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(2021) Correction: A cross population between D.

kaki and D. virginiana shows high variability for

saline tolerance and improved salt stress tolerance.

PLoS ONE 16(4): e0250193. https://doi.org/

10.1371/journal.pone.0250193

Published: April 9, 2021

Copyright: © 2021 Gil-Muñoz et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

https://doi.org/10.1371/journal.pone.0229023
https://doi.org/10.1371/journal.pone.0229023
http://www.ncbi.nlm.nih.gov/pubmed/32097425
https://doi.org/10.1371/journal.pone.0250193
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250193&domain=pdf&date_stamp=2021-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250193&domain=pdf&date_stamp=2021-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250193&domain=pdf&date_stamp=2021-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250193&domain=pdf&date_stamp=2021-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250193&domain=pdf&date_stamp=2021-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250193&domain=pdf&date_stamp=2021-04-09
https://doi.org/10.1371/journal.pone.0250193
https://doi.org/10.1371/journal.pone.0250193
http://creativecommons.org/licenses/by/4.0/


RESEARCH ARTICLE

A cross population between D. kaki and

D. virginiana shows high variability for saline

tolerance and improved salt stress tolerance
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Abstract

Persimmon (Diospyros kaki Thunb.) production is facing important problems related to cli-

mate change in the Mediterranean areas. One of them is soil salinization caused by the

decrease and change of the rainfall distribution. In this context, there is a need to develop

cultivars adapted to the increasingly challenging soil conditions. In this study, a backcross

between (D. kaki x D. virginiana) x D. kaki was conducted, to unravel the mechanism

involved in salinity tolerance of persimmon. The backcross involved the two species most

used as rootstock for persimmon production. Both species are clearly distinct in their level of

tolerance to salinity. Variables related to growth, leaf gas exchange, leaf water relations and

content of nutrients were significantly affected by saline stress in the backcross population.

Water flow regulation appears as a mechanism of salt tolerance in persimmon via differ-

ences in water potential and transpiration rate, which reduces ion entrance in the plant.

Genetic expression of eight putative orthologous genes involved in different mechanisms

leading to salt tolerance was analyzed. Differences in expression levels among populations

under saline or control treatment were found. The ‘High affinity potassium transporter’

(HKT1-like) reduced its expression levels in the roots in all studied populations. Results

obtained allowed selection of tolerant rootstocks genotypes and describe the hypothesis

about the mechanisms involved in salt tolerance in persimmon that will be useful for breed-

ing salinity tolerant rootstocks.

Introduction

Persimmon (Diospyros kaki Thunb.) has become one of the most dynamic tree crops in the

world. According to the data available (www.fao.org/faostat), global cultivated surface has

increased 43% in the last 10 years (2006–2016) and world production increased 59%, which

demonstrates an important improvement in crop yield. This trend has been highly relevant in

some countries. For instance, in the Mediterranean basin, the cultivated surface has been
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increased by four times and production by near five [1]. Despite the recent and fast increase in

persimmon production in the Mediterranean, the persimmon industry is facing important

problems related to climate change. One of them is the soil salinization caused by the decrease

and change of the rainfall distribution, which is causing an increase of salts in the irrigation

water [2]. In order to keep the production in these areas, availability of rootstocks tolerant to

salinity is required [3].

The most commonly used rootstocks for persimmon production in these areas are seedlings

from Diospyros lotus species, because of its tolerance to lime-filled soils and its adaptability to

the Mediterranean conditions. Furthermore, D. lotus has a root system that does not produce

basal shoots [4], facilitating the management of the orchards. However, this species is highly

sensitive to salinity [5,6]. Other species used as rootstocks in some countries is Diospyros vir-
giniana. This species is tolerant to salinity and performs well on lime-filled soils, but confers

too much vigor to the plant, and produces many basal shoots, thus hindering crop manage-

ment [7,8]. The most used rootstock around the world are seedlings from D. kaki, which is not

tolerant to salinity [9]. Additionally, D. kaki is highly sensitive to lime-filled soils and produces

tap-roots with few lateral roots, which are rather fine and broke easily, all together makes diffi-

cult the plant management in the nurseries. Consequently, seeds from D. kaki are not com-

monly used in the Mediterranean Basin countries. On the other hand, D.kaki exhibits

compatibility with all cultivars, whereas graft-compatibility in D. virginiana needs to be

checked for each variety [4]. There is no data reported about Na+ toxicity in D. kaki, which can

be accounted by an absence of high Na+ accumulation in the soils where they are cultivated or

because the tolerance of tree plants to Na+. On the other hand, Cl- accumulation has been

reported problematic in persimmon for production and postharvest management [6,10]

In order to confer salinity tolerance rootstocks should be able to overcome the two compo-

nents of salinity stress: the osmotic effects and ion-toxicity. Osmotic effects are caused by the

total concentration of salt around the roots, which restricts water assimilation by roots and

results in reduced plant growth. The osmotic stress immediately causes a response in the sto-

matal aperture of the plant mediated by abscisic acid, ABA [11]. On the other hand, ionic

effects are caused by the accumulation of toxic concentrations of Na+ and Cl- ions in plant tis-

sues, causing premature organ senescence and tissue necrosis. To overcome these effects,

plants use complex mechanisms including changes in morphology, water relations, photosyn-

thesis, respiration and toxic ion distribution, among others [12]. Some studies related salinity

stress with an increase of stored carbohydrate [13], causing a reduction in sink demand that

may downregulate photosynthesis. Yet, it remains unclear if the reduction of growth rate

causes a reduction of photosynthesis or vice versa [12]. The decrease of photosynthesis rate

comes with an increase of reactive oxygen species (ROS) production. At reduced photosynthe-

sis activity, photoinhibition might occur due to the light excess. Under this scenario, plants

have two mechanisms to prevent oxidative damage of the photosystems: heat dissipation by

pigments and electron transfer to oxygen acceptors. Genetic differences in salinity tolerance

are probably not associated with differences in the ability of detoxifying ROS. Instead, they

could be related to differences in stomatal closure or CO2 fixation, as these mechanisms are

essential for plant survival under natural variable situations [12].

Other studies have reported the possible induction of K+ deficiency by Na+, together with

Na+ and Cl- causing tissue necrosis [3]. These effects are visible in older leaves [14,15], leaf

margins [16], and epidermis [17–20] probably as result of an evolved mechanism for protect-

ing photosynthetically active cells [21]. Neverthless, Na+ and Cl- accumulation lead to ion

imbalances in the cytosol that cause several toxicities, even leading to the loss of photosyntheti-

cal pigments [22]. While the physiological effects of salinity are well characterized, the mecha-

nism to explain how toxicity affects the cells remains unknown [12].

Salinity tolerance responses among persimmon species for rootstock breeding
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A reduction in root hydraulic conductance can be observed in roots grown with salt pres-

ence [23,24]. This effect might be related to aquaporin activity. They are membrane intrinsic

proteins involved in transport of water and small neutral solutes through the cells [25].

According to its amino acid sequences and subcellular localizations, plant aquaporins are clas-

sified into four subfamilies: plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic

proteins (TIPs), NOD26-like intrinsic proteins (NIPs) and small basic intrinsic proteins (SIPs)

[26]. In fact, it has been observed that reduction of the hydraulic conductance can be linked to

a lowered plasma-membrane intrinsic protein (PIP) aquaporin activity [27]. Also, reduction in

PIP aquaporin gene expression has been observed under salinity stress [27–29]. Interestingly,

in citrus rootstocks, PIP expression has been reported to be higher in tolerant genotypes com-

pared to sensitive ones [30]. However, experiments on yeast and Xenopus oocytes have shown

a strong Na+ conductance of AtPIP2;1 from Arabidopsis thaliana, suggesting that orthologues

of PIP2;1 may act as a gate for Na+ influx into the plant [31].

Prevention of the toxicity effect might be related to a mechanism of exclusion of toxic ions

or their compartmentation. In this context, Na+ access to the plant vascular system is mediated

by non-selective cation channels [32]. Once inside the outer part of the root, the majority of

the Na+ is pumped out from the cells via plasma membrane Na+/H+ antiporters in a high

energy demanding process [33]. In Arabidopsis thaliana, a plasma membrane encoding gene

(SOS1) has been identified with Na+/H+ antiporter activity [34]. This gene has been also

related to the elimination of Na+ from the xylem [35]. The SOS1 gene is the final part of a pro-

posed signal transduction pathway responsible of maintaining ion homeostasis during salt

stress [36]. Under high concentrations of Na+ in the cytoplasm, Ca2+ increase is triggered. The

excess of Ca2+ ions are bound with a myristoylated calcium-binding protein CBL4 (SOS3) that

acts as a sensor to perceive the Na+ mediated Ca2+ spike. At this point, CBL4 gene is able to

interact with a serine/threonine protein kinase CIPK24 (SOS2) [37–40] that activates the target

gene SOS1 [41–45], activating the retrieval of Na+ from the cytosol. Furthermore, SOS pathway

has been proposed to be part form a signaling network, and other genes might be implicated

in activation of SOS pathway, such as SCaBP8 or MPK6. Furthermore, SOS2 and SOS3 genes

seem to induce changes in the cytoskeleton that would cause root architectural changes in

order to overcome the saline stress [46]. The SOS pathway consumes plasma membrane H+

gradient, and increased SOS1 expression may increase Na+ tolerance, but at the expense of

plant growth [47]. This mechanism of Na+ removal from apoplast to cytosol is particularly

important in root tip cells, due to the lack of vacuoles [48].

Other genes have been related with Na+ exclusion from the xylem, such as some members

of the HKT (High affinity potassium transporter) family [12] and CHX [cation/H+ exchanger]

family [49]. In Arabidopsis, AtHKT1 has been identified as a Na+ selective uniporter with some

role in K+ transport [50]. Also, hkt1;1 Arabidopsis mutants showed hyper accumulation of Na+

at the shoots while showing less Na+ accumulation on the roots [51–53], suggesting a role on

Na+ long transport via xylem and phloem [52,54]. Multiple isoforms have been isolated in

monocots [55–58] and in several cereals HKTs can mediate Na+ uptake [47,59,60]. Under K+

starvation and Na+ stress, it has been observed increased transcript abundance of AtCHX17
[61]. AtCHX23 and AtCHX20 have been located in the chloroplast envelope [62] and endoso-

mal membranes [63], suggesting intracellular functions. However, CHX family genes might be

limited to cellular K+ homeostasis [64], as experiments using GsCHX19.3 from cotton have

shown increased K+ deficiency tolerance in yeast [65]. NHX type antiporters have been also

proposed to have a role in salt tolerance [66]. Its role seems to be related to maintaining Na+/

K+ homeostasis rather than extruding or sequestrating Na+ from the cytosol. Furthermore, it

seems to have also a crucial role in stomatal closure via turgor regulation at guard cells [67].

Salinity tolerance responses among persimmon species for rootstock breeding
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As the plants have complex Na+ exclusion pathways, Cl- accumulation becomes potentially

more toxic than Na+ accumulation. Cl- influx into the plant has been proposed to depend on a

passive mechanism via anion channels that are downregulated by ABA [12]. Chloride Channel

(CLC) family has been found in the tonoplast of various plant species. Cation/Cl- cotranspor-

ter (CCC) might be involved in Cl- sequestration into other types of intracellular compart-

ments [47].

Another strategy used by plants when the ion exclusion is not possible is the vacuole com-

partmentation of toxic ions. In Arabidopsis, Na+ compartmentation is believed to be carried

out by Ca2+/cation exchangers (CCXs) as vacuolar Na+ sequestration [47]. In the case of Cl-,

the role is taken by the ALMT (Aluminum-activated Malate Transporter) protein family that

encodes anion transmembrane channels [68]. The Arabidopsis vacuolar H+-translocase pyro-

phosphatase (AVP) also has a role in pumping Na+ into the vacuole through enhancing the H+

electrochemical potential difference, improving salinity tolerance [69,70]. In Arabidopsis,
tonoplast ALMT9 gene knock-out mutants shown shoot accumulation of both Cl− and Na+.

On the other hand, almt9 plants complemented with a mutant variant of ALMT9 that exhibits

enhanced channel activity showed higher Cl− and Na+ accumulation [21], suggesting a role of

ALMT9 on ion compartmentation.

In this context, this study was aimed at identification of salinity tolerant rootstocks for per-

simmon production, combining the high salinity tolerance of D. virginiana, and the positive

traits of D. kaki. For this purpose, a progeny (D. virginiana x D. kaki) x D. kaki was generated

and phenotyped for salinity tolerance. The objectives are to explore the mechanisms involved

in salinity tolerance in persimmon and develop alternative rootstocks for saline environments.

Material and methods

Plant material and salinity treatment

The D. kaki population (DK) was obtained from open pollination of female trees. The D. vir-
giniana (DV) population was obtained from a single open pollinated tree. A third population

was obtained from the cross between a Diospyros kaki genotype with male flowers used as a

male parent and a hybrid tree obtained between D. kaki, as a male parent and D. virginiana as

a female parent. Both progenitors of the hybrid tree were single individuals from open pollina-

tion. The population obtained is therefore (D. virginiana x D. kaki) x D. kaki) an interspecific

backcross of D. kaki. At the end of March, seeds were stratified for 30 days in plastic bags filled

with perlite in a cold chamber at 4˚C. After stratification, seeds were transferred to trays con-

taining peat-moss and perlite (4:1 ratio, respectively) and kept in a greenhouse at 18–24˚C for

two months (from April, 29, to June, 27, 2016). Sixty-five seedlings of each parental line and

420 seedlings of the BC line were transplanted into 1L pots containing coarse sand. The plants

were randomly distributed in the greenhouse and watered with a nutrient solution (3% Cristal-

jisa 18-18-18, soluble fertilizer with micronutrients) during one week, to acclimate the plants

before exposition to the salinity treatment. After the acclimation week the plants were submit-

ted to a salinity treatment for 72 days (from July, 5, 2016 to September, 15, 2016). The treat-

ment consisted in 40 mM NaCl added to the nutrient solution. The controls remained watered

with the standard nutrient solution. The amount of NaCl added were already described in a

previous experiment [9].

Morphological phenotyping

All the plant material was phenotyped for the following variables: height (cm), leaves (no.),

nodes (no.), internodes (cm) and defoliation (1-no. leaves/no. nodes). They were recorded at

the beginning of the experiment (day 0) and at the end of the salinity treatment (day 72). The

Salinity tolerance responses among persimmon species for rootstock breeding

PLOS ONE | https://doi.org/10.1371/journal.pone.0229023 February 25, 2020 4 / 27

https://doi.org/10.1371/journal.pone.0229023


ratio between initial and final value of variables related to growth was also calculated. Based on

visual symptoms, salinity injury was rated from 0 to 4: 0 –no symptoms, 1 –leaf turgor loss, 2 –

leaf tip necrosis, 3 –leaf margin necrosis, 4 –defoliated plant. These data were used to divide

the BC population into three groups according to its salt tolerance: tolerant, sensitive and

intermediate phenotypes. Only tolerant and sensitive groups were used in further analyses.

Leaf gas exchange parameters

Stomatal conductance (gs), leaf net CO2 assimilation rate (ACO2), leaf transpiration rate (E)

and internal CO2 concentration (Ci) were measured on single attached leaves from glass-

house-cultured plants. Intrinsic leaf water use efficiency (WUE) was calculated as ACO2 and gs

ratio. All measurements were carried out in a sunny day between 9:30 a.m. and 12:30 p.m. at

the end of the salt treatment (day 72). Photosynthetically active radiation (PAR) at the leaf sur-

face was adjusted to a photon flux density of 1.000 μmol m-2 s-1. A closed gas exchange

CIRAS-2 (PP-systems, Hitchin, UK) was used for the measurements. Leaf laminae were fully

enclosed within a PLC 6 (U) universal leaf autocuvette in a closed-circuit model and kept at

25 ± 0.5˚C, with a leaf-to-air vapor deficit of about 1.7 kPa. The air flow rate through the

cuvette was 0.5–1.5 L min-1. Determinations were performed using uniform fully expanded

leaves from the mid-stem zone of each of 57 BC treated plants (28 tolerant and 29 sensitive),

15 of BC control, 19 DK treated, 9 DK control, 26 DV treated and 10 DV control.

Leaf water relations

Leaf stem water potential ψH, MPa) was measured in fully expanded leaves in a sunny day

using a Model 600 Schölander Pressure Chamber (PMS Instrument Company, Albany, OR,

USA) at the end of the salinity treatment (day 72), on the same plants used for the leaf gas

exchange parameters. Previously, the leaf was kept in a reflective plastic bag for 30 minutes to

remove water loss. For osmotic potential, after the same procedure, the leaf was introduced

into microcentrifuge tubes and frozen immediately to -80˚C for breaking the cells by ice crys-

tallization. After 48h, frozen samples were centrifuged at room temperature to extract the cell

sap (modified from Callister et al. [71]). Leaf osmotic potential (ψπ, MPa) of the leaf sap was

calculated by van´t Hoff equation after measuring sap osmolarity (mmol kg-1) using an auto-

matic osmometer (Wescor, Logan, USA). Leaf turgor potential (ψt, MPa) was estimated as the

difference between ψH and ψπ.

Proline content and ion analysis

At the end of the treatment, adult leaves were collected from all survival plants from parental

populations: treated and control DK (19 and 13, respectively), DV (26 and 15, respectively),

and 32, 46 and 25 for tolerant, sensitive and control BC plants, respectively.

Proline content of leaves (mg g-1 of dry weight) was measured by the method of Bates et al.

[72]. Dried leaves (250 mg) were homogenized in 1.5 mL of 3% (w/v) aqueous sulphosalicylic

acid. The homogenate was centrifuged and 0.2 mL of supernatant was mixed with 0.7 mL of

ninhydrin acid and 0.6 mL of glacial acetic acid. The mixture was incubated at 100˚C for 1 h

and the reaction was cooled in an iced bath. The chromophore was extracted using toluene

and its absorbance at 520 nm was determined by spectrophotometry (Lambda 25, PerkinEl-

mer, Shelton, CT, USA).

For ion analysis, collected samples were washed; fresh and dried (oven-dried for 48 h at

65˚C) weight was recorded. Dried leaves were ground to powder. For chloride determination

(mg Cl- g-1 of dry weight), 25 mg of leaf powder was diluted in 20 mL of combined acid buffer

(Sherwood Scientific Ltd. Cambridge. UK). Chloride concentration (mg mL-1) of the filtered

Salinity tolerance responses among persimmon species for rootstock breeding
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solution was determined by silver ion-titration [73] with a Corning 926 automatic chlorid-

ometer (Corning Ltd. Halstead Essex, UK). A portion of dried leaves (0.5 g) were burnt in a

muffle furnace for 12 h at 550˚C. Remaining ashes were digested with HNO3 1M solution.

Na+, Ca2+, K+, Mg2+, P and S ions were quantified (mg g-1 dry wt) using a multiple-collector

inductively coupled plasma mass spectrometry (MC-ICP MS, Thermo Finnigan Neptune).

Gene expression analysis

A subset of each group was selected for gene expression analysis (Table 1). Root tip tissue was

collected after 72 days of salt treatment and immediately frozen and powdered using liquid

nitrogen. Control samples from the three populations were collected and processed. RNA was

isolated according to Gambino et al. [74]. DNA was removed with the RNase-Free DNase Set

(Qiagen, Valencia, CA, USA), using the RNeasy Plant Mini Kit (Qiagen). Purified RNA (500

ng) was reverse transcribed with PrimeScript RT Reagent Kit (Takara Bio, Otsu, Japan) in a

total volume of 10 μL.

Eight putative orthologous genes involved in different mechanisms leading to salt tolerance

were analyzed. Arabidopsis genes SOS1 (AF_256224.1), SOS2 (AF_237670.1), SOS3 (HE_802

983.1), NHX1 (AF_106324.1), HKT1 (AK_228564.1) and ALMT9 (NM_112729.4) were blasted

against the SRA archive of D. lotus (SRA ID: SRP045872) cv. Kunsenshi [75]. The output frag-

ments were manually assembled to complete putative orthologous genes. Specific persimmon

primers were designed using the sequences obtained (Table 2).

For plasma membrane intrinsic (PIP) aquaporins, Arabidopsis PIP1 (NM_001084854.2,

NM_130159.4, NM_100044.5, NM_116268.4, NM_118469.4) and PIP2 (NM_001035774.1,

NM_129273.5, NM_129274.4, NM_125459.4, NM_115339.3, NM_129458.3, NM_001203

991.1, NM_127238.3) family sequences were aligned and conserved regions within families

identified. Each conserved region was blasted against D. lotus SRA archive. The output frag-

ments were manually assembled and specific primers designed at the conserved region, obtain-

ing specific primers for each putative aquaporin family (Table 2).

The first-strand cDNA was 60-fold diluted, using 1 μL as template in a final volume of

20 μL. Quantitative real-time PCR was performed on a StepOnePlus Real-Time PCR System

(Life Technologies, Carlsbad, CA, USA), using SYBR premix Ex Taq (Tli RNaseH plus)

(Takara Bio). The PCR protocol consisted of 10 min at 95˚C, followed by 40 cycles of 15 s at

Table 1. Selected plants (tolerant and susceptible) for gene expression analysis.

D. virginiana D. kaki Backcross line (BC)

BCt
� BCs

��

Treated plants V10 K9 BC11 BC312 BC61 BC198

V14 K23 BC61 BC315 BC77 BC236

V20 K26 BC127 BC323 BC90 BC237

V23 K34 BC175 BC359 BC95 BC301

V37 K44 BC291 BC375 BC172 BC333

Untreated plants V4 K4 BC2

V5 K6 BC5

V7 K7 BC16

V11 K9 BC22

V15 K14 BC25

�BCt: tolerant backcross line

��BCs: susceptible backcross line

https://doi.org/10.1371/journal.pone.0229023.t001
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95˚C, and 1 min at 60˚C. The specificity of the reaction was assessed by the presence of a single

peak in the dissociation curve and through size estimation of the amplified product by agarose

electrophoresis. Four different genes were screened with Normfinder [76] for use as reference

genes: DkACT [77], DkUBC, DkPP2A, and DkTUA [78] and two of them selected as reference:

DkACT and DkTUA. The normalization factor was calculated by the geometric mean of the

values of relative expression of both genes. Expression analysis was carried out in five treated

and untreated DV and DK plants, 10 tolerant BC plants and 10 susceptible BC plants as biolog-

ical replicates (Table 1). Results were the average of three technical replicates.

Statistical analyses

Within treatment (saline vs saline and non-saline vs non-saline) parameters were statistically

tested by Analysis of Variance (ANOVA) and averages were compared with the Least Signifi-

cative Differences (LSD) method at 95% confidence level (P�0.05). When comparing with the

non-saline conditions, the parameters were found to not fit normal distribution and, therefore,

were compared with Kruskal-Wallis test (P�0.05) and median notch method [79]. Stat-

graphics Centurion, 16.1 version (Statistical Graphics, Englewood Cliffs, NJ, USA) was used

for performing the statistical analyses. Principal component analysis (PCA) was carried out

using S-Plus 8.0 (Insightful Corp., Seattle, USA). The variables included were: morphological

traits, leaf gas exchange and leaf water relations parameters, proline and ion contents. The

number of components retained was defined by the inflection point of the corresponding

screen plot. A biplot of individual scores and loadings was obtained. An average plant for each

population was included in the analysis representing the average of each variable for the popu-

lation. Plants from the BC population were classified as tolerant or susceptible to salinity

according to the phenotyping data and the distance to the average plant in the PC analysis.

Results

Populations phenotyping

Control plants from the three populations studied: D. virginiana (DV), D. kaki (DK) and the

backcross (BC) grown in non-saline conditions were measured to address differences among

populations. The variables were studied using PCA in which 63.2% of the total variance was

Table 2. Primers used for RT-qPCR analysis.

Gene name Sequence (5’-3’)

SOS1-Like F:GGATTTTCTCTGGAAGGAAAGTGCTA
R:GGAGATGTAATCAGTTCCTCTTTGACAC

SOS2-Like F:TTAGAGTTTGTTACTGGAGGGGAACT
R:CACTCAGTCCAAAGTCAGAAACCTTCA

SOS3-Like F:GAAGTTGAGGCCTTGTATGAGCTATTT
R:CCTAATGAACGAACAAATTCTCCAAACTC

HKT1-Like F:GATTCCTAACCCTGCAGATAAACCCATT
R:GTTGCAGACACAGAGGTAAAGAACAAG

NHX1-Like F:CACCAAAGAACTTGACAAGAATGCTG
R:CCAATAGTAGTGCACGGTACGAG

ALMT9-Like F:TCACTTATGCAAAACTATACCCCACAATG
R:GTAGATAAACATATTCACCACCAAACACAC

PIP1 Family-Like F:GTCTTCTACATGGTGATGCAGTGC
R:AGTGGCAGAGAAGACAGTGTAGAC

PIP2 Family- Like F:GCATGATCTTCATCCTCGTCTACTGCAC
R:TTGGGATCAGTGGCGGAGAAGAC

https://doi.org/10.1371/journal.pone.0229023.t002
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explained by the two first components (Fig 1A). The average value of each variable/popula-

tion was included in the analysis (referred as average plant). Plants from DV were the tallest

at both the initial (day 0) and at the end of the experiment (day 72). They also had more

leaves and nodes, with shorter internode length than those from DK. Although differences

in the speed of growth were not considerable (bold letters in the figure of variable loadings

indicate significant differences, ANOVA p<0.05), plants from DV tended to show higher

ending to initial height and nodes ratios. The plants from the BC resulted in values between

DV and DK populations. In fact, the mean average plant of BC was closer to DK than to DV

population. This distribution was expected attending to the higher participation of the D.

kaki genome in the backcross.

The differences in leaf gas exchange and leaf water relations followed similar pattern. (Fig

1B) with DV plants exhibiting higher ACO2 and lower Ci than DK and BC plants. No signifi-

cant differences (non-bold letters) were observed in gs and E and, ψπ between the three popula-

tions and BC plants had lower ψH and ψt. The accumulation of salt, nutrients (Cl-, Na+, Ca2+,

K+, Mg2+, P, S) and proline in the leaves showed a similar pattern to that observed for morpho-

logical data. Plants from DV population were the most different in the PCA plot, while BC and

D. kaki population plants were grouped (Fig 1C). For these variables PC1 and PC2 explained

46.7% and 17.3% of variability, respectively. DV plants accumulated lower amounts of ions

(especially of Cl-, Na+, Ca2+, P and K+) and higher amounts of proline than DK and BC plants.

Evaluation of tolerance to salinity

A subset of 127 plants from each population (DV, DK and BC) were grown under saline condi-

tions (40mM) to evaluate tolerance to salinity. The variables studied were height, nodes num-

ber, internode length, defoliation and damage index. All measurement aimed at addressing the

effect of salinity on growth rates and plant damages (Fig 2A). Values of ending/initial (e/i)

ratio were used. The height, number of nodes and internode length were selected as variables

for rating the saline stress effect on plant growth. The initial and end values were excluded in

the PCA, as the differences between the populations in non-saline conditions were consider-

able and would mask the specific effect of salinity (Fig 1A). In the PCA, mean values of the

average plant corresponding to non-saline conditions were included to enable a comparison

between non-saline and saline conditions.

The tolerance to salinity of DV population plants was evident. In the analysis of PCA related

to morphological variables the first two components explained 77.9% of variance (Fig 2A). DV

plants under saline conditions were morphologically similar to those under non-saline condi-

tions (Vm), reflecting that the growth rate and damages were not considerably altered by saline

treatments. On the other hand, DK plants showed high susceptibility to salinity, with lower

growth rates and higher levels of defoliation and damage under saline conditions compared to

non-saline ones (Km) (Fig 2A). BC plants treated with salinity differed significantly from those

under non-saline conditions. BC treated with salinity plants distribution overlapped with DV

and DK plants distribution. According to PC1 some plants showed similar behaviour than DV

under saline conditions and some were located close to the BC average plant under non-saline

conditions (BCm), resembling the behaviour of the susceptible DK population plants (Fig 2A).

Based on these results, BC plants were classified as tolerant (BCt) and susceptible (BCs) to

salinity (Fig 3). The tolerance of DV, the susceptibility of DK, and the tolerance and suscepti-

bility of BC plants were confirmed with ANOVA tests (Table 3). The values and the ratios

between them and the average values in non-saline conditions (saline/non-saline ratios, s/ns

ratios) were used. DV plants showed values for morphological variables similar to those

obtained in control conditions, being the s/ns ratios close to 1 for most variables (Table 3). The
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s/ns ratio for damage index (1.79 folds) revealed more damage under salinity, although the

overall damage by salinity was low (0.13) (Table 3).

The classification of the BC plants according to the PCA was validated with ANOVA analy-

sis. The BC group classified as tolerant (BCt) showed values of the s/ns ratios of e/i ratios statis-

tically equal to those of the DV population, while the performance of the BC susceptible group

(BCs) was closer to the DK population (Table 3). BCs and BCt plants exhibited a decrease in

growth speed compared to the control plants, with s/ns ratios lower than 1 for height, nodes

and internodes (Table 3), being those values corresponding to BCt significantly higher than

those of BCs. Additionally, BCs plants exhibited a significant increase in defoliation and dam-

age index, with values of 0.11 and 2.67, respectively, compared to BCt, with values of 0.06 and

0.05, respectively (Table 3).

Regarding leaf gas exchange and leaf water relations parameters, the variability explained

by the two first components was 79.4%. The plot showed different distribution between the

populations of DV and DK (Fig 2B). This difference was not so evident under non-saline con-

ditions (Fig 1B), thus reflecting that DV population exhibited a clear response to salinity. BCt

plants plotted within DV plants, while most BCs plants plotted within the DK ones.

Almost all s/ns ratios of leaf water relations parameters (ψH, ψπ, ψt) were higher than 1 in all

the plants (Table 3). Only in the case of DV the ψt ratio was similar to non-saline conditions

and in the case of BCs plants the ψH ratio was lower than 1. DV plants exhibited significantly

lower values of ψH and ψt, and significantly higher values of ψπ than the rest of plants, while

BCs plants showed significantly lower ψπ and significantly higher ψH and ψt (Fig 4, Table 3).

The population of DV and BCt subset under salinity conditions showed a reduction of the

ACO2, gs and E (s/ns ratios lower than 1), while the Ci had a similar value to control conditions

(Fig 5, Table 3). The reduction of s/ns ratio experimented by DK population and BCs plants

was significantly higher in the case of ACO2 but lower in the case of gs and E, which showed val-

ues similar to the control conditions (Table 3). On the other hand, in these plants the Ci was

higher under saline conditions (s/ns ratio > 1). DV plants had higher values of ACO2 and gs,

compared to BCt (Fig 5). No significant differences were found between DK and BCs for leaf

gas exchange parameters (Table 3). Under salinity conditions the leaf WUE of DV and BCt

plants was similar to the non-saline plants; however, it was decreased in D. kaki population

BCs plants (Fig 5).

Regarding leaf salt and nutrients (Cl-, Na+, Ca2+, K+, Mg2+, P, S) and proline accumulation,

the first two components of the PCA explained 58.8% of total variance. DV plants was sepa-

rated from the DK ones. DV plants plotted near its average plant under non-saline conditions

(Vm), suggesting that these variables were not greatly affected by saline conditions. On the

other hand, DK plants plotted away from its average plant under non-saline conditions (Km).

The plants from the BC spanned between both populations without a clear differentiation

between BCs and BCt plants (Fig 2C).

In the case of proline, DK plants tended to accumulate higher amounts under saline condi-

tions (1.35 fold), while BCs and BCt plants accumulated lower amounts (0.67 and 0.69 fold

respectively) and DV plants tended to accumulate similar amounts (1.12 fold) in saline and

non-saline conditions (Table 3). Plants from DK and DV populations showed significantly

higher proline content than BCs and BCt plants (Fig 6).

Fig 1. Plot of the first two components from a principal component analysis of morphological (a), leaf gas exchange

and leaf water relations (b) and ionic and proline content (c) of the three populations in non-saline conditions. Each

letter represents each population: V–D. virginiana population (yellow), K–D. kaki population (brown) and BC–

Backcross population (blue). Vm, Km and BCm in bold represents the mean of the individuals. Gray letters represent

each of the measured variables. The most important variables identified in each PCA are in bold type.

https://doi.org/10.1371/journal.pone.0229023.g001
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Fig 2. Plot of the first two components from a principal component analysis of morphological variables (a), leaf gas

exchange and leaf water relations (b) ionic and proline content (c) of the three populations under saline conditions.

Salinity tolerance responses among persimmon species for rootstock breeding

PLOS ONE | https://doi.org/10.1371/journal.pone.0229023 February 25, 2020 11 / 27

https://doi.org/10.1371/journal.pone.0229023


All populations showed s/ns ratios of Cl- and Na+ contents higher than 1. Concerning to

Ca2+ and K+ contents the s/ns ratios were close to 1, thus they were not affected by saline con-

ditions (Table 3). DK and BCs plants exhibited significantly higher values of Cl- and Na+ when

compared to DV and BCt plants (Fig 7). The highest mean content of Ca2+ was found in the

leaves of BCs and BCt, while the highest contents of K+ and Mg2+ were found in the leaves of

DK (Table 3, Fig 7).

Gene expression analysis

In the case of the salt overly sensitive pathway SOS the differences in the expression level of

SOS2 and SOS3 between populations were limited, being the expression of SOS1 higher under

both saline and non-saline conditions for the DV plants compare to DK and BC (Fig 8A, 8B

and 8C). Regarding the comparison of gene expression between saline and non-saline condi-

tions, no differences were found in the expression levels of SOS2 and SOS1 for DV, DK and

Each population represented by letters: V–D. virginiana population (yellow), K–D. kaki population (brown) and BC–

Backcross population (blue). BCt are the Backcross plants that showed a salt tolerant phenotype and BCs the plants salt

sensitive. Vm, Km and BCm in bold represents the mean of the individuals under control treatment. Gray letters

represent each of the measured variables.

https://doi.org/10.1371/journal.pone.0229023.g002

Fig 3. Phenotype of the saline tolerant (up) and sensitive (down) backcross population (BC) plants after 72 days of

irrigation with 40mM NaCl.

https://doi.org/10.1371/journal.pone.0229023.g003
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the BC plants (Fig 8A and 8B). In the case of SOS3, DK showed expression levels considerably

higher under saline conditions, while DV showed slightly reduced expression under saline

conditions and no differences were found in the BC groups (Fig 8C).

Table 3. Phenotype of each population under saline and non-saline conditions for all the measured variables. Morphological variables are expressed as the ratio of

each individual at the end of the treatment (saline conditions) and the beginning of the experiment (non-saline conditions). Different letters represent significant differ-

ences between populations (p<0.05). n(treated/control) indicated the number of plants measured in every experiment.

D. kaki D. kaki x D. virginiana D. virginiana
Sensible Tolerant

Agro-morphological data Mean (s/ns ratio�) Mean (s/ns ratio) Mean (s/ns ratio) Mean (s/ns ratio)

Initial Height (iH, cm) 17.22a (1.15ab) 33.35c (2.23c) 23.69b (1.38b) 21.00ab (1.06a)

End Height (eH, cm) 42.21a (0.62a) 82.51b (1.22d) 92.16bc (1.05c) 92.63c (0.87b)

HeighteiRatio (eH:iH) 2.44a (0.55a) 2.48a (0.56a) 4.01b (0.78b) 4.46c (0.83b)

Initial Leaves (iL, n˚) 5.58a (1.00a) 10.85c (1.96c) 8.84b (1.32b) 10.54c (1.01a)

End Leaves (eL, n˚) 13.63a (0.77a) 24.79b (1.41c) 28.37b (1.10b) 38.54c (0.96ab)

Initial Nodes (iN, n˚) 5.57a (1.01a) 11.00c (1.99b) 9.00b (1.28c) 10.54c (1.01a)

End Nodes (eN, n˚) 16.11a (0.84a) 27.55b (1.44c) 30.11b (1.10b) 40.50c (0.94ab)

NodeseiRatio (eN:iN) 3.04b (0.84b) 2.49a (0.69a) 3.41c (0.87bc) 3.88d (0.94c)

Initial Internodes (iI, cm) 3.27c (1.14a) 3.04c (1.06a) 2.71b (1.10a) 2.02a (1.04a)

End Internodes (eI, cm) 2.59a (0.73a) 3.02b (0.85b) 3.16b (0.99c) 2.32a (0.92bc)

InternodeeiRatio (eI:iI) 0.82a (0.65a) 1.00b (0.80b) 1.19c (0.89c) 1.16c (0.86bc)

Defoliation (eN:eL) 0.17c (2.07c) 0.11b (1.35b) 0.06a (0.96ab) 0.05a (0.71a)

Damage Index 2.26b (4.19b) 2.67c (4.94b) 0.05a (0.26a) 0.13a (1.79a)

n (treated/control) 28/13 53/15 38/15 42/15

Leaf gas exchange

ACO2 (μmol CO2 m-2 s-1) 3.01a (0.44a) 2.96a (0.45a) 4.23a (0.64ab) 6.67b (0.74b)

gs (mmol H2O m-2 s-1) 51.74c (0.86bc) 47.79bc (0.96c) 29.58a (0.59a) 41.75b (0.74ab)

E (mmol H2O m-2 s-1) 1.37b (0.86b) 1.28b (0.91b) 0.77a (0.55a) 0.82a (0.54a)

Ci (μmol CO2 m-2 s-1) 304.90b (1.67b) 278.94b (1.67b) 163.58a (0.98a) 124.17a (1.09a)

n (treated/control) 19/9 29/15 28/15 26/10

Leaf water relations

Water pot. (ψH, MPa) -0.71b (1.33b) -0.68b (0.78a) -1.04a (1.20b) -1.13a (1.63c)

Osmotic pot. (ψπ, MPa) -2.53b (1.59b) -3.09a (1.91c) -2.40b (1.48b) -2.06c (1.23a)

Turgor pot. (ψt, MPa) 1.83c (1.72b) 2.42d (3.21c) 1.36b (1.81b) 0.93a (0.94a)

n (treated/control) 19/9 29/15 28/15 26/10

Proline (mg g-1 dry wt) 2.14b (1.35b) 1.41a (0.67a) 1.44a (0.69a) 2.56b (1.12b)

n (treated/control) 19/13 46/25 46/25 26/15

Ion analysis

Cl- (mg L-1) 2.50c (11.05c) 2.59c (9.43b) 2.00b (7.28a) 1.18a (6.38a)

Na+ (mg g-1 dry wt) 1.85d (13.43b) 1.41c (13.05b) 0.44b (4.10a) 0.23a (4.13a)

Ca2+ (mg g-1 dry wt) 0.39ab (0.73a) 0.43b (0.83ab) 0.50c (0.97c) 0.34a (0.88bc)

K+ (mg g-1 dry wt) 2.60c (1.07b) 2.12b (0.83a) 2.56c (1.00b) 1.81a (1.09b)

Mg2+ (mg g-1 dry wt) 0.11b (0.98c) 0.09a (0.63a) 0.08a (0.57a) 0.09a (0.81b)

P (mg g-1 dry wt) 1.40d (1.70c) 0.75c (0.78a) 0.62b (0.64a) 0.38a (0.97b)

S (mg g-1 dry wt) 0.17c (1.43c) 0.11b (0.85b) 0.08a (0.66a) 0.09ab (0.86b)

n (treated/control) 19/13 46/25 32/25 26/15

� s/ns ratio (saline/non-saline ratio): ratio between value at the end of the treatment and the average value in non-saline conditions D. kaki population plants were very

affected by salinity with high values of defoliation (0.17) and damage index (2.26) (Table 3).

https://doi.org/10.1371/journal.pone.0229023.t003

Salinity tolerance responses among persimmon species for rootstock breeding

PLOS ONE | https://doi.org/10.1371/journal.pone.0229023 February 25, 2020 13 / 27

https://doi.org/10.1371/journal.pone.0229023.t003
https://doi.org/10.1371/journal.pone.0229023


Fig 4. Leaf water relations measured on a pool of samples from each population under saline (s) and non-saline (ns)

conditions: V–D. virginiana population (orange), K–D. kaki population (green) and BC–Backcross population (blue).

The number of plants measured were 57 BC treated plants (28 tolerant and 29 sensitive), 15 of BC control, 19 DK
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In the case of the anion vacuolar channel ALMT9, the expression levels were lower in DK

both in saline and no saline conditions compared to DV and BC, but the effect of saline condi-

tions was not significant for any of them (Fig 8D). The expression levels of the Na+/H+ anti-

porter NHX1 in DV was again higher than DK and the BC populations (Fig 8E). In the last two

cases salinity did not increase the expression level, whereas in the case of DV the expression

increased under saline conditions (Fig 8E).

A different pattern was found in the high affinity potassium transporter HKT, where the expres-

sion levels under non-saline conditions was higher for BC as compared to the rest of the populations

under saline or non-saline conditions (Fig 8F). Saline conditions showed a reduction of expression

levels of HKT from 40% to 50% in all cases. Interestingly, BC tolerant and susceptible plants showed

a significant reduction in the expression levels under saline conditions, although the level of reduc-

tion was significantly higher for the susceptible ones. The expression levels of DV and BCt plants

under salinity were higher than those of DK and BCs plants under similar treatment (Fig 8F).

In reference of plasma membrane intrinsic proteins PIPs, the expression levels of both PIP1
and PIP2 genes in DV were higher under saline conditions, while in DK the expression were

slightly reduced by salinity (Fig 9). No differences were found in the expression levels of PIP1
and PIP2 in the BC tolerant and susceptible plants under saline conditions, while the expres-

sion under non-saline conditions was reduced (Fig 9).

Discussion

Previous studies have analyzed the mechanisms behind salt tolerance in different species. In

those studies multiple morphological, physiological and biochemical changes are described as

responsible of plant adaptation to salinity [22]. Experiments of salinity tolerance using saline

water have shown differential responses between species of the same genus, and between culti-

vars of the same species [14,80].

The Diospyros genus includes more than 400 species while only three species are widely used

as rootstock: D. lotus, D. virginiana and D. kaki [4]. Species of the genus Diospyros show different

degrees of tolerance to salt stress. D. lotus is the most common rootstock used for persimmon

propagation in the Mediterranean basin. However, important damages attributed to ion toxicity

has been reported in persimmon orchards grafted on D. lotus, which points out the need of selec-

tion of salinity tolerant rootstocks adapted to the Mediterranean environments [6,81]. D. kaki is

the most used in persimmon orchards around the world because the affinity with all cultivars [4]

and the lack of salinity presence in the areas where persimmon is mostly grown. On the other

hand, D. virginiana has been described as more salt tolerant than D. kaki [7]. In a context of cli-

mate change and increase of salinity in soil and irrigation water, selections of tolerant rootstocks

are required for maintaining the crop yield, or even improve it. In this study, salinity tolerance

has been evaluated in plants from D. virginiana, D. kaki and a backcross population (BC)

between both species aiming at identifying rootstocks tolerant to salinity to cultivate persimmon.

Analyses of the effects on morphology, physiological parameters and gene expression after saline

treatment were conducted to elucidate the mechanisms of tolerance to salinity.

Effects on morphology

The effects of salinity on growth rate have been widely reported in different species [14]. The

main effect of stress on plants is the progressive inhibition of growth as a consequence of an

treated, 9 DK control, 26 DV treated and 10 DV control. The vertical bars represent standard deviation. Different

letters represent significant differences (p>0.05).

https://doi.org/10.1371/journal.pone.0229023.g004
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osmotic effect, that reduces the ability of the plant to absorb water, and a toxic effect by salt

accumulation, that can produce the necrosis of leaves reducing the total photosynthetic leaf

area [82]. At the end of the treatment with saline water, our results showed inhibition of vege-

tative growth in the populations studied; indicated by a decrease at three morphological vari-

ables: plant height, number of leaves and nodes and internodes length. Moreover, the

responses differed significantly between populations. D. virginiana (DK) population was less

affected than D. kaki (DK). After the salt treatment, some BC plants showed severe symptoms

on plant growth and were classified as susceptible (BCs), while others showed moderate symp-

toms and were classified as tolerant (BCt). This fact indicates the presence of diversity within

the BC plants related to the response to salinity that enables breeding for salinity tolerance.

Osmotic stress responses

In salinity conditions, growth rate reduction could be a consequence of an inadequate photo-

synthetic activity, as a result of stomatal and non-stomatal factors [14]. All populations studied

showed a reduction in the ACO2 compared to controls. In treated plants, salinity induced sto-

matal closure and reduction of Ci (Table 3 and Fig 5), similarly to the effects described in other

species [83]. In persimmon, besides of differences between saline treated and control plants,

persimmon tolerant genotypes showed a significant higher reduction of gs and E compared to

sensitive genotypes. Interestingly, under salinity conditions, the tolerant populations main-

tained values of WUE similar to the control, which means that the reduction of ACO2 and gs

Fig 5. Leaf net CO2 assimilation rate (ACO2), stomatal conductance (gs) and intrinsic leaf water use efficiency (WUE),

measured on a pool of samples from each population under saline (s) and non-saline (ns) conditions: V–D. virginiana
population (orange), K–D. kaki population (green) and BC–Backcross population (blue The number of plants

measured were 57 BC treated plants (28 tolerant and 29 sensitive), 15 of BC control, 19 DK treated, 9 DK control, 26

DV treated and 10 DV control. The vertical bars represent standard deviation. Different letters represent significant

differences (p>0.05).

https://doi.org/10.1371/journal.pone.0229023.g005

Fig 6. Leaf proline content on a pool of samples from each population under saline (s) and non-saline (ns) conditions:

V–D. virginiana population (orange), K–D. kaki population (green) and BC–Backcross population (blue). The number

of plants measured were treated and control DK: 19 and 13, respectively; DV: 26 and 15, respectively; 32 tolerant BC,

46 sensitive BC plants and 25 BC contro. The vertical bars represent standard deviation. Different letters represent

significant differences (p>0.05).

https://doi.org/10.1371/journal.pone.0229023.g006
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was proportional (Fig 5), indicating that stomatal closure in tolerant genotypes is the main lim-

iting factor of photosynthesis. These responses are mechanisms described for adaptability to

osmotic stress caused by excessive salt environments [84]. Reduction of gs could be used as an

indicator of the tolerance to osmotic stress in these species [85]. Changes in gs are always

accompanied by changes in leaf water relations [86,87]. In agreement with previous studies in

other species, significant differences in ψH between tolerant and sensitive populations were

found in persimmon. The higher values of ψH found in tolerant plants (DV and BCt) indicates

that salinity conditions affect much more the plant water status in tolerant than in sensitive

plants. This differential response was attributed to the mechanism of osmotic adjustment

developed in sensitive plants, favored by the higher accumulation of ions such as Cl-, that

resulted in higher ψt values (Fig 4). In saline soils, 2% intake of the NaCl is used by the plant

for osmotically adjust of Na+ and Cl−in vacuoles [88].

Ionic stress responses

Tolerance to salinity involves as well important mechanisms for prevention of ion toxicity.

This prevention effect might be related to a mechanism of exclusion of toxic ions or their com-

partmentation. Energy-efficient osmotic adjustment requires compartmentation of Na+ and

Fig 7. Na+, Cl-, K+ and Ca2+ leaf content on a pool of samples from each population under saline (s) and non-saline (ns) conditions: V–D. virginiana
population (orange), K–D. kaki population (green) and BC–Backcross population (blue). The number of plants measured were treated and control DK: 19

and 13, respectively; DV: 26 and 15, respectively; 32 tolerant BC, 46 sensitive BC plants and 25 BC control. The vertical bars represent standard deviation.

Different letters represent significant differences (p>0.05).

https://doi.org/10.1371/journal.pone.0229023.g007
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Cl- in vacuoles, and of K+ and compatible organic solutes in the cytoplasm [88]. The Na+ con-

tent in leaves of tolerant populations (DV and BCt) was much lower than in sensitive (DK and

BCs), which indicates that persimmon species are able to prevent Na+ toxicity. Similar results

would be expected in roots; however, the size of the plants did not allow sampling of ions in

the roots. To unravel this question, transcriptomic experiments using orthologues of genes

described in model plants involved in ion transportation were conducted. The access of Na+to

the plant vascular system is mediated by non-selective cation channels, but the exclusion from

the cell is via a high energy demanding process of Na+/H+ transporters. In Arabidopsis, SOS1,

which has antiporter activity, has been demonstrated to play a role in Na+ transport outside

the cells under saline conditions [35,42]. Therefore, increase of SOS1 expression should

increase salinity tolerance. In persimmon, the transcriptomic study revealed a higher SOS1
expression in the tolerant D. virginiana genotypes; however,r this increase of expression may

not be related to the salinity treatment. We did not detect significant differences among the

BCt and the rest of sensitive populations, which seems to indicate that in these species salt con-

ditions may not trigger the SOS pathway response. In the tolerant plants, with lower content of

Na+ in leaves, growth was less affected and showed less leaf damage in response to the salinity

treatment, whereas they presented higher values of ACO2 than the sensitive ones. The hypothe-

sis is that tolerance in persimmon is based on reduction of hydraulic conductance and transpi-

ration to overcome the osmotic stress. This reduction is not damaging the photosynthesis

Fig 8. Relative expression of the genes SOS1-like (a), SOS2-like (b) and SOS3-like (c) measured on a pool of samples of each

population under saline (s) and non-saline (ns) conditions: V–D. virginiana population (red), K–D. kaki population (green) and

BC–Backcross population (blue). The vertical bars represent standard deviation.

https://doi.org/10.1371/journal.pone.0229023.g008
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system and affect in a lower scale the plant growth, all together would allow reduction of toxic

ions concentration like Na+. Another fact supporting this mechanism is that the tolerant DV

population showed the ψt similar in control and saline conditions. The exposition to saline

stress in tolerant persimmon is not causing an increase of Na+ in leaves or an increase of the

osmotic potential.

Regarding to the HKT1 (high affinity potassium transporter) gene expression, this gene has

been linked many times to salinity tolerance in several species, and it is believed that partici-

pates in Na+ exclusion from the shoot via phloematic transport to the roots [89]. HKT1 expres-

sion prevents Na+ accumulation in the higher parts of the plant such as stem and leaves,

preventing toxic accumulation on sensible organs. Exposition to salinity environment causes a

reduction of gene expression. In persimmon, HKT1 expression was reduced in saline condi-

tions in all populations. However, the root expression was higher in roots of tolerant plants

compared to sensitive which may explain its involvement in tolerance. As HKT1-driven toler-

ance is linked to the tissue-specific expression in other species [90–92], leaf and shoot expres-

sion would be necessary for explaining the phenotype of the studied populations.

Fig 9. Relative expression of the PIP1-like (a), PIP2-like (b) families measured on a pool of samples of each population

under saline (s) and non-saline (ns) conditions: V–D. virginiana population (orange), K–D. kaki population (green)

and BC–Backcross population (blue). The vertical bars represent standard deviation.

https://doi.org/10.1371/journal.pone.0229023.g009
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Regarding to the Cl- exclusion, both in DV and BCt tolerant populations, lower content in

Cl- can be associated with the lower relative values of gs and E compared to the control popula-

tions. Cl- exclusion has been described as a passive mechanism linked to anion transporters

downregulated by ABA [14,93], which also downregulates the stomatal aperture of the plant,

limiting the water and ion uptake. Therefore, the reduction on whole-plant transpiration

driven by stomatal regulation would contribute to the reduction of Cl- in persimmon tolerant

plants. Furthermore, an upregulation on PIP1 and PIP2 aquaporin families has been observed

in DV population when exposed to saline conditions. This response has been linked with salin-

ity tolerance in other species [30] as a regulation of the ion imbalance and water flow inside

the plant to adapt the ionic and osmotic stresses caused by salinity [94]. The other ion content

measured (Ca2+, P, Mg2+, S) was not affected by salinity treatment.

In conclusion, persimmon salinity tolerance is based on the reduction of stomatal conduc-

tance and decrease of transpiration, preventing the osmotic stress. Besides this mechanism leaf

net photosynthesis is higher in tolerant plants and, consequently, growth rate is less affected.

The leaf content of toxic ions as Na+ and Cl- is also lower in tolerant plants. Necrosis on old

leaves for accumulation of toxic ions is associated to sensitive plants. A mechanism of exclu-

sion should be involved. The transcriptomic results do not allow to link expression of SOS1 to

salinity tolerance. The data suggests a potential involvement of HKT, however expression data

from roots and leaves are required to complete our understanding of the mechanism. Addi-

tionally, the upregulation on PIP1 and PIP2 aquaporin families detected in tolerant plants

exposed to salinity could contribute to regulate the ion imbalance by water flow (Fig 10). Fur-

ther analysis of the isoforms within PIP families and a persimmon genome assembly would

reveal more information.

This is the first approach into the possible mechanism regulating tolerance to salinity of

persimmon. Tolerance in hybrids from D. kaki is now being identified. This fact opens the

opportunity of breeding for salinity tolerance and made possible to initiate further studies

Fig 10. Hypothesis of the salt tolerance mechanisms present in Diospyros species. Active mechanisms involved

HKT expression and upregulation of PIP1 and PIP 2 aquaporins resulting in a reduction of Na+ and Cl- uptake.

Passive mechanisms as partial stomatal closure resulted in reduction of transpiration and lower ion accumulation.

https://doi.org/10.1371/journal.pone.0229023.g010
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based on the selected genotypes to further dig into the mechanisms of tolerance to salinity in

persimmon species.
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Supervision: Mª Ángeles Forner-Giner, Mª del Mar Naval.

Writing – original draft: Francisco Gil-Muñoz.

Writing – review & editing: Francisco Gil-Muñoz, Juan Gabriel Pérez-Pérez, Maria L.
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