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Abstract: Accurate water consumption measurement of customers is a crucial component of water utility 

sustainability. During the last decade, sophisticated measuring technologies without moving 

components, known as solid-state water meters or static meters, have emerged. Solid-state water 

meters promise an improved accuracy with more processing and transmission capabilities in 

comparison with traditional mechanical meters. A compromise needs to be reached between energy 

consumption and battery life as all these new features are extremely demanding on electric energy. 

The usual approach adopted by the manufacturer is to reduce the frequency with which static 

meters take measurements of the circulating flow. This reduction in signal sampling frequency can 

have a significant effect on the accuracy of the instruments when measuring water consumption 

events of 30 s or less, these events being common in residential customers. The research presented 

analyses of the metrological performance of 28 commercially available solid-state water meters from 

six different manufacturers in the presence of intermittent flows of various durations. The results 

show that the magnitude and dispersion of the error under intermittent flows is significantly larger 

in comparison to steady state flow conditions. The ultrasonic meters examined were more 

influenced by the intermittency than the electromagnetic meters.  

Keywords: solid-state water meters; static meters; electromagnetic water meters; ultrasonic water 

meters; water meter accuracy; intermittent flow; water meter errors 

 

1. Introduction 

Solid-state water meters or static meters are measuring instruments which do not use a 

mechanical measuring principle to quantify the amount of water consumed. Compared to mechanical 

water meters, static water meters have no moving components subject to wear. Flow rate and volume 

calculations use static sensors as the physical principles of measurements. In other words, flow rate 

figures are determined indirectly from the measurement of physical magnitudes, like the time 

difference of two sound waves travelling in different directions or the voltage between two 

electrodes. Most meters, commonly known as smart meters, which can analyze and transmit water 

consumption information, are static meters. However, it is possible to find in the market mechanical 

meters with an electronic register that can conduct the same type of analysis as a static smart meter 

with the only difference that the measuring principle is mechanical. Examples of these are 

velocity-single-jet, multi-jet, and Woltmann meters, or positive displacement meters—oscillating 

piston and nutating disc meters—equipped with an electronic register. This configuration is available 

from most of the leading water meter manufacturers around the world. 
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The absence of moving parts presents significant advantages over the traditional mechanical 

water meters. The first, and most obvious one, is that the unavoidable wear and tear of all moving 

components associated with mechanical technologies does not affect static water meters [1,2]. A static 

meter can work for long periods at high flows without any critical damage. Consequently, a slightly 

undersized static meter does not become a severe problem. It may be a suitable option for measuring 

water consumption of large customers having a high monthly consumption rate. On the other side, 

the degradation of mechanical components has a clear effect on the low flow sensitivity and their 

ability to measure internal leaks [3–6]. Mechanical meters tend to lose their performance at low flows 

rapidly and the starting flow rate gradually increases as the meter ages [7–10].  

Furthermore, the achievable low flow sensitivity, even when newly installed, is significantly 

better in a static meter in comparison with a standard velocity mechanical meter and comparable to 

the best positive displacement meter. It is not unusual to find in the market static meters with a 

metrological classification of R400 or better according to ISO 4064-1:2014 [11]. Finally, it is essential 

to mention that static meters can achieve and maintain their excellent metrology at any position of 

installation. Contrary to what usually happens with mechanical meters, the metrological 

performance is not affected by the orientation (vertical or inclined) of the meter [12]. 

Another major advantage of static meters over mechanical meters is their insensitivity to poor 

water quality. Static meters are typically more stable against limescale deposits and loaded waters. 

Nevertheless, depending on the construction, static meters are not utterly unaffected by water quality 

effects. In some cases, extremely loaded, fouling, or abrasive waters can damage or disable the sensors 

or obstruct the measuring tube with similar consequences as when a turbine of a mechanical meter is 

blocked or damaged [13]. 

However, there are also several disadvantages of using static meters over mechanical meters. 

The actual durability in the field of the batteries, under real working conditions, is still unknown as 

many of these meters have only been installed by water utilities for the last few years. Moreover, the 

use of Lithium batteries has a considerable negative effect on the environment, and the recycling cost 

of the instruments, including the battery, should not be neglected. 

Additionally, at very high flows, the metrological performance of static meters can also be 

unreliable. While mechanical meters show problems at high flows related to the magnetic coupling 

between the turbine and the register, the algorithms of some static meters struggle under the 

occurrence of high flows, larger than the overload flow, Q4. Most ultrasonic meters have a high-flow 

cut-off at which the meter saturates or even stops counting. 

However, the main drawback of static measuring techniques is associated with the requirements 

of the electric supply of the sensors used to measure water flows and all electronic components 

needed to perform water consumption calculations and data transmissions. This means that an 

expensive large capacity Lithium battery is required to power the meter during its expected useful 

life, significantly increasing the cost of the device. Considering that the typical, expected useful life 

of a residential meter can be in the range between 8 and 15 years, all efforts need to be put in the 

design of the meters to use as little power from the battery as possible. For this reason, static meters 

are not continuously measuring the flow or powering the electronic components needed to perform 

the calculations. To extend the battery life, static meters sample the flow signal at periodic intervals. 

The periodicity depends on the type of meter and its design but, in most cases, is in the order of 5–6 

s, although some models can lower this period down to 1 s or less. This means that there is a 

considerable chance that short water consumption events are not properly measured. 

This limitation can become a problem when measuring the water consumption of residential 

customers. In fact, a substantial amount of water consumption inside houses, 20% or more depending 

on the type of househould, has a duration of less than 30 s [14–18]. Short duration events can have a 

very negative effect on the overall metrological performance of the meters, depending on how the 

consumption and the sampling of the flow signal are synchronized. Briefly, and in order to show the 

impact of sampling on the accuracy of a water meter, consider a water consumption event having a 

duration of 29.8 s. This consumption is measured by a static meter with a sampling interval of 6 s. 

For this event, the worst case scenario is when the flow is only measured at the following instants: 
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5.9, 11.9, 17.9, and 23.9 s. Simplifying the calculations, for the static meter, under these extreme 

conditions, the duration of the consumption is only 24 s instead of the actual 29.8 s. This means that 

the measuring error would be close to −19.5%. Obviously, this is an extreme situation, but it does not 

account for other effects like the time needed by the water meter to conduct the calculation of the 

circulating flow rate and the influence of unsteady flows that occur at the beginning and end of the 

consumption. If the duration of the water use events decreases, the measuring error increases. With 

the purpose of minimizing the problem, a frequent informal argument given by most static water 

meter manufacturers is that measuring errors caused by signal sampling will eventually compensate 

each other. However, current water meter standards, including the latest version of the ISO 4064 

published in 2014 [19], do not include specific tests that verify that the calculation algorithms used 

by the water meters compensate sampling errors in the medium-long term. In other words, at the 

present time, the algorithms used must be tested to verify that they do not introduce a bias that could 

benefit either party, the customers or the water utilities. 

Up to now, and due to the novelty of these metering technologies, there are very few 

bibliographic references on the metrological performance of water meters under intermittent flows 

or short duration water consumption events. The most recent one was by J. R. Chadwick [20] in which 

the accuracy of residential water meters in response to burst flows (of 1 s or less) was investigated. 

In this research, two of the meter types tested were ultrasonic. A specific mention on the influence of 

the sampling rate was made. Unfortunately, this research only considered very short consumption 

events of 1 s or less, which are not usual in households and are not representative to establish the 

overall measuring performance of static meters. L. Hovany [21] and S. Yaniv [22] analyzed the 

performance of several mechanical meters under the pulsating flows caused by a device designed to 

reduce unmeasured water caused by leaks inside homes. The research only considered mechanical 

meters. 

The analysis conducted focuses on the metrological performance under an intermittent flow of 

small size (DN15 and DN20) static water meters typically used to measure residential water 

consumption. The measuring technologies considered were ultrasonic (transit time) and 

electromagnetic. However, for comparison purposes, mechanical velocity meters were also added to 

the test sample. In total, 10 different meter types produced by seven manufacturers were considered. 

The main objective of the research was to establish the influence of intermittent flow conditions of 

various durations on the measuring errors. To obtain realistic figures, closer to the ones that would 

have been reached in the field, all water meters were tested without activating the test mode. This 

mode increases the sampling frequency and reduces the reading scale interval. 

For all meters, the metrological performance obtained under steady state flow conditions, as 

defined by ISO 4064-1:2014 [11], was compared with the measuring errors found under intermittent 

flows. Each one of the test conditions, defined by the flow rate and the intermittency period, were 

repeated up to a maximum of 17 times and a minimum of three times to establish the error 

distribution and to allow for statistical comparison methods to be applied. The statistical analysis was 

conducted using R-statistics [23]. The external package needed in each case is detailed in the 

corresponding section. 

2. Materials and Methods 

The test programme was designed to understand the actual water meter performance working 

under similar operating conditions and with the same configuration as in the field. For this reason, 

and with the purpose of identifying significant changes in the metrological performance of the 

meters, all tests had to be carried out, ensuring that the experimental uncertainty was below an 

acceptable threshold. Under this hypothesis, it is important to realize that the greatest contribution 

to the test uncertainty is caused by the resolution of the water meter reading. This resolution for a 

typical domestic water meter is 1 L. This value does not meet the published standard requirements. 

As stated by the ISO 4064-1:2014 [11] and the OIML R49-1:2013 [24], the subdivisions of the reading 

scale of water meters having an accuracy class 2, should allow for an error of estimation due to water 

meter resolution of less than 0.5% of the volume corresponding to 90 min at minimum flow (Q1). 
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However, the ISO 4064-1:2014 [11] and the OIML R49-1:2013 [24] also allow for ancillary devices to 

improve the reading resolution of the water meters. The use of these devices or any button or system 

that enables an improved volume resolution in the display, in order to meet the requirements defined 

in the standards, may “inform” the water meter that is being subject to a test, modifying the internal 

operating conditions. In other words, there is no means of guaranteeing that the internal algorithms 

or operation of the water meter do not change when pressing a button with the theoretical purpose 

of improving the resolution of the meter. For this reason, during this work, water meters were tested 

in the laboratory without activating the test mode (common in these electronic meters) or pressing 

any button that increased the volume resolution of the display. 

2.1. Test Bench Description 

Two different volumetric test benches were used during the experiments. The first one was used 

to carry out the tests under steady flow conditions. The second one, a built-to-purpose test bench, 

was employed for the tests conducted under intermittent flow conditions. 

A simplified schematic of the first test bench is shown in Figure 1. Water is pumped from an 

underground tank using variable speed pumps. The stability of flow and pressure at the inlet of the 

bench is assured by means of a 1000 L pressure vessel. The bench can fit up to five DN15 water meters 

in series. Downstream the bench, there is a set of valves and flow meters that allow adjusting the flow 

rate of the test to the desired value. Two probes of 10 and 200 L are used as a reference volume. For 

the series of tests presented in this study, the 10 L probe was only used at low flows, i.e., 20 and 50 

L/h. For the remaining tests, the 200 L probe was used in all cases. The errors of the meters were 

obtained by means of the standing start and stop test method (ISO 4064-2:2014 [19]). The scale 

division of the 10 and 200 L probes was 0.01 and 0.2 L, respectively, which represents 0.1% of the 

tested volume and is significantly smaller than the volume resolution that can be read from the meter. 

The expanded uncertainty of the tests conducted in this work was mainly driven by the volume 

resolution of the meters. For all digital meters under examination, the smallest volume that could be 

read from the register without interfering with the instrument was 1 L. Considering that the volume 

indication of the meter has a discontinuous movement, the error due to the resolution of the meter 

can be estimated, according to ISO 4064-2:2014 [19], as 1% or less when the 200 L probe is used (a 

graphical example is presented in Section 1 in Supplementary Material S-A). The uncertainty 

originated from the scale division of the 200 L probe, considering that it has a continuous movement, 

and only one reading is necessary to estimate the volume, can be estimated as 0.05%. 

 

Figure 1. Test bench used to conduct tests under steady flow conditions. 
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The second test bench (Figure 2) has two parallel lines, which allow doubling the number of 

meters, which can be analyzed simultaneously. An electronic controller opens and closes the shut-off 

electrovalves of each line at the pre-set times, depending on the type of test to be conducted. This 

configuration made it possible to have one line running while the other was closed, thus reducing 

the time needed for the experiment. 

 

Figure 2. Test bench used to conduct tests under intermittent flow conditions. 

This test bench uses three brand-new DN15 positive displacement meters as master meters for 

reference. These meters, known to be extremely repetitive, were tested against the 200 L volumetric 

probe to obtain a detailed error curve at different flows (Figure 3) and to verify that their measuring 

errors did not change significantly under intermittent flow conditions. One meter is installed at the 

downstream extreme of each parallel line, and the third meter is located at the downstream end of 

the bench. This configuration allowed for redundancy in the measurement of the total volume passed 

through the meters. Once the volumes are corrected with the error of the meters, the sum of the 

measures taken by the two upstream meters must be equal to the total volume measured by the 

downstream meter. 

The set of regulating valves installed downstream the two parallel lines allow for the adjustment 

of the magnitude of the flow rate passing through the meters. By activating and deactivating the 

different branches of this set of valves, it is possible to select the flow rate. The combination of 

electrovalves allowed not only to produce intermittent flows but also to modify the magnitude of the 

flow during each activation period. This way, the experiment could be set to operate cyclically, which 

helps other authors to reproduce the tests more easily using the same operating conditions. The cyclic 

operation also simplifies the interpretation of the results. This type of testing is also a suitable 

procedure for checking the repeatability of the meters under study, analyze any potential bias in the 

internal measuring algorithms of the meters, and to decrease the influence of meter resolution. In 

addition, the simplicity of the tests helps to identify the operating conditions that most affect the 

metrological performance. 
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Figure 3. Error curves of the master meters installed in the test bench used for intermittent flows. 

2.2. Sample Description 

The purpose of the experiment was to explore the stability of measuring errors of small diameter 

solid-state water meters under the presence of unsteady and varying flows. Performance under these 

working conditions is critical for water utilities as varying consumption flow rates are typical of 

domestic customers and currently are not considered in any test programme defined in international 

standards related to water meters. Moreover, these standards only define accuracy tests under steady 

flows, limiting the maximum variability of flow during the tests to 2.5% if the flow is between Q1 and 

Q2 (exclusive), and 5% if it is between Q2 (inclusive) and Q4 (ISO 4064-2:2014 [19]). 

For the study, a sample of different DN15 and DN20 meters available in the market from various 

manufacturers was provided by FACSA. In total, 35 meters units were subject to test. The 

characteristics of the meters under examination, including technology, diameter, metrological class, 

and permanent flow, are presented in Table 1. This table provides an overall view of how the different 

types of meters are distributed. 

Table 1. Tested meters distributed by manufacturer, type, technology (EMF = electromagnetic, US = 

ultrasonic, M = mechanical), meter size, and metrological class. (*) The meter type M2 is divided in 

two subcategories according to their age: M2 (14) are meters manufactured in 2014 and M2 (17–18) 

are meters manufactured in 2017–2018. 

Manufacturer 
Type of 

Meter 

Num. of 

Units 
Technology DN 

Metrological Class 

(Q3/Q1) 

Q1 

(L/h) 

Q2 

(L/h) 

Q3 

(m3/h) 

Q4 

(m3/h) 

B3 M1 3 US 15 400 6.25 10 2.5 3.125 

B5 M2 (14)(*) 5 US 15 160 10 16 1.6 2.0 

B5 M2 (17–18)(*) 8 US 15 160 10 16 1.6 2.0 

B1 M3 2 US 15 400 6.25 10 2.5 3.125 

B4 M4 1 EMF 15 800 3.125 5 2.5 3.125 

B7 M5 1 US 15 800 3.125 5 2.5 3.125 

B2 M6 5 M 15 125 20 32 2.5 3.125 

B5 M7 2 US 20 250 10 16 2.5 3.125 

B6 M8 1 US 20 400 10 16 4.0 5.0 

B4 M9 2 M 20 160 25 40 4.0 5.0 

B4 M10 5 EMF 20 800 5 8 4.0 5.0 
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The number of meters from each manufacturer is relatively small. The reason is based on two 

assumptions: 

(i) Manufacturers of solid-state water meters ensure minimal tolerances during production. In 

addition, variations detected between units are later corrected in the calibration process. 

Consequently, potential differences in the behavior of a solid-state water meter under steady 

and intermittent flow conditions are mainly due to the firmware and/or the signal processing 

algorithm, which are identical for all meters of a certain type and manufacturer.  

(ii) The present study aims to detect whether the processing algorithms used by each meter type 

show any significant fault that impedes a correct measure of water consumption under 

intermittent flow conditions. 

Therefore, under these assumptions, a large sample of each type of meter was not necessary, 

since all units should perform in a similar manner. For this reason, the study, with the limited 

resources available, focused on testing meters from different manufacturers rather than testing 

several units of the same type. 

Furthermore, solid-state water meters are a relatively novel technology. Manufacturers are 

extremely active, and brand-new meter types are presented continuously on the market. 

Additionally, like any other high-tech instruments, manufacturers constantly improve hardware and 

software to add new features. This becomes a significant issue as the metrological performance of the 

meters can be greatly affected by the firmware of the instrument. Therefore, it is not possible to 

guarantee that the behavior of a meter manufactured today will be the same as one produced in a 

few years, even if they share the same exact external appearance and measuring features. 

For this reason, the main purpose was not only to provide an example of how solid-state meters 

available today could perform in the field but also to highlight the importance of designing a new 

test programme that needs to be included in the water meter standards. These new tests should 

analyze the metrological performance of the meters under operating conditions more similar to what 

meters will find in the field. Additionally, for comparison purposes, a batch of a widely used single-

jet mechanical water meters, M6 and M9 type in Table 1, was added to the sample under analysis. 

For reference, Table 2 shows for each type of meter the average age and accumulated volume, 

the default reading resolution, and the availability of a test mode (resolution change). Except for M2 

and M6 meter types, all water meters tested were out-of-the-box brand new meters. In the particular 

case of M2, some of the meters tested were manufactured in 2014, while others were produced in 

2017 and 2018. All these M2 meters have been in operation and removed from the field except the 

units named M0007 and M0009. Meter type M5, of which only one unit was available, did not 

properly function at the beginning of the tests. The display of the meter indicated that water was 

passing through it, but the index of the register did not show any increment in volume. 

Unfortunately, it was not possible to replace the unit with an operational one. However, it is 

noteworthy that a solid-state meter, being in apparent good working conditions, did not sense any 

flow. This meter could have been installed in the field without noticing it was defective. In any case, 

and in order not to distort the results, this unit was not included in the statistical analyses conducted. 

Table 2. Average age and registered volume of the meters as received in the laboratory. Additionally, 

the default resolution and the availability of resolution change per meter type. 

Type 

of 

Meter 

Age 

(Years) 

Accumulated 

Volume (m3) 

Default 

Resolution 

Resolution 

Change 

M1 1 3.8 L Available  

M2 3.6 2611.8 L Available  

M3 1.0 1.4 L Available  

M4 5.0 0.2 L Available  

M5 2.0 12.7 L Available  

M6 4 2289.5 dL Not available 
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M7 0.5 1.2 L Available  

M8 0 0.1 L Available  

M9 0 0.7 dL Not available 

M10 0 0.4 L Available  

2.3. Test Programme Description 

The test programme started with a series of experiments designed with the purpose of obtaining 

the reference error curve of each meter so it could be used for comparison with other tests. This curve 

was obtained under steady state conditions as defined by ISO 4064-2:2014 [19] employing the test 

bench described in Figure 1. Except at low flows, the minimum volume passed through the meter in 

each test was, at least, 200 L. For this reason, the uncertainty in estimating the error of indication is 

mainly driven by the minimum resolution with which the accumulated volume of the meters can be 

read. Overall, this figure is close to 1%. 

In order to improve the reliability of the reference error curve, and to assess the repeatability of 

the meters, each flow rate was tested several times. Due to restrictions in the duration of the tests, the 

number of repetitions did vary from 17 at high flows down to 3 at lower flows. Additionally, not all 

meters were tested at the same flow rates, and some of them, received after the test programme was 

already started, were tested at a reduced number of flow rates (those strictly needed for comparison 

with the unsteady flow conditions). More information about the number of repetitions conducted by 

meter and test type is provided in Section 2, in Supplementary Material S-A. 

The details of these tests, used as a reference, named T1, are shown in Figure 4. They were 

conducted under steady state conditions (regime: S), the flow rate through the meter was maintained 

constant (flow variability: C), and the flow rate ranged between 20 and 5000 L/h. Considering that 

the flow rate was kept constant during the test, the Cyclic Period parameter does not apply in this 

case (N/A). The numbers in brackets indicate the quantity of tests included in the group. In total, 334 

tests were conducted on T1. 

 

Figure 4. Distribution of the tests conducted according to the test type denomination, hydraulic 

regime (S = steady flow; I = intermittent flow), variability of flow (C = constant; V = variable), test flow 

rate or flow rate profile (P1, P2, or P3) and cyclic periodicity. The number in brackets indicates the 

quantity of tests conducted in each category. 
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Additionally, to the above, the study comprises a set of tests conducted under intermittent flow 

conditions to verify the ability of the meters to measure short consumptions and to adapt to real 

working conditions in the field. With the purpose of setting up a reproducible experiment, the 

configuration of these tests only modifies two parameters: the cyclic periodicity and the flow rate. By 

doing this, it was possible to create consumptions of a specified duration and flow rate that were 

repeated over time (Figure 5). For example, the group named T2 (Figure 4) corresponds to tests in 

which the duration of the consumption was 2 s (��� = 2 s), and the flow rates were 200, 500, and 

2000 L/h. The tests in the group T3 were conducted at the same flow rates, but the cyclic periodicity 

was changed to 5 s (��� = 5 s), simulating consumptions of a longer duration. In a similar manner, 

the tests in groups T4 and T5 were performed with the cyclic periodicity set to 10 and 20 s, 

respectively. 

 

Figure 5. Parametrization of the tests conducted. 

To add more controlled variability to the operating conditions during the assays, the tests named 

T6 and T7 considered intermittency and flow rate variability within the same experiment. More 

precisely, three flow rate profiles were established: (a) flow profile P1 covers the lower flow rate 

range, alternating during the activation period 600 (��
�), 400 (��

�), and 200 L/h (��
�); (b) flow profile 

P2 takes into account higher variability and a larger average flow rate than P1, with ��
�, ��

�, and ��
� 

set to 1100, 900, and 200 L/h, respectively; (c) finally, the flow profile P3 only covers the upper flow 

rate range for which the values of ��
�, ��

�, and ��
� were set to 2000, 1500, and 1500 L/h. T6 uses a 5 s 

cyclic periodicity and was carried out with P1 and P3 profiles (see Figure 4). Test T7 was conducted 

with a periodicity of 10 s instead of 5 s, using all the previous flow profiles, i.e., P1, P2, and P3. 

All tests conducted under intermittent flow conditions, from T2 to T7, were performed in the 

test bench described in Figure 2. For these tests, the required minimum duration or volume passed 

through the meters was 1 h or 200 L, whichever was more restrictive (Table 3). Consequently, for flow 

rates lower than 400 L/h the constraining condition was the minimum volume. On the contrary, the 

required condition for higher flows was the minimum duration of the test. These impositions reduced 

the uncertainty due to the volume reading resolution of the solid-state meters, which was 1 L in all 

cases, to a value lower than 1% (Table 3). The restrictions used also ensured that the number of flow 

activations during a test is sufficient to identify biases or defects of the algorithms and that these 

defects will have a clear impact on the measuring error. 
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Table 3. Duration, average volume, and reading uncertainty per test type. 

Type of Test Avg. Duration (min) Avg. Volume (L) Reading Uncertainty 

T1 32 195 1.02% 

T2 80 504 0.40% 

T3 72 396 0.50% 

T4 69 486 0.41% 

T5 73 388 0.52% 

T6 98 790 0.25% 

T7 106 734 0.27% 

2.4. Analysis Methods Overview 

The available sample size does not allow for inferential statistical analysis to compare the 

behavior of meters between different technologies and models or against steady and intermittent 

flow conditions. For this reason, the analysis of the results is essentially descriptive. Furthermore, the 

repetitions of a certain test conducted on a meter were handled as individual data, instead of taking 

the average of the errors obtained as a representative value. In this way, the dispersion which is one 

of the most relevant characteristics under study, can be examined more clearly. 

Thus, the analysis conducted was based on position and dispersion measurements to describe 

the results, as well as the use of graphic tools such as box-whiskers and histograms. On the other 

hand, the variables used to classify the results obtained into different groups were the flow rate, type 

of test, diameter, technology, type of meter, and flow conditions. The primary tool used to conduct 

the analysis described was R-statistics [23], and the package ggplot2 [25] was employed to generate 

plots.  

Despite of the above, the sample tested includes a number of M2 meters sufficiently large to 

apply the tools of inferential statistics: 13 units are available, five of them manufactured in 2014, and 

eight in the period 2017–2018. Hypothesis testing by means of parametric tests is the proposed 

statistical tool to compare the metrological performance of M2 meters: (1) of different ages; (2) under 

intermittent and steady flow conditions. Since the results obtained at this stage are preliminary, and 

the assumptions for this type of analysis must be verified by means of a larger sample, the 

methodology followed, and the results were included in Sections 3 (S-A) and 9 (S-B) in the 

Supplementary Material, respectively. 

3. Results and Discussion 

The results obtained from the tests underwent a preliminary validation process to identify 

outliers and abnormal data points. This validation process includes the identification of transcription 

errors of the meter readings by means of pictures taken at the beginning and end of each test and the 

consistency of the data. This consistency checks verified the volume recorded by the different 

reference meters or probes and the relationship between the duration and flow rate of the test and 

the volume used for reference. For example, in the case of the results obtained in the tests under 

intermittent flow conditions, the following was verified: (1) that the sum of the volume recorded by 

the reference meters of each test line is within ± 0.5% of the volume recorded by the reference meter 

at the bench discharge (results of this analysis is presented in Figure S2 in the Supplementary Material 

S-A); (2) that the volume passed through each line is 50% ± 5% of the total volume recorded by the 

reference meter at the bench discharge (Figure S3 in Supplementary Material S-A). The volumes 

measured by these reference meters were corrected according to the corresponding error curve 

presented in Figure 3. Finally, in order to facilitate the statistical analysis conducted in this work, all 

valid data were organised into a relational database. 

3.1. Metrological Performance under Steady Flow Conditions 

The steady state flow tests were used for two main purposes. On the one hand, it was necessary 

to verify that the meters under analysis met the metrological requirements for new meters defined 
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under the ISO 4064-1:2014 [11]. On the other hand, it was necessary to obtain a reference error curve 

that could be used for comparison purposes with other tests performed.  

Concerning to the first objective, Figures 6 and 7 show the detailed results of the error tests per 

meter through boxplots. These graphs present the error distribution of the various repetitions 

conducted at each flow rate under steady flow conditions. Section 5 in the Supplementary Material 

S-B offers numerical details about the average error and the standard deviation of the tests. Like any 

traditional mechanical water meter, the error of the solid-state water meters under examination 

should be within the maximum permissible error of ±2% for flow rates greater than Q2 and an 

accuracy class 2. 

Almost all meters tested met the ISO 4064-1:2014 [11] metrological requirements for the flow 

rates considered. M5 and M7 type meters were exceptions to the previous statement. As explained 

before, the only M5 unit available did not measure any flow, although the display of the meter and 

the meter itself seemed to be in proper working order. M7 meters showed an average error of 

approximately −8.5% at the highest flow rate tested of 5000 L/h, which for these meters corresponds 

to the overload flow rate (Q4). This malfunctioning at high flows has also been detected by the authors 

in other brands of ultrasonic meters and actual figures are detailed in the technical specifications of 

some brands. However, this behavior only appears under the presence of flow rates larger than 

1.25·Q4 and disappears once the flow rate decreases below that threshold. Therefore, this 

malfunctioning is caused by limitations of the algorithms used to calculate the flow and not by a 

defective component of the meter. Nevertheless, these results at high flows confirm the importance 

of testing the meters over a wide range of flow rates before they are put into operation. 

With regards to the single-jet mechanical water meters, M6 type has a slight tendency to over 

register water consumption as the flow increases (Figure 6). Meters units M0011 and M0012 exceeded 

the maximum permissible errors for flows greater than 1000 L/h. In addition, M0011 showed poor 

performance at a flow rate of 50 L/h, with an average error (five tests conducted) of −12.3%. This loss 

of accuracy is common in mechanical meters that have been in operation for several years (Table 2). 

In contrast, Figure 7 shows that the overall repeatability in a steady state test of a brand-new single 

jet mechanical water meter (M9 type) is satisfactory. 

The steady state tests were employed not only to verify that the actual errors of the meters were 

within the maximum permissible errors allowed by the ISO 4064-1:2014 [11] standard but also to 

measure their repeatability. In this regard, the ISO standard establishes that the standard deviation 

of the errors at a given flow should not exceed one-third of the maximum permissible error, which 

for flows larger than Q2 is 2%. This means that the standard deviation of the errors should be smaller 

than 0.66%. However, provided that the reading resolution of the solid-state meters is limited to 1 L, 

the overall uncertainty of the tests is close to 1%. This means that even under steady flow conditions, 

a standard deviation well below the overall uncertainty cannot be expected from the tests. 

Considering this limitation and the results presented, it cannot be stated that the meters under 

analysis do not meet the repeatability requirements established in the ISO standard. Figure 8 

consolidates the repeatability of the measuring errors obtained by technology, nominal diameter, and 

flow rate. Each box-whisker plot is built with the standard deviations that the associated meters have 

shown in each test. For example, the box-whisker plot corresponding to DN20 meters with EMF 

technology and a flow rate of 2000 L/h is composed of five data or, in other words, five standard 

deviations corresponding to meters M0021, M0032, M0033, M0034, and M0035 that were tested 7, 3, 

3, 3, and 3 times (Table S1 in Section 2 in Supplementary Material S-A), respectively, under steady 

flow conditions at 2000 L/h. The lower standard deviation achieved by mechanical meters can be 

explained by the better scale resolution of these meters. 
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Figure 6. Error distribution under steady state flow conditions. Test type T1. DN15. 
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Figure 7. Error distribution under steady state flow conditions. Test type T1. DN20. 
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Figure 8. Variability of the standard deviation of the error obtained for tests under steady flow 

conditions. 

For this reason, due to the poor volume resolution that is readable in the display of solid-state 

meters without interacting with them, it seems evident that the ISO standard needs a significant 

upgrade. Improving the scale resolution of the meters, available without any interaction with them, 

is the only option to conduct proper accuracy tests in a laboratory that ensure that meters will operate 

during the tests exactly as they will in the field. Currently, the ISO standard and the OIML 

recommendation specify that all meters should incorporate a verification device that “provides 

means for visual, nonambiguous verification testing and calibration”. The problem is that this 

requirement on the verification scale interval of the display of a water meter is only met when the 

test mode is activated. Consequently, this constraint related to the allowable resolution has not been 

properly interpreted by manufacturers, and currently, published standards do not require that the 

verification scale interval is permanently readable. This way, according to the ISO 4064-1:2014 [11] or 

the OIML R49-1:2013 [24], the required resolution of the verification scale of a meter having a Q3 of 

2500 L/h, and a metrological class R160, is 0.0586 L. If the metrological class changes to R250 or R400, 

the required resolution decreases to 0.0375 and 0.0234 L, respectively. In all static meters tested, these 

resolutions can only be achieved by activating the test mode; otherwise, the scale resolution is 1 L. 

Unfortunately, once the test mode is activated there is no means of guaranteeing that the meter will 

have the exact same performance as with the test mode deactivated as this modes changes the 

sampling frequency and other operating conditions of the meter. 

As expected, the error curve of solid-state water meters is relatively more uniform (flat) 

compared to the error curve of a single-jet mechanical water meter, which suffers from more 

oscillations throughout the measuring range. Figure 9 shows by means of a box-whisker plot, the 

error distribution at different flow rates of all units tested. Figure 9 does not include the results from 

tests at 50 L/h of the unit M0011 (M6 meter type) and at 5000 L/h of the units M0016 and M0017 (M7 

meter type), with an associated error that exceeded ±2.5% of the reference volume, in order not to 

bias the results. An assessment of the variability of the error through the measuring range can be 

easily analyzed by the interquartile range amplitude of the box-whisker diagram. 

Figure 9 also shows the ability of the manufacturers to produce meters with the same 

performance. Surprisingly, solid-state meters do not show any significant improvement in this 

respect to brand-new mechanical meters [26], especially when compared to oscillating piston meters. 

The tests conducted showed that meters of the same manufacturer can have an average measuring 

error throughout the tested range of more than 1.5%. Higher variabilities in performance indicate 
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lower control over the production processes. This implies that water utilities need to implement 

stricter quality control procedures on the meters received from that manufacturer to guarantee that 

there are no defective units in the inspected lot. This is the case of M1 and M3 type meters. Figure 9 

also shows that all solid-state meters, except M7 type at Q4, can easily maintain the errors within the 

maximum permissible error of 2% under steady state conditions. 

 

Figure 9. Error distribution throughout the tested flow rate range of the meters under analysis. T1 test 

type. Tests from M0011 (M6) at 50 L/h and from M0016 and M0017 (M7) at 5000 L/h were excluded in 

order not to bias the results. 

The single DN15 electromagnetic meter unit under analysis, M4 type, showed a decline in 

repeatability at high flows (Figure 10). This behavior was not observed in the DN20 units by the same 

manufacturer, M10 meter type, which presented a more stable performance throughout the flow rate 

range. In any case, the repeatability of this technology during the steady state tests was better than 

ultrasonic meters. 
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Figure 10. Error distribution by flow rate, technology and meter type. T1 test type. Tests on the M0011 

(M6 meter type) at 50 L/h and on the M0016 and M0017 (M7 meter type) at 5000 L/h were excluded 

in order not to bias the results. 

The single-jet meters removed from the field, M6 type, presented the expected variability in the 

performance of meters that have been in operation during some time (Table S4 in Section 5 in 

Supplementary Material S-B). Contrarily, the M9 meter type, which corresponds to a brand-new 

water meter, exhibits an extremely low variability of the error at each flow (thanks to a volume 

reading resolution of 0.1 L), with some oscillations throughout the flow rate range. 

Figure 11 presents the consolidated variability of the errors obtained by technology and the flow 

rate. As expected, ultrasonic meters showed a uniform behavior throughout the measuring range, 

and the average error at each flow rate slightly oscillates around the average value. The error 

distribution of the electromagnetic meters, M4, and M10 types show a difference in behavior between 

the two, which essentially are the same meter of different diameters. 
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Figure 11. Error distribution by flow rate, diameter, and technology. T1 test type. Tests on the M0011 

(M6 meter type) at 50 L/h and on the M0016 and M0017 (M7 meter type) at 5000 L/h were excluded 

in order not to bias the results. 

3.2. Metrological Performance under Intermittent Flow Conditions 

Domestic water demand is exceptionally heterogeneous, and flow rate and duration of water 

consumption events are extremely scattered [14–18]. From a duration perspective, a shower event is 

not comparable with shorter uses, like filling a glass of water. Additionally, the flow rate of a leak is 

much lower than the consumption flow occurring when several water appliances are used 

simultaneously. Each water end-use has its own independent characteristics, which make the 

modelling of residential water demands a complex topic. However, some authors have proposed a 

simplification of all this casuistic by modelling water consumption events as a series of pulses of a 

given duration and a flow rate that are distributed through time, both of these parameters (duration 

and flow rate) being described by probabilistic functions that can be specific to a water end-use and 

individual user [15,27–32]. Therefore, from a standardization point of view, employing complex 

consumption profiles to conduct the tests is not an option, as the purpose of this experiment is to 

design and conduct a test programme that provides repeatable results and can be reproduced by an 

independent third party. The test programme used intended to limit the intermittency and variability 

of flow. In the case of flow intermittency, the cyclic periodicity of the consumption pulses was set to 

2, 5, 10, and 20 s. In the case of flow rate, and provided that the typical consumption flow of a domestic 

appliance is between 200 and 2000 L/h, the test flow rates were primarily chosen in this interval. 

As it has been already mentioned, sampling of the flow rate signal is a common technique to all 

solid-state meters to extend their battery life. The purpose of conducting metrological tests under 

intermittent flow conditions is to establish if the signal sampling has any effect in the measuring error 

of the meters. Some meters feature a fixed sampling rate, which typically is in the order of 5–7 s. 

Other meters are designed with a variable sampling frequency depending on the presence and 

magnitude of the flow rate. The algorithms that change the sampling frequency are confidential, and 

no details have been provided by the manufacturers. 

Consequently, to obtain more realistic results, it was not acceptable to notify the meter that it 

was subject to test by interacting with it or activating the test mode. Therefore, as it has already been 

said, all meters were tested in the same conditions as they would have been in the field. 

The analysis of the results of the experiments described in this section focuses on three main 

issues: (1) differences in metrological performance of the meters when subject to steady and 

intermittent flow conditions; (2) impact of cyclic periodicity and magnitude of intermittent flows in 
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the measuring errors; (3) potential biases caused by intermittent flows that could favor one of the 

parties. 

Figures 12 and 13 describe through boxplots the error distribution of the tests performed under 

intermittent flow conditions at different flows by meter type. The error distribution obtained per 

meter can be found in Section 6 in Supplementary Material S-B. It is important to highlight that these 

charts compile the raw results of all the test types under intermittent flow conditions defined in 

Section 2.3 or, in other words, the error obtained in each repetition of a test conducted, not the average 

error. 

The results show that the error magnitude significantly increased when compared to steady state 

conditions. It was not unusual to obtain a measuring error of ±20% (the percentage of results in which 

the error of the meters tested was greater than ±5% for the various test types considered is detailed 

in Section 7 of the Supplementary Material S-B). This statement applies to a greater or lesser extent 

to all meter types. However, ultrasonic meters are more affected than the electromagnetic meters 

under examination. This is mainly due to the fact that signal sampling frequency is higher for 

electromagnetic meters (1 Hz or more) than for ultrasonic meters (0.2 Hz or less). Consequently, 

electromagnetic meters are more prepared for accurately measuring short duration consumptions 

events like the ones found in households. 

Therefore, all meter types presented a significant difference in performance between steady and 

intermittent flow conditions. As will be shown later in the analysis, this difference is affected by the 

cyclic periodicity of the flow, the duration of a consumption event being more significant than the 

test flow. Although the results obtained must be contextualized, since the proposed tests magnify the 

potential biases associated with short consumptions events, it is a fact that the operating conditions 

in the field are continuously changing depending on the consumption profile. In the field, the error 

measuring a consumption event may be positive, and the following consumption event may be 

measured with a negative error. Therefore, the concern of water service managers is whether the 

errors of various signs that happen over time compensate each other in the long run. A more detailed 

analysis of the T6 and T7 tests (variable and intermittent flow conditions) was carried out in Section 

8 of the Supplementary Material S-B to address this concern. 

In the case of solid-state water meters, an increase in error dispersion was also observed. As 

explained in Sections 2.3, the test volume of the tests under intermittent flow conditions is relatively 

large, and the expanded uncertainty of the test does not exceed 1%. Moreover, the errors obtained 

under steady flow conditions show a dispersion that meets the requirements of the ISO standard (1/3 

of the maximum permissible error). Thus, the large dispersion of the errors found is strictly related 

to the internal algorithms and signal sampling periodicity. In addition, differences in performance 

between manufacturers and technologies can be easily identified, although a larger sample would 

have to be analyzed in the future to draw well founded conclusions. For example, the M7 and M2 

meter types, both ultrasonic meters of different diameter (DN20 and DN15, respectively) from 

manufacturer B5, show more significant errors when the cyclic periodicity of the intermittent flow is 

set to 2 s (test type T2). Contrarily, the M1, M3, and M8 meters, which are also ultrasonic meters from 

three different manufacturers, have a more uniform response to different durations of intermittent 

consumption events. They even seem to achieve a worse metrological performance when the cyclic 

periodicity is set to 5 s. On the other hand, the electromagnetic meters tested show a better 

performance than the ultrasonic meters under all types of intermittency. Their average metrological 

response to the different intermittent flow tests is very similar to the one found under steady flow 

conditions. As explained above, this is mainly due to the fact that the signal sampling frequency is 

higher than 1 Hz.  

For comparison, the single-jet mechanical water meters in the sample are still remarkably 

repetitive, but there is a strong tendency to over register as the duration of the consumption event 

decreases. Nevertheless, this behavior tends to diminish as the flow rate increases. The over 

registration of the meter is caused by the rotational inertia of the impeller, which keeps turning for a 

period of time after the consumption has finished. 



Sensors 2020, 20, 5339 19 of 28 

 

 

Figure 12. Error distribution under intermittent flow conditions. T2, T3, T4, T5, T6, and T7 test types. 

DN15. Results of T1 type tests were added as a reference. 
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Figure 13. Error distribution under intermittent flow conditions. T2, T3, T4, T5, T6, and T7 test types. 

DN20. Results of T1 type tests were added as a reference. 

Despite the fact that the reference volume in each test was sufficient to reduce the uncertainty to 

less than 1%, a number of repetitions showed remarkably large errors. Table 4 describes the tests in 

which the errors obtained were above 50%. In such cases and considering that for steady state 

conditions, the errors of the meters were within the maximum permissible errors of the standard, it 

is considered that the meter presented an abnormal performance. Therefore, these results were 

excluded from further statistical analysis in order not to distort the boxplots and the conclusions 

obtained. It should be noted that the volume passed during the intermittent flow test is, as described 

in Section 2.3, equal to or larger than the volumes used in steady state tests. Hence, these results can 

only be interpreted as anomalous performances of the meters that need further investigation and 

more detailed analysis. In addition, it should be clarified that not all meters described in the sample 

could be tested under intermittent flow conditions. The tests and number of repetitions conducted 

on each meter are specified in Section 2 of the Supplementary Material S-A. 
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Table 4. List of meters that present abnormal performance (errors above 50% of reference volume) in 

the specified tests. 

Technology Type of Meter ID Meter Test Time Frame (s) 

US 

M2 

M0002 T2 2 

M0007 T2 2 

M0009 T2 2 

M7 
M0016 T2 2 

M0017 T2 2 

Figure 14 allows for a comparison between technologies in terms of repeatability and error bias, 

where the standard desviation and coefficient of skewness corresponding to error distribution under 

intermittent flow conditions are represented through histograms. It can be observed that errors of 

ultrasonic meters are more dispersed than for the electromagnetic units tested, especially meters 

belonging to M2 type. In turn, mechanical meters are by far the ones presenting the best repeatability, 

with the standard deviation that, in most cases, is less than 1%. Regarding the coefficient of skewness, 

it is symmetrically distributed around the zero value. Thus, the error distribution associated with a 

meter tested according to a type of test and a given flow or flow profile could show a positive 

skewness (i.e., the mean is greater than the median). However, the error distribution associated with 

another meter of the same type or even the same meter subject to another type of test could show a 

negative skewness. Therefore, this evidence that the internal algorithms of the static meters tested do 

not intentionally exploit the errors in any direction or cause a clear bias in the errors distribution. 

To conclude this section, a detailed comparison of the results obtained under steady and 

intermittent flow conditions was conducted. To facilitate the analysis, tests results were grouped into 

two flow rate ranges: (1) the lower range comprises average flow rates between 200 and 500 L/h; (2) 

the upper range includes the errors obtained between 700 and 2000 L/h. Tables 5 and 6 describe per 

meter unit the mean error and standard deviation associated with the tests performed under steady 

state (S) and intermittent (I) flow conditions for the two flow rate ranges considered, respectively. 

These tables also show the difference in mean error between the two flow regimes. Additionally, the 

table provides the average mean error and the corresponding standard deviation per meter type. 

In the case of single-jet mechanical water meters there is a tendency towards over registration, 

significantly more pronounced at medium flows (200–500 L/h). This can also be observed in Figures 

12 and 13. However, in the same average flow rate range, the difference between steady and 

intermittent flow conditions for solid-state water meters reaches a maximum of +2.2% for M7 type 

meters. Compared to mechanical meters, this difference increases to +4.3% and +10.0% for M6 and 

M9 type meters, respectively. When conducting the same analysis in the upper flow rate range, from 

700 to 2000 L/h, these differences are significantly reduced: for solid-state meters this parameter is 

always less than ±2.2% and for mechanical meters the maximum error difference is found for M9 

meter type, reaching a value of +3.1%. 
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Figure 14. Histogram of the standard deviation and coefficient of skewness corresponding to error 

distribution under intermittent flow conditions (Figures 12 and 13). The color of the bars depends on 

the type of technology. The bar width is 0.1% and 0.1, respectively. 
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Table 5. Mean and standard deviation of errors obtained in tests under steady (S) and intermittent (I) 

flow conditions at an average flow rate of 200–500 L/h. It also includes the mean difference between 

the two regimes. 

Tech. Diam. Type of Meter Meter ��[�������]
�  �[�������]

�  ��[�������]
�  �[�������]

�  ��� − ���
[�������] 

US 

DN15 

M1 

M0001 −148% 0.518% 1.952% 8.202% 2.100% 

M0008 0.470% 0.296% −1.957% 7.171% −2.426% 

M0010 −0.546% 0.296% −4.145% 7.347% −3.599% 

Avg. M1 −0.075% 0.512% −1.383% 3.088% −1.308% 

M2 (14) 

M0002 0.318% 0.609% 5.103% 16.020% 4.785% 

M0007 −0.081% 0.243% −0.834% 14.756% −0.753% 

M0009 −0.165% 0.190% −3.597% 13.740% −3.432% 

M0022 0.034% 0.208% −1.962% 12.691% −1.995% 

M0027 0.039% 0.491% 0.841% 14.658% 0.803% 

M0028 0.546% 0.200% 2.059% 13.504% 1.512% 

M0030 −0.300% 0.296% −2.871% 13.640% −2.571% 

M0031 −0.216% 0.298% −6.307% 12.172% −6.091% 

Avg. M2 (14) 0.022% 0.285% −0.946% 3.572% −0.968% 

M2 (17-18) 

M0023 0.288% 0.194% −2.206% 13.511% −2.494% 

M0024 −0.813% 0.190% 2.480% 11.103% 3.293% 

M0025 −0.135% 0.340% −2.151% 10.559% −2.016% 

M0026 −0.051% 0.287% −0.252% 12.483% −0.201% 

M0029 −0.046% 0.370% −2.430% 12.721% −2.383% 

Avg. M2 (17-18) −0.040% 0.318% −0.934% 2.866% −0.894% 

M3 

M0003 −0.063% 0.259% 1.466% 9.085% 1.529% 

M0005 −0.614% 0.279% −0.267% 10.202% 0.346% 

Avg. M3 −0.339% 0.389% 0.599% 1.226% 0.938% 

DN20 
M7 

M0016 −0.389% 0.443% 0.067% 13.139% 0.456% 

M0017 −0.343% 0.326% 3.635% 14.761% 3.978% 

Avg. M7 −0.366% 0.033% 1.851% 2.523% 2.217% 

M8 M0018 −0.322% 0.410% −1.800% 5.430% −1.478% 

EM 

DN15 M4 M0004 −0.699% 0.281% −1.113% 8.121% −0.415% 

DN20 M10 

M0021 −0.716% 0.267% −0.004% 3.498% 0.712% 

M0032 −0.296% 0.191% - - - 

M0033 −0.042% 0.297% - - - 

M0034 −0.042% 0.374% - - - 

M0035 −0.127% 0.267% - - - 

Avg. M10 −0.245% 0.283% −0.004% - 0.241% 

M DN15 M6 
M0011 1.169% 0.127% 3.873% 2.773% 2.705% 

M0012 0.218% 0.452% 2.916% 4.242% 2.698% 

Table 6. Mean and standard deviation of errors obtained in tests under steady (S) and intermittent (I) 

flow conditions at an average flow rate of 700–2000 L/h. It also includes the mean difference between 

the two regimes. 

Tech. Diam. 
Type of 

Meter 
Meter ��[��������]

�  �[��������]
�  ��[��������]

�  �[��������]
�  ��� − ���

[��������] 

US DN15 

M1 

M0001 −0.221% 0.300% 2.914% 10.575% 3.134% 

M0008 0.190% 0.286% −1.886% 6.899% −2.076% 

M0010 −0.773% 0.374% −8.652% 8.970% −7.879% 

Avg. M1 −0.268% 0.483% −2.541% 5.810% −2.273% 

M2 (14) 

M0002 −0.076% 0.549% 6.451% 12.804% 6.527% 

M0007 0.383% 0.400% -0.614% 15.668% −0.997% 

M0009 0.142% 0.387% 2.262% 15.288% 2.121% 

M0022 0.387% 0.530% 1.460% 10.937% 1.073% 

M0027 −0.217% 0.038% −2.309% 16.240% −2.092% 

M0028 0.362% 0.330% −0.049% 16.749% −0.410% 



Sensors 2020, 20, 5339 24 of 28 

 

M0030 −0.145% 0.330% 0.684% 14.733% 0.828% 

M0031 −0.434% 0.260% 2.455% 14.996% 2.889% 

Avg. M2 (14) 0.050% 0.314% 1.292% 2.611% 1.242% 

M2 (17-18) 

M0023 0.723% 0.321% −2.256% 9.746% −2.979% 

M0024 −0.454% 0.743% 0.610% 10.563% 1.064% 

M0025 −0.454% 0.793% 4.681% 9.557% 5.135% 

M0026 0.219% 0.278% 2.807% 15.606% 2.588% 

M0029 0.145% 0.240% 0.899% 14.684% 0.754% 

Avg.M2 (17-18) 0.045% 0.360% 1.312% 2.397% 1.267% 

M3 

M0003 −0.244% 0.418% −3.924% 8.999% −3.679% 

M0005 −0.798% 0.297% −1.357% 7.395% −0.559% 

Avg. M3 −0.521% 0.391% −2.640% 1.815% −2.119% 

DN20 
M7 

M0016 −0.295% 0.571% 1.753% 10.762% 2.048% 

M0017 −0.274% 0.191% −5.312% 16.424% −5.039% 

Avg. M7 −0.284% 0.015% −1.780% 4.996% −1.495% 

M8 M0018 −0.331% 0.218% −0.372% 6.026% −0.041% 

In summary, the error values obtained in the intermittent flow tests for solid-state water meters 

are significantly higher than those of single-jet mechanical water meters. However, on average, the 

behavior of the single-jet mechanical water meters is more deficient due to the appearance of positive 

bias, despite being more repetitive. In addition, solid-state water meters have frequently shown a 

null performance (errors reaching ± 100%) in the test under extreme conditions (cyclic period of 2s) 

and the hypothesis that the errors may cancel out in the medium-long term cannot be rejected from 

the analysis conducted. 

Figure 15 presents a series of boxplots charts that summarize the results obtained per meter type. 

In line with what has been previously stated, solid-state water meters show more dispersed behavior 

than single-jet mechanical water meters. Apart from the magnitude of this dispersion, it is important 

to note that the error distribution of the tests performed under intermittent flow includes the 0% 

error. Therefore, the exploitation of errors or any potential bias cannot be statistically confirmed with 

the amount of testing performed. Consequently, due to the lack of repeatability of the water meters, 

it would be necessary to test a larger sample and design a more detailed testing programme that 

includes specific assays to verify the accuracy of the meters under intermittent working conditions. 

In order to protect both the users and the water utilities, these test types will need to be included in 

the ISO 4064 and OIML R49 meter approval test programme, which should also keep records of the 

firmware version used by the meter. 
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Figure 15. Distribution of errors obtained in the tests under steady (S) and intermittent (I) flow 

conditions at an average flow rate of 200–500 and 700–2000 L/h. 
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4. Conclusions 

The purpose of the research presented is to explore the stability of measuring errors of solid-

state water meters subjected to intermittent and varying flow conditions. Performance under these 

working conditions is critical for water utilities as varying consumption flow rates are typical of 

domestic customers. However, these working conditions are not currently considered in any test 

programme defined in international standards related to water meters.  

The test programme proposed in this research is divided into two stages: 

(i) Test under steady flow conditions. The error of the meters is obtained by means of standing start 

and stop test method conducted in a volumetric test bench. These errors are taken as a reference 

for the results obtained in the next stage. 

(ii) Test under intermittent flow conditions. The designed programme includes different levels of both 

constant and variable flow rate, as well as different consumption durations. 

The available sample consists of 28 solid-state water meters and seven mechanical meters, which 

are used as a reference. The resolution of the solid-state meters was not modified in the laboratory to 

ensure that the test conditions are as similar as possible to the real working conditions in the field. 

The results obtained in tests under steady flow conditions show that all solid-state meters can 

maintain errors within the maximum permissible error of 2%. M7 type at Q4 is the exception, which 

showed an average error of approximately -8.5% at the highest flow rate tested of 5000 L/h. These 

results confirm the importance of testing the meters over a wide range of flow rates before they are 

put into operation. 

On the other hand, it cannot be stated that the meters under analysis do not meet the 

repeatability requirements established in the ISO standard, provided that the reading resolution of 

the solid-state meters is limited to 1 L and, as a consequence, the overall uncertainty of the tests is 

close to 1%. For this reason, the ISO standard needs a significant improvement in relation to scale 

resolution requirements, which should be available without any interaction with the meters. 

Otherwise, it will be impossible to conduct accuracy tests in a laboratory that ensures that the meters 

under examinations will function during the tests exactly as they will in the field. 

Regarding the variability of the error as a function of the flow rate, the error curve of solid-state 

water meters is relatively more uniform (flat) compared to the error curve of a single-jet mechanical 

water meter, which suffers from more oscillations throughout the measuring range. However, the 

ability of manufacturers to produce solid-state meters with the exact same performance does not 

show significant improvements in comparison with positive displacement meters. It was found that 

brand-new solid-state meters of the same brand significantly differ in terms of accuracy throughout 

the range (Figures 6 and 7). 

In contrast, the results obtained in tests under intermittent flow conditions show that the error 

magnitude significantly increases when compared to steady state conditions. It was not infrequent to 

obtain measuring errors of ±20% or greater. This difference in performance is affected by the cyclic 

periodicity of the flow, the duration of a consumption event being more significant than the flow rate 

of the test. In the case of mechanical meters, a clearer tendency towards over-registration as the 

duration of the consumption becomes shorter was observed. Conversely, solid-state water meters 

could suffer from a positive or negative bias due to intermittent flows. The ultrasonic meters tested 

were more influenced than the electromagnetic meters examined, mainly because the latter sample 

the flow signal more frequently and are, therefore, more adaptable for measuring short duration 

consumptions such as those found in households. Overall, it can be stated that the error dispersion 

of solid-state water meters has significantly increased. However, the probability distribution of the 

error differences between steady and intermittent flow conditions includes the 0% error. Therefore, 

exploitation of the errors or a potential bias cannot be statistically confirmed with the number of tests 

performed. 

The results obtained suggest the need to design a more detailed testing programme that 

considers specific assays to verify the accuracy of the meters under intermittent working conditions, 
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as well as the importance of including these types of tests in current water meter standards from ISO 

and OIML to protect users and water utilities. 
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