane. The sandbox has external dimensions of 120 cm × 14 cm

× 73 cm and it is made of three parts along the longitudinal direction: upstream

and downstream tanks and an internal chamber of 95 cm × 10 cm × 70 cm, which

contains the porous media consisting of glass beads with diameter in the range

between 0.75 mm and 1 mm.

Figure 5.5. Sketch of the experimental device. (Image from: Cupola, F. (2016), The-
ory and application of inverse problems in groundwater: numerical, laboratory and field
studies., Doctoral thesis thesis, Università degli Studi di Parma.)
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The flow is governed by constant upstream and downstream water levels equal

to 59.9 cm and 53.6 cm above the horizontal bottom of the tank, respectively.

Fluorescein sodium salt was used as tracer solution and it was injected at a variable

mass rate through an injector located in the upstream part of the sandbox at

coordinates x = 14.25 cm and y = 32.75 cm, that extends through the entire

thickness of the sandbox. The test had a duration of 2200 s; the injection started

at time 310 s and ended at 1800 s; the concentration of the fluorescein sodium salt

is constant and equal to 20 mg·l−1, while the flow rate changes over time. The

resulting mass rate ranges from 0 to about 55 µg·l−1 and presents three peaks of

different magnitude (Fig. 5.6).

Figure 5.6. Experimental case: reference release history.

The observed concentrations are recorded over the entire sandbox by taking

pictures with a digital camera and then converting luminosity into concentration

through image processing techniques (for more details see Citarella et al. (2015)).

Modeling is performed in two dimensions, since no lateral movement orthogonal to

the sandbox plane is expected. A comparison between the results obtained with a

two-dimensional model and a three-dimensional one is reported by Uribe-Asarta
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(2019), showing no differences between the two models.

The inverse methodology requires a calibrated numerical model able to describe

as accurately as possible the forward process. Groundwater flow was modeled with

MODFLOW 2005 (Harbaugh 2005) and mass transport with MT3DMS (Zheng

& Wang 1999). The effect of the injection on the background flow is not negli-

gible; therefore, a transient flow model is considered. The numerical model was

preliminary calibrated using the ES-MDA procedure.

5.4.1. Calibration of the numerical model

The calibration of the numerical model has been performed through the ES-MDA

procedure considering the release history and source location known; the hydraulic

and transport parameters are the unknown of the inverse procedure and concen-

trations collected at several monitoring points and times are used as observations.

The experimental device aimed to reproduce a homogeneous isotropic field;

however, during the laboratory experiment, some disturbances may lead to het-

erogeneity and anisotropy. One of the main problem is the presence of trapping

air; in fact, it can modify the flow and generate errors in the imaging acquisi-

tion system. The observed concentrations are obtained through image processing

techniques converting luminosity into concentration: air bubbles reduce the light

intensity causing corruptions in the analysis of the images. With the aim to mini-

mize the appearance of bubbles air inside the pores, the central tank of the sandbox

was packed under saturated conditions layer by layer; but the problem cannot be

completely eliminated. Another source of noise can be the presence of the injec-

tor that locally disturbs the field. Moreover, the experimental configuration may

change over time due to compaction or the development of preferential lines, since

the flow always has the same direction.

For these reasons, the calibration process has been performed considering differ-

ent field configurations. The unknown transport parameters are the longitudinal
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dispersivity and the transverse dispersivity, the hydraulic parameters to be esti-

mated depends on the analyzed case. Three hydraulic conductivity fields have

been considered:

- Homogeneous and isotropic field: the hydraulic parameter to be estimated

is the constant hydraulic conductivity.

- Homogeneous and anisotropic field: the hydraulic parameters to be esti-

mated are the hydraulic conductivity and the anisotropy ratio.

- Heterogeneous and anisotropic field: the investigated hydraulic parameters

are the hydraulic conductivity in some points of the aquifer and the hydraulic

conductivity anisotropy ratio.

The effective porosity of the glass beads is fixed at 0.37 and the specific stor-

age coefficient at 10−4cm−3. Many observations have been considered to perform

the calibration through ES-MDA in order to well characterize the evolution of

the contaminant plume; 55 monitoring points are equally distributed on 5 lines

perpendicular to the direction of the plume progress and 24 monitoring points are

distributed on the the same flow line of the source. Concentrations are recorded,

for each monitoring points, at 45 time steps resulting in a total number of observa-

tions m=3554. For all cases, ES-MDA was performed with a random observation

error ε normally distributed with zero mean and variance 7·10−3 (mg/l)2, 10 iter-

ations and a decreasing α obtained with αgeo=1.5 (Eqs. 1.3 and 1.4). The update

step is performed in the transformed space; the longitudinal dispersivity, the trans-

verse dispersivity and the anisotropy ratio of conductivity are transformed using

the root square transformation. The modified log-transformation is applied to

transform the hydraulic conductivity parameters; this allows to constrain the hy-

draulic conductivity to acceptable values; the selected interval is [0.5, 0.9] cm/s

(Eqs. 1.10 and 1.11).

97



CHAPTER 5. GROUNDWATER POLLUTION IDENTIFICATION

Homogeneous and isotropic field

The calibration of the numerical model is initially performed considering the field

homogeneous and isotropic. The total number of parameters to be estimated are

three (Np = 3): constant hydraulic conductivity, longitudinal dispersivity and

transverse dispersivity. The ensemble size is Ne=40 and the initial realizations

are random values selecting from a uniform distribution in the following ranges:

[0.6, 0.8] cm/s for the hydraulic conductivity; [0.05, 0.2] cm for the longitudinal

dispersivity and [0.01, 0.5] cm for the transverse dispersivity. Covariance inflation

(r=1.01, Eq. 1.19) and linear relaxation (w=0.2, Eq. 1.9) have been applied.

Table 5.4 summarizes the estimated parameters of the flow and transport mod-

els at last ES-MDA iteration. Figure 5.8 shows the comparison between observed

and predicted concentrations at 55 monitoring points; it can be seen that the

misfit between them is very large. The RMSE at the last iteration is 3.91 mg/l,

which denotes that the calibrated numerical model does not accurately describe

the forward processes.

In Figure 5.7, the experimental and modeled plume at time T=1500 s after

the beginning of the injection are compared. The experimental concentration field

results from the analysis of the raw images, the estimated one is the output of the

numerical model, developed with MODFLOW and MT3D and performed using

the estimated parameter reported in Table 5.4, at the same time. It is clear that

the numerical model is not able to accurately reproduce the flow and transport

in the sandbox. In particular, the model overestimates the transverse extension

of the plume and does not well reproduce the plume propagation direction. The

direction of the experimental plume is mainly along the injector axis, while the

simulated plume propagates along a different direction governed by the hydraulic

gradient. It should be noted that the hydraulic and transport parameters to be

estimated do not affect the plume propagation direction, therefore it is not possible
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to well reproduce the experimental data considering the field homogeneous and

isotropic.

Table 5.4. Estimated transport and hydraulic parameters, assuming the field homogeneous
and isotropic; the ensemble mean and 95% confidence interval are reported

Ensemble mean 95% C.I.

Hydraulic conductivity (cm/s) 0.671 3·10−4

Longitudinal dispersivity (cm) 0.158 0.004
Transverse dispersivity (cm) 0.173 0.005

Figure 5.7. Concentration field observed and predicted at time 1500 s after the start of
the injection. The hydraulic conductivity field is considered homogeneous and isotropic.
The white dots denote the monitoring points used to perform ES-MDA.
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Figure 5.8. Observed (black line) and predicted (red dashed line) concentrations, assuming
the field homogeneous and isotropic. X-axis is time from 0 to 2200 s, where time 0 s
represents the time at which injection starts. Y-axis is concentration from 0 to 23 mg/l.
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Homogeneous and anisotropic field

For the test performed assuming the field homogeneous and anisotropic, the total

number of unknown parameters are four (Np = 4): constant hydraulic conduc-

tivity, anisotropy ratio of conductivity, longitudinal dispersivity and transverse

dispersivity. The ensemble size is the same as the previous test (Ne=40) as are

the ranges used to generate the initial ensemble of hydraulic conductivity, lon-

gitudinal dispersivity and transverse dispersivity. The initial realizations of the

anisotropy ratio of conductivity (kh/Kv) are random values selected from a uni-

form distribution in the range [0.9, 6]. Covariance inflation (r=1.01, Eq. 1.19)

and linear relaxation (w=0.2, Eq. 1.9) have been applied.

The estimated parameters of the flow and transport models are reported in

Table 5.5. Figure 5.10 shows the comparison between observed and predicted con-

centrations at the 55 monitoring points distributed on the five lines perpendicular

to the direction of the plume progress. In Figure 5.9, the experimental plume at

time T=1500 s, after the beginning of the injection, is compared with the plume

obtained at the same time from the numerical model designed with the parame-

ters reported in Table 5.5. The experimental plume is quite well reproduced and

the misfit between observations and predictions is not large (RMSE is equal to

1.77 mg/l). However, the estimated anisotropy ratio of conductivity, which allows

to reach this good agreement, is very large (Kh/Kv=18.30) and considered not

acceptable to describe the experimental field.
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Table 5.5. Estimated transport and hydraulic parameters, assuming the field homogeneous
and anisotropic; the ensemble mean and 95% confidence interval are reported

Ensemble mean 95% C.I.

Hydraulic conductivity (cm/s) 0.677 3·10−4

Vertical anisotropy of conductivity (Kh/Kv) 18.30 0.20
Longitudinal dispersivity (cm) 0.098 0.004
Transverse dispersivity (cm) 0.154 0.006

Figure 5.9. Concentration field observed and predicted at time 1500 s after the start of
the injection. The hydraulic conductivity field is considered homogeneous and anisotropic.
The white dots denote the monitoring points used to perform ES-MDA.
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Figure 5.10. Observed (black line) and predicted (red dashed line) concentrations, assum-
ing the field homogeneous and anisotropic. X-axis is time from 0 to 2200 s, where time
0 s represents the time at which injection starts. Y-axis is concentration from 0 to 23
mg/l.
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Heterogeneous and anisotropic field

The third configuration considers the field slightly heterogeneous and anisotropic;

the unknowns are the log-conductivity field, the hydraulic conductivity anisotropy

ratio, the longitudinal dispersivity and the transverse dispersivity. The log-conductivity

field is estimated using the pilot points method; it consists of estimating the values

of the hydraulic conductivity in a finite number of points and then interpolating

them to obtain the solution over the whole model domain. This reduces the num-

ber of parameters to be estimated and consequently the computational burden

compared to a full parameterization approach. Ordinary kriging has been applied

as method of interpolation and a linear variogram has been used to perform the

kriging, since no variogram information are available and the principle of parsi-

mony has been chosen. During the calibration, 72 pilot points concentrated in the

area of influence of the plume have been considered (Figure 5.12), resulting in a

total number of parameters to be estimated Np = 75. The flow chart in Figure

5.11 summarizes the procedure to couple ES-MDA and the pilot points method.

104



CHAPTER 5. GROUNDWATER POLLUTION IDENTIFICATION

Initialization step

Transformation of parameters

Ordinary kriging

Back-transformation of parameters

Forecast step

Transformation of parameters

Update step

i<Ni

Stop

i=i+1

i=1

yes

no

Figure 5.11. Flow chart of ES-MDA for the model calibration using the pilot points
method and ordinary kriging as interpolation technique.

For this case, the ensemble size is Ne=80; the initial realizations of the lon-

gitudinal dispersivity, the transverse dispersivity and the anisotropy ratio of con-

ductivity (kh/Kv) are random values selected from uniform distributions in the

same range of the previous cases. The initial ensemble of the hydraulic conductiv-

ity fields is composed of 80 (ensemble size) different homogeneous fields; for each
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realization, the value of the hydraulic conductivity is constant for all the pilot

points. The hydraulic conductivity of each initial homogeneous field is a random

value selected from a uniform distribution over the range [0.6, 0.8] cm/s. Covari-

ance inflation (r=1.01, Eq. 1.19), covariance localization (bs=200 and bt=2500,

Eq. 1.18) and linear relaxation (w=0.2, Eq. 1.9) have been applied. Covariance

localization is mandatory, for this case, to deviate from the initial homogeneous

fields and obtain heterogeneous field.

The estimated parameters of the flow and transport models are reported in

Table 5.6. The estimated hydraulic conductivity field and its variance in log scale

are reported in Figures 5.12 and 5.13, respectively. The calibration process results

in a field that reproduces the sandbox with lower values of hydraulic conductivity

in the lower right part of the experimental field and higher values in the upper part.

This can be ascribed to nonuniform compaction related to the constant direction

of propagation. It should also be noted that the uncertainty in the estimated

hydraulic conductivity is very high for the zone outside the area of influence of

the plume due to the design of the pilot points located where they provide most

information.

Figure 5.15 shows the comparison between observed and predicted concentra-

tions at the 55 monitoring points distributed on the lines perpendicular to the

direction of the plume progress. In Figure 5.14, the experimental plume at time

T=1500 s, after the beginning of the injection, is compared with the output of

the numerical model calibrated which reproduces a heterogeneous and anisotropic

field. The observed concentrations are well reproduced (RMSE= 1.30 mg/l) and

there is a good match between the experimental and numerical plume at the fixed

time.

In conclusion, the third configuration, which assumes that the hydraulic con-

ductivity field is heterogeneous and anisotropic, is considered the best one to

describe the flow and transport processes.
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Figure 5.12. Hydraulic conductivity field in log scale. The black squares denote the pilot
points used to perform the Kriging.

Figure 5.13. Variance of the hydraulic conductivity field in log scale. The black squares
denote the pilot points used to perform the Kriging.
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Table 5.6. Estimated transport and hydraulic parameters, assuming the field heteroge-
neous and anisotropic; the ensemble mean and 95% confidence interval are reported

Ensemble mean 95% C.I.

Vertical anisotropy of conductivity (Kh/Kv) 3.27 0.03
Longitudinal dispersivity (cm) 0.178 0.003
Transverse dispersivity (cm) 0.065 0.001

Figure 5.14. Concentration field observed and predicted at time 1500 s after the
start of the injection. The hydraulic conductivity field is considered heterogeneous and
anisotropic. The white dots denote the monitoring points used to perform ES-MDA.
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Figure 5.15. Observed (black line) and predicted (red dashed line) concentrations, assum-
ing the field heterogeneous and anisotropic. X-axis is time from 0 to 2200 s, where time
0 s represents the time at which injection starts. Y-axis is concentration from 0 to 23
mg/l.
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5.4.2. Identification of the release history and the source
location

Since the concentration of the contaminant is known, the estimation of the release

history is limited to identifying the injected flow rate. The release duration is

discretized into 72 intervals with a time step of ∆t = 3 s resulting in a total

number of parameters Np = 74, of which two are the spatial coordinates of the

source. The initial ensemble of parameters is made up of 81 realizations (Ne = 81);

the spatial coordinates of the source are random values selected from uniform

distributions x ∈ U [5, 30] cm, and y ∈ U [30, 34] cm. The initial realizations of the

injected flow rate history follow expression Eq. (5.10), with parameters selected

randomly from the following uniform distributions, ∆ ∈ U [1 · 10−10, 1·10−1], Γ ∈

U [800, 1000], µ ∈ U [490, 1400] and σ ∈ U [60, 365]. The four monitoring points

are vertically distributed on the line x = 54.75 cm and at y-coordinates 29.00,

32.75, 34.75 and 36.75 cm. For each monitoring point, the observed concentrations

are recorded at 45 sampling times from T = 0 s to T = 2200 s (total number

of monitoring data is m = 180). The random measurement error ε is assumed

normally distributed with zero mean and variance 1·10−2 (mg2·l−2). The ES-MDA

with 6 iterations and decreasing α=[63.0; 31.5; 15.8; 7.88 3.9; 2.0] is used for the

inversion. Covariance localization and covariance inflation are applied using the

coefficients bs=200, bt=2500 and r=1.01, and linear relaxation with the coefficient

w=0.1.
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Figure 5.16. Experimental case: actual and estimated release history with 95% confidence
interval. Time 0 s represents the time at which injection starts.

Figure 5.17. Experimental case: observed and predicted concentrations with 95% confi-
dence interval. Time 0 s represents the time at which injection starts.
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Fig. 5.16 shows the results of the experimental case; the ensemble mean of the

release history with its 95% confidence interval and the true solution are depicted.

ES-MDA leads to a good agreement between the two curves, the NSE is 98.34% and

with a satisfactory representation of peak magnitudes and times. The ensemble

means of the x and y coordinates of the source are, respectively, equal to 14.71

cm (±0.45, 95% uncertainty interval) and 32.91 (±0.14, 95% confidence interval);

the distance between the true and estimated source location is less then 0.5 cm.

In Fig. 5.17 the experimental and predicted observations are compared. The

retrieved source parameters reproduce quite well the observed concentrations with

a narrow 95% uncertainty interval; the RMSE at the last iteration is equal to 0.96

mg/l, which is comparable with the experimental observation errors.

5.5. Concluding remarks

In this chapter, the Ensemble Smoother with Multiple Data Assimilation (ES-

MDA) is proposed for the simultaneous identification of the source location and

the release history of a groundwater contamination event from observed sparse

concentration data collected downstream from the spill. The procedure is tested

by means of an analytical case study and an experimental one.

The analytical case serves to demonstrate the capability of ES-MDA to solve

this type of inverse problem and to analyze the impact of the different settings

on the final identification. The impact of the observation network geometry and

density, ensemble size, covariance and inflation techniques and also the effect of

different sets of initial realizations are investigated. The aim is to find out a

configuration that leads to a reliable solution and mitigates the ill-conditioness of

the inverse procedure. Equifinality is analyzed in the analytical case, finding that

there are some network geometries that may lead to acceptable results (in terms
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of reproduction of the observed concentrations) but with very different release

functions.

The effect of the observation network geometry and density is evaluated con-

sidering four sets of observed concentrations, a large ensemble size (Ne=1000) and

the other factors being the same. The results show that location, time and number

of observations significantly impact the final solution of ES-MDA; for the sets in

which the observations are located in a line parallel to the main flow direction, the

percentage of successful tests is low and equifinality is detected. Instead, for the set

with the observations in a line orthogonal to the main flow direction, the number

of successful tests is 98% and the algorithm simultaneously estimates the release

history and the source location.The observation points located in a line orthogonal

to the main flow directions are more informative than those located along the same

line. In the latter case, it is easy to think of multiple solutions that should lead

to the same observations, for instance, by estimating the source location in the

direction orthogonal to flow symmetrically with respect to the line of observations.

This indicates the importance of a good design of the observation network, since

if observations provide poor information, the ill-posed inverse problem is difficult

to solve and the impact of random factors increases; it is also noteworthy that,

in real cases, only a limited number of concentration measurements are available

given the field sampling costs; for this reason, an optimal design of new monitoring

points has a great relevance.

The observation set orthogonal to the flow direction is used to check the effect

of the ensemble size and the application of covariance localization and covariance

inflation techniques in the performance of the ES-MDA. The results show that the

ES-MDA works better when large ensembles and the correction on the algorithm

are used, demonstrating the capability of the proposed spatio-temporal iterative

localization to improve the ES-MDA performance. The percentage of successful

tests increases with the ensemble size and the covariance corrections and, at the
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same time, the chances that equifinality happens decrease. Covariance inflation

and, in particular, covariance localization, overcome the undersampling problems

noticed in the ensemble-based methods; and for this reason, their effects are more

evident for small ensemble sizes. The tests performed with an ensemble size of 50

realizations lead to unreasonable results with a low percentage of passed tests and

a high percentage of tests with multiple solutions. It is suggested to use, for this

type of problems, ensemble sizes greater than the number of unknown parameters

to identify.

The experimental case study uses real data collected through a laboratory test.

The experimental device is a sandbox that reproduces an unconfined aquifer under

controlled conditions; it allows to validate the ES-MDA methodology in a real test

case.

ES-MDA was preliminary used to calibrate the numerical model required for

the inverse procedure. The hydraulic and transport parameters have been esti-

mated on the basis of many observed concentrations and assuming the release

history known. Three different configurations of the hydraulic conductivity field

have been investigated: homogeneous and isotropic, homogeneous and anisotropic

and heterogeneous and anisotropic. The results show that the best hydraulic con-

ductivity field to reproduce the flow and transport processes inside the sandbox is

the heterogeneous and anisotropic one.

Once the numerical model has been calibrated, the study proceeds with the

estimation of the source location and release history of the contaminant. The

algorithm parameters, such as the monitoring network and the ensemble size,

were chosen after the results of the analytical study. For this case, the initial

ensemble of source coordinates has been generated considering a limited suspect

area, which guarantees that all the realizations of the ensemble are representative.

This decision was taken based on preliminary tests performed with large suspect

areas. Even if it is not mandatory that the initial ensemble contains the solution,
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a well designed ensemble helps to reach better results.

The results prove the capability of ES-MDA to solve this type of inverse prob-

lem in a real cases, when the available observations are usually noisy. The method

reproduces very well both the contaminant release history and the spatial coordi-

nates of the source; the NSE is about 98% and the distance between the true and

estimated source location is less than 0.5 cm.

In summary, the proposed procedure is a novelty method able to simultane-

ously recover the release history and the source location of a groundwater pollutant

on the basis of sparse observed concentration data. A well-designed monitoring

network and the application of covariance localization and covariance inflation

techniques lead to satisfactory results and reduce the inherent equifinality encoun-

tered in parameter estimation problems.
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6
Effect of climate change on the
groundwater levels: evaluation of
local changes as a function of
antecedent precipitation indices

6.1. Introduction

Groundwater represents a precious resource, especially in the critical period of the

years when the surface flows are very low and of poor quality and the water demand

increases. Climate change may affect groundwater sustainability due to variations

in average climate conditions or seasonal distribution; this can impact on the

groundwater recharge and cause severe and long droughts, leading to temporary

or permanent damage. Therefore, the study of droughts characteristics and the
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monitoring of their evolution is of crucial importance. Droughts can be classified

into four types: meteorological, agricultural, hydrological and socioeconomic. The

meteorological drought occurs in concert with precipitation deficiency and possible

increase in potential evapotranspiration. The hydrological drought is associated

with depletion of surface and subsurface water causing very low groundwater levels

and stream flow. The agricultural drought is related to a soil moisture deficit,

which affects the crop productivity. The socioeconomic drought is a consequence

of the above-mentioned drought associated with anthropogenic activities; it occurs

when the water resources systems are not able to meet the water demand.

The assessment of groundwater availability depends on several factors, such

as groundwater storage, recharge, anthropogenic withdrawals, irrigation volumes,

aquifer type and areal extents. Due to the complexity of quantifying these el-

ements, there are difficulties in set up a complete subsurface model and it is

challenging to evaluate the effects of climate change on the groundwater resource.

Thus, this topic has not been sufficiently explored in the present literature and a

few studies were presented. van Engelenburg et al. (2017) used a calibrated hydro-

logical model to study the projected impact of climate change on groundwater in

the Veluwe area in the Netherlands. Kahsay et al. (2018) investigated the effects of

climate changes on groundwater recharge and base flow in Tekeze sub-catchment

in Ethiopia usinf a spatially distributed hydrologic model (WetSpa).

In this chapter, a simple statistical approach to analyze the variation of ground-

water levels as a function of meteorological indices is presented. The drought in-

dices analyzed are the Standardized Precipitation Index (SPI; McKee et al. 1993),

based on precipitation data, and the Standardized Precipitation Evapotranspira-

tion Index (SPEI; Vicente-Serrano et al. 2010), that incorporates also temperature

information.

Different studies have been proposed to study the correlation between ground-

water levels and drought indices. Kahsay et al. (2018) used the SPI to track
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drought and assess the impact of rainfall on water tables in some irrigation areas

of the Murray-Darling Basin in Australia. Bloomfield & Marchant (2013) studied

the relationship between normalized groundwater levels and SPI using observa-

tions collected at 14 sites across the UK. Kumar et al. (2016) assessed the ability

of SPI to characterize the behavior of groundwater droughts using observations at

more then 2000 wells distributed in different areas of Germany and Netherlands;

SPI at different accumulation period have been correlated against standardized

anomalies in the groundwater levels. Leelaruban et al. (2017) analyzed the rela-

tionship between different drought indices and groundwater level using data from

U.S. Geological Survey Ground-Water Climate Response Network wells.

However, the presented approaches only evaluated the effect of climate variables

on groundwater level in historical periods. The novelty of this work is to employ

drought indices for the evaluation of the impact of climate change on groundwater

levels in future periods up to 2100 using the projections of 13 EURO-CORDEX

climate models (Jacob et al. 2013).

6.2. Method

6.2.1. Study area and data

The study area involves the basins of the Parma, Taro and Enza rivers, in Northern

Italy (Figure 6.1). Groundwater level data available from the Emilia Romagna Re-

gional Environmental Agency (ARPAE) were used; 41 wells were selected based on

the data abundance in the monitoring years 1977-2017. The monthly groundwa-

ter levels in the spring season, which presents minimal anthropogenic disturbances

due to pumping and irrigation, were chosen for the analysis. The historical precip-

itation and temperature data (available from ARPAE) were collected for 15 rain

gauges from 1917 to 2017 and 4 temperature stations in the period 1976-2017. For
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the analysis, the precipitation data in the period 1976-2017 were used.

Climate variables have been processed with the Thiessen polygon techniques

to obtain average areal values.

Figure 6.1. Study area, monitoring wells and temperature and rain gauging station lo-
cations. Overlapping symbols identify temperature and rain gauges located in the same
position.

The future precipitation and temperature data were extracted from 13 climate

models, combination of different Regional Climate Models (RCMs) and General

Climate Models (GCMs) of the EURO-CORDEX ensemble (Table 6.1). The data

have a grid resolution of 0.11° (grid EUR-11, 12.5 km) and are analyzed under

two emission scenarios adopted by the Intergovernmental Panel on Climate Change

(IPCC) in the Fifth Assessment Report (AR5; Pachauri et al. 2014): the Represen-

tative Concentration Pathways (RCPs), RCP4.5 and RCP8.5. The RCPs describe

possible climate futures depending on anthropogenic greenhouse gas emission. The
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RCP4.5 is the intermediate scenario; instead, the RCP8.5 is the pessimistic one

without strong climate mitigation policies.

The future projections were analyzed in three time periods: 2016-2035 (short

term, S.T.), 2046-2060 (medium term, M.T.), 2081-2100 (long term, L.T.); the

1986-2005 data were considered as a reference period (R.P.). The raw climate

model data were bias corrected using the quantile mapping method (D'Oria et al.

2017).

Table 6.1. EURO-CORDEX ensemble (www.euro-cordex.net), combination of different
RCMs and GCMs, used to extract temperature and precipitation data.

GCM
CNRM-CM5 EC-EARTH HadGEM2-ES MPI-ESM-LR IPSL-CM5A-MR

RCM

CCLM4-8-17 X X X X
HIRHAM5 X
WRF331F X
RACMO22E X X
RCA4 X X X X X

In the following, as an example, it is reported the temporal evolution of pre-

cipitation and temperature in the period 1917-2100 at a meteorological station

located in the city of Parma. Figure 6.2 shows the 10-year moving average of the

annual precipitation amount observed in the historical periods (1917-2017) and

evaluated by the RCMs in the period 1976-2100 under the RCP4.5 and RCP8.5

scenarios. The precipitation time-series do not show significant trends for both

emission scenarios; the fluctuations are probably due to the natural variability of

the hydrological cycle. On the contrary, the temperature time-series (Figure 6.3)

indicate a gradual warming over the century in the study area; especially under

the RCP8.5 emission scenario.
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Figure 6.2. Annual precipitation for the Parma Università station (10-year moving av-
erage): observed data and projections of the 13 RCMs up to 2100 according to RCP 4.5
and 8.5 scenarios.

Figure 6.3. Annual mean temperature for the Parma Università station (10-year moving
average): observed data and projections of the 13 RCMs up to 2100 according to RCP
4.5 and 8.5 scenarios.
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6.2.2. Drought Indices

Among all the drought indices, SPI and SPEI have been selected for their sim-

ple computation, since they depend on climate variables only. The SPI (McKee

et al. 1993) is computed using monthly precipitation (P ) as input data. The SPEI

(Vicente-Serrano et al. 2010) uses the monthly differences (D) between precipita-

tion and potential evapotranspiration (PET ):

Di = Pi − PETi, (6.1)

where i denotes the i-th month. The potential evapotranspiration was calculated

according to the Thornthwaite (1948) equation, which depends on temperature

data only:

PETi = 16K

(
10Ti
I

)m
, (6.2)

where Ti is the average daily temperature (°C) of the month i, I is the heat index

of the average year:

I =
12∑
n=1

(
Tn
5

)1.514

; (6.3)

here, Tn is the mean of each monthly temperature over the investigated period

(historical period or one of the three future periods) and m is a coefficient depend-

ing on I:

m = 6.75 · 10−7I3 − 7.71 · 10−5I2 + 1.79 · 10−2I + 0.492; (6.4)

and K is a correction coefficient dependent on the latitude and month:

K =

(
N

12

)(
NDM

30

)
. (6.5)
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Where NDM is the number of days of the month and N is the maximum number

of sun hours, computed as:

N =

(
24

π

)
ws; (6.6)

ws is the hourly angle of sun rising, which is computed using:

ws = arccos (− tanφ tan δ) , (6.7)

where φ (rad) is the latitude and δ (rad) is the solar declination, computed as:

δ = 0.4093 sin

(
2πJ

365
− 1.405

)
; (6.8)

here, J is the average Julian day of the month.

SPI and SPEI are normalized indices representing the probability of occurrence

of P and D compared with the ones over the long climatology reference period;

negative values represent a deficit, whereas positive indices indicate a surplus. The

indices can be evaluated at different time scales; in this work the periods of 3, 6, 9,

12, 18, 24 and 36 months were chosen. For instance, a 3-month SPI at the end of

January 2000 compares the precipitation total of November 1999, December 1999

and January 2000 with the November-December-January precipitation totals of

the reference period. The scheme for the SPI and SPEI computation is summarized

in Figure 6.4. First, the cumulated monthly P and D at the different time scales

are computed; then, the best cumulative distribution function (cdf) that describes

observed P and D is fitted. Finally, the cdf is transformed to a standard normal

distribution; the normal value is the searched index.
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Figure 6.4. Scheme for the computation of SPI and SPEI

The SPI is computed using the well known gamma probability distribution

function, which is a good fitting model for precipitation frequencies. For the com-

putation of the SPEI, the three-parameter log-logistic distribution was considered

suitable to model the D series; it is expressed as:

f (x) =
β

α

(
x− γ
α

)β−1(
1 +

(
x− γ
α

)β)−2
, (6.9)

where α, β and γ are the scale, shape and origin parameters, respectively. Fol-

lowing this distribution, D can take values in the range [γ, ∞] and, therefore,

can assume also negative values, which are common for this type of data. The L-

moment procedure (Ahmad et al. 1988) was used, in this study, for the estimation

of the log-logistic parameters:

β =
2w1 − w0

6w1 − w0 − 6w2
, (6.10)

α =
(w0 − 2w1)β

Γ
(

1 + 1
β

)
Γ
(

1− 1
β

) , (6.11)
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γ = w0 − αΓ

(
1 +

1

β

)(
1− 1

β

)
, (6.12)

where Γ (β) is the gamma function of β and ws are the probability weighted

moments (PWMs) of order s. An unbiased estimator (Hosking 1986) was used for

the estimation of PWMs. The unbiased PWMs are given by

ws =
1

N

N∑
i=1

(
N−i
s

)
Di(

N−1
s

) (6.13)

The cumulative distribution function of the D series according to the log-logistic

distribution is:

F (x) =

[
1 +

(
α

x− γ

)β]−1
(6.14)

Then, the SPEI is given by the standardized values of F (x). In this study, the

approximation of Abramowitz & Stegun (1965) was used:

SPEI = W − C0 + C1W + C2W
2

1 + d1W + d2W 2 + d3W 3
, (6.15)

where W depends on the probability P of exceeding a determined D value, P =

1− F (x):

W =

−2 ln (P ) for P ≤ 0.5

−2 ln (1− P ) for P > 0.5

(6.16)

The constants are: C0=2.515517, C1=0.802853, C2=0.010328, d1=1.432788,

d2=0.189269, d3=0.001308.

6.2.3. Implemented procedure

After the estimation of the drought indices in the period 1976-2017, the first step of

this study is to verify if a good correlation exists between the observed groundwater

levels and the SPI and SPEI computed at the different time scales. The correlations
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are computed for each well and time scale according to the Pearson correlation

coefficient:

rAB =
cov (A,B)

σAσB
, (6.17)

where cov (A,B) is the covariance between the variables A and B, σA is the stan-

dard deviation of A and σB is the standard deviation of B.

The wells that present data with at least one Pearson correlation coefficient

greater than 0.7, among the analyzed time scales, were used for the subsequent

analysis. For each of the selected wells, a linear relationship was fitted:

GL = b0 + b1(DI), (6.18)

where GL and DI denote the groundwater level and the drought index, respec-

tively; and b0 and b1 are the coefficients, which were tested for statistical signifi-

cance at the 5% level.

Then, the resulting regression coefficients were used to compute the future

groundwater levels according to the drought indices computed considering the

precipitation and temperature data of the climate models in the three future pe-

riods. The future analyses were carried out for each well, using only the SPI

and SPEI at the time scale with the higher correlation coefficient in the historical

period.

6.3. Results and discussion

6.3.1. Estimated SPI and SPEI in the historical periods

Figures 6.5 and 6.6 show the areal SPI and SPEI computed in the same period

1976-2017 at the time scales of 3, 6, 9, 12, 18, 24 and 36 months, respectively. The

two indices behave in agreement detecting the same dry and wet periods; however,
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the negative values of the SPEI index are lower than the SPI ones, especially for

the last decades. For instance, in the period 2002-2010, an extremely dry period

for the study area, it can be noticed that the drought duration is the same for SPI

and SPEI, but the SPEI values denote a more severe drought. This is due to the

gradual warming of the considered area and only the SPEI drought index takes

into account the temperature data.

128



CHAPTER 6. EFFECT OF CLIMATE CHANGE ON GROUNDWATER LEVELS

Figure 6.5. The areal SPI computed for the period 1976-2010 at the time scale of 3, 6,
9, 12, 18 and 36 months
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Figure 6.6. The areal SPEI computed for the period 1976-2010 at the time scale of 3, 6,
9, 12, 18 and 36 months
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6.3.2. Correlation between groundwater levels and drought
indices

The correlation between the observed groundwater levels at each well and the SPI

and SPEI indices computed at the different time scales are depicted in Figure

6.7 by means of a color scale. The Pearson correlation coefficients are similar for

the two indices, but different for each well and time scale, indicating a different

sensitivity of the well data to the climate variables. This stems from the fact that

the wells are located in different aquifer types; the distinct characteristics of the

wells and the complexity of the aquifer in this area lead to a different response of

groundwater levels to climate variability. For instance, the well PR99-00, which

is the deepest well sampled in the study area (depth from land surface is 175

m), shows the highest correlation with the SPI and SPEI at the time scale of 36

months; which means that the groundwater level responds to the climate variables

with a considerable time lag. On the contrary, the shallow wells, such as PRA1-

00 (depth from land surface is 30 m), present high correlation with the indices

at medium time scale. For the majority of the wells, the higher coefficients are

observed at the time scales of 9, 12 and 18 months.

The groundwater level series that present at least one Pearson correlation co-

efficient with the drought indices, computed at the different time scales, greater

than 0.7 were used for the subsequent analysis. The selected wells are 24 for the

analysis performed with the SPI index, indicated with crosses in Fig. 6.7, and 28

for the ones performed with the SPEI, indicated with dots in Fig. 6.7.
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Figure 6.7. The Pearson correlation coefficients between groundwater levels observed at
the 41 wells (y-axis) and the SPI(left) and SPEI (right) indices at the time scale of 3,
6, 9, 12, 18, 24 and 36 months (x-axes). The cross and the dot next to the well name
denote that the well presents at least one Pearson correlation coefficient greater than 0.7
with SPI and SPEI, respectively.
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6.3.3. The relationship between groundwater levels and
drought indices

The relationship between groundwater level and drought indices was investigated

for each of the selected wells in the previous step and at the time scales of 3, 6,

9, 12, 18 and 36 months. For the sake of brevity, only the results for one well,

named PR55-01, are shown. Figure 6.8 shows the linear regression model on the

basis of SPI indices; the results of the regression analysis are reported in Table

6.2. The t-tests were performed to assess the statistical significance at the 5% level

of the estimated coefficients. The observed significant values (p-values) are less

then 0.05 for all the estimated coefficients, denoting that the relationship between

the groundwater level and SPI indices is significant. The correlation is very high

for all the time scales, the Pearson correlation coefficients are greater than 0.8.

The best correlation occurs at the time scale of 18 months (r=0.93), resulting in

a linear relationship given by the equation:

GL = 45.57 + 1.14SPI18, (6.19)

where the groundwater levels and the regression coefficients are expressed in meters

above sea level.

In Figure 6.9 and Table 6.3 the results of the linear regression analysis per-

formed with the SPEI indices are reported. The estimated coefficients are similar

to those obtained with the SPI and they are all statistically significant. Also in

this case, the best correlation is observed at the time scale of 18 months (R=0.91),

the equation of the linear relationship is:

GL = 45.74 + 0.88SPEI18 (6.20)

Therefore, with reference to well PR55-01, the analysis to compute the future

groundwater levels were computed according to the projected drought indices at

the time window of 18 months.
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Figure 6.8. Linear regression model for well PR55-01 with SPI indices. The x-axis shows
the SPI values and the y-axis the groundwater level in m a.s.l. The points represent the
observed groundwater levels, the solid line is the regression line and the dashed lines are
the confidence intervals (95%); the correlation coefficients are reported in the boxes.

Table 6.2. Results of the regression analysis for the well PR55-01 and the SPI index at
time scales 6, 9, 12, 18, 24 and 36 months. The estimated coefficients of the regres-
sion models, standard error (SE) of coefficients, t-test statistic values, and p-values are
reported.

Coef. [m a.s.l.] SE t-value p-value

SPI-6
b0 45.61 0.20 226.46 9.16 · 10−25

b1 1.07 0.22 4.94 2.72 · 10−4

SPI-9
b0 45.58 0.15 299.62 2.41 · 10−26

b1 1.08 0.15 7.15 7.44 · 10−6

SPI-12
b0 45.67 0.15 302.12 2.16 · 10−26

b1 1.21 0.16 7.37 5.39 · 10−6

SPI-18
b0 45.57 0.11 426.52 2.44 · 10−28

b1 1.14 0.11 10.78 7.15 · 10−8

SPI-24
b0 45.46 0.16 288.74 3.89 · 10−26

b1 1.21 0.18 6.73 1.41 · 10−5

SPI-36
b0 45.33 0.25 184.40 1.32 · 10−23

b1 1.13 0.34 3.30 5.79 · 10−3
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Figure 6.9. Linear regression model for the well PR55-01 with SPEI indices. The x-axis
shows the SPEI values and the y-axis the groundwater level in m a.s.l. The points are
the observed groundwater levels, the solid line is the regression line and the dashed lines
are the confidence intervals (95%); the correlation coefficients are reported in the boxes.

Table 6.3. Results of the regression analysis for the well PR55-01 and the SPEI index
at time scales 6, 9, 12, 18, 24 and 36 months. The estimated coefficients of the regres-
sion models, standard error (SE) of coefficients, t-test statistic values, and p-values are
reported.

Coef. [m a.s.l.] SE t-value p-value

SPEI-6
b0 45.61 0.22 203.67 3.63 · 10−24

b1 0.88 0.21 4.18 1.07 · 10−3

SPEI-9
b0 45.66 0.18 250.39 2.48 · 10−25

b1 0.88 0.15 5.78 6.39 · 10−5

SPEI-12
b0 45.86 0.19 246.35 3.07 · 10−25

b1 1.02 0.17 6.11 3.71 · 10−5

SPEI-18
b0 45.74 0.13 365.10 1.84 · 10−27

b1 0.88 0.09 9.38 3.77 · 10−7

SPEI-24
b0 45.72 0.18 252.24 2.26 · 10−25

b1 0.91 0.15 5.96 4.73 · 10−5

SPEI-36
b0 45.59 0.26 174.88 2.63 · 10−23

b1 0.70 0.23 3.11 8.34 · 10−3
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6.3.4. Estimated SPI and SPEI in the future periods

The future drought indices are computed using the precipitation and temperature

data extracted from the 13 RCMs under the two scenarios RCP4.5 and 8.5. Figure

6.10 depicts the frequency distributions of the SPI at the time scale of 18-months

projected in the three future periods in the study area. The points represent the

mean frequency in the reference period and the box-whiskers plot describe the

variability between the 13 RCMs, the blue and red box-plots show the results

under the RCP4.5 and RCP 8.5 emission scenario, respectively. The SPI indices

do not show significantly changes in the three future period, the class frequency

in the reference period is always contained in the RCMs variability.

Figure 6.10. Frequency distributions of the SPI at the time scale of 18-months projected
in the three future periods. The points represent the mean frequency in the reference
period and the box-whiskers plot describe the variability between the 13 RCMs, the blue
and red box-plots show the results under the RCP4.5 and RCP 8.5 emission scenario,
respectively.

Figure 6.11 shows the frequency distributions of the projected SPEI at the

same time scale. The frequencies of the SPEI lower than 1, which denote extremely

drought, are expected to increase in the three future periods, especially at medium
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and large term and under the RCP8.5 scenario. For example, at the long term

(2081-2100), the mean frequency of the SPEI-18 in the range [-2,-1] is expected to

increase, with respect to the reference period, of 2.18% under the RCP4.5 emission

scenario and 16.81% under the RCP8.5.

Figure 6.11. Frequency distributions of the SPEI at the time scale of 18-months projected
in the three future periods. The points represent the mean frequency in the reference period
and the box-whiskers plot describe the variability between the 13 RCMs, the blue and red
box-plots show the results under the RCP4.5 and RCP 8.5 emission scenario, respectively.

6.3.5. Future groundwater levels

For each well, the future analyses were carried out using the drought indices at

the time scale that presents the higher correlation coefficient. In the following,

the results for the well PR55-01 are presented, considering May as the reference

month. Figure 6.12 shows the empirical cumulative distribution function of the

groundwater level in May as a function of the SPI-18 under the RCP4.5 and

RCP8.5 scenarios. All the results of the 13 models have been considered as a single

realization with equal reliability. The blue line represents the groundwater level

cumulative distribution frequency in the reference period, the red, green and pink

lines are the cumulative distribution frequencies predicted at the short, medium
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and long term. The analysis with the SPI does not detect significant changes in

the three future periods and for both the emission scenarios.

Figure 6.12. Cumulative distribution function of groundwater level in May projected in
the three future periods according to the analysis performed with the SPI-18 under the
RCP4.5 (left) and RCP8.5 (right) emission scenarios.

The analysis conducted with the SPEI predicts a decrease in groundwater lev-

els, especially at medium and long term and for the RCP8.5 scenario (Figure 6.13).

The frequency of the lower groundwater levels is expected to increase. For exam-

ple, the frequency of the groundwater level corresponding to the 10th percentile

of the groundwater level in the reference period (44.8 m a.s.l.), increases of 4%

at short term, 15% at medium term and 10% at long term, under the RCP4.5

emission scenario; the increase is of 3% at short term, 14% at medium term and

26% at long term, under the RCP8.5 scenarios.

The results presented for the specific well PR55-01 are reproduced by almost

half of all those analyzed; some wells, instead, show no significant alteration in

future periods. The different groundwater levels responses depend on the various

characteristic of the wells and the type of aquifer in which they are located. Future
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development of the work will involve the analysis on areas with more data avail-

ability with the aim of being able to compute normalized indices of groundwater

levels, similarly to the SPI and SPEI, which allow to compare the results across

different locations.

Figure 6.13. Cumulative distribution function of groundwater level in May projected in
the three future periods according to the analysis performed with the SPEI-18 under the
RCP4.5 (left) and RCP8.5 (right) emission scenarios.

6.4. Concluding remarks

In this chapter, a simple method to predict the impact of climate change on

groundwater levels was presented. Two multiscale drought indices, the Standard

Precipitation Index (SPI) and the Standard Precipitation Evapotranspiration In-

dex (SPEI), were used to relate meteorological variables and groundwater levels

and to evaluate the future levels projections using the climate data extracted from

13 Regional Climate Models (RCMs).

In the historical period, the SPI and SPEI behavior is similar and both indices
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show high correlations with observed levels, denoting the ability of the selected

indices to assess the groundwater level fluctuations.

The future climate projections, instead, are different for the two indices. The

analysis performed with the SPI predicts a non-critical alteration of the ground-

water levels. On the contrary, the projected SPEI denotes an increase of the fre-

quency of the low groundwater levels, which means that the groundwater droughts

are expected to increase in the future periods leading to quantity and quality water

problems.

The difference in the results for the analysis carried out with the SPI and the

SPEI is due to the climate projections. In this study area, in fact, the RCMs

indicate a very small decrease of the precipitation and a remarkable temperature

increase. Therefore, an index that only consider precipitation cannot be able to

detect the effect of climate change on the groundwater levels; it is suggested to

prefer the use of the index SPEI, since it allow to jointly assess the effect of the

precipitation-temperature variability.

The proposed method is an advantageous simple statistical method that al-

lows to fast evaluate the variation in groundwater levels based on precipitation

and temperature data only. The assessment of the impact of climate change on

the groundwater resource is challenging since it needs the knowledge of several

factor that are difficult to quantify or that require very expensive procedures for

their evaluation. The groundwater level, even if it does not fully characterize the

aquifer, is a good indicator and it provides precious information about the aquifer

conditions.
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The objective of this thesis is to investigate advanced techniques dealing with in-

verse problems and climate change analysis in the context of surface and subsurface

hydrology.

The solution of inverse problems focuses on the ensemble Kalman filter ap-

proaches, which are selected for their computational efficiency, the flexibility to be

coupled with almost any forward model, the capability to jointly estimate multi-

ple parameters and the possibility to quantify the uncertainty of both parameters

and state variables. Among the available variants, the Ensemble Smoother with

Multiple Data Assimilation (ES-MDA) was extensively analyzed and improved for

different applications. Part of the work aimed at developing a Python software

package for the solution of inverse problems based on the proposed methodology.

The software package is easy to use and it has a flexible workflow so that it can be

applied for different case studies and adapted to other ensemble Kalman methods.

The codes include various functionalities that allow to implement different con-

figurations of the algorithm suiting different type of problem. In particular, the

package presents useful tools for the solution of inverse problems aimed at identi-

fying time series function, which is a novelty aspect for the ES-MDA method.

The ensemble Kalman filter techniques have been used in the present literature

to estimate time-independent parameters; in this work, these methods have been

adapted for the estimation of discretized time functions allowing to extend the
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applications of Ensemble Kalman-based method to many types of problems.

The ES-MDA was applied as a new approach for the solution of different inverse

problems in the hydrology and hydrogeology fields. The first application aimed to

solve the reverse flow routing problem; the objective is the estimation of an inflow

hydrograph, which is a function of time, to a hydraulic system on the basis of

observations collected downstream that can be water level information or discharge

hydrographs and a known forward routing model that relates parameters and

observations. Two synthetic examples were presented to show the capabilities of

the methodology also looking at different ES-MDA settings such as ensemble sizes

and the use of covariance localization and inflation techniques. A new procedure

to perform covariance localization considering temporal lapses rather then spatial

distances was introduced. The procedure was then applied for the solution of a

real case study. The results show the capability of ES-MDA to solve this type

of problem even for complex river systems with a small computational cost. The

method reach better results using large ensemble size, however, the application

of covariance and inflation techniques has led to significant improvements in the

solution and computational burden. The ES-MDA competes in accuracy with

other optimization methods presented in the literature, but outperform them in

terms of computational efficiency.

The second application dealt with the calibration of a hydraulic numerical

model that simulates rainfall-runoff processes. The inverse procedure is applied

for the estimation of roughness and infiltration input maps to the Parflood Rain

numerical model, which represents the forward model, on the basis of an observed

discharge hydrograph at the basin outlet and assuming the other characteristic of

the system known. Also in this case, the proposed method was initially tested

by means of two synthetic examples, which have demonstrated that ES-MDA is

able to accurately reproduced both the investigated parameters and calibration

target. Then, the methodology was applied for the calibration of Parflood Rain
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related to a real flood event leading to satisfactory results. The capability of ES-

MDA to be amenable by parallel computing allowed to perform the calibration of

a complex hydraulic model with acceptable computational time; this can lead to

a more accurate set up of numerical models, which usually used roughness and

infiltration coefficients determined a-priori on the basis of system characteristic

that may not suit the specific problem.

The application related to the groundwater field concerns the simultaneous

identification of the source location and the release history of a contaminant spill

in an aquifer, based on the knowledge of concentration data collected at a few

points and a given forward model. First, an analytic case study was used to

investigate different alternatives in the ES-MDA settings: observation sampling

scheme, ensemble size and the application of covariance localization and covari-

ance inflation. Here, a new spatiotemporal iterative localization was introduced,

which allows to take into account both spatial and temporal distances and to up-

date them during the iterative process. The results validate the ES-MDA method

for the estimation of a time series function, which is represented by the discretized

release history of the pollutant, and for the simultaneously identification of differ-

ent type of parameters. A well-designed monitoring network and the application

of covariance localization improves the performance of the proposed inverse pro-

cedure and help to minimize ill-posedness and equifinality problems. Finally, an

experimental case that uses data collected in a laboratory sandbox that reproduces

an unconfined aquifer validates the capability of the proposed inverse procedure

to simultaneously reconstruct the source location and release history of a ground-

water pollutant also in real case. This is the first time that a stochastic method is

applied to solve this type of problem allowing to assess the estimation uncertainty

and directly identify the location of the contaminant source jointly with its release

history.

The last part of the thesis deals with the evaluation of the impact of climate
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change on the groundwater availability. A simple statistical approach has been

proposed to project the future groundwater levels up to 2100 in a study area in-

volving the basins of the Parma, Taro ed Enza rivers, in northern Italy. The first

step of the study focused on the analysis of the correlations between groundwater

levels collected at several wells over the study area in an historical period and

two drought indices that depend on precipitation and temperature data only, the

Standard Precipitation Index (SPI) and the Standard Precipitation Evapotran-

spiration Index (SPEI). The high correlations detected in the historical periods

were used to define a linear relationship to be applied in the future projections

of groundwater levels on the basis of the SPI and SPEI computed using climate

data extracted from Regional Climate Model. The results indicate a progressive

increase in the frequency of the low groundwater levels in most of the investigated

wells, when both precipitation and temperature data are involved in the analy-

sis. Therefore, groundwater droughts are expected to increase over the century in

this area, as a consequence of climate changes, resulting in a deterioration of the

quantity and quality of the available fresh water. The proposed approach is a sur-

rogate model that allow to assess the impact of climate variability on groundwater

systems in a simple and fast way. It represents a valid alternative for the solution

of this challenging problem and may help to fill the gap in the present literature,

which provides very few works about this topic due to the complexity to set up a

complete model describing the subsurface processes.

Suggestions for future research

This section of the thesis provides an overview of future potential improvements

of the presented works and new lines of research.

The Python software package can be integrated with additional useful function-
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alities. For instance, the covariance inflation methods have not been extensively

analyzed in this thesis; tools for the application of different covariance inflation

approaches can be implemented. Also, parallelization tools, that convert the se-

quential procedure in a parallel one, can be developed.

Future works will focus on new applications of the Ensemble Kalman filter

methods. Possible case studies can involve the solution of inverse problems in

urban water networks, such as the detection of the infiltration and inflow (I/I)

of unwanted water in sewers, the identification of the pollutant source in water

distribution networks or the location of aqueduct leaks, on the basis of known

measurements of pollutant concentration or water flowrate. Another potential

application could be the identification of the source location of an air pollutant

emissions based on quality data collected at some monitoring stations. The ap-

plication of ES-MDA for the calibration of hydrological-hydraulic models will be

tested for the direct estimation of the investigated parameters moving from the

one factor method. Furthermore, the possibility to implement this procedure for

a self-calibration of the numerical model in real-time will be considered.

Future works related to the investigation of the impact of climate change on

groundwater levels will focus on applying the presented methodology to a differ-

ent study area with continuous groundwater level monitoring. The abundance of

data permits to define the standard groundwater indexes (SGI) in order to better

characterize the groundwater droughts and their relationships with other climatic

indexes.

In the context of climate change, the Ensemble Kalman filter methods will

be investigated for the use in the calibration of stochastic rainfall models to be

developed at a basin scale for the appropriate investigation of the impacts on the

frequency and severity of the flood events. Nowadays, the climate models provide,

mainly, daily projections, not useful for the investigations on flood events in small

and medium size Italian basins. It is then necessary to develop synthetic rainfall

145



CONCLUSIONS

data at small time scale that must satisfy daily statistic constrains and spatial

correlations on the different basin zones. It is known that such stochastic models

are very hard to calibrate and the application of an ensemble type method can be

decisive.
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In this Appendix, the Python codes written for a specific application are reported.

The InputSettings.py and Mod.py modules developed for the solution of the inverse

problem introduced in Chapter 4, which aims to simultaneously identify the source

location and the release history of a pollutant in groundwater, are presented. These

are the only two modules of the software package that are specific for the analyzed

study case and require to be edited by the user.

The Flopy Python package is used to run and post-process MODFLOW and

MT3DMS models, which simulate the groundwater flow and the contaminant

transport process, respectively.

The different features of the two modules are described in Chapter 2.

InputSettings.py

import numpy as np

def Func_ens ( par , ens ) :

#funct ion for the generation of the i n i t i a l ensemble for the

#simultaneous i d e n t i f i c a t i o n of the re l ea se h i s t o ry and source

#loca t ion of a po l l u t an t in groundwater

# X[1,2]−−−> coordinates of the source loca t ion

from Tools import EnsembleGenerator

t ime_al l=par [ : , 2 ]
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time=time_al l [ 2 : ]

N_par=time_al l . s i z e

Ensemble=np . z e ro s ( (N_par , ens ) )

(Xmin ,Xmax)=(5 ,30)

(Ymin ,Ymax)=(30 ,34)

Ensemble [ 0 , : ]= EnsembleGenerator .Random(Xmin ,Xmax, 1 , ens )

Ensemble [ 1 , : ]= EnsembleGenerator .Random(Ymin ,Ymax, 1 , ens )

(aMin , aMax)=(1e −8 ,0.05)

(muMin ,muMax)=(np . quan t i l e ( time , 0 . 2 ) , np . quan t i l e ( time , 0 . 5 5 ) )

( sigmaMin , sigmaMax)=(np . quan t i l e ( time , 0 . 0 3 ) , np . quan t i l e ( time , 0 . 1 5 ) )

(bMin ,bMax)=(800 ,1000)

Ensemble [ 2 : N_par , : ]= EnsembleGenerator . PdfNormal (aMin , aMax ,

muMin ,muMax,

sigmaMin , sigmaMax ,

bMin , bMax ,

time ,

N_par−2, ens )

return Ensemble

def Func_err (N_obs , ens ) :

from Tools import ErrorGenerator

var_y=1e−2

eps ,R=ErrorGenerator . NormalError ( var_y , N_obs , ens )

return ( eps ,R)

def forward_transf ( xx ) :

from Tools import Transformation as T

# (Xmin1,Xmax1)=(6 ,30)

# (Xmin2,Xmax2)=(30 ,35)

# xx [0 , : ]=T. LogLim_forward( xx [ 0 , : ] ,Xmin1 ,Xmax1)

# xx [1 , : ]=T. LogLim_forward( xx [ 1 , : ] ,Xmin2 ,Xmax2)

# xx [2: −1 ,:]=T. Log_forward ( xx [2 : −1 , : ] )

xx=T. Log_forward ( xx )

return xx

def backward_transf ( xx ) :

from Tools import Transformation as T

# (Xmin1,Xmax1)=(6 ,30)

# (Xmin2,Xmax2)=(30 ,34)
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# xx [0 , : ]=T. LogLim_backward( xx [ 0 , : ] ,Xmin1 ,Xmax1)

# xx [1 , : ]=T. LogLim_backward( xx [ 1 , : ] ,Xmin2 ,Xmax2)

# xx [2: −1 ,:]=T. Log_backward( xx [2 : −1 , : ] )

xx=T. Log_backward ( xx )

return xx

def l o c a l i z a t i o n ( ens_par , par , obs , i t e r_ l o c ) :

time_par=par [ : , 2 ]

pos_obs=obs [ : , 0 : 2 ]

time_obs=obs [ : , 2 ]

i f i t e r_ l o c==’n ’ :

pos_par=par [ : , 0 : 2 ]

else :

ens_m=ens_par .mean (1)

pos_par=np . t i l e (ens_m [ 0 : 2 ] , ( time_par . shape [ 0 ] , 1 ) )

from Tools import Loca l i z a t i on as Loc

a_space=150

a_time=2500

[ rho_yy_sp , rho_xy_sp , rho_xx_sp]=Loc . SpaceLocal ( a_space ,

pos_par ,

pos_obs )

[ rho_yy_tm , rho_xy_tm , rho_xx_tm]=Loc . TimeLocal ( a_time ,

time_par ,

time_obs )

rho_yy=rho_yy_sp∗rho_yy_tm

rho_xy=rho_xy_sp∗rho_xy_tm

rho_xx=rho_xx_sp∗rho_xx_tm

rho_yy [ np . i snan ( rho_yy)]=1

rho_xy [ np . i snan ( rho_xy)]=1

rho_xx [ np . i snan ( rho_xx)]=1

return ( rho_yy , rho_xy , rho_xx )

def Metrics_obs (Xprev , pred , True_par , obs ) :

from Tools import Metr ics as m

par_rel=Xprev [ 2 : , : ]

RMSE_obs=m.RMSE( obs , pred .mean ( 1 ) )

AES=m.AES( par_rel )

metr i c s_dict ={}

for va r i ab l e in [ ’RMSE_obs ’ , ’AES ’ ] :

metr i c s_dict [ v a r i ab l e ]=eval ( v a r i ab l e )

return metr ic s_dict
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metr ic s_dict [ ’ rmse_obs ’ ]=eval ( ’ rmse_obs ’ )

metr i c s_dict [ ’ rmse_par ’ ]=eval ( ’ rmse_par ’ )

return metr ic s_dict

def Metrics_obs_par (Xprev , pred , True_par , obs ) :

from Tools import Metr ics as m

par_pos=Xprev [ 0 : 2 , : ]

true_pos=True_par [ 0 : 2 ]

par_rel=Xprev [ 2 : , : ]

t rue_re l=True_par [ 2 : ]

RMSE_obs=[m.RMSE( obs . f l a t t e n ( ) , pred .mean ( 1 ) ) ]

RMSE_par=[m.RMSE( true_rel , par_rel .mean ( 1 ) ) ]

dist_par=[m. spa t i a l_d i s t anc e ( true_pos , par_pos .mean ( 1 ) ) ]

NSE_par=[m.NSE( true_rel , par_rel .mean ( 1 ) ) ]

AES=[m.AES( par_rel ) ]

metr i c s_dict ={}

for va r i ab l e in [ ’RMSE_obs ’ , ’RMSE_par ’ , ’ dist_par ’ , ’NSE_par ’ , ’AES ’ ] :

metr i c s_dict [ v a r i ab l e ]=eval ( v a r i ab l e )

return metr ic s_dict
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Mod.py

import numpy as np

import math , os

import f l opy

import f l opy . modflow as mf

import f l opy . mt3d as mt

import f l opy . u t i l s as fu

os . chd i r ( ’Model ’ )

True_par_fi le=np . l oadtxt ( ’ True_input . txt ’ , dtype=f loat )

True_par_file_model=np . l oadtxt ( ’ True_input_model . txt ’ , dtype=f loat )

# par=np . arange (0 . ,252 . ,1)

# par [0]=14.25

# par [1]=32.75

modelname=’FlowModel ’

namemt3d=’TransMod ’

workspace=’ ModelFi les ’

mfMod=mf . Modflow . load ( f ’ {modelname } .nam ’ , model_ws=workspace ,

exe_name=’mf2005dbl . exe ’ )

mtMod=mt .Mt3dms . load ( f ’ {namemt3d } .nam ’ , model_ws=workspace ,

modflowmodel=mfMod ,

exe_name=’mt3d−usgs_1 . 1 . 0_64 . exe ’ )

d i s=mfMod . get_package ( ’ d i s ’ )

wel=mfMod . get_package ( ’ wel ’ )

# AA=mfMod. wel . stress_period_data . to_array ( kper=0)

de l r=d i s . d e l r . array [ 0 ]

de l c=d i s . de l c . array [ 0 ]

top=d i s . top . array [ 0 , 0 ]

botm=d i s . botm . array [−1 ,−1 ,−1]

nlay=d i s . nlay

de lv=(top−botm)/ nlay

t=True_par_fi le [ 2 : , 2 ]

t_model=True_par_file_model [ : , 2 ]

i f t [0] > t_model [ 0 ] :

t=np . concatenate ( ( [ t_model [ 0 ] ] , t ) )

mod_start=True
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else :

mod_start=False

i f t [−1]<t_model [ −1 ] :

t=np . concatenate ( ( t , [ t_model [ −1 ] ] ) )

mod_end=True

else :

mod_end=False

os . chd i r ( ’ . . ’ )

def write_input ( par ) :

x_pos=par [ 0 ]

y_pos=5

z_pos=par [ 1 ]

source_col=math . c e i l ( x_pos/ d e l r )

source_row=math . c e i l ( y_pos/ de l c )

source_lay=nlay−math . f l o o r ( z_pos/ de lv )

r e l=par [ 2 : ]

i f mod_start :

r e l=np . concatenate ( ( [ r e l [ 0 ] ] , r e l ) )

i f mod_end :

r e l=np . concatenate ( ( r e l , [ r e l [ −1 ] ] ) )

rel_model=np . i n t e rp ( t_model , t , r e l )

sp_data={}

sp_data [ 0 ]= [ source_lay −1, source_row−1, source_col −1 ,0]

for i in range (1 , t_model . shape [ 0 ]+1 ) :

sp_data [ i ]=[ source_lay −1, source_row−1, source_col −1, rel_model [ i −1] ]

mfMod . remove_package ( "wel " )

wel_par=f l opy . modflow . ModflowWel (mfMod , stress_per iod_data=sp_data )

wel_par . w r i t e_ f i l e ( ) #write f i l e

#wri te mt3dms input (SSM f i l e )

# ssm=mtMod. get_package ( ’ ssm ’)

i t ype = 2

C=20

ssm_data = {}

ssm_data [ 0 ] = [ source_lay −1, source_row−1, source_col −1, C, i type ]

mtMod . remove_package ( "ssm" )

ssm_par = f l opy . mt3d .Mt3dSsm(mtMod, stress_per iod_data=ssm_data )

ssm_par . w r i t e_ f i l e ( )
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def run ( ) :

try :

os . remove ( os . path . j o i n ( workspace , ’MT3D001 .UCN’ ) )

except :

pass

mfMod . run_model ( )

mtMod . run_model ( )

def read_output ( ) :

Obs_fi le=np . l oadtxt ( ’True_obs . txt ’ , dtype=f loat )

N_obs=Obs_fi le . shape [ 0 ]

x_obs=Obs_fi le [ : , 0 ]

z_obs=Obs_fi le [ : , 1 ]

# y_obs=5.0

time_obs=Obs_fi le [ : , 2 ]

obs_col=np . z e ro s ( (N_obs ) , int )

# obs_row=math . c e i l ( y_obs/ de lc )

obs_lay=np . z e ro s ( (N_obs ) , int )

for l l in range (0 ,N_obs ) :

obs_col [ l l ]=math . c e i l ( x_obs [ l l ] / d e l r )

obs_lay [ l l ]=nlay−math . f l o o r ( z_obs [ l l ] / de lv )

concobj=fu . UcnFile ( os . path . j o i n ( workspace , ’MT3D001 .UCN’ ) )

times_mod = np . array ( concobj . get_times ( ) )

# conc = concobj . get_data ( totim=times [150 ] )

conc = concobj . get_al ldata ( )

concobj . c l o s e ( )

# t=conc . shape [ 0 ]

C=np . z e ro s ( (N_obs ) )

t t =[ ]

for i in range (0 ,N_obs ) :

t t+=np . where ( times_mod==time_obs [ i ] )

C[ i ]=conc [ t t [ i ] , obs_lay [ i ]−1 ,0 , obs_col [ i ]−1]

return C
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