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SUMMARY 

Isophthalic acid (IPA) has been considered to build metal-organic frameworks (MOFs), 

owing to its facile availability, unique connection angle/mode and a wide scope of 

functional groups attached. Constructing titanium-IPA frameworks that possess 

photoresponse properties is an alluring characteristic, in relation to the challenge of 

synthesizing new Ti-MOFs. Here, we report the first Ti-IPA MOF (MIP-208), that 

efficiently combines the use of preformed Ti8 oxoclusters and in situ acetylation of the 

5-NH2-IPA linker. The mixed solid-solution linkers strategy was successfully applied 

resulting in a series of multivariate MIP-208 structures with tunable chemical 

environments and sizable porosity. MIP-208 shows the best result among the pure MOF 

catalysts for the photocatalytic methanation of carbon dioxide (CO2). To improve the 

photocataytic performance, ruthenium oxide nanoparticles were photodeposited on 

MIP-208 forming a highly active and selective composite catalyst, MIP-208@RuOx, 

which features a notable visible light response, an excellent stability and recycling 

ability. 
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INTRODUCTION 

Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) have been 

recognized as one of the most intensively investigated heterogeneous catalysts for 

liquid phase reactions, due to their porous tunable structure, high surface area, and 

acidic/basic sites or metal nodes with versatile and spatially controlled distributions.1-3 

Organic ligands play an essential role in the formation of the MOF structure and the 

introduction of its corresponding property.4; 5 As organic synthesis has evolved 

significantly over the last few decades, an almost unlimited number of organic 

compounds have been applied to MOF fabrication via the linker-engineering strategy, 

resulting in a vast combination of structures and functions.6-9 However, the time and 

effort requiring organic synthesis for linker preparation undoubtedly limits the 

reproduction and application of costly MOF candidates.10; 11 In this regard, 

commercially available organic linkers from industry are of great interest due to their 

ready availability on a large scale and low cost.12; 13 

Benzene-dicarboxylic acid isomers are representative compounds that fulfill the 

aforementioned demand currently produced on a billion-kilogram scale per annum. The 

three isomers, namely ortho-phthalic acid (phthalic acid), meta-phthalic acid 

(isophthalic acid, IPA) and para-phthalic acid (terephthalic acid), are all important 

feedstocks for the preparation of a large number of industrial products.14; 15 In their use 

of constructing MOFs, phthalic acid alone tends to form materials of low dimensionality, 

mainly due to the deficient separation and steric hindrance between the adjacent 

carboxylate groups.16; 17 On the contrary, terephthalic acid is one of the most popular 

carboxylate linkers since the very beginning of MOF science.18 Its ideal configuration 

with a suitable molecular length, perfect separation of the coordination sites and varied 

connection modes, make this linker adaptable to MOF structures with any dimension, 

and built with almost every sort of metal element.19-21 

In the case of isophthalic acid, the unique angle (120°) and the medium distance 

between the two carboxylate groups enable a large degree of manipulation in the 
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synthesis of MOFs compared with the other two isomers. Numerous metal-IPA 

frameworks have been identified with nodes ranging from the alkaline earth metals,22 

to divalent and trivalent transition metals,23-26 as well as rare earth27-29 or main group 

elements,30-32 and even mixed metal systems,33-35 in which the meta-side of the 

coordinated carboxylate groups on the benzene ring frequently faces the structure void. 

IPA offers thus an obvious and facile opportunity of tuning the chemical environment 

of the MOF pore via the introduction of functional groups on the meta-side. 

Correspondingly, distinct organic functions on the 5- and 4-position of the benzene ring 

have been reported, showing great interest and potential in fine-tuning the structure-

property correlation.36-39 

It is noteworthy that isophthalic acid is suitable for MOF assembly with every transition 

metal subgroup except for the Group 4 elements in the periodic table, and to the best of 

our knowledge, there has been no report of IPA based-MOF examples built with 

titanium (Ti), zirconium (Zr), hafnium (Hf) or rutherfordium (Rf). On the other hand, 

Ti and Zr, the most common Group 4 metals, have attracted much attention from the 

MOF research community during the past years, due to their high natural abundance, 

low toxicity, strong interactions with oxygen sites and thus significantly enhanced 

stabilities once in the MOF structures.40; 41 

More recently, the potential of MOFs has expanded into other areas of catalysis, 

particularly in photocatalysis.42 The strong interaction between the positively charged 

metal nodes and negatively charged antenna linkers in rigid configurations makes 

MOFs suitable for the promotion of photoinduced charge separation.42 Hence, an 

electron transfer from the organic linker in its excited state to the metal node upon light 

absorption appears to be a general photochemical step, especially in the case of a 

favorable overlap between the lowest occupied crystal orbit (LOCO) with the atomic 

orbitals of the metal cations.43 For this reason, MOFs are among the most promising 

category of porous photocatalysts, particularly for the production of solar fuels. 

Taking into account the prevalent role of MOFs and derivative materials in 
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photocatalysis, Ti-MOFs have attracted considerable attention due to the known 

activities of TiO2 and Ti-oxo clusters to undergo photoinduced charge separation.44 In 

general, Ti-MOFs are not only promising candidates as photo-responsive materials,45 

but also show great potential in gas separation,46; 47 proton conduction48 and clinical 

applications.49 Nevertheless, direct synthesis of Ti-MOFs still remains an important 

challenge,50 despite the gradually increasing numbers of reported Ti-MOF structures 

over the past decade, which have been attained mostly through serendipity. It is 

expected that an infinite number of interconnected Ti-O units would facilitate 

photoinduced charge separation and charge mobility, in comparison with MOFs based 

on discrete inorganic units with a low number of Ti-O bonds. One and two dimensional 

(1D and 2D) arrays of Ti-O units should thus in principle improve the semiconducting 

properties of the Ti-MOFs.51 In this context, the photoactive Ti-MOFs that have been 

prepared so far are those with 1D chains or nanowires of Ti-O building units, whose 

photo-responsive behavior have been proven to be closer to those compounds 

constructed of discrete Ti-O clusters than that of bulk TiO2.
52 As shown in Figure 1, 

there are only three kinds of 1D Ti-O inorganic building units reported to date, namely 

the TiO chains in MIL-91,53 the Ti6O9 nanowires in MIP-177-HT,52 ZSTU-1, 2 and 3,54 

and the TiO chain in DGIST-1.55 Therefore, as these MOFs are all constructed from 

sophisticated ligands, it would be of great interest to synthesize IPA type linker-based 

Ti-MOFs with infinite Ti-O building units. It would not only expand the scope of Ti-

MOFs structural and chemical diversity, but also may lead to improved photocatalytic 

performances. 

Herein, we report an ultramicroporous Ti-MOF, denoted as MIP-208 (MIP stands for 

the Materials of the Institute of porous materials from Paris), the first MOF composed 

of Group 4 metal and IPA type linker. In the crystal structure of MIP-208, helical chains 

of cis-connected corner-sharing TiO6 polyhedra are held in place by the in situ 

generated 5-acetamidoisophthalate (5-Aa-IPA) linker molecules, giving rise to a 3D 

framework with 1D channel-like accessible voids running along the c-axis. Benefiting 

from their shared structural configuration and coordination adaptability, mixed linkers 
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of 5-Aa-IPA and other IPA derivatives with diverse functional groups on the meta-

position of the carboxylate groups could be further introduced in the framework 

following a solid-solution strategy, resulting in a series of multivariate MIP-208 

structures. Furthermore, the dual presence of the amide group and the 1D TiO chain 

unit in the porous structure of MIP-208, associated with an excellent thermal and 

hydrothermal stability, has allowed the development of a photocatalyst for the 

methanation of carbon dioxide (CO2) based on RuOx nanoparticles (NPs) under visible 

light, reaching a productivity of 0.8 mmol gcatalyst
-1 at 200 °C in 22 h. 

RESULTS AND DISCUSSION 

Twenty-four different Ti-MOFs prepared from direct-synthesis have been reported to 

date. The Ti sources used to produce these MOFs can be classified into two kinds: 

simple Ti complexes and polynuclear TiO clusters. Compared with simple Ti complexes, 

such as TiCl3, TiCl4, and Ti(iPrO)4, Ti-oxoclusters are known to slow down the reaction 

rate and avoid the undesirable hydrolytic formation of TiO2, owing to the gradual 

rearrangements of Ti-O connections of the oxocluster precursor for most cases. Thus, 

Ti-oxoclusters usually lead to highly crystalline Ti-MOF materials composed of large 

single crystals.55-57 In this regard, a Ti8O8 cluster with formate and acetate terminals 

(Ti8AF) was selected here as a reactant, due to its facile preparation, easy handling, 

suitable stability and reactivity.58 Regarding solvent for the reaction, it is well-

recognized that the conventional ones, such as dimethylformamide (DMF) and 

diethylformamide (DEF), should be replaced by greener solvents to decrease the 

toxicity to humans and the environment. Based on our previous success of preparing 

Group 4 metal MOFs, formic acid, acetic acid and acetic anhydride, which have been 

shown to efficiently slow down the reaction leading to highly crystalline products, were 

selected as solvents. 5-NH2-IPA was selected as the linker due to the documented 

benefit of the amino group presence in increasing the CO2 adsorption and enhancing 

the visible light photoresponse.59; 60 

Initial reaction attempts indicated that the aforementioned three acidic solvents can 
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interfere with decomposition of the Ti8AF precursor, while offering a good solubility 

for the 5-NH2-IPA linker. However, all attempts did not generate any crystalline solid. 

Various additives known to either facilitate the linker exchange or promote the 

rearrangement of Ti-O connections were tested, such as water, methanol, ethanol, 

acetone, and DMF. A highly crystalline product of a dark yellow or light brown color 

was formed only when methanol was used in the mixture of acetic acid and acetic 

anhydride. Acetic acid was found to be not necessary for the product formation, but to 

accelerate the reaction rate. An in situ amidation took place between the amino group 

of 5-NH2-IPA and acetic anhydride, generating the 5-acetamide-IPA (5-Aa-IPA) as the 

final framework building linker (Figure S1). Solid state NMR data collected on the as-

synthesized MIP-208 sample demonstrated the complete conversion of 5-NH2-IPA to 

5-Aa-IPA, which serves as the linker to build the MOF structure (Figures S2-S4). 

It is likely that the in situ acetylation step is critical to yield the crystalline material, 

which possibly slows down the reaction rate significantly. A control experiment using 

the preformed 5-Aa-IPA as linker under the same reaction conditions did not lead to 

MIP-208, but to an amorphous solid. Therefore, this solvothermal synthesis is likely to 

benefit synergistically from the rearrangement of the Ti8AF cluster and in situ linker 

formation, which is a rare case for MOF preparation reported so far. However, it could 

provide a valuable and even rational strategy for the synthesis of new Ti-MOFs through 

a control of the reaction rate from both inorganic and organic precursor conversions. 

MIP-208 was obtained as micro-sized single crystals, ruling out its structure 

determination from laboratory diffraction. Thus single-crystal X-ray diffraction data of 

MIP-208 were collected with microfocused X-rays on the synchrotron beamline 

PPOXIMA 2A (Synchrotron SOLEIL, France)61 to determine its crystal structure. The 

coordination environment of the Ti4+ ion and the overall framework connection could 

be solved precisely, even though the position of the acetamide group could not be 

accurately located due to its disorder. Assisted by the solid-state NMR characterization, 

an empirical formula of Ti(μ2-O)(5-Aa-IPA) could be dertermined for MIP-208. 

Rietveld refinement carried out on the high resolution powder X-ray diffraction data 
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(PXRD) of MIP-208 confirms the aforementioned structural model (Figure S5). It 

crystallizes in tetragonal I41/amd space group (No. 141) with the unit-cell constants a 

= b = 21.8190 Å and c = 10.9380 Å. As shown in Figure 2A, each Ti4+ ion is in an 

octahedral coordination geometry with four carboxylate oxygen atoms and two μ2-O 

oxo groups. The adjacent TiO6 polyhedra adopt a cis-connected corner-sharing mode to 

connect each other, giving rise to a 1D infinite chain of secondary building units (SBUs) 

running along the c-axis. Unlike the linear 1D Ti-O SBUs in MIL-91,53 DGIST-155 and 

MIP-177-HT,52 the helical TiO chain in MIP-208 is the first example of this type of 

SBU observed in Ti-MOFs, to our knowledge (Figure 1). An Al(OH) chain with a 

similar configuration was discovered previously in the CAU-10 MOF series (CAU 

stands for Christian-Albrechts-University),62 with μ2-OH group as the shared corner. 

Notably, the replacement of the bridging OH in trivalent metal-based MOFs by an oxo 

group in similar MOFs built with tetravalent metals could lead to a dramatic difference 

in terms of structural flexibility and related properties, as documented in MIL-47 and 

MIL-53 compounds (MIL stands for Materials from Institute Lavoisier).63; 64 In 

particular, the presence of OH or oxo groups in Ti-O materials has been demonstrated 

to be critical to their performance in photocatalysis,65-67 which highlights the 

importance of TiO chains in MIP-208 structure over its analogues with the lower 

valence metal ions. 

The neighboring TiO chains are interconnected via pairs of 5-Aa-IPA linkers in an ‘up 

and down’ mode to avoid as much as possible any steric hindrance (Figure 2B), 

resulting in a 3D framework with double-walled 1D channels running along the c-axis 

(Figure 2C). One can expect its micropores to be accessible for guest molecules as 

reported before for CAU-10 compounds constructed from IPA bearing the bulkiest 

functional groups,62; 68 due to the large size and thus considerable steric hindrance of 

the acetamide groups facing the pores. As reported before for CAU-10-OMe and CAU-

10-Br, MIP-208 did not show any accessibility for nitrogen at 77 K, but a noticeable 

porosity for CO2 (Figure S4). 

A large number of functionalized IPAs are commercially available chemicals offered at 
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low prices. The high compatibility of IPA derivatives regarding their behavior in 

coordination chemistry has been documented,37 thus offering the possibility to tune the 

chemical environment of the pore in the MIP-208 structure via a solid-solution mixed 

linker strategy. The solid-solution synthesis strategy is a powerful alternative way to 

introduce multiple functional groups together in MOF structures, especially when the 

direct synthesis of the isostructural MOF with the single linker bearing specific 

functional group as a reactant is challenging.69-71 This strategy suits perfectly the case 

of MIP-208, since all attempts to directly synthesize the corresponding MIP-208 

analogues using other functionalized IPAs instead of 5-NH2-IPA have failed up to now, 

resulting in either amorphous solids or crystalline phases of different structures. 

Therefore, mixed linkers were considered via one-pot reactions to prepare a series of 

multivariate MIP-208s (MTV-MIP-208, Figure 3A). Several representative IPA-type 

dicarboxylic acids, including IPA, 5-NO2-IPA, 5-Me-IPA, 5-Br-IPA, 5-tBu-IPA, 3,5-

pyrazole-dicarboxylic acid (PDA) and camphoric acid, were selected as the substitution 

linkers, aiming to replace the 5-Aa-IPA spacer in the MIP-208 framework. All the tested 

linkers except for 5-NO2-IPA and camphoric acid could reach certain substitution ratios, 

ranging from 11 mol% to 50 mol% (Figure S8), as deduced from the NMR data. 

However, the reason for the unsuccessful inclusion of 5-NO2-IPA and camphoric acid 

is not yet clear and still under investigation. 

As shown in Figure 3B, the inclusion of the second linker did not generate noticeable 

changes on the overall structural long-range order, as evidenced by their highly similar 

PXRD patterns. However, the porosities of the resulting materials were altered, as 

deduced from the CO2 adsorption isotherms collected at 273 K (Figure 3C). For 

instance, the sample with 50 mol% IPA substitution ratio led to a significant 

enhancement of CO2 uptake (50% at both 0.15 and 1 bar) compared with the pure MIP-

208, likely because of the smaller H atoms providing less steric hindrance over the 

larger acetamide group. A similar observation was noticed for the 5-Me-IPA mixed 

sample (33 mol%). In the case of the 5-Br-IPA derivative (38 mol%), a slight decrease 

of uptake in comparison with the parent compound has been observed, possibly 
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attributable to the much heavier atomic weight of the Br atom, in spite of its lower steric 

hindrance. When the slightly bulkier tBu group, but of similar molecular weight, was 

introduced to replace the acetamide group, the sample shows a limited drop in pore 

volume mainly due to the small linker substitution ratio (17 mol%). It is worth noting 

that even PDA, which has a five-membered heterocyclic aromatic moiety, could be 

included in the MIP-208 framework, though the substitution ratio is low (11 mol%), 

probably due to the small change in the angle of the two carboxylate groups and the 

presence of basic N-site on the heterocyclic ring. Therefore, solid-solution synthesis 

strategy here is an efficient way to expand and modify the chemical variety of the MIP-

208 structural cavity, leading to a series of MTV-MIP-208 materials. 

The stability of any MOF is a practical concern in its applications. For instance, 

photocatalytic methanation requires a combination of thermal, hydrolytic and UV 

irradiation stability of the MOF catalyst, since the catalysis is normally carried out at 

temperatures close to 200 °C, under UV irradiation and in the presence of 

stoichiometric water generated as the side product. Therefore, the stability of MIP-208 

was tested before applying it to the photocatalytic methanation. The results from both 

temperature-dependent PXRD measurements and thermogravimetric analysis (TGA) 

support the high stability of MIP-208 (Figure S9). Its ordered crystal structure is stable 

up to 325 °C in air, which is comparable to MIP-177-HT, and clearly surpasses MIL-

91 and DGIST-1 (unstable above 200 °C). Furthermore, the activated MIP-208 sample 

hardly adsorbs water (less than 5wt%) when exposed to air for a long time, considerably 

much less than the Al-CAU-10 series do. This enhanced hydrophobicity of MIP-208 is 

thus associated to the bridging oxo group effect, in comparison with the OH in CAU-

10, as well as the limited hydrophilic character of acetamide. 

Soaking MIP-208 in liquid water at room temperature for three days and heating it in 

boiling water for 8 h, separately, tested its hydrolytic stability. The PXRD patterns of 

the tested samples are identical to those of the as-synthesized ones (Figure 4A), 

supporting the robustness of the crystalline long-range order. The CO2 adsorption data 

(Figure 4B) confirm the high hydrolytic stability of MIP-208, with minor differences 
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between the sample before and after water treatments. In addition, the hydrolytic 

stability of MIP-208 in aqueous solution with various pH values were also investigated, 

which supports the excellent resistance of MIP-208 towards those chemical treatments 

(Figure S10). It is worth noting that MIP-208 is among the most hydrothermally stable 

Ti-MOFs (comparable to that of the Ti-bisphosphonate MIL-91) and outperforms all 

Ti-carboxylate MOFs reported so far. 

As MIP-208 possesses 1D TiO chain building block, a good photoresponsive activity 

is expected. Photocatalytic conversion of CO2 to methane was thus selected as the 

model reaction, since this reaction could generate value-added product from CO2 

emissions. Promising progress has been achieved lately in using MOF-based 

heterogeneous catalysts for CO2 conversion to methane.72 For instance, MOFs 

supported nickel and platinum nanoparticles (NPs) could promote the thermal 

methanation under harsh conditions, such as high pressures and temperatures. 

Photocatalytic methanation by MOF-based catalysts has, however, been hampered for 

a long time by poor selectivity until the recent success reported of a HKUST-1@TiO2 

core-shell composite applied under UV irradiation, albeit its rather low efficiency.73 

Lately, the first example of a pure photoactive MOF displaying catalytic methanation 

has been reported, which involves ZnO inorganic bricks in a nitrogen-rich framework 

exhibiting a CH4 generation productivity of 30 mol·gcatalyst
-1 after 24 h at 215 ºC under 

UV light irradiation. A notable enhancement of activity was attained via supporting 

Cu2O NPs on the Zn-MOF to form a composite catalyst, which led to a CH4 production 

of 45 mol·gcatalyst
-1 under the same conditions.74 These breakthroughs are undoubtedly 

encouraging, although the photocatalytic activity of MOF materials remains very low. 

Therefore, developing efficient and selective MOF-based photocatalysts for 

methanation is of great interest, but still remains a challenge. 

Pure MIP-208 samples were first tested for photocatalytic methanation. Preliminary 

control experiments under similar conditions as those used in the photocatalytic 

reaction, but in the dark, showed that MIP-208 did not promote thermally CO2 reduction 

to CH4. In contrast, a CH4 production of about 40 µmol gcatalyst
-1 could be achieved using 
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MIP-208 as the catalyst in the mixture of CO2 (0.25 bar) and hydrogen (1.05 bar) under 

UV-Vis irradiation (Xenon lamp, 1350 W×m-2) at 200 ºC after 22 hours (Figure S11). 

This result highlights the positive influence of the 1D TiO chain SBU in MIP-208 

regarding its photo-response, since the benchmark compound NH2-MIL-125, which is 

built with discrete Ti8 clusters, exhibits negligible photocatalytic activity under similar 

reaction conditions.74 Furthermore, in comparison with the state-of-the-art MOF 

photocatalysts for methanation,74 an enhancement of 33 % in efficiency was noticed for 

MIP-208, suggesting that MIP-208, to our knowledge, could be the most efficient pure 

MOF photocatalyst for methanation to date. 

In order to further improve the CH4 formation rate, incorporation of metal NPs onto 

MIP-208 was considered to form a composite catalyst, since it is well-documented that 

photocatalytic methanation generally requires the presence of a metal or metal oxide 

with hydrogenation activity, such as nickel, copper, rhodium, palladium, or 

ruthenium.75 We initially selected RuOx NPs as the composite component, owing to the 

fact that Ru species generally show the highest activity in the methantion of CO2 under 

milder conditions, despite their limited selectivity compared with other active 

elements.76; 77 In addition, the oxide form, instead of elemental metal NPs, features an 

elevated stability to facilitate easy handling during catalysis process. The MIP-

208@RuOx composite was obtained following the post-synthetic photo-deposition of 

RuOx NPs on MIP-208 by the photocatalytic reduction of water-soluble KRuO4 using 

methanol as the sacrificial electron donor (Figure S12). The success of RuOx 

photodeposition by photocatalytic perruthenate reduction further demonstrates the 

photoactivity of MIP-208, as it has been proven that an evidence supporting the 

occurrence of photoinduced charge separation upon irradiation of a solid is the 

observation of photodeposition onto the material of metal NPs from aqueous 

solutions.78 

After deposition, determination of the Ru content and average particle size in the 

composite was carried out. Energy-dispersive X-ray spectroscopy (EDX) analysis of 

MIP-208@RuOx showed a Ru content of 0.76 wt%. Field emission scanning electron 
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microscopy (FESEM) images of MIP-208@RuOx displayed a similar crystallite 

morphology as that of the pristine MOF, without obvious free RuOx particles (Figure 

S13). Dark-field scanning transmission electron microscopy (DF-STEM) 

measurements revealed the presence of small RuOx NPs (1.4±0.14 nm). The 

homogeneous distribution of RuOx NPs all over MIP-208 was further confirmed by 

DF-STEM coupled to an EDX detector (Figure S14). 

Preservation of the crystalline structure of MIP-208 after RuOx photodeposition was 

confirmed by PXRD data (Figure S15). The lack of additional peaks in the composite 

pattern compared with that of the pure MIP-208 could be attributed to the low Ru 

loading and the evenly distributed small particle size, as determined by TEM images. 

The MIP-208@RuOx solid was also characterized by X-ray photoelectron spectroscopy 

(XPS, Figure S16). The C1s spectrum shows the presence of aromatic carbons (284.4 

eV). In addition, a band centred at 285.9 eV attributable to the C-N bond of the amide 

groups is observed, together with another centred at 289 eV that can be assigned to the 

carbonyl of both the amide and the carboxylate groups. The amide group is clearly 

observed in the N1s band centred at about 399 eV as well. The broad O1s band is mainly 

due to the presence of oxygen atoms in the carboxylate and amide groups, together with 

the Ti-O and Ru-O bonds. Ti 2p spectrum can be assigned to the presence of Ti4+ ions. 

Ruthenium is recognized by the bands appearing at about 280.7 and 282.4 eV that can 

be assigned to the Ru 3d5/2 of RuO2 and hydrated RuO2, respectively.79; 80 The expected 

Ru 3d3/2 band appearing at higher binding energies (~4.1 eV) (Figure S16) is, however, 

difficult to observe, since it overlaps with the C-N contribution of the acetamido 

groups.78; 80 XPS analysis also can provide an estimation of the valence band maximum 

of the MIP-208@RuOx solid by measuring the lowest energy electron band of the 

material referred to the work function of the instrument. As shown in Figure S17, a 

valence band potential of -1.51 V was estimated. This value together with the 2.92 eV 

bandgap measured from the Tauc plot of the diffuse reflectance UV-Vis spectrum, gives 

a value for the LUCO of -2.874 V. 
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The photocatalytic performance of the MIP-208@RuOx composite in the methanation 

of CO2 was then evaluated under the same reaction conditions as that used for testing 

the pristine MOF. Control experiments using MIP-208@RuOx in the dark under the 

same reaction condition showed negligible CH4 production. As expected, a selective 

CO2 conversion into CH4 (800 µmol gcatalyst
-1) as the only product was observed (Figure 

5A). Specifically, the amounts of CO and C2H6 were under the detection limit of our 

micro-GC. This CH4 production value is 20 times higher compared with that obtained 

using the pure MIP-208 sample. Regarding product selectivity, photocatalytic CO2 

hydrogenation renders generally methane or CO as the main products, accompanied by 

minor amounts of C2 and C381. Selectivity to methane or CO depends mainly on the 

strength of CO adsorption and the hydrogenating activity of the photocatalysts. In 

general, if CO remains strongly adsorbed on the photocatalyst, further hydrogenation 

takes place and the final product is methane. It is proposed that MIP-208 favors CO 

adsorption near the RuOx active sites and thus leads to high methane selectivity. 

Similar time-conversion plots, with a slightly lower CH4 formation rate, were also 

measured using simulated sunlight irradiation (1 Sun) (Figure 5A). The difference 

between the CH4 production using a xenon lamp or simulated sunlight can be attributed 

to the lower power of the simulated sunlight (1000 W×m-2) compared to the xenon lamp 

(1350 W×m-2). Furthermore, photomethanation of CO2 using MIP-208@RuOx as 

catalyst was also performed upon visible light irradiation by filtering the output beam 

of the Xe lamp (>455 nm). A similar temporal CH4 formation profile was recorded, 

with a CH4 production at final time for visible light about 78 % respect to the use of the 

full UV-Vis light emission provided by the Xe lamp (Figure 5A). This similarity in the 

temporal CO2 conversion indicates that a major percentage of the MIP-208@RuOx 

photoresponse must derive from the visible region. Both experiments under simulated 

sunlight illumination and visible light irradiation indicate that a considerable proportion 

of the MIP-208-RuOx photoresponse derives from the visible region. This 

photoresponse indicates that RuOx is acting as light harvester in addition as active site, 

since MIP-208 in the absence of RuOx exhibits much less photomethanation rate and 
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should not be responsive under visible light. 

The recycling stability of the MIP-208@RuOx composite as a photocatalyst was 

determined by performing a series of consecutive recycling runs following the temporal 

evolution of CO2 conversion and CH4 formation. These stability tests are important 

considering the conditions of photocatalytic methanation, particularly the presence of 

H2O and the reaction temperature of 200 °C. The results presented in Figure 5B show 

coincident plots for the temporal CH4 evolution upon seven consecutive runs, 

supporting the stability of the material under the conditions of the photocatalytic 

reaction. It is noteworthy that this highly selective and constant methanation activity 

promoted by RuOx has hardly been achieved before, as CO has been proven to be the 

side product in this reaction, which led to a considerable deactivation of the catalyst.77 

Additionally, irradiation of the MIP-208@RuOx composite in argon atmosphere using 

the xenon lamp or solar simulator at 200 ºC revealed the evolution of a tiny amount of 

CO2, corresponding to the decomposition of a small fraction of the IPA linkers present 

in the material (<0.05 mol CO2/mol ligand). This small CO2 evolution from MIP-

208@RuOx compares favourably with the stability of the most robust MOFs reported 

as photocatalysts under similar irradiation conditions.82 

The crystallinity of the MIP-208@RuOx sample after seven catalytic cycles was well-

maintained, as no notable change in the PXRD pattern was observed (Figure S18). 

Furthermore, the solid-state 13C-NMR spectra of the fresh and seven-times reused MIP-

208@RuOx were coincident (Figure S19). DF-TEM images of the catalyst after 

recycling were also similar to those of the fresh sample, without any evidence of RuOx 

particle growth or agglomeration (Figure S20). Thus, both photocatalytic activity and 

characterization of the seven-times used MIP-208@RuOx sample indicate the stability 

of the material under irradiation conditions. 

To determine the origin of CH4, an experiment using 13C-labelled CO2 was carried out, 

monitoring the isotopic composition of CH4 evolved by mass spectrometry. The results 

presented in Figure S21 show the peaks corresponding to 13CH4 appearing at 17 Dalton. 
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It is important to note that injection of a sample before irradiation does not show in the 

chromatogram any peak at the retention time of 13CH4. 

To shed light about the main operating mechanism of the photocatalytic methanation, 

H2 was replaced by dimethylaniline as the sacrificial electron donor. Two possible 

operating mechanisms have been reported for the photocatalytic methanation of CO2, 

either the so-called photothermal pathway or the photoinduced charge separation 

pathway78. In the photothermal mechanism, light energy is converted into local heat on 

the metal NPs and the temperature increases on the NP surface promotes the thermal 

conversion of CO2 and H2 into the product.78 This local temperature increase is 

undetectable by measurements of the macroscopic system due to the low proportion of 

RuOx. In the photocatalytic mechanism, light absorption leads to a charge separation 

with the generation of electrons in the conduction band and holes in the valence band 

that causes CO2 reduction and H2 oxidation, respectively. In the photoinduced charge 

separation state, the use of an electron donor better than H2 should equally result in CO2 

conversion to methane, with an even higher reaction rate than using H2 as reagent. On 

the contrary, this electron donor should not be adequate for the photothermal reaction. 

In the present study, dimethylaniline (0.76 V vs Ag/AgCl) was selected as electron 

donor.83 The results show that CH4 is formed in the presence of dimethylaniline (40 L) 

even at a higher rate than in the presence of H2 as a reagent, reaching a CH4 production 

rate in 5 h of 250 µmol gcatalyst
-1 compared to 180 µmol gcatalyst

-1
 when using H2 as a 

reagent. Interestingly, a similar experiment using anisole as electron donor with higher 

oxidation potential (1.93 V vs Ag/AgCl) than dimethylaniline (0.90 V vs Ag/AgCl) 

resulted in a lower CH4 production (25 µmol gcatalyst
-1). This observation is in agreement 

with previous report using Cu2O supported on graphene as photocatalyst and observing 

that the methane production rates decreases as the oxidation potential of the sacrificial 

electron donor increases84; 85. Furthermore, if photomethanation is attempted under the 

same conditions, but in the presence of nitrobenzene (40 L, -0.36 V vs. Ag/AgCl)86 as 

electron quencher competing with CO2, then, no formation of CH4 is observed. This 

dependence of CH4 formation on the presence and redox potential of electron donor 
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and acceptor quenchers is fully consistent with the prevalent operation of a 

photocatalytic mechanism involving photoinduced e-/h+ separation and CH4 formation 

by consecutive eight e- (plus 8 H+) reduction of CO2. 

The occurrence of the photoinduced charge separation and the reaction of this 

photoinduced charge separated state with electron donors was additionally confirmed 

by photocurrent measurements. A thin film of MIP-208@RuOx was further deposited 

on a transparent FTO electrode. Starting from a polarization potential of 1.6 V, the MIP-

208@RuOx electrode was submitted to a decreasing bias potential in a single 

electrochemical cell using tetrapropylammonium tetrafluoroborate in acetonitrile as 

electrolyte. The current density clearly increased at each voltage upon illumination of 

the photoanode with the output of a Xe lamp (Figure S22). Furthermore, the presence 

of methanol as an electron donor increases significantly the photocurrent, indicating 

that this reagent is acting as a sacrificial electron donor, becoming oxidized and 

donating electrons to the MIP-208@RuOx in its excited state. 

Besides the photocatalytic mechanism of CO2 reduction to CH4, there are reports in the 

literature showing that CO2 reduction can take place alternatively through a 

photothermal pathway87; 88. In this mechanism, photon energy is dissipated in the active 

site that undergoes a local heating at nanometer scale sufficient to overcome the 

activation barrier for a thermocatalytic pathway. The local temperature of these 

nanometric hot spots cannot be determined macroscopically, particularly considering 

the low proportion of these hot spots in the composition of the photocatalyst and the 

thermal conductivity of the medium. One common methodology to assess the 

occurrence of local heating is the use of quantum dots (QDs) monitoring the emission 

intensity decrease as local thermometer84. This method is based on the decrease of the 

emission intensity of quantum dots as the temperature experienced by nanoparticle 

increases in a certain temperature range. In a preliminary calibration study, it was 

determined that the photoluminescence lifetime emission of CdSe-ZnS QDs decreases 

as the temperature increases (Figure S23). This observation is a consequence of the 

emission intensity decrease of core-shell CdSe-ZnS nanoparticles as the temperature 
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increases in the range from 25 to 200 ºC (Figure S24). Thus, core-shell CdSe-ZnS 

nanoparticles can be used as local, nanometric thermometer to get some information 

about local temperature changes during irradiation that could distinguish between 

photocatalytic or photothermal reaction mechanism when using MIP-208@RuOx in 

photomethanation. After calibration, the CdSe-ZnS nanoparticles were dispersed on the 

MIP-208@RuOx sample. Comparison of the emission intensity of CdSe-ZnS adsorbed 

on MIP-208@RuOx depending on whether the solid is in the dark or illuminated with 

the Xe lamp conclusively shows that, even if the macroscopic temperature is supposed 

to be constant, CdSe-ZnS QDs experience a local heating under Xe irradiation, required 

for a photothermal mechanism (Figure S25). However, it has to be commented that 

although the experiments with CdSe-ZnS as local temperature probes conclusively 

show the temperature increase at the nanometric scale and not observed 

macroscopically, the previously commented quenching experiments and particularly 

the fact that a good electron acceptor completely stops methane formation indicates that 

the mechanism is fully photocatalytic derived from charge-separation, but accompanied 

with temperature increase at the nanoparticles that does not cause product formation. 

Otherwise, nitrobenzene, quenching electrons but not impeding heating, would have 

not completely stop CH4 formation. 

The influence of the temperature was addressed by performing photomethanation by 

MIP-208@RuOx at different temperatures in the range from 100 to 200 °C (Figure S26). 

It was observed that CH4 formation starts at 100 °C, but undergoes a significant 

formation rate increase at temperatures higher than 150 °C. Control experiments in the 

dark indicate that CH4 formation is one order of magnitude less or lower than upon 

irradiation. This behavior indicates that the photocatalytic process has an activation 

energy. 

To understand the origin of the thermal activation of the photocatalytic reaction, the 

possible role of H2O as a poison was considered. H2O is a reaction product that can be 

strongly adsorbed on the active sites competing favorably with CO2 adsorption and 

stopping the reaction. In this case, one of the roles of heating would be H2O desorption 
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from the active sites. Aimed at providing some support to this proposal, a control 

experiment was performed adding H2O (60 L) at the initial reaction stage of the 

photocatalytic methanation. A significant decrease in the initial methanation rate by one 

order of magnitude from 40 to about 4 mol gcatalyst
-1h-1 was measured (Figure S26). 

This negative role of H2O should also take place in the reactor as photomethanation 

starts and temperatures above 100 °C would allow its desorption. 

In summary, benefiting from a synergetic adjustment including both the preformed 

Ti8AF cluster rearrangement and the in situ linker formation, which slows down the 

reaction, MIP-208, the first Ti-IPA MOF, was synthesized with high crystallinity and 

tunable scale. Its crystal structure, which is isostructural to CAU-10, constitutes cis-

connected corner-sharing TiO6 polyhedra that extend along the c-axis resulting in a 1D 

helical chain inorganic building unit. Multivariate MIP-208 structures with tunable 

chemical environments and sizable porosities could be achieved by adopting the solid-

solution mixed-linker synthesis strategy. This material has been proven to be the best 

photocatalyst for the methanation of CO2 in terms of activity and selectivity among all 

the pure MOFs, owing to its excellent stability and photoresponse. Further 

improvement of catalytic activity was achieved by the photodeposition of RuOx. The 

resulting MIP-208@RuOx composite exhibits, under identical conditions, an 

enhancement of efficiency of a factor of about 20 in comparison with that of the pure 

MOF. The composite catalyst displays a high stability and reusability. These results 

illustrate the continuous interest in the synthesis of novel Ti-MOFs that could lead to 

improved generations of photocatalysts, suitable for the production of solar fuels and 

the photoinduced methanation of CO2. 
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EXPERIMENTAL PROCEDURES 

Resource Availability 

Lead Contact 

Further information and requests for resources could be directed to and will be fulfilled by the 

Lead Contact, Sujing Wang (sjwang4@ustc.edu.cn). 

Materials Availability 

All chemicals were purchased from commercial suppliers and used as received without further 

purification. 5-NH2-IPA (Alfa Aesar), IPA (Alfa Aesar), 5-Me-IPA (TCI), 5-Br-IPA (Sigma), 5-

F-IPA (FluoroChem), 5-tBu-IPA (FluoroChem), PDA (FluoroChem), formic acid (Fisher), 

acetic acid (Acros), acetic anhydride (Sigma), MeOH (Fisher), Ti(iPrO)4 (Alfa Aesar). 

Data and Code Availability 

Data supporting the findings of this paper are available from the corresponding authors upon 

reasonable request. 

 

Method Details 

Synthesis of MIP-208 (small scale) 

To a 23 mL Teflon reactor, Ti8AF cluster solid (220 mg) was added followed by adding acetic 

anhydride (5 mL) and acetic acid (5 mL). The mixture was stirred at room temperature for 20 

minutes before 5-NH2-IPA (362 mg, 2 mmol) was added once. After stirring for 10 minutes, 

MeOH (0.5 mL) was added and the overall mixture was stirred at room temperature for another 

10 minutes. Afterwards, the reaction was heated in an oven at 180 °C for 48 hours. When the 

reaction was cooled to room temperature, the dark yellow/light brown product was collected 

by filtration, washed with acetone then air dried. Yield: 330 mg (average of five parallel 

reactions). 

Synthesis of MIP-208 (scale-up) 

To a 125 mL Teflon reactor, Ti8AF cluster solid (3.5 g) was added followed by adding acetic 
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anhydride (25 mL) and acetic acid (25 mL). The mixture was stirred at room temperature for 

20 minutes before 5-NH2-IPA (3.62 g, 20 mmol) was added once. After stirring for 10 minutes, 

MeOH (3.5 mL) was added and the overall mixture was stirred at room temperature for another 

10 minutes. Afterwards, the reaction was heated in an oven at 180 °C for 48 hours. When the 

reaction was cooled to room temperature, the dark yellow/light brown product was collected 

by filtration, washed with acetone than air dried. Yield: 4.3 g (average of five parallel reactions). 

Typical synthesis of MTV-MIP-208 

To a 23 mL Teflon reactor, Ti8AF cluster solid (220 mg) was added followed by adding acetic 

anhydride (5 mL) and acetic acid (5 mL). The mixture was stirred at room temperature for 20 

minutes before a linker mixture of 5-NH2-IPA (1 mmol) and the secondary IPA ligand (1 mmol) 

was added. After stirring for 10 minutes, MeOH (0.5 mL) was added and the overall mixture 

was stirred at room temperature for another 10 minutes. Afterwards, the reaction was heated in 

an oven at 180 °C for 48 hours. When the reaction was cooled to room temperature, the dark 

yellow/light brown product was collected by filtration, washed with acetone then air dried. 

Photocatalytic methanation tests 

The photocatalytic methanation of CO2 experiments were carried out using a quartz 

photoreactor (51 mL) equipped with a heating mantle to control the desired temperature. In a 

typical experiment the powdered photocatalyst (15 mg) is placed as a bed in the reactor, and 

then the system purged first with H2 and later with CO2 until a ratio of 4 to 1 is obtained. 

Subsequently, the photoreactor is heated at 200 ºC, and then the photocatalyst is irradiated using 

a Xe lamp (150 W) or a solar simulator. At the desired reaction time, an aliquot was sampled 

from the photoreactor and analyzed in an Agilent 490 MicroGC equipped with two channels 

and thermal conductivity detectors. One channel equipped with a MolSieve 5Å column allows 

analysis of H2, O2, N2 and CO, while the other channel equipped with a Pore Plot Q column 

allows determining CO2, CH4 and short chain hydrocarbons. Quantification was performed 

using calibration plots employing commercially available gas mixtures. 

X-ray crystallographic data 

The single crystal X-ray crystallographic data for MIP-208 were collected on the PROXIMA 
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2A beamline at Synchrotron SOLEIL and have been deposited at the Cambridge 

Crystallographic Data Centre (CCDC), under deposition number CCDC 1989406. High-

resolution PXRD data of MIP-208 for Rietveld refinement were collected on the STOE STADI 

PESSENTIAL X-ray diffractometer equipped with a Mythen II detector in the Debye–Scherrer 

mode with pure Cu Kα1 radiation (λ = 1.5406 A) (capillary: 0.2 mm, angle range: 5–120°, step 

size: 0.015°, total counting time: 16.5 h, room temperature), and have been deposited at CCDC 

under the deposition number CCDC 2011709. These data can be obtained free of charge from 

the CCDC database via www.ccdc.cam.ac.uk. All other relevant data supporting the findings of 

this study are available from the corresponding authors on request. 
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Main Figure titles and legend 

Figure 1. Comparison of 1D Ti-O inorganic building units reported. 

(A) Linear TiO chain in MIL-91. 

(B) Linear Ti6O9 nanowire in MIP-177-HT, ZSTU-1, 2 and 3. 

(C) Linear TiO chain in DGIST-1 and ACM-1. 

(D) Helical TiO chain in MIP-208 reported here. 

Figure 2. Crystal structure of MIP-208. 

(A) Coordination environment of the Ti4+ ions and arrangement of 5-Aa-IPA linkers around them. 

(B) Structure viewed along the b-axis. 

(C) Structure viewed along the c-axis, showing 1D channels (Ti in purple, C in gray, O in red, and the 

blue ball represents the acetamide group, all hydrogen atoms are omitted for clarity). 

Figure 3. Illustration and characterizations of MTV-MIP-208 materials. 

(A) Illustration of MTV-MIP-208 structure with multiple functional groups (the blue ball represents the 

acetamide group, the green ball represents the other functional groups. Hydrogen atoms are omitted for 

clarity). 

(B) PXRD patterns of the parent and MTV-MIP-208s (λCu ≈ 1.5406 Å). 

(C) CO2 adsorption isotherms collected at 273 K for parent and MTV-MIP-208 solids. 

Figure 4. Results of water stability tests. 

(A) PXRD patterns for the MIP-208 samples before and after water treatments. 

(B) CO2 adsorption isotherms collected at 298 K for the MIP-208 samples before and after water 
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treatments. 

Figure 5. Photocatalytic performance of MIP-208@RuOx in CO2 methanation. 

(A) Temporal evolution of CH4 during the photocatalytic CO2 reduction with MIP-208@RuOx as the 

catalyst using a solar simulator, a xenon lamp with full range lights and visible light (Xe lamp with >455 

nm filter). 

(B) Reusability of MIP-208@RuOx in the photocatalytic methanation of CO2 (seven-times cycling) using 

a xenon lamp as irradiation source. Reaction conditions: catalyst (15 mg), H2 (1.05 bar), CO2 (0.25 bar), 

temperature (200 ºC), irradiation source a xenon lamp (1350 W×m-2) or solar simulator (1000 W×m-2). 
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