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Abstract: Let G be a graph with no isolated vertex and f : V(G) → {0, 1, 2} a function. Let Vi = {v ∈
V(G) : f (v) = i} for every i ∈ {0, 1, 2}. The function f is an outer-independent Roman dominating
function on G if V0 is an independent set and every vertex in V0 is adjacent to at least one vertex in V2.
The minimum weight ω( f ) = ∑v∈V(G) f (v) among all outer-independent Roman dominating functions
f on G is the outer-independent Roman domination number of G. This paper is devoted to the study of
the outer-independent Roman domination number of a graph, and it is a contribution to the special issue
“Theoretical Computer Science and Discrete Mathematics” of Symmetry. In particular, we obtain new
tight bounds for this parameter, and some of them improve some well-known results. We also provide
closed formulas for the outer-independent Roman domination number of rooted product graphs.

Keywords: outer-independent Roman domination; Roman domination; vertex cover; rooted
product graph

1. Introduction

Throughout this paper, we consider G = (V(G), E(G)) as a simple graph with no isolated vertex.
Given a vertex v of G, N(v) and N[v] represent the open neighbourhood and the closed neighbourhood of
v, respectively. We also denote by deg(v) = |N(v)| the degree of vertex v. For a set D ⊆ V(G), its open
neighbourhood and closed neighbourhood are N(D) = ∪v∈D N(v) and N[D] = N(D) ∪ D, respectively.
Moreover, the subgraph of G induced by D ⊆ V(G) will be denoted by G[D].

Domination theory is an interesting topic in the theory of graphs, as well as one of the most active topic
of research in this area. A set D ⊆ V(G) is a dominating set of G if N[D] = V(G). The domination number
of G, denoted by γ(G), is the minimum cardinality amongst all dominating sets of G. Numerous results
on this issue obtained in the previous century are shown in [1,2]. We define a γ(G)-set as a dominating set
of cardinality γ(G). The same terminology will be assumed for optimal parameters associated with other
sets or functions defined in the paper.

Moreover, in the last two decades, the interest in the domination theory in graphs has increased.
In that sense, a very high number of variants of domination parameters have been studied, many of which
are combinations of two or more parameters. Next, we expose some of them.
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• A set S ⊆ V(G) is an independent set of G if the subgraph induced by S is edgeless. The maximum
cardinality among all independent sets of G is the independence number of G, and is denoted by
β(G). In some kind of “opposed” side of an independent set, we find a vertex cover, which is a set
D ⊆ V(G) such that V(G) \ D is an independent set of G. The vertex cover number of G, denoted by
α(G), is the minimum cardinality among all vertex covers of G. It is well-known that for any graph G
of order n, α(G) + β(G) = n (see [3]).

• A set S ⊆ V(G) is an independent dominating set of G if S is an independent and dominating set
at the same time. The independent domination number of G is the minimum cardinality among all
independent dominating sets of G and is denoted by i(G). Independent domination in graphs was
formally introduced in [4,5]. However, a fairly complete survey on this topic was recently published
in [6].

• A function f : V(G)→ {0, 1, 2} is called a Roman dominating function on G, if every v ∈ V(G) for
which f (v) = 0 is adjacent to at least one vertex u ∈ V(G) for which f (u) = 2. The Roman domination
number of G, denoted by γR(G), is the minimum weight ω( f ) = ∑v∈V(G) f (v) among all Roman
dominating functions f on G. This parameter was introduced in [7]. Let Vi = {v ∈ V(G) : f (v) = i}
for i ∈ {0, 1, 2}. We will identify a Roman dominating function f with the subsets V0, V1, V2 of V(G)

associated with it, and so we will use the unified notation f (V0, V1, V2) for the function and these
associated subsets.

• A Roman dominating function f (V0, V1, V2) is called an outer-independent Roman dominating
function, abbreviated OIRDF, if V0 is an independent set of G. Notice that then V1 ∪ V2 is a vertex
cover of G. The outer-independent Roman domination number of G is the minimum weight among
all outer-independent Roman dominating functions on G, and is denoted by γoiR(G). This parameter
was introduced in [8] and also studied in [9–11].

All the previous parameters are, in one way or another, related to each other. Next, we show the most
natural relationships that exist between them, which are easily deductible by definition.

Remark 1. For any graph G of order n with no isolated vertex,

(i) γ(G) ≤ i(G) ≤ β(G) = n− α(G).
(ii) γ(G) ≤ γR(G) ≤ γoiR(G).

For the graphs shown in Figure 1 we have the following.

• γ(G1) = 2 < i(G1) < 4 = α(G1) = γR(G1) < β(G1) < γoiR(G1) = 6.
• γ(G2) = i(G2) = α(G2) = 2 < γR(G2) = γoiR(G2) = 3 < β(G2) = 5.

G1

1 2 2 1

G2

2

1

Figure 1. The labels of (gray and black) coloured vertices describe the positive weights of a
γoiR(Gi)-function, for i ∈ {1, 2}.
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In this paper, we continue the study of the outer-independent Roman domination number of graphs.
For instance, in Section 2 we give some new relationships between this parameter and the others mentioned
above. Several of these results improve other bounds previously given. Finally, in Section 3 we provide
closed formulas for this parameter in rooted product graphs. In particular, we show that there are four
possible expressions for the outer-independent Roman domination number of a rooted product graph,
and we characterize the graphs reaching these expressions.

2. Bounds and Relationships with Other Parameters

Abdollahzadeh Ahangar et al. [8] in 2017, established the following result.

Theorem 1 ([8]). For any graph G with no isolated vertex,

α(G) + 1 ≤ γoiR(G) ≤ 2α(G).

Observe that any graph G with no isolated vertex, order n and maximum degree ∆, satisfies that
1 ≤

⌈
n−α(G)

∆

⌉
. It is also well-know that γ(G) ≤ α(G), which implies α(G)+γ(G) ≤ 2α(G). With the above

inequalities in mind, we state the following theorem, which improves the bounds given in Theorem 1.

Theorem 2. For any graph G with no isolated vertex, order n and maximum degree ∆,

α(G) +

⌈
n− α(G)

∆

⌉
≤ γoiR(G) ≤ α(G) + γ(G).

Proof. We first prove the upper bound. Let D be a γ(G)-set and S an α(G)-set. Let g(W0, W1, W2) be a
function defined by W0 = V(G) \ (D ∪ S), W1 = (D ∪ S) \ (D ∩ S) and W2 = D ∩ S. We claim that g is an
OIRDF on G. Without loss of generality, we may assume that W0 6= ∅. Notice that W0 = V(G) \ (D ∪ S) is
an independent set of G as S is a vertex cover. Now, we prove that every vertex in W0 has a neighbour in W2.
Let x ∈W0 = V(G) \ (D∪ S). Since S is a vertex cover and D is a dominating set, we deduce that N(x) ⊆ S
and N(x) ∩ D 6= ∅, respectively. Hence N(x) ∩ D ∩ S 6= ∅, or equivalently, N(x) ∩W2 6= ∅. Thus, g is an
OIRDF on G, as required. Therefore, γoiR(G) ≤ ω(g) = |(D ∪ S) \ (D ∩ S)|+ 2|D ∩ S| = α(G) + γ(G).

We now proceed to prove the lower bound. Let f (V0, V1, V2) be a γoiR(G)-function. By definition,
we have that V0 is an independent set, and so, V1 ∪ V2 is a vertex cover. Moreover, we note that every
vertex in V2 has at most ∆ neighbours in V0. Hence, |V0| ≤ ∆|V2|. By inequality above, and the fact that
n− α(G) = β(G) ≥ |V0|, we have

∆γoiR(G) = ∆(|V1|+ 2|V2|)
= ∆(|V1|+ |V2|) + ∆|V2|
≥ ∆(n− |V0|) + |V0|
= n∆− (∆− 1)|V0|
≥ n∆− (∆− 1)(n− α(G))

= ∆α(G) + (n− α(G)).

Therefore, γoiR(G) ≥ α(G) +
⌈

n−α(G)
∆

⌉
, which completes the proof.

The bounds above are tight. To see this, let us consider the vertex cover Roman graphs G. These graphs
were defined in [8] and satisfy the equality γoiR(G) = 2α(G). Since γ(G) ≤ α(G), we deduce that for
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every vertex cover Roman graph G it follows that γoiR(G) = α(G) + γ(G). Note also that both bounds are
achieved for the graph G1 given in Figure 1, i.e., α(G1) +

⌈
|V(G1)|−α(G1)

∆(G1)

⌉
= γoiR(G1) = α(G1) + γ(G1).

The following result is an immediate consequence of Theorem 2.

Corollary 1. If G is a graph such that γ(G) = 1, then

γoiR(G) = α(G) + 1.

However, the graphs G with γ(G) = 1 are not the only ones that satisfy the equality γoiR(G) =

α(G) + 1. For instance, the path P4 satisfies that γ(P4) = 2 and γoiR(P4) = 3 = α(P4) + 1. In such a sense,
we next give a theoretical characterization of the graphs that satisfy this equality above.

Theorem 3. If G is a graph with no isolated vertex, then the following statements are equivalent.

(i) γoiR(G) = α(G) + 1.
(ii) There exist an α(G)-set S and a vertex v ∈ S such that V(G) \ S ⊆ N(v).

Proof. We first suppose that (i) holds, i.e., γoiR(G) = α(G) + 1. Let f (V0, V1, V2) be a γoiR(G)-function
such that |V2| is maximum. Hence, V2 6= ∅. Let v ∈ V2. Since V1 ∪ V2 is a vertex cover of G, it follows
that α(G) + 1 ≤ (|V1|+ |V2|) + |V2| = γoiR(G) = α(G) + 1. Hence, we have equalities in the previous
inequality chain, which implies that S = V1 ∪ V2 is an α(G)-set and V2 = {v}. So, V(G) \ S = V0 ⊆
N(V2) = N(v). Therefore, (ii) follows.

On the other hand, suppose that (ii) holds, i.e., suppose there exist an α(G)-set S and v ∈ S such
that V(G) \ S ⊆ N(v). Observe that the function g(W0, W1, W2), defined by W2 = {v}, W1 = S \ {v} and
W0 = V(G) \ S, is an OIRDF on G. Therefore, and using the lower bound given in the Theorem 1, we obtain
that α(G) + 1 ≤ γoiR(G) ≤ ω(g) = |S|+ 1 = α(G) + 1. Hence, γoiR(G) = α(G) + 1, which completes
the proof.

A tree T is an acyclic connected graph. A leaf vertex of T is a vertex of degree one. The set of
leaves is denoted by L(T). We say that a vertex v ∈ V(T) is a support vertex (strong support vertex) if
|N(v)∩ L(T)| ≥ 1 (|N(v)∩ L(T)| ≥ 2). The set of support vertices and strong support vertices are denoted
by S(T) and Ss(T), respectively.

With this notation in mind, we next characterize the trees T with γoiR(T) = α(T) + 1. Before we do
this, we shall need to state the following useful lemma, in which diam(T) represents the diameter of T.

Lemma 1. If T is a tree such that γoiR(T) = α(T) + 1, then the following statements hold.

(i) diam(T) ≤ 4.
(ii) V(T) = L(T) ∪ S(T).

Proof. We first proceed to prove (i). By Theorem 3 there exist an α(T)-set S and v ∈ S such that V(T) \ S ⊆
N(v). Now, we suppose that k = diam(T) ≥ 5. Let P = v0v1 · · · vk−1vk be a diametrical path of T. Hence,
∅ 6= {v0, v1, vk−1, vk} ∩ (V(T) \ S) 6⊆ N(v), which is a contradiction. Therefore, diam(T) ≤ 4, as desired.

Finally, we proceed to prove (ii). By (i) we have that diam(T) ≤ 4. If V(T) \ (L(T) ∪ S(T)) 6= ∅, then
for every α(T)-set S and v ∈ S it follows that V(T) \ S 6⊆ N(v), which is a contradiction with Theorem 3.
Hence, V(T) = L(T) ∪ S(T), which completes the proof.

Let T be the family of trees Tr,s of order r + s + 1 with r ≥ 1 and r− 1 ≥ s ≥ 0, obtained from a star
K1,r by subdividing s edges exactly once. In Figure 2 we show the tree T5,3.
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Figure 2. The tree T5,3.

Theorem 4. Let T be a nontrivial tree. Then γoiR(T) = α(T) + 1 if and only if T ∈ T .

Proof. If T ∈ T , then it is easy to check that γoiR(T) = α(T) + 1. Now, we prove the converse. Let T be a
nontrivial tree such that γoiR(T) = α(T) + 1. By Lemma 1-(i) we have that diam(T) ≤ 4. If diam(T) ≤ 2,
then T ∼= Tr,0 ∈ T . If diam(T) = 3, then T ∼= Tr,1 ∈ T . We now suppose that diam(T) = 4. By Lemma 1-(ii)
we have that V(T) = L(T) ∪ S(T). We claim that for any diametrical path P = v0v1v2v3v4 of T, it follows
that v1, v3 ∈ S(T) \ Ss(T). First, we observe that v1, v3 ∈ S(T). Without loss of generality, suppose that
v1 ∈ Ss(T). Hence, v1 belongs to every α(T)-set. By Theorem 3 there exist an α(T)-set S and v ∈ S such that
V(T) \ S ⊆ N(v). Since v0 ∈ V(T) \ S, then v = v1. Notice also that ∅ 6= {v3, v4} ∩ (V(T) \ S) 6⊆ N(v1),
which is a contradiction. Therefore, v1, v3 ∈ S(T) \ Ss(T), as desired. From above, we deduce that
T ∼= Tr,s ∈ T , where r ≥ 3 and r− 1 ≥ s ≥ 2. Therefore, the proof is complete.

The following result is another consequence of Theorem 2.

Theorem 5. Let G be a graph with no isolated vertex. For any γR(G)-function f (V0, V1, V2),

γoiR(G) ≤ γR(G) + α(G)− |V2|.

Proof. Let f (V0, V1, V2) be a γR(G)-function. Since V1 ∪V2 is a dominating set of G, it follows that γ(G) ≤
|V1|+ |V2| = γR(G)− |V2|. Therefore, Theorem 2 leads to γoiR(G) ≤ α(G) + γ(G) ≤ γR(G) + α(G)− |V2|,
which completes the proof.

The bound above is tight. For instance, in the corona graph G� Nr with r ≥ 3, the unique γR(G�
Nr)-function f (V0, V1, V2), defined by V2 = V(G) and V1 = ∅, is also a γoiR(G � Nr)-function, and so,
γR(G� Nr) = γoiR(G� Nr) = γR(G� Nr) + α(G� Nr)− |V2| = 2|V(G)|. The following result, which is
a consequence of Remark 1 and Theorem 5, generalizes the previous example.

Proposition 1. If there exists a γR(G)-function f (V0, V1, V2) such that |V2| = α(G), then

γoiR(G) = γR(G).

We now relate the outer-independent Roman domination number with other domination parameters
of graphs. Before, we shall state the following proposition.

Proposition 2. For any graph G with no isolated vertex, there exists a γoiR(G)-function f (V0, V1, V2) such that
V0 is an independent dominating set of G.

Proof. Let f (V0, V1, V2) be a γoiR(G)-function such that |V2| is maximum. By definition we have that
V0 is an independent set. We next prove that V0 is a dominating set of G. It is clear that V2 ⊆ N(V0).
Let v ∈ V1. If N(v) ⊆ V1 ∪ V2, then the function f ′(V′0, V′1, V′2), defined by f ′(v) = 0, f ′(u) = f (u) + 1
for some vertex u ∈ N(v) ∩V1 and f ′(x) = f (x) whenever x ∈ V(G) \ {v, u}, is a γoiR(G)-function and
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|V′2| > |V2|, which is a contradiction. Hence, N(v) ∩ V0 6= ∅, which implies that V0 is an independent
dominating set of G, as desired.

Theorem 6. For any graph G with no isolated vertex, order n, minimum degree δ and maximum degree ∆,⌈
i(G)δ

∆

⌉
+ 1 ≤ γoiR(G) ≤ n− i(G) + γ(G).

Proof. The upper bound follows by Theorem 2 and the fact that α(G) = n − β(G) ≤ n − i(G). Now,
we proceed to prove the lower bound. Let f (V0, V1, V2) be a γoiR(G)-function which satisfies Proposition 2.
Since every vertex in V1 ∪ V2 has at most ∆ neighbours in V0 and V0 is an independent dominating set,
it follows that δ|V0| ≤ ∆(|V1|+ |V2|) and |V0| ≥ i(G). Hence,

γoiR(G) = (|V1|+ |V2|) + |V2|

≥ |V0|δ
∆

+ |V2|

≥ i(G)δ

∆
+ 1.

Therefore, the proof is complete.

The bounds above are tight. For example, the lower bound is achieved for the complete bipartite
graphs Kr,r, where γoiR(Kr,r) = r + 1 =

⌈
r2

r

⌉
+ 1 =

⌈
i(Kr,r)δ(Kr,r)

∆(Kr,r)

⌉
+ 1. In addition, the upper bound is

achieved for the case of complete graphs, and in connection with this fact, we pose the following question.

Open question: Is it the case that γoiR(G) = n− i(G) + γ(G) if and only if G is a complete graph?

Next, we give new bounds for the outer-independent Roman domination number of triangle-free
graphs. Recall that in these graphs, no pair of adjacent vertices can have a common neighbor. For this
purpose, we shall need to introduce the following definitions.

A set S ⊆ V(G) is a 3-packing if the distance between u and v is greater than three for every pair of
different vertices u, v ∈ S. The 3-packing number of G, denoted by ρ3(G), is the maximum cardinality
among all 3-packings of G. We also define

P3(G) = {S ⊆ V(G) : S is a 3-packing of G}.

Theorem 7. For any triangle-free graph G of order n,

γoiR(G) ≤ n− max
S∈P3(G)

{
∑
v∈S

(deg(v)− 1)

}
.

Proof. Let S ∈ P3(G). As G is triangle-free, it follows that N(v) is an independent set of G for every
v ∈ V(G). Hence, N(S) is an independent set of G, which implies that the function f (V0, V1, V2), defined by
V2 = S, V0 = N(S) and V1 = V(G) \ N[S], is an OIRDF on G. Thus, γoiR(G) ≤ 2|V2|+ |V1| = 2|S|+ (n−
|N[S]|) = n−∑v∈S(deg(v)− 1). Since the inequality holds for every S ∈ P3(G), the result follows.

Corollary 2. For any triangle-free graph G of order n and minimum degree δ,

γoiR(G) ≤ n− ρ3(G)(δ− 1).
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In [8], the bound γoiR(G) ≤ n − ∆(G) + 1 was given for the case of triangle-free graph. Next,
we state a result which improve the bound above for the triangle-free graphs G that satisfy the condition
diam(G)(δ(G)− 1) ≥ 4(∆(G)− 1).

Proposition 3. Let G be a connected triangle-free graph of order n, minimum degree δ and maximum degree ∆.
If diam(G) ≥ 4, then

γoiR(G) ≤ n−
⌈

diam(G)

4

⌉
(δ− 1).

Proof. Assume that diam(G) ≥ 4. Let P = v0v1 · · · vk be a diametrical path of G (notice that k = diam(G)),
and S = {v0, v4, . . . , v4bk/4c}. It is easy to see that S ∈ P3(G), and so, by Theorem 7 we deduce that

γoiR(G) ≤ n−∑v∈S(deg(v)− 1) ≤ n−
⌈

diam(G)
4

⌉
(δ− 1) which completes the proof.

The bounds given in Corollary 2 and Proposition 3 are tight. For instance, they are achieved for the
cycle C10.

3. Rooted Product Graphs

Let G be a graph of order n with vertex set {u1, . . . , un} and H a graph with root v ∈ V(H). The rooted
product graph G ◦v H is defined as the graph obtained from G and n copies of H, by identifying the vertex
ui of G with the root v in the ith-copy of H, where i ∈ {1, . . . , n} [12]. If H or G is a trivial graph, then G ◦v H
is equal to G or H, respectively. In this sense, to obtain the rooted product G ◦v H, hereafter we will only
consider graphs G and H of orders at least two. Figure 3 shows an example of a rooted product graph.

For every x ∈ V(G), Hx will denote the copy of H in G ◦v H containing x. The restriction of any
γoiR(G ◦v H)-function f to V(Hx) will be denoted by fx and the restriction to V(Hx) \ {x} will be denoted
by f−x .

G

v

H G ◦v H

Figure 3. The rooted product graph G ◦v H.

If v is a vertex of a graph H, then the subgraph H − v is the subgraph of H induced by V(H) \ {v}.
The following three results will be the main tools to deduce our results.

Lemma 2. Let H be a graph without isolated vertices. For any v ∈ V(H),

γoiR(H − v) ≥ γoiR(H)− 1.

Proof. Let g′ be a γoiR(H − v)-function. Notice that the function g, defined by g(v) = 1 and g(u) = g′(u)
whenever u ∈ V(H) \ {v}, is an OIRDF on H. Hence, γoiR(H)− 1 ≤ ω(g)− 1 = ω(g′) = γoiR(H − v),
which completes the proof.
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Lemma 3. Let G and H be two graphs without isolated vertices. If G has order n and v ∈ V(H), then the following
statements hold.

(i) If g(v) = 0 for some γoiR(H)-function g, then γoiR(G ◦v H) ≤ α(G) + nγoiR(H).
(ii) If g(v) > 0 for some γoiR(H)-function g, then γoiR(G ◦v H) ≤ nγoiR(H).

(iii) If there exists a γoiR(H − v)-function g such that g(x) > 0 for every x ∈ N(v), then γoiR(G ◦v H) ≤
γoiR(G) + nγoiR(H − v).

Proof. From any γoiR(H)-function g such that g(v) = 0 and any α(G)-set, we can construct an OIRDF on
G ◦v H of weight α(G) + nγoiR(H). Thus, γoiR(G ◦v H) ≤ α(G) + nγoiR(H) and (i) follows.

Now, if there exists a γoiR(H)-function g such that g(v) > 0, then from g we can construct an OIRDF
on G ◦v H of weight nω(g). Thus, γoiR(G ◦v H) ≤ nω(g) = nγoiR(H), and (ii) follows.

Finally, if there exists a γoiR(H − v)-function g such that g(x) > 0 for every x ∈ N(v), then from
g and any γoiR(G)-function we can construct an OIRDF on G ◦v H of weight γoiR(G) + nγoiR(H − v),
which completes the proof.

Lemma 4. Let f (V0, V1, V2) be a γoiR(G ◦v H)-function. The following statements hold for any vertex x ∈ V(G).

(i) ω( fx) ≥ γoiR(H)− 1.
(ii) If ω( fx) = γoiR(H)− 1, then x ∈ V0 and N(x) ∩V(Hx) ⊆ V1.

Proof. Let x ∈ V(G). Observe that V0 ∩ V(Hx) is an independent set of Hx and also, every vertex in
V0 ∩ (V(Hx) \ {x}) has a neighbour in V2 ∩ V(Hx). So, it is easy to see that the function g, defined
by g(x) = max{1, f (x)} and g(u) = f (u) whenever u ∈ V(Hx) \ {x}, is an OIRDF on Hx. Hence,
γoiR(H)− 1 = γoiR(Hx)− 1 ≤ ω(g)− 1 ≤ ω( fx), which completes the proof of (i).

Now, we suppose that ω( fx) = γoiR(H)− 1. If x ∈ V1 ∪V2 or x ∈ V0 and N(x) ∩V(Hx) ∩V2 6= ∅,
then fx is an OIRDF on Hx, which is a contradiction. Hence, x ∈ V0 and as V0 ∩V(Hx) is an independent
set, we deduce that N(x) ∩V(Hx) ⊆ V1, which completes the proof.

From Lemma 4 (i) we deduce that any γoiR(G ◦v H)-function f induces three subsets A f , B f and C f
of V(G) as follows.

A f = {x ∈ V(G) : ω( fx) > γoiR(H)},
B f = {x ∈ V(G) : ω( fx) = γoiR(H)},
C f = {x ∈ V(G) : ω( fx) = γoiR(H)− 1}.

Next, we state the four possible values of γoiR(G ◦v H).

Theorem 8. Let G and H be two graphs with no isolated vertex and |V(G)| = n. If v ∈ V(H), then

γoiR(G ◦v H) ∈ {α(G) + nγoiR(H), nγoiR(H), γoiR(G) + n(γoiR(H)− 1), α(G) + n(γoiR(H)− 1)}.

Proof. Let f (V0, V1, V2) be a γoiR(G ◦v H)-function. By Lemma 3 (i) and (ii) we deduce the upper bound
γoiR(G ◦v H) ≤ α(G) + nγoiR(H). Now, we consider the subsets A f ,B f , C f ⊆ V(G) associated to f and
distinguish the following cases.

Case 1. C f = ∅. In this case, for any x ∈ V(G) we have that ω( fx) ≥ γoiR(H) and, as a consequence,
γoiR(G ◦v H) = ω( f ) ≥ nγoiR(H). If A f = ∅, then γoiR(G ◦v H) = nγoiR(H). Hence, assume that
A f 6= ∅. This implies that ω( f ) > nγoiR(H). Moreover, we note that B f 6= ∅ because α(G) < n and
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ω( f ) ≤ α(G) + nγoiR(H). Thus, by Lemma 3 (ii) we obtain that B f ⊆ V0, and as V0 is an independent set,
we have that A f is a vertex cover of G. Therefore,

γoiR(G ◦v H) = ∑
x∈A f

ω( fx) + ∑
x∈B f

ω( fx)

≥ ∑
x∈A f

(γoiR(H) + 1) + ∑
x∈B f

γoiR(H)

= |A f |+ ∑
x∈V(G)

γoiR(H)

≥ α(G) + nγoiR(H).

Hence, γoiR(G ◦v H) = α(G) + nγoiR(H).
Case 2. C f 6= ∅. Let z ∈ C f . By Lemma 4 (ii) we obtain that z ∈ V0 and N(z) ∩V(Hz) ⊆ V1. Hence,

f−z is an OIRDF on Hz − z, and so γoiR(H − v) = γoiR(Hz − z) ≤ ω( f−z ) = γoiR(H)− 1. Thus, Lemma 2
leads to γoiR(Hz − z) = γoiR(H) − 1. This implies that f−z is a γoiR(Hz − z)-function which satisfies
Lemma 3 (iii). Therefore, γoiR(G ◦v H) ≤ γoiR(G) + n(γoiR(H)− 1).

Now, observe the following inequality chain.

γoiR(G ◦v H) = ∑
x∈A f∪B f

ω( fx) + ∑
x∈C f

ω( fx) ≥ (2|A f |+ |B f |) + n(γoiR(H)− 1). (1)

By Lemma 4 (ii) we have that C f ⊆ V0, which implies that A f ∪ B f is a vertex cover of G. Thus,
Inequality chain (1) leads to γoiR(G ◦v H) = ω( f ) ≥ α(G) + n(γoiR(H) − 1). Next, we consider the
following two subcases.

Subcase 1. There exists a γoiR(H)-function g such that g(v) = 2. Let D be an α(G)-set. From D, g
and fz , we define a function h on G ◦v H as follows. For every x ∈ D, the restriction of h to V(Hx) is
induced from g. Moreover, if x ∈ V(G) \ D, then the restriction of h to V(Hx) is induced from fz. By the
construction of g and fz, it is straightforward to see that h is an OIRDF on G ◦v H. Thus,

γoiR(G ◦v H) ≤ ∑
x∈D

ω(hx) + ∑
x∈V(G)\D

ω(hx)

= ∑
x∈D

ω(g) + ∑
x∈V(G)\D

ω( fz)

= ∑
x∈D

γoiR(H) + ∑
x∈V(G)\D

(γoiR(H)− 1)

= |D|+ ∑
x∈V(G)

(γoiR(H)− 1)

= α(G) + n(γoiR(H)− 1).

Therefore, γoiR(G ◦v H) = α(G) + n(γoiR(H)− 1).
Subcase 2. g(v) ≤ 1 for every γoiR(H)-function g. This condition implies that V2 ∩ B f = ∅. Since

every vertex x ∈ C f has a neighbour in V2, and as Lemma 4 (ii) leads to N(x)∩V(Hx) ⊆ V1, then we deduce
that N(x)∩V2 ∩A f 6= ∅. Hence, and as C f ⊆ V0, the function f ′(V′0, V′1, V′2), defined by V′2 = A f , V′1 = B f
and V′0 = C f , is an OIRDF on G. So γoiR(G) ≤ ω( f ′) = 2|A f |+ |B f |. Therefore, Inequality chain (1) leads
to γoiR(G ◦v H) ≥ γoiR(G)+ n(γoiR(H)− 1), which implies that γoiR(G ◦v H) = γoiR(G)+ n(γoiR(H)− 1).

Therefore, the proof is complete.
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In order to see that the four possible values of γoiR(G ◦v H) described in Theorem 8 are realizable,
we consider the following example.

Example 1. Let G be a graph with no isolated vertex. If H is the graph shown in Figure 4, then the resulting values
of γoiR(G ◦x H) for some specific roots x ∈ V(H) are described below.

• γoiR(G ◦v H) = α(G) + nγoiR(H).
• γoiR(G ◦w H) = nγoiR(H).
• γoiR(G ◦v′ H) = γoiR(G) + n(γoiR(H)− 1).
• γoiR(G ◦w′ H) = α(G) + n(γoiR(H)− 1).

Now, we characterize the graphs with γoiR(G ◦v H) = α(G) + nγoiR(H).

v w w′

v′

Figure 4. The labels of (gray and black) coloured vertices describe the positive weights of a
γoiR(H)-function.

Theorem 9. Let G and H be two graphs with no isolated vertex, let |V(G)| = n and v ∈ V(H). The following
statements are equivalent.

(i) γoiR(G ◦v H) = α(G) + nγoiR(H).
(ii) g(v) = 0 for every γoiR(H)-function g.

Proof. We first assume that (i) holds, i.e., γoiR(G ◦v H) = α(G) + nγoiR(H). If there exists a
γoiR(H)-function g such that g(v) > 0, then by Lemma 3 (ii) it follows that γoiR(G ◦v H) ≤ nγoiR(H),
which is a contradiction. Therefore, (ii) holds.

On the other hand, we assume that (ii) holds, i.e., g(v) = 0 for every γoiR(H)-function g.
Let f (V0, V1, V2) be a γoiR(G ◦v H)-function. If C f 6= ∅, then by Lemma 4 (ii) we can obtain a
γoiR(H)-function g such that g(v) = 1, which is a contradiction. Hence, C f = ∅, and so, by Theorem 8 we
deduce that γoiR(G ◦v H) ∈ {α(G) + nγoiR(H), nγoiR(H)}. Now, suppose that γoiR(G ◦v H) = nγoiR(H).
Since C f = ∅, it follows that B f = V(G) and as V0 is an independent set, there exists x ∈ B f \ V0.
This implies that fx is a γoiR(Hx)-function such that fx(x) > 0, which is a contradiction. Therefore,
γoiR(G ◦v H) = α(G) + nγoiR(H), which completes the proof.

Next, we characterize the graphs with γoiR(G ◦v H) = α(G) + n(γoiR(H)− 1).

Theorem 10. Let G and H be two graphs with no isolated vertex, let |V(G)| = n and v ∈ V(H). The following
statements are equivalent.

(i) γoiR(G ◦v H) = α(G) + n(γoiR(H)− 1).
(ii) There exist two γoiR(H)-functions g1 and g2 such that g1(x) = 1 for every x ∈ N[v] and g2(v) = 2.

Proof. We first assume that (i) holds, i.e., γoiR(G ◦v H) = α(G) + n(γoiR(H) − 1). Let f (V0, V1, V2)

be a γoiR(G ◦v H)-function. As α(G) < n, it follows that C f 6= ∅, and so, by Lemma 4 (ii) we can
obtain a γoiR(H)-function g1 such that g1(x) = 1 for every x ∈ N[v]. Moreover, if g(v) ≤ 1 for every
γoiR(H)-function g, then, by proceeding analogously to Subcase 2 in the proof of Theorem 8 we deduce
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that γoiR(G ◦v H) ≥ γoiR(G) + n(γoiR(H)− 1), which is a contradiction as γoiR(G) > α(G). Therefore,
there exists a γoiR(H)-function g2 such that g2(v) = 2, and (ii) follows.

On the other hand, we assume that there exist two γoiR(H)-functions g1 and g2 such that g1(x) = 1
for every x ∈ N[v] and g2(v) = 2. Let D be an α(G)-set and let g′1 be a function on H such that g′1(v) = 0
and g′1(x) = g1(x) whenever x ∈ V(H) \ {v}. From D, g′1 and g2, we define a function h on G ◦v H as
follows. For every x ∈ D, the restriction of h to V(Hx) is induced from g2. Moreover, if x ∈ V(G) \ D,
then the restriction of h to V(Hx) is induced from g′1. Notice that h is an OIRDF on G ◦v H, and so
γoiR(G ◦v H) ≤ ω(h) = |D|γoiR(H) + |V(G) \ D|(γoiR(H) − 1) = α(G) + n(γoiR(H) − 1). Therefore,
Theorem 8 leads to γoiR(G ◦v H) = α(G) + n(γoiR(H)− 1), which completes the proof.

Next we proceed to characterize the graphs with γoiR(G ◦v H) = γoiR(G) + n(γoiR(H)− 1). Notice
that it is excluded the case γoiR(G) = n, since then γoiR(G ◦v H) = nγoiR(H).

Theorem 11. Let G be a graph of order n with no isolated vertex such that γoiR(G) < n and let H be a graph with
no isolated vertex and v ∈ V(H). The following statements are equivalent.

(i) γoiR(G ◦v H) = γoiR(G) + n(γoiR(H)− 1).
(ii) g(v) ≤ 1 for every γoiR(H)-function g and also, there exists a γoiR(H)-function g1 such that g1(x) = 1 for

every x ∈ N[v].

Proof. We first assume that (i) holds, i.e., γoiR(G ◦v H) = γoiR(G) + n(γoiR(H)− 1). Let f (V0, V1, V2) be a
γoiR(G ◦v H)-function. Since γoiR(G) < n, it follows that C f 6= ∅, and so, by Lemma 4 (ii) we can obtain a
γoiR(H)-function g1 such that g1(x) = 1 for every x ∈ N[v]. Moreover, if there exists a γoiR(H)-function g2

such that g2(v) = 2, then by Theorem 10 we deduce that γoiR(G ◦v H) = α(G) + n(γoiR(H)− 1), which is
a contradiction as γoiR(G) > α(G). Therefore, g(v) ≤ 1 for every γoiR(H)-function g, which implies that
(ii) follows.

On the other side, we assume that g(v) ≤ 1 for every γoiR(H)-function g and also, that there exists
a γoiR(H)-function g1 such that g1(x) = 1 for every x ∈ N[v]. Under these assumptions, observe that
the function g1 restricted to V(H) \ {v}, namely g′1, is an OIRDF on H − v. Hence, γoiR(H − v) ≤
ω(g′1) = ω(g1) − 1 = γoiR(H) − 1 and by Lemma 2 we deduce that γoiR(H − v) = γoiR(H) − 1.
Hence, g′1 is a γoiR(H − v)-function which satisfies Lemma 3 (iii). Therefore, Lemma 3 and Theorem
8 lead to γoiR(G ◦v H) ∈ {γoiR(G) + n(γoiR(H) − 1), α(G) + n(γoiR(H) − 1)}. Finally, as g(v) ≤ 1 for
every γoiR(H)-function g, by Theorem 10 we deduce that γoiR(G ◦v H) = γoiR(G) + n(γoiR(H) − 1),
which completes the proof.

From Theorem 8 we have that there are four possible expressions for γoiR(G ◦v H). Theorems 9–11
characterize three of these expressions. In the case of the expression γoiR(G ◦v H) = nγoiR(H),
the corresponding characterization can be derived by elimination from the previous results.
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