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Abstract: Rich streams of continuous data are available through Smart Sensors representing a unique
opportunity to develop and analyse risk models in healthcare and extract knowledge from data.
There is a niche for developing new algorithms, and visualisation and decision support tools to assist
health professionals in chronic disease management incorporating data generated through smart
sensors in a more precise and personalised manner. However, current understanding of risk models
relies on static snapshots of health variables or measures, rather than ongoing and dynamic feedback
loops of behaviour, considering changes and different states of patients and diseases. The rationale of
this work is to introduce a new method for discovering dynamic risk models for chronic diseases,
based on patients’ dynamic behaviour provided by health sensors, using Process Mining techniques.
Results show the viability of this method, three dynamic models have been discovered for the chronic
diseases hypertension, obesity, and diabetes, based on the dynamic behaviour of metabolic risk
factors associated. This information would support health professionals to translate a one-fits-all
current approach to treatments and care, to a personalised medicine strategy, that fits treatments built
on patients’ unique behaviour thanks to dynamic risk modelling taking advantage of the amount
data generated by smart sensors.

Keywords: process mining; interactive; dynamic models; chronic diseases; obesity; hypertension;
hyperglycemia; smart sensors

1. Introduction

The arrival of a new generation of mobile personal technologies, medicine sensors, and wearable
sensors, has skyrocketed the quantity of data available nowadays [1]. This fact in combination
with the massive introduction of Electronic Health Records (EHR) in medical systems has generated
an enormous amount of information, the testimony of the patient’s passage along with the healthcare
she/he receives. In this scenario, clinicians have not only the information collected within healthcare
settings but also data coming from multiple sources, such as personal and environmental data, thanks
to wearable, sensors, Internet of Things (IoT), mobile applications, or even social media.

These data could play an important role in the better management of chronic diseases also
known as Non-Communicable Diseases (NCDs), as the concept of management includes detecting,
screening, and treating. There are several definitions for NCDs, for example, the World Health
Organization (WHO) defines them as diseases of long duration and generally slow progression [2],
other authors [3], as having one or more of the following characteristics—they are permanent, leave
residual disability, are caused by non-reversible pathological alteration, require special training of the
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patient for rehabilitation, or may be expected to require a long period of supervision, observation or
care. Both definitions agreed in the fact of being of a long duration.

Chronic diseases, such as heart disease, stroke, cancer, chronic respiratory diseases and diabetes,
are by far the leading cause of mortality in Europe, representing 77% of the total disease burden and
86% of all deaths [2]. The financial costs associated with treating chronic diseases are extremely high,
and given that the average age of European populations is increasing, chronic diseases will continue
to place an important pressure on national budgets [4]. Similarly, chronic diseases are among the
most prevalent and costly health conditions in the United States. Nearly half (approximately 45%,
or 133 million) of all Americans suffer from at least one chronic disease, having a great impact on
health care costs [5]. Some of the chronic diseases with greater impact are coronary heart disease,
stroke, many varieties of cancer, depression, diabetes, asthma, chronic obstructive pulmonary disease,
or hypertension among others. Over 50 million people in Europe have more than one chronic
disease, due to either random co-occurrence, possible shared underlying risk profile, or synergies in
disease development [6]. Chronic conditions require ongoing management over a period of years
or decades, so individuals’ behaviour should be taken into consideration. They are the result of
a combination of genetic, physiological, environmental, and behavioural factors, that should be taken
into consideration during their management, analysis, and treatment. However, data collected in EHR
do not usually include such data, and consequently they could not be taken into account in order to
manage chronic conditions.

Metabolic risk factors contribute to four key metabolic changes that increase the risk of suffering
chronic diseases, these are raised blood pressure, overweight and obesity, hyperglycemia (high blood
sugar levels), and hyperlipidemia (high levels of fat in the blood). In terms of attributable deaths,
the leading metabolic risk factor globally is elevated blood pressure, to which 19% of global deaths are
attributes [7], followed by overweight and obesity, and raised blood glucose [2]. Under these data,
this study is focused on these three leading metabolic risk factors.

Hypertension, also known as high or raised blood pressure (BP), is a condition in which the
blood vessels have persistently raised pressure. Based on WHO information, hypertension is a serious
medical condition and can increase the risk of heart, brain, kidney, and other diseases. It is a major cause
of premature death worldwide, and an estimated 1.13 billion people worldwide have hypertension [8].
Blood pressure is based in two numbers, systolic blood pressure (SBP) representing the pressure in
blood vessels when the heart contracts or beats. And the diastolic blood pressure (DBP) representing
the pressure in the vessels when the heart rests between beats. Hypertension is diagnosed if, when it is
measured on two different days, the SBP readings on both days is 140 mmHg or more, and/or the
DBP readings on both days is 90 mmHg or more or taking antihypertensive medication [9].

Obesity is another of the well-known chronic conditions; the WHO defines overweight and
obesity as abnormal or excessive fat accumulation that may impair health. Body mass index (BMI) is a
simple index of weight-for-height that is commonly used to classify overweight and obesity in adults.
It is calculated by dividing a person’s weight in kilograms by the square of his/her height in meters
(kg/m2) [10]. WHO also establishes a normal BMI range as 18.5 to 24.9, while a BMI greater than or
equal to 25 kg/m2 and below 30 kg/m2 is considered to be overweight, and similarly, a BMI greater
than or equal to 30 kg/m2 is classified as obese.

Finally, raised blood glucose or hyperglycemia is directly related to diabetes. Diabetes is a chronic,
metabolic disease characterised by elevated levels of blood glucose, which leads over time to serious
damage to the heart, blood vessels, eyes, kidneys, and nerves. Hyperglycemia is a common effect
of uncontrolled diabetes and over time leads to serious damage to many of the body’s systems.
The expected values for normal fasting blood glucose or fasting plasma glucose (FPG) concentration
are between 70 mg/dL (3.9 mmol/L) and 100 mg/dL (5.6 mmol/L). When FPG is between 100 to
125 mg/dL (5.6 to 6.9 mmol/L) changes in lifestyle and monitoring glycemia are recommended. If FPG
is 126 mg/dL (7 mmol/L) or higher on two separate tests, diabetes is diagnosed [11]. The difficulty
with defining normality mirrors that of defining diagnostic cut-points for intermediate hyperglycemia
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that is, placing a specific cut-point on a continuous variable. Furthermore, other factors such as age,
gender, and ethnicity are relevant to defining normality. Since there are insufficient data to accurately
define normal glucose levels, the term ‘normoglycemia’ should be used for glucose levels associated
with low risk of developing diabetes or cardiovascular disease, which is levels below those used to
define intermediate hyperglycemia [12].

Measures for these three risk factors are capable of being collected with health sensors with
a specific purpose, blood pressure, blood sugar and weight, joint with information collected from
general purpose sensors, such as heart rate, sleep, activity, environmental data, coming from wearable,
or personal mobile devices. The analysis of this amount of data could be used for creating new models
for these three chronic conditions and deriving knowledge from data.

Since recently, the common fact of measuring physiological variables such as blood pressure
or glucose levels was traditionally done by exams in a specialised health centre. Thanks to the
development and introduction of a considerable set of sensors reading vital signs, such as blood
pressure cuff, glucometer, heart rate monitor, including electrocardiograms, this situation has radically
change, allowing patients to take their vital signs daily at home [13]. This has a double objective, on the
one hand, patients are aware of their vital signs and can better manage their conditions. On the other
hand, these data will significantly complement standard tests included in EHR.

For that, in recent years, much effort has been put in the design and development of smart sensors
and mobile personal devices, that among others aim to improve people’s quality of life providing
them with services and information about their health status and lifestyle. Also, with the explosion of
the IoT, many applications managing data coming from sensors have become a reality in users’ daily
life, allowing intelligent healthcare management, smart homes or intelligent environments. In the
field of IoT in healthcare, devices could be used for remote monitoring, or emergency systems [14].
These medical devices for health monitoring may range from specific functions such as blood glucose,
blood pressure, or heart rate, to more general ones for sleeping or activity monitoring. These specialised
sensors could be used for collecting health status and used by physicians for monitoring patient’s health.
This impact could be even great in the case of the management of chronic diseases. Thanks to sensors,
patients’ healthcare can become more accessible, not only through the collection of physiological
variables but also monitoring patient’s environment and lifestyle. At the end, all this information
will support physicians in the development and delivery of more personalised treatment. It is clear
that chronic diseases such as high blood pressure, diabetes, and obesity, which have a remarkable
impact on socioeconomic aspects, could take advantage of the use of use mobile technologies and
smart devices in the area of health.

Persons with chronic conditions are a large and growing segment of the population.
Although chronic conditions are often associated with the older age population, evidence shows
that 15 million of all deaths attributed to chronic diseases occur between the ages of 30 and 69 years [2].
This segment of the population has a long period for dealing with these diseases but they can also
suppose an allied in the disease management, adopting and using a range of sensors or mobile personal
devices. Despite sensors and related technologies already have some challenges, as precision, size,
power consumption, communication and privacy, they provide valuable information for disease
management, and ultimately for improving patients’ quality of life [13].

According to the above, this opens a new scene, where the challenge is not the lack of data,
but how to exploit this huge amount of data. Moreover, this supposes an exceptional opportunity for
creating new models and extracting knowledge from data. Consequently, an in-depth analysis of these
data is paramount to obtain the necessary knowledge that allows, not only to improve the quality of
the provided care but also better management of diseases and to move towards a patient-centred and
value-based healthcare model, within the personalised medicine paradigm. Personalised medicine
promises prediction, prevention, and treatment of illness that is targeted to individuals’ needs [15].
Furthermore, it is a demand within these new paradigms to analyse data in a dynamic and integrated
way, instead of linear [15]. Another opportunity in the area is the development of new algorithms to
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support clinicians, new visualisation tools that show processes and models in an understandable way
for health professionals and decision support tools, allowing more effective and precise management
of diseases and treatments [16].

The main aim of this paper is to declare a novel method for representing dynamic risk models that
characterise chronic diseases based on the evolution of the considered condition using Process Mining
(PM) techniques. This model is a human-understandable graphical representation that could support
healthcare stakeholders in comprehending their current awareness of the chronic disease processes,
as it takes into consideration the disease’s variability over time and patient nature. Formerly, this work
discusses the possibilities of the Interactive Process Mining paradigm for analysing data provided by
health sensors to obtain new dynamic models for chronic conditions that consider patient’s behaviour
over time, instead of static values, so we can infer real processes behind data for better management of
chronic conditions. These models are called Interactive Process Indicators within the Interactive Process
Mining paradigm, and their ultimate goal is the understanding, measurement, and optimisation of the
processes associated with chronic diseases. This will allow health professionals to navigate behind the
models and to discover the specificity of the processes associated with individuals.

This paper is not designed to be a comprehensive work of measures acquired through sensors
but describes an example of chronic diseases modelling for three concrete metabolic risk factors,
which variables could be easily obtained by sensors, but also included in a real EHR. The paper is
structured as follows—Section 2 describes related work and the background, Section 3 materials and
methods, Section 4 results and the last Section 5 describes conclusions and discussion, as well as
future work.

2. Related Work

A treatment procedure that takes into account the patient’s unique behaviour, far from the one size
fits all strategy, suits the personalised medicine paradigm. In this line, there is a necessity to detect what
attitudes are followed by subjects after the idea of precision and personalised medicine. Treatments
adequate to patients’ characteristics have a double impact, on one hand, they increase the effectiveness
of the care pathways. And on the other hand, these treatments enhance the patient’s experience
of care. In this scenario is important to find groups with similar characteristics and behaviours
regarding the same condition, this will support better care delivery and maximise the process value [17].
Genetic sequencing or risk models could not be the unique variables to be considered in a precision
medicine scenario [18], instead of this, health behaviour, mental health, social determinants, and patient
preferences, coming from a variety of sensors and applications, should be also considered to achieve a
full precision medicine-based care [19].

Notwithstanding, the way to approach knowledge extraction has been traditionally done by
gathering data from clinicians and literature, and then these data have been used to develop health risk
models in the preventive medicine concept. In this schema, risk models are statistical tools intended to
offer an individual probability for developing a future adverse outcome in a given period [20]. Risk models
are computed in a moment and have validity over time. Risk values, of an individual patient, play an
important role in the decision taken by health professionals, who decide treatments delivered to patient
depending on them.

The use of risk models introduces many benefits as they support and complement clinical
reasoning and decision-making in medicine. However, within this approach risk models commit on
static snapshots of variables, without considering any dynamic perspective. Traditionally, modelling,
assessment, and management of chronic diseases have been done from a static and time-invariant set of
concepts, definitions, and propositions, assuming a linear relationship between variables. But chronic
diseases tend to be of long duration and are the result of a combination of genetic, physiological,
environmental, and behavioural factors, that should be taken into consideration during management,
analysis, and treatment. Moreover, these models do not take into account multiple data sources,
as smart sensors or wearable, that could help in the better understanding of the diseases.
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Furthermore, the temporal perspective of the clinical information is crucial for a complete
awareness of a health process. Diseases are not static; they evolve towards different destinations,
especially when talking about chronic health problems. For example, in Reference [21], the results
suggested that optimal blood pressure management in children with chronic kidney disease (CKD)
slows progression to end-stage renal disease and that works focused only on baseline blood pressure
measurement may underestimate risk than using time-fixed blood pressure. In the same way,
the human being is not static, a person is changing throughout her/his biography in age, lifestyle,
socioeconomic status, or interconcurrent diseases.

The main benefits of using risk and prediction models in the healthcare domain are clear, however,
since they are currently implemented, do not respond well to unexpected changes in patient’s
conditions, as they suit standard conditions rather than unusual or unpredictable ones [22]. Individual
differences cause great variances in the execution of models. In consequence, models of diseases
should be dynamic, including disease variability and dependencies with other conditions, such as
comorbidities, social conditions, or age.

To illustrate this problem, we can use one of the three conditions considered in this work, obesity.
The excess weight derived from an obesity situation is a major risk factor to suffer other NCDs.
Based on literature research, some of the comorbidities associated with overweight and obesity are
cardiometabolic factors, including risk factors (hypertension, hyperlipidemia, and Type II Diabetes
Mellitus), cardiovascular diseases, asthma, and musculoskeletal disorders [23–25]. When a patient is
classified as Obese with a BMI greater than or equal to 30 kg/m2, the risk of comorbidities is considered
as severe [24]. However, this is not only a question of patient’s current state, it is indeed more important
to consider obesity onset, obesity evolution, weight fluctuations, duration of obesity (known as the
time since BMI was first known to be at least 30 kg/m2), or even parental BMI to see comorbidities
association and treatment [26,27]. Nevertheless, in real practise, if a patient decreases his/her weight,
and, after a re-computation, achieves a Normal BMI, automatically all these risks disappear from the
actual static care approach. In summary, the evolution of the risk model is not taken into account.
Changes in the individual risk values are usually connected to behaviours, attitudes, and beliefs of
patients. That means, people with the same disease and treated with the same treatment respond in
different ways. Knowing the patient as an individual is key to select the best treatment for him or
her [28].

Along this line, medicine sensors play a key role, as they provide measures of healthcare variables
and lifestyle monitoring for personalised medicine [29]. There are some works in the literature about
how sensors could help in the analysis and monitoring of chronic diseases, comprising the continuous
collection of one or more vital signs, the processing, and the analysis to obtain medical parameters
associated with the chronic disease under study. Studies go from state-of-the-art wearable sensors [29]
or telemedicine platforms [14,30], to specific sub-parts of the system. Other work [31] proposes a new
approach for translating IoT-based data into real-time clinical feedback. Most of the above works
propose great examples of the application of medicine sensors to concrete situation, however they do
not usually explore methods for analysing chronic diseases from a temporal and dynamic perspective
that enable health stakeholders to obtain and understand individual healthcare processes associated to
diseases, this is, an approach in which sensor data are transformed into new clinical evidence.

Moreover, there is an increased concern in discovering more precise stratification groups, that may
allow to enhance care delivery and to augment the process value based on each group conditions [17].
There is a requirement not only to include health behaviour but also mental health, social determinants,
and individual preferences to achieve a full precision medicine-based care [19]. Accordingly, there
is a burden to stratify individuals built on their behaviour rather than in their disease [32]. In this
regard, Process Mining technologies has been probed useful for creating individualised behaviour
models [33].

The standardisation of the care process in medicine has been approached through
Knowledge-Based Temporal Abstraction (KBTA or TA) [34]. Temporal Abstraction methods are



Sensors 2020, 20, 5330 6 of 25

thought to manage a switch from a qualitative time-stamped description of raw data to a qualitative
interval-based representation of time series, with the main goal of abstracting high-level concepts
from time-stamped data. In the literature, there are works approaching health processes with TA
in some areas, such as the costs’ evaluation associated with Diabetes Mellitus [35], the prognosis
of the risk for coronary heart disease [36], or for defining typical medial abstraction patterns [37].
These works tried to create an automatic summarising of patient’s current state based on patient’s
data through temporal abstraction, nevertheless, most of the clinical variables (such as weight, blood
pressure or blood glucose) have numerical values, and TA techniques are based on discrete labels,
excluding important information from the analysis. In Reference [38], the author implemented a
dual approach, Temporal Abstractions in combinations with Process Mining for blood pressure and
temperature. Whereas Reference [39] suggested the importance of taking into account the full set of
behaviours through real-time measurements to create models over time and, in consequence, infer
patterns, context, and states of patients, with the last objective of developing personalised interventions.
However, modelling methodologies rely on predictive strategies rather than the evolution of patient
measurements. After this analysis, there is a necessity to advance towards a temporal and dynamic
data-driven to succeed with the precision medicine paradigm [18].

Process Mining [40] solutions can offer a better understanding of a care process than other
techniques used in previous works. Process Mining techniques are based on syntactical data mining
framework thought to support experts in the understanding of complex processes, in a comprehensive,
objective and exploratory ways [40]. Health processes are structured multidisciplinary care protocols
and plans which detail essential steps in the care of patients within a specific clinical problem [22].
In this line, care pathways are complex processes including each stage of the management of a patient
with a specific condition over a given time period, and include progress and outcome details.
In that way, care pathways should be understood as a patient’s overall journey, instead of isolated
functions independently.

The use of Process Mining can help obtaining individual healthcare processes. Process Mining
provides algorithms, tools and methodologies to demonstrate what is actually happening within
a process [41]. One of the main reasons Process Mining is being introduced in healthcare, is because it
prioritises human understandably over accuracy. In consequence, Process Mining can be used to obtain
knowledge from health information and comprehend dynamic healthcare processes. One of the main
objectives of Process Mining is to infer knowledge from data, understanding data as recorded event
logs, where each event refers to a case, an activity, and a point of time, in order to discover, monitor
and improve real processes. All of this is done through three different ways: discovery, conformance
and extension [42]. The application of Process Mining technologies can be used to support health
professionals in the discovery of health processes and patients’ behaviours. Although the use of
Process Mining in healthcare is emergent, several works have shown the feasibility of applying Process
Mining in this domain [43]. Process Mining techniques have been used for administrative analysis in
health domains for specific illnesses [44], like gynaecological oncology [45], for the analysis of services
like Emergencies [46], or even for modelling the human behaviour [33]. In Reference [47], there is
a first attempt to characterise processes for the patient’s conduct with promising results. Similarly,
Reference [48] has approached the analysis of user behaviour using Process Discovery techniques to
derive activity models from sensor activation logs in a smart environment; or Reference [49], which
proposes obesity processes’ characterisation with PM techniques.

3. Materials And Methods

3.1. Data Source

Ideally, data would be generated from different and specific smart sensors, such as a WiFi scale
for weight (BMI), a blood pressure monitor, and/or a blood glucose device. However, the adoption of
these sensors is not widely extended across the population, and they are not connected to public health
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services or application we can use. In consequence, retrospective data from EHR was used as a proof
of concept, to demonstrate the validity of the approach proposed in this paper. Data coming from
sensors and EHR have many similarities as they provide the same result data, however they also have
some differences regarding data frequency and availability. Finally, this study was conducted using
data directly extracted from the database of a tertiary hospital in Spain, in a retrospective manner from
2012 to 2017, from 50,196 unique patients as described in Table 1.

Table 1. Data description.

Age Group Population Total %

15 498 1%
20 1838 3.66%
25 2075 4.13%
30 2752 5.48%
35 3919 7.81%
40 4209 8.39%
45 3821 7.61%
50 3692 7.36%
55 3499 6.97%
60 3509 6.99%
65 3879 7.73%
70 4345 8.66%
75 3699 7.37%
80 3381 6.74%
85 1967 3.92%
90 1193 2.38%
95 863 1.72%

100 521 1.04%
>100 536 1.07%

Concretely, the used database contained data from primary care service, emergency, outpatient,
and morbidity diagnosis service, as described in Table 2. All data were anonymised prior to
the extraction.

Table 2. Database description.

Table Description Unique Patients/
Observations Period

Patients Anonymize
General information about patients: age,

identifier, some diagnoses 50,196 -

Primary Care
Data collected in primary consultations:

variables and annotations 17,853/215,523 2017

Hospital Admissions Type of admission, ICD9 a, Diagnostics, DRG b, date 10,403/180,797 2012–2016

Emergency
Severity description, Admission service code,

destination service, date 34,054/180,797 2010–2017

Outpatient Provision type, date 6667/706,888 2012–2017
Morbidity Diagnoses ICD9 a code, diagnose date 48,080/1,048,575 2012–2017

Laboratory
Laboratory measures: Date, id, description,

result, units 50,196/18,182,239 2012–2017

a International Statistical Classification and Related Health Problems, b Diagnosis-Related Group.

3.2. Interactive Process Mining

Process Mining can provide a solution for Data Driven discovery of dynamic risk models.
Risk Values of individuals can be seen as events of the patient behavioural risk process. With these
events, we can create Process Mining Logs that can be used to discover the flow followed by a
risk model in the patient’s care process. With these views, health professionals can not only better
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understand behaviours and risk models, but also, they allow the extraction of evidence based on
the correlation of the risk dynamic behaviour and the adverse outcomes suffered by the patient.
So far, it is also important to highlight the importance of experts in the healthcare process, within this,
the Interactive Pattern Recognition (IPR) [50] is a formal framework, which introduces the health
expert in the learning process and allows him/her to correct the hypothesis model in each iteration
to prevent unsatisfactory errors and to assemble to a solution in an iterative way [51]. Within an
interactive paradigm, the professional could acquire knowledge and understanding about what is
actually happening during a period, instead of visualising isolated data of a single individual that do
not provide extra insight from the health process. This methodology can be used to apply precision
medicine in a more individualised way, supporting experts in the evolution of models in parallel to
the evolution of patients’ behaviour.

3.3. Methodology

The main objective of the work is to build three Interactive Process Indicators for the three
chronic conditions considered, using the three metabolic risk factors associated. For this, we have
used an interactive methodology based on the Interactive Process Mining paradigm [51], using the
solutions provided by PMApp tool. PMApp is a Process Mining toolkit that is based on the PALIA
Suite tool [46]. PMApp enables the creation of custom Interactive Process indicators specific to the
Medical Domain. The followed methodology is showed in Figure 1 and implements six main steps to
obtain the corresponding IPI.

Figure 1. Methodology flow.

The methodology starts with the data ingestion, where the Data Log is obtained with the
appropriate format to perform the Process Mining itself. In the second step, data are processed
to compute the needed variables to create the events and traces for the PM analysis. After applying
the filtering and processing step, the Log is ready for obtaining the Process Model behind the data
using the appropriate discovery algorithm. PMApp tool provides PALIA (Parallel Activity Log
Inference Algorithm) as discovery algorithm [52]. PALIA has been widely tested in real healthcare
scenarios. It has been applied to the analysis of follow up protocols of patients with diabetes [35,53];
to measure and discover the individualised behaviour of older adults at risk of dementia [33]; for the
characterisation of emergency flows, measuring organisational changes effects [46], for discovering
surgery department flow [52], malnutrition assessment [49] or obesity characterisation [54]. PMApp
also enables the creation of interactive dashboards that respond to the selection of arrows and nodes by
capturing GUI events and it also allows the user to create custom forms and algorithms for discovery,
filters, enhancement maps, and so forth [46]. On the other hand, to allow stratification based on the
behavioural aspects of risk models, it is necessary to detect patients with different risk behaviours.
Clustering algorithms are unsupervised data mining solutions that are able to group traces that have
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similar behaviour, maximising differences with the rest of groups. Process Mining in combination
with Trace Clustering techniques can be a solution for that problem [55] and the PMApp tool also
incorporates this possibility.

After the discovery, the next step is comprised of the computation of the metadata associated
with the model. PMApp supports metadata correlated to models in several ways, such as statistical
information associated to nodes and transitions, or the relationships between the topological structures
of the model and the log events. Until this point of the methodology, the focused was on the accessing,
collection, and processing data, but it remains one of the main steps, which is to present information
to health experts. In PMApp, it is possible to render maps that can enhance the discovered model
using colour gradients. With this feature, it is possible to render specific maps that highlight specific
situations that depend on a customised formulation and are represented by nodes. This technique
can be used to facilitate the health professionals’ understanding of the processes. Maps for common
aspects can be created, such as performance, duration of activities, the number of cases, the number
of events, and so forth. Moreover, specific maps that highlight specific situations customised for the
problem can also be conceived. This can be used to show more specific representations that provide
medical doctors with more personalised support to increase the usability, utility and reliability of the
technology. The result is an IPI, a graphical model of a disease taking into consideration the evolution
in a understandable way.

4. Results

As stated in Section 1, in this work we demonstrate the possibilities of using smart sensors
joint with Process Mining techniques for the better management of chronic conditions, specifically
some of the most prevalent non-communicable diseases, they are obesity, high blood pressure
(hypertension) and hyperglycemia (Diabetes). Using the Interactive Process Mining methodology,
dynamic models associated with these chronic diseases were obtained as Interactive Process Indicators
for the understanding, measurement, and optimisation of the processes associated with obesity,
hypertension, hyperglycemia, allowing health professionals to navigate behind the models and to
discover the specificity of the processes correlated with individuals.

As explained in Section 3, the methodology starts with the data ingestion. The hospital experts
provided the data in several Comma-Separated Values (CSV) files, concretely one CSV file per table
included in Table 2, where values were represented in a set of rows and columns. At this point, it was
performed the selection of the relevant data for the creation of the corresponding IPIs. Taking into
consideration the chronic diseases under study, obesity, hypertension and hyperglycemia, information
was extracted from Patients Anonymize, Primary Care and Laboratory, a description of which is included
in Tables 3–5 respectively.

Table 3. Patients Anonymize table description.

Column Name Data Type Example

ID_ANON Global unique identifier 000269d4-b40a-df4f-a1c0-56db3f989ad2
Age Group Integer—group of age by 5 years 40
Overweight Integer: 1/0, overweight diagnose 0

Obesity Integer: 1/0, obesity diagnose 1
Unspecified

Overweight or Obesity Integer: 1/0 1
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Table 4. Primary Care table description.

Column Name Data Type Example

ID_ANON Global unique identifier 000269d4-b40a-df4f-a1c0-56db3f989ad2
Measure Date String 20170830

Code Measurement String—type of observation BMI, Weight, Height, SBP, DBP,. . .
Numerical Result Float—result of the measurement 87.5

Text Result String—indicates void numerical result Yes/No
Age Group Integer—group of age by 5 years 45

Table 5. Laboratory table description.

Column Name Data Type Example

ID_ANON Global unique identifier 000269d4-b40a-df4f-a1c0-56db3f989ad2
Test Request Date String 20170830
Test Result Date String 20170830

Test Id Integer—test identifier 561
Test Description String—measure description Lipid index

Test Result Float—test result 22.2
Test Units String—code of the units mg/dL

Age Group Integer—group of age by 5 years 45

At this stage, data were processed to compute the variables that are needed to create the events
and trace data for the PM analysis. For this, two actions were carried out—format corrections and the
addition of new semantic values. Format corrections were applied to Measure Date, Test Request Date,
and Numerical Results. A semantic result provides a semantic vision that facilitates the understanding
of the chronic condition process semantically, this means to associated a semantic value to a numeric
one. These values are disease depending, so semantic results were added for the three conditions
under study. In the case of obesity, and following WHO recommendations [10], the BMI semantic
result was introduced as follows—Underweight for BMI numerical result less than 18.5; Normal for
BMI between 18.5–24.9; Overweight for BMI between 25.0–29.9; and Obese for BMI greater than 30.
For hypertension semantic results, there were considered the cut-off points specified by the American
Heart Association (AHA) [56]. So semantic results were Normal for SBP numerical result < 120 mmHg
and DBP numerical result < 80 mmHg; Elevated for SBP between 120–129 mmHg and DBP < 80 mmHg;
Hypertension stage 1 for SBP between 130–139 mmHg or DBP 80–89 mmHg; and Hypertension stage 2
for SBP ≥ 140 mmHg or DBP ≥ 90 mmHg. Finally, in the case of hyperglycemia, the measurement of
glucose in the blood remains the mainstay of testing for glucose tolerance status, this could be obtained
by laboratory measures and nowadays by portable devices. We followed the current WHO diagnostic
criteria for diabetes type 2 [12,57]. The Diabetes semantic results were Diabetes for FPG ≥ 126 mg/dL;
Intermediate Hyperglycemia for values of FPG between 100–125 mg/dL; and Normal for FPG less than
100 mg/dL.

Event data were composed of a Start corresponding to the field Measure Date; the completion
time or end adding a second to the start; the name of the node, the identification of the trace, and the
metadata correlated with the event. The name of the node was based on the semantic results as Named
events, defined by the clinicians according to the mapping of the process. The identification of the trace
corresponded with the ID_ANON. Whereas the trace data, considered as the set of metadata related to
the same case, included the Age Group. At this point, the Process Mining Log was created and ready
for the next stage, filtering, and processing the data to select the adequate Log for constructing the
appropriate IPI. From here, different filtering strategies were followed for each IPI, consequently the
rest of the process is particularised for each condition.

In the obesity case, five different filters were implemented and applied in a concrete order.
Void traces were deleted, there were selected patients with more than four observations during the
period, then traces were sequenced assuming ending of the current trace was the beginning of the next
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one, and finally a fuse filter was applied to merge equal traces. At this point, from the 17,853 initial
unique patients, there were obtained the flows for 2260 patients after implementing previous filters.

Ultimately, a clustering filter was used for stratifying the population with similar behaviour based
on the semantic value of BMI, extracting sub-logs from the main log. We have selected Topological
Distance as it maximises the similarity between two traces, concretely Weighted Topological Distance
(WTD) [33] augments similarity in the topology structures of the inferred workflow. This distance was
used with Quality Threshold Cluster (QTC) [58] as the Clustering algorithm. QTC algorithm requires
a quality threshold to decide the maximum distance among traces in the cluster. At this point, the best
results arose with a quality threshold of 0.12 for the clustering algorithm and 0.01 of similarity.

A similar strategy was applied in the case of Hypertension but implementing six different filters
in a specific order. Void traces were deleted, only patients with both, SBP and DBP, measures at the
same moment were selected, and with more than four measures during the period. Then, traces were
sequenced assuming the ending of the current trace was the beginning of the next one, and equal
traces were fused. After filtering, from the 17,853 initial unique patients, we have obtained the flows
for 3575 subjects. Likewise, trace clustering using WTD and QTC was used to obtain sub-populations
based on BP behaviour using the semantic results. In this experiment, the best results were achieved
for the quality threshold of 0.15 and 0.02 similarity.

Finally, for the hyperglycemia case, a similar approach was performed, implementing four
filters. Due to the elevated number of measures included in the Laboratory table, we have extracted
measures for FPG and glycated haemoglobin (HbA1c), discarding the rest of the data. Then, as in the
other models, we deleted traces with void results or measures, and only patients with three or more
observations during the period were used in the analysis. Last, traces were sequenced assuming ending
of the current trace was the beginning of the next one. From the initial 50,196 unique patients with
18,182,239 observations from the Laboratory table, there were discovered the flows for 25,992 patients
with 328,545 observations after the process of filtering and processing.

Following the methodology schema (Figure 1), after this point the Log was ready for obtaining the
Process Model behind the data, using the appropriate discovery algorithm. After applying PALIA we
obtained the Process Model ready to be processed in the next step. To create useful dynamic models of
chronic conditions is needed to compute the metadata related to the model, for example, two patients
could have the same BMI events, Overweight, but their timing and frequency could be completely
different. It is crucial to analyse these differences in the process of understanding the dynamic
characteristics of a model. For this reason, after applying the discovery algorithm, we have processed
the log obtained to compute the metadata associated with the model. PALIA supports metadata
correlated to models in several ways, concretely in this work we have used metadata computed to
nodes and edges with statistical information, so we can appreciate how the executions of the models
have been performed. This statistical information contains the execution number, the duration average,
the duration median, the duration aggregation, the case number, and the duration by case.

Until this point of the experimentation’s approach, we had been accessing, collecting,
and processing data, but it remains one of the most important steps, which is to present this information
to the health expert in the form of the three Interactive Process Indicators for obesity, hypertension,
and hyperglycemia.

4.1. Dynamic Characterisation of Obesity

As said, the result from the previous experimentation in the case of BMI represents the model for
the Dynamic Characterisation of Obesity behaviour of the population considered. The model characterises
the population into nine sub-population groups, showing different weight behaviours, these groups
are listed in the Table 6.
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Table 6. Dynamic obesity sub-population groups.

Group Name Population Total

Cluster 0 742 32.8%
Cluster 1 683 30.2%
Cluster 2 269 11.9%
Cluster 3 204 9.1%
Cluster 4 105 4.6%
Cluster 5 57 2.5%
Cluster 6 53 2.3%
Cluster 7 47 2.1%
Cluster 8 40 1.8%
Outliers 60 2.7%

These nine groups, plus the outliers, are included in the figures gathered in Figure 3, from the
most prevalent dynamic behaviour represented by the obese population (cluster 0) to the less prevalent
observed by the normal BMI population (cluster 8). Models have been enhanced by a heat map, where,
the nodes, have been coloured with a gradient that means the median time of stay, and edges have been
painted with a gradient symbolising the number of patients, that, proportionally follow this transition,
where gradient scale goes from green (minimum value) to red (maximum value), as represented in
Figure 2.

Figure 2. Gradient scale key for model representation from green to red.

The nine models for obesity characterise the considered population into well-defined categories
regarding their weight behaviour, based not only on BMI status but also and more important on
individuals’ evolution and behaviour. These behaviours include common patterns of population with
stable BMI, whatever it is, this is the case of clusters 0 (Figure 3a), cluster 1 (Figure 3b) and cluster 8
(Figure 3i). The model also shows a population with increasing BMI patterns, where a clear weight gain
is shown in the behaviour, this is the case of cluster 2 (Figure 3c) and cluster 3 (Figure 3d). In the same
way, decreasing BMI patterns are also represented in the model, concretely in cluster 4 (Figure 3e) and
cluster 6 (Figure 3g). Finally, two more sub-populations have been discovered, representing unusual
BMI patterns. This is the case for cluster 5 (Figure 3f), which includes obese population moving from
the underweight state and going back to the initial situation, in a very short period (less than three
months). After analysing this concrete group with health professionals, they indicated measurement
errors as the most plausible explanation for this behaviour. Similarly, cluster 7 (Figure 3h) includes
some unusual weight changes, moving from an overweight situation to an underweight state that
could be explained by special situations such as surgeries or pregnancy.
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(a) Dynamic obesity, cluster 0 (b) Dynamic obesity, cluster 1

(c) Dynamic obesity, cluster 2 (d) Dynamic obesity, cluster 3

(e) Dynamic obesity, cluster 4

(f) Dynamic obesity, cluster 5

(g) Dynamic obesity, cluster 6

(h) Dynamic obesity, cluster 7

(i) Dynamic obesity, cluster 8

(j) Dynamic obesity, outliers

Figure 3. Dynamic characterisation of Obesity.

4.2. Dynamic Characterisation of Hypertension

The IPI obtained representing the model of Dynamic Characterisation of Hypertension was obtained
after applying the explained Interactive Process Mining methodology. The model describes the
population regarding their dynamic blood pressure behaviour. On this occasion, there were 13 groups
obtained with different blood pressure flows that are included in the Table 7.
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Table 7. Dynamic Hypertension sub-population groups.

Group Name Population Total

Cluster 0 810 22.7%
Cluster 1 335 9.4%
Cluster 2 310 8.7%
Cluster 3 290 8.1%
Cluster 4 275 7.7%
Cluster 5 185 5.2%
Cluster 6 159 4.4%
Cluster 7 154 4.3%
Cluster 8 118 3.3%
Cluster 9 110 3.1%
Cluster 10 108 3.0%
Cluster 11 94 2.6%
Cluster 12 82 2.3%
Outliers 545 15.2%

These groups are included in Figure 4, from most prevalent to less prevalent, respectively. Models
were also coloured with a gradient for nodes by the median time of stay, and edges have been
painted with a gradient symbolising the number of patients, that, proportionally follow this transition,
where gradient scale goes from green (minimum value) to red (maximum value), using again the
gradient scale represented in Figure 2.

These results have characterised the population under study into 13 well-defined groups regarding
their dynamic evolution of the BP. These groups show intrinsic variability of blood pressure, as blood
pressure is a continuous variable that fluctuates in response to various physical and mental changes.
Considering the BP as a dynamic process, this variability is included within the different models.
Some dynamic patterns are found within the model. This is the case of the population with dynamic
increasing patterns for BP, these patterns are represented in cluster 2 (Figure 4c) with patients moving
from elevated and hypertension 1 to hypertension stage 2; and cluster 11 (Figure 4l) showing a similar
behaviour, moving from normal BP to elevated BP or hypertension stage 2. Similarly, decreasing
patterns are also discovered and represented in cluster 12 where most of the patients finalised the period
with normal BP although they came from other stages with elevated BP (Figure 4m); cluster 6 shows
decreasing pattern from hypertension stage 2 to elevated BP (Figure 4g); and cluster 10 (Figure 4k).
Stable BP patterns are also identified for normal BP (Figure 4b), hypertension stage 1 (Figure 4f),
and hypertension stage 2 (Figure 4i). Finally, irregular patterns include patients with constant changes
in their BP values, showing they have not controlled their BP. These groups are: cluster 0 with patients
changing between hypertension stage 1 and 2 (Figure 4a); cluster 3 shows patients finalising with
normal BP but with long episodes of hypertension illustrating how important is consider the whole
process (Figure 4d). Cluster 4 (Figure 4e), cluster 7 (Figure 4h) and cluster 9 (Figure 4j), all are clear
examples of patients with decompensated BP with several episodes of hypertension.
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(a) Dynamic BP, cluster 0
(b) Dynamic BP, cluster 1

(c) Dynamic BP, cluster 2 (d) Dynamic BP, cluster 3

(e) Dynamic BP, cluster 4

(f) Dynamic BP, cluster 5

(g) Dynamic BP, cluster 6
(h) Dynamic BP, cluster 7

(i) Dynamic BP, cluster 8

(j) Dynamic BP, cluster 9

(k) Dynamic BP, cluster 10 (l) Dynamic BP, cluster 11

(m) Dynamic BP, cluster 12 (n) Dynamic BP, outliers

Figure 4. Dynamic characterisation of hypertension.
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4.3. Dynamic Characterisation of Hyperglycemia

The third obtained IPI corresponds with the model of Dynamic Characterisation of Hyperglycemia.
The purpose of this IPI is to characterise the diabetes type II behaviour of the studied population
trough the FPG flow, thanks to the Interactive Process Mining methodology. The results are presented
in Figure 5 in which, as previous IPIs, nodes are coloured by the average time spent in the stage,
and edges have been painted with a gradient symbolising the number of patients, that, proportionally
follow this transition, from green (minimum value) to red (maximum value), another time using the
gradient scale represented in Figure 2 for nodes and transitions, respectively.

Figure 5. Dynamic fasting plasma glucose.

When considering all the population, the Normal stage for FPG is the most prevalent on average,
but population also spent a considerable time in Intermediate Hyperglycemia and Diabetes stages. It is not
only important the time spent in each stage but also the transitions among stages, as this can suppose
the difference between a well-controlled glucose status or not. The reddest transitions correspond
with the number of patients, that proportionally follow this path, and in this case Normal to Diabetes
is the most followed one. However, as explained in Section 1, some factors such as age, gender,
and ethnicity, are relevant for stating normal glucose level. Age is available in the database used,
so it was feasible to analyse how it affects FPG flows and to find more relevant views for health
experts. For that, we divided population in three main groups of age, Young from 20–30, Adults from
30–65, and Elderly from 65–100. FPG behaviour for young, adults and older adults are included in
Figures 6–8 respectively.

Figure 6. Dynamic fasting plasma glucose (FPG) for elderly (65–100).
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Figure 7. Dynamic FPG for adults (30–65).

Figure 8. Dynamic FPG for young aduls (20–30).

With decreasing age, we can observe how time spent in Normal stage increases, with the
corresponding decrease in the time consumed in the Intermediate Hyperglycemia and Diabetes stages.
We can also notice the most prevalent path is the one in which the population finalises in the Diabetes
stage. A more in-depth analysis can be done using enhancement possibilities. The IPI can be
enriched with a map highlighting the differences between the process nodes and edges and their
degree. Figures 9–11 include the IPI with enhancement showing negative differences in red colour,
where the saturation of the colour reflects the degree of differences in negative (reddest) or positive
respectively, in this case using the gradient scale showed in Figure 12 from white to red, both for nodes
and transitions.

Differences envisaged with the observation of the three age cohorts are shown within this enrich
IPI. The comparison of the three groups with the total population shows a negative difference
in Intermediate Hyperglycemia and Diabetes nodes, the degree of the difference is greater when
age decreases. In addition, a negative difference is observed in transitions between Intermediate
Hyperglycemia and Diabetes nodes, but also between Normal and Intermediate Hyperglycemia,
this difference increases in the young population (Figure 11).
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Figure 9. Difference enhancement model: All-Elderly.

Figure 10. Difference enhancement model: Adult-Elderly.

Figure 11. Difference enhancement model: Young-Elderly.

Figure 12. Gradient scale key for model representation from white to red.

The comparison of groups can also help health professionals to discover their differences and
this can allow them to understand group characteristics. In medicine, a classic trust measure to
evaluate and measure medical processes is to show differences among them, that is known as statistical
significance. Most of the literature focuses on the p-Value for measuring the statistical significance [59].
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PMApp implements the statistical significance using p-Value comparing nodes that refer to the same
activity. Then for each execution associated with each activity is got the set of times and applied
the Kolmogorov-Smirnov Test in order to evaluate the normality of the distribution of the time
values. At this moment, if the two distributions reach the normality test, then it is used a T-student
Test for the p-Value computation. If not, it is assumed the distributions are not normal and the
Mann-Whitney-Wilcoxon Test is performed. If both situations, for a p-Value lower than a given
threshold, it is concluded that the distributions are significantly different. Following the literature,
the threshold was set to 0.05 [46].

This technique can be used to highlight the differences with statistical significance between the
two models referring to two cohorts. This approach can not only discover when a process is different
but also in which parts of the models the differences lie [46]. Figures 13 and 14 show where processes
for adult and young populations differ with respect to the elderly process. Nodes highlighted in
yellow mean that there is a statistically significant difference between the Adult and Elderly cohorts,
and the Young adults and Elderly cohorts respectively. For example in Figure 13, it can be observed
that elderly population spend significantly more time in the Diabetes stage, whereas they spend less
time in the Normal stage. Comparing young population with respect to the elderly one, Figure 14,
these differences are even more significant statistically speaking, as the young population substantially
consume less time in the Diabetes and Intermediate Hyperglycemia stages, and more time in the Normal
state. With these results, we can confirm how age is affecting the FPG flow in the average time spent in
each state of their processes.

Figure 13. Differences between Adult-Elderly cohorts.

Figure 14. Differences between Young-Elderly cohorts.
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5. Discussion and Conclusions

With retrospective data from a tertiary hospital (include in Table 2), we have demonstrated how
the Interactive Process Mining methodology could be applied as a new analytical method for the
better handling of chronic conditions using data coming from patients over a period. This has been
approached with the analysis of three common and prevalent chronic diseases—obesity, hypertension,
and hyperglycemia. As a proof of concept of the overall strategy, and due to the impossibility of
integrating data coming from sensors of a considerable sector of the population, we have used real
data from a Health Electronic Record of a tertiary hospital.

In this concrete scenario, we have obtained three valuable and innovative Interactive Process
Indicators that could be used for understanding, measuring, and managing the processes for the
three underlying conditions. These three IPIs have the potentiality of presenting findings over
data as comprehensible insight views, with the ultimate goal of health experts could discover new
medical evidence.

Although in this study we have worked with data collected from an EHR, this can be self-adapted
and automated to a population using personal devices collecting the same parameters or even more.
This strategy, in combination with smart sensors and personal devices, could allow health professionals
to analyse individual behaviours and to compare current behaviour with part of the inferred workflows
or with other cohorts, and to measure changes in treatments and adherence.

Considering the three studied chronic conditions, the Interactive Process Mining methodology has
permitted to characterise the population in a dynamic and personalised way for the three conditions.
In the first case, the IPI Dynamic Characterisation of Obesity has discovered nine sub-populations with
well-defined BMI patterns. Three evolution patterns were discovered in the models, one pattern for
patients with a stable weight, but two other groups that change their weight, with increasing and
decreasing patterns. This finding is very relevant, as we have been able to stratify the population
based on their weight evolution, we were even capable to detect measure errors, and this will permit
to treat them in consequence. If we consider two patients with the same BMI, but from two different
risk models, the first one from the stable overweight pattern (Figure 3b) and the second one from
a decreasing pattern, for example within cluster 4 (Figure 3e); they have the same BMI at the end of the
period, overweight, but their behaviours are clearly different. In a classic and static approach, the only
insight is the BMI result or ’number’, however, the IPI view lets us considering other dimensions of
the problem. For example, the first patient has not made any improvement in her/his health status at
any moment, therefore the patient is probably not well-engaged with diet counselling or not properly
motivated. On the other hand, the second patient is losing weight, she or he is doing things well and
treatment is working. In consequence, disease management should not be the same for these two
patients, and personalised interventions should be delivered in order to succeed with weight loss.
In the first case, health professionals could influence general health behavioural changes, whereas in
the second case they could continue motivating the patient to maximise correct attitudes. This IPI
has allowed the classification of the population regarding dynamic weight behaviour and has shown
insights in an understandable way. With this information, health professionals could put in practice
concrete and personalised interventions in specific groups trying to influence in particular behaviours.
This result characterises a sample population with weight data from one year (see Table 2), in this case,
the weight parameter comes from a hospital’s EHR, but the results could be analogue with data from
a smart sensor at patients’ home or wearable. The strategy could not only be the same but also with
more information from personal devices, a more complete and accurate model would be obtained.

In the case of hypertension, the IPI Dynamic Characterisation of Hypertension shows 13 different
patterns with the continuum of BP and its evolution. Analysing this IPI, health professionals could
compare the evolution of the BP in different groups, personalise interventions, and test their efficacy
and effectiveness over time. As in the previous case, data come from real patient of a tertiary hospital
during a year, however, the use of smart sensors could arise better results. The use of BP monitors at
home by patients to collect BP measures, in combination with Interactive Process Mining methodology
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for their analysis, could provide a great opportunity not only to discover a more precise models but
also to examine BP variability and relationship with other factors, such as the moment of the day
when BP is measured, or the period of the year. Moreover, the combined analysis of BP with other
parameters collected by personal devices, such as mood, activity, and so forth could open a new
dimension to understand BP processes, its relationships with other conditions, and in consequence
better management and interventions.

Finally, hyperglycemia has been modelled by the IPI Dynamic Characterisation of Hyperglycemia
using FPG to evaluate the continuum and evolution of blood sugar management. In this case, we have
used a larger sample, with data from more than seven years (see Table 2), with the possibility to
establish differences among the population. At first sight, the model reveals that the time spent
in diabetes and intermediate hyperglycemia stages is, on average, considerably high for the group
considered. As the model takes into account the behaviour over time, instead of a concrete situation
or the transition between two concrete values, it is possible to see the patient’s evolution. The model
could show an issue of under-diagnosis and consequently under treatment, or a problem with the
treatments and their follow-up, as the model insights a population that is not well-controlled regarding
diabetes. Further analysis with health professionals is needed to determine what is the cause and
properly react. In any case, if health professional have this information, they could take the appropriate
decisions. Only when health professionals can analyse information behind data, reasonably, they will
be able to treat patients accordingly. This result could be easily adopted in an scenario in which patient
use a personal glucose monitor. The use of a smart sensor for blood glucose monitoring will enrich
the database, and consequently the IPI discovered, not only with more measures of the considered
factor but also with other personal and environmental information, valuable to obtain more precise
and personalised models.

Moreover, the comparison of cohorts could also help health professionals to discover their
differences and to appreciate their characteristics, where techniques such as enhancement help to
discover when a process is different and in which parts of the models the differences lie. With maps
that highlight the differences between the process nodes and edges and their degree, the expert could
understand the process in a better way. With the selection of the the age variable to see differences in
FPG flows, we have obtained an enriched IPI for Hyperglycemia, where cohorts for three different
groups of age show a clear difference in the FPG flows. The average time spent in normal stage,
that is associated with low risk of developing diabetes or cardiovascular disease, decreases with age,
and in consequence, increases the risk of associated problems. Furthermore, it is not only an observed
difference, this is statistically significant as the enrich IPI shows in Figures 13 and 14. The process
of building IPIs associated to glucose levels using new glucose sensors would move the field of this
chronic disease to a new level of understanding, modelling diabetes in a dynamic and personalised
manner, including factors as age, gender, ethnicity, socioeconomic factors or lifestyle in the process,
to understand what is happening behind a glucose test result. This would let personalised medicine
certainly implement adaptive and personalised treatments.

These IPIs suppose a step forward in the personalised medicine concept, incorporating evolution
over time and patient’s unique behaviour to the analysis. Discovered IPIs for the three chronic
conditions consider the variability over time of the risk factors associated, and diseases as a process,
where the current state is as important as the previous ones, the evolution, and the time spent in
each state. These models also consider stratification groups for common patterns, and the association
with other factors, such as age, comorbidities, gender, and so forth and can incorporate data from
different sources. These results, compared with other approaches that treat chronic conditions under
a static and time-invariant set of concepts inferring linear relationships among variables, suppose
a new opportunity to analyse data from other perspective. Although some techniques, such as
Temporal Abstractions, have considered a knowledge-driven means, it is needed to implement
a data-driven resolution so patients’ behaviour could be obtained from current data as a dynamic and
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temporal flow. This novel context includes the dynamic variability of the chronic conditions and the
patients’ behaviour.

The results presented in this work, supposes for the authors the point of departure for a new
promising model that enables extracting knowledge from data in the field of chronic diseases. Future
work in this line should comprise the involvement of clinicians not only to validate the clinical
utility of these results, but also to measure the validity in concrete patients. Working with the three
studied chronic diseases, new measures could be added in order to enrich the models working in
close collaboration with clinicians. On the other hand, authors envisage the development of dynamic
models focused on other diseases or pathology, where the time and evolution perspective could
suppose an added value. In this line new research could be done in the area of cancer treatment and
post-treatment period, where the application of PM techniques to sensor data could be applied to
individual patient ill-health trajectory modelling, visual exploration of interacting cancer symptoms
and comorbidities signs, patient stratification, or quality of clinical cancer care service, combining
clinical events from EHR and patients‘ response to treatment through sensors.

In this work, we have implemented an Interactive Process Mining strategy in order to build
Interactive Process Indicators for obesity, hypertension and hyperglycemia diseases. This strategy let
us go a step ahead in the area of data analytic, using data coming from population sensors we are able
to create innovative models for chronic diseases, inferring real processes behind data. These IPIs take
into account patient behaviour over time showing the variability of diseases and patients. Authors
envisage the great impact this approach might suppose on health professionals practice, opening
a new pathway to achieve personalised medicine. Next steps should be, on the one hand, engaging
health professionals in the deep analysis of these results, only working in close collaboration with
them would allow the improvement of current risk models and the infer of new ones. And on the
other hand, to validate the hypothesis with data coming from sensors for weight, blood glucose and
blood pressure, as main as establish other personal and environmental parameters to improve and
enrich the IPIs.
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Abbreviations

The following abbreviations are used in this manuscript:

BMI Body Mass Index
BP Blood Pressure
DBP Diastolic Blood Pressure
EHR Health Electronic Record
FPG Fasting Plasma Glucose
IoT Internet of Things
IPI Interactive Process Indicator
NCDs Non Communicable Diseases
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PALIA Parallel Activity Log Inference Algorithm
SBP Systolic Blood Pressure
TA Temporal abstractions
WHO World Health Organization
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