

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/168797

Wang, S.; Li, X.; Ruiz García, R. (2020). Performance Analysis for Heterogeneous Cloud
Servers Using Queueing Theory. IEEE Transactions on Computers. 69(4):563-576.
https://doi.org/10.1109/TC.2019.2956505

https://doi.org/10.1109/TC.2019.2956505

Institute of Electrical and Electronics Engineers

© 2020 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertisíng or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

1

Performance analysis for heterogeneous cloud
servers using queueing theory
Shuang Wang, Xiaoping Li, Senior Member, IEEE, and Rubén Ruiz

Abstract—In this paper, we consider the problem of selecting appropriate heterogeneous servers in cloud centers for stochastically
arriving requests in order to obtain an optimal tradeoff between the expected response time and power consumption. Heterogeneous
servers with uncertain setup times are far more common than homogenous ones. The heterogeneity of servers and stochastic
requests pose great challenges in relation to the tradeoff between the two conflicting objectives. Using the Markov decision process,
the expected response time of requests is analyzed in terms of a given number of available candidate servers. For a given system
availability, a binary search method is presented to determine the number of servers selected from the candidates. An iterative
improvement method is proposed to determine the best servers to select for the considered objectives. After evaluating the
performance of the system parameters on the performance of algorithms using the analysis of variance, the proposed algorithm and
three of its variants are compared over a large number of random and real instances. The results indicate that proposed algorithm is
much more effective than the other four algorithms within acceptable CPU times.

Index Terms—Cloud computing, heterogeneous servers, power consumption, response time, Markov process.

F

1 INTRODUCTION

S ERVICE providers and service consumers establish a
relationship through a Service Level Agreement (SLA)

in cloud computing environments. However, each party
has a different objective. Service providers are concerned
with running costs, in particular with energy consumption,
while service consumers care about the expected response
time. It is estimated that cloud centers consumed about 70
billion kilowatt-hours of electricity, about 1.8% of the total
electricity consumption of the United States, in 2014 alone
[1]. From 2010-2014, the electricity consumption in cloud
centers increased by about 4% and energy use is expected
to continue to increase in the near future by 4% between
2014-2020. According to the current trend estimates, United
States cloud centers are projected to consume approximately
73 billion kWh by 2020 [1]. The expected response time
is a common Quality of Service (QoS) performance met-
ric [2]. The consumer is much more satisfied if his/her
requests are quickly processed, i.e, the sooner the system
processes requests from consumers the higher the levels of
satisfaction. Since servers are usually heterogeneous in real
cloud centers, their distinct service rates result in different
levels of performance compared to the homogeneous ones
where all servers have identical service rates. In addition,
different additional setup times for launching servers are

• S. Wang and X. Li are with the School of Computer Science and Engineer-
ing, Southeast University, Nanjing, 211189, China; and also with the Key
Laboratory of Computer Network and Information Integration (Southeast
University), Ministry of Education, Nanjing, 211189, China (Tel: 86-25-
52091916; Fax: 86-25-52091916).
E-mail: {wangshuang, xpli}@seu.edu.cn.

• R. Ruiz is with Grupo de Sistemas de Optimización Aplicada, Instituto
Tecnológico de Informática, Ciudad Politécnica de la Innovación, Edi-
fico 8G, Acc. B. Universitat Politècnica de València, Camino de Vera
s/n, 46022, València, Spain (Tel: 34-96-3877007 ext.74946; Fax: 34-96-
3877499).
E-mail: rruiz@eio.upv.es.

Manuscript received ; revised ..

needed by cloud providers to offer suitable servers with
various service rates when consumer service requests arrive
at the cloud center. Therefore, it is desirable to minimize the
tradeoff between power consumption for service providers
and the expected response time so as to satisfy SLAs for
consumers. More and faster servers usually imply greater
power consumption and shorter expected response times.
On the contrary, fewer and slower servers generally mean
less power consumption and longer expected response
times. Therefore, these two objectives are often conflicting.
It is critical to choose the most appropriate number and
type of servers in a heterogeneous cloud center to optimize
the tradeoff between the expected response time and power
consumption.

In this paper, we consider the problem of scheduling
independent stochastic requests to heterogeneous servers
considering the tradeoff between the expected response
time (from the service consumer’s perspective) and power
consumption (from the service provider’s point of view).
Requests arrive at the system stochastically. Since it is dif-
ficult to analyze the system performance of complex and
dynamic real cloud centers, we consider the cloud center as
a queueing system [6], [7]. The heterogeneity of the servers
in the cloud center means that the servers have different
service rates (speeds). Similarly to [3], setup durations of dif-
ferent servers are assumed to be exponentially distributed.

Stochastically arriving requests and heterogeneous
servers lead to a very complex problem. The number and
type of servers is estimated according to both the arrival of
requests and system availability. It is ideal, but at the same
time difficult, to process all requests on the available servers
at any given moment. As the number of servers is lim-
ited, stochastically arriving requests might be rejected with
a given probability. More servers mean a greater system
availability. A greater system availability implies a lower
rejection probability which further effects the selection of

2

the number and type of servers. The main challenges for
the problem under study lie in: (i) Performance analysis
being crucial to evaluate the behavior of the system with
stochastically arriving requests scheduled on heterogeneous
servers. Both the heterogeneity of servers and the expo-
nentially distributed stochastic setup durations make the
performance analysis model much more difficult than in
the homogeneous cases which are always analyzed with the
traditional M/M/N/N + R queuing model [4]. (ii) Since
the power consumption is closely related to the number of
servers, it is not necessary to turn on all the servers in the
system all of the time (traditionally it is assumed that all
system servers are turned on). The number of servers to
be turned on is hard to estimate when both the expected
response time and power consumption are considered. (iii)
For a given number of servers, there are many possible
combinations for heterogeneous servers. The heterogeneity
of the servers in the cloud center makes the selection of
which server and which type challenging.

To obtain an optimal tradeoff between the expected
response time of stochastic requests and the power con-
sumption of heterogeneous servers in a cloud center, the
performance of the system is analyzed and optimization
methods are proposed. The contributions of this paper are
summarized as follows:

(i) Under the system availability constraint, the rejection
probability is mathematically modeled for stochasti-
cally arriving requests by constructing a queueing
system using a Markov decision process for a cloud
center with heterogeneous servers and a finite capacity
buffer where servers have stochastic setup times.

(ii) With respect to the obtained rejection probability, the
number of servers is estimated using a binary search
and the allocation of requests to the specific servers is
carried out by an iterative improvement strategy.

(iii) To optimize the tradeoff between the expected re-
sponse time and the power consumption, an algorithm
framework with the above three components is pro-
posed.

The remainder of the paper is organized as follows. The
related work is described in Section 2. Section 3 details
the model and problem formulation. Performance analy-
sis and optimization methods are proposed in Section 4.
Experimental results are given in Section 5, followed by
conclusions and future research in Section 6.

2 RELATED WORK
The performance analysis of cloud centers with capacity
queues has attracted considerable research attention. How-
ever, most of the existing studies focus on cloud centers
with homogeneous servers. A general analytical model
was proposed for an end-to-end performance analysis of
a cloud service [5]. An analytical model was presented for
the performance evaluation of a cloud service on impor-
tant quality metrics such as rejection probability, system
overhead rate and expected request completion time [6].
The M/G/m/m + r model in queueing systems was used
to analyze the performance of a cloud computing center
with single task arrivals in [7]. The authors considered
homogeneous servers with a general distribution service

rate. A pool management model was proposed for multiple
could centers with single task arrivals in [8]. The model
incorporates important aspects of cloud centers such as pool
management, compound requests, resource virtualization
and realistic services. The model was evaluated for a cloud
computing center with general single arrivals and general
service in [9]. Due to the variability of cloud workloads, a
G/G/c-like model was proposed to represent a cloud-based
system and expected performance metrics were computed
which represent general distributions for the arrival and
service patterns [9]. Servers in cloud centers are studied
with the same service distribution in [5], [6], [7], [8] and
[9]. In addition, they evaluated the performance metrics but
did not consider server setup times.

There are only a few studies concerning heterogeneous
servers with queue capacities. A stochastic model was pre-
sented for cloud centers with heterogeneous server pools
in [10]. A model was constructed for a queueing system
with three heterogeneous servers in [11]. The average num-
ber of jobs and their average waiting times in the system
queue were obtained by the developed model for finite
heterogeneous servers with different service rates in [12].
The power consumption of servers was not considered in
[10], [11] or [12]. Additionally, setup times for servers were
not considered in [11] or [12].

There are a few existing papers on optimal control for a
queuing system with heterogeneous servers and a queue
capacity. The optimal control of M/M/c/c queues with
periodic arrival rates and two levels for the number of
servers was dealt with in [13]. The objective is to optimally
assign each job of batch arriving requests to minimize the
long-run average number of jobs in the entire system in [14],
which is a single objective problem. Two types of servers
were considered in [13] and in this paper, there are N types
of different servers. The goal in [14] is to minimize the
expected number of jobs in the system. In this paper the
objective is to balance the expected response time and power
consumption. The factors considered in this paper include
stochastic setup times for servers which improve upon the
results of [13] and [14] in a significant way.

The expected response time and power consumption
were balanced for cloud centers with heterogeneous servers
with queues in [15]. Workload dependent dynamic power
management was used to improve the expected response
time and power consumption for cloud centers with hetero-
geneous servers with queues in [27]. The servers in [15] and
[27] were partitioned into different groups based on their
processing speeds, i.e., servers with the same speed are put
into the same group. Therefore, the scenarios in [15] and [27]
are different to the one considered in this paper which does
not group the heterogeneous servers. A new hierarchical
correlation model was constructed to analyze and evaluate
reliability, performance and power consumption in [16].
For multi-agent cloud systems, a reliability-performance-
energy correlation model was proposed to develop optimal
request scheduling and resource management strategies in
[17]. Setup times for servers were not taken into account in
[15], [27], [16] or in [17].

To the best of our knowledge, the problem with setup
times and optimal tradeoff between the expected response
time and power consumption has never been considered

3

COLD

…

λ Requests

SETUP

HOT
NC (t)> 0

Rq < R

Rq> 0
YesNo

Yes

No

NoYes
Reject

1 2

3
4

5

67

8

9

10

() () 1C CN t N t

() () 1H HN t N t

Nr(t)
() () 1r rN t N t

() () 1 R 1r r q qN t N t R ，

11

(
)

(
)

1

C

C

N
t

N
t

()

() 1

H

H

N
t

N
t

1
q

q
R

R

Fig. 1: State transitions for the system.

for cloud centers with heterogeneous servers and a queue
capacity in the literature. The studied model in this paper
brings the research results closer to real life scenarios. How-
ever, the joint consideration of all these features results in a
remarkably complex problem.

3 PROBLEM DESCRIPTION AND MODEL

For the considered scenario, requests arrive at the system
stochastically. They are either allocated to servers or re-
jected. For each of the N servers in the cloud center, there
are three possible states: COLD, SETUP and HOT. NC(t)
and NH(t) are the number of servers in the COLD and
HOT states at time t respectively. Since SETUP is transient,
i.e., a server in SETUP would be HOT in a very short
time, N = NC(t) + NH(t). There is a queue with a buffer
capacity R and the current number of requests in the queue
Rq (Rq = 0, . . . , R). Nr(t) = NH(t) + Rq is the number
of requests in the system. Transitions among the states are
depicted in Figure 1.

All requests are processed by the first-come, first-served
(FCFS) rule. The server state transition process is described
as follows:

(i) An incoming request Req is allocated to a server
Sk (k = 1, . . . , NC(t)) if there is at least one server (i.e.,
NC(t) > 0) in the COLD state. Nr(t)← Nr(t) + 1.

(ii) Sk is set up before it can process requestReq.NC(t)←
NC(t)− 1.

(iii) Sk in the SETUP state means it is becoming ready. After
set up, Sk transitions to the HOT state which means it
is available to process requests. NH(t)← NH(t) + 1.

(iv) When Req finishes on Sk, the system checks whether
there are requests waiting in the queue. Rq > 0 implies
that there are Rq requests waiting for servers. Sk is
allocated to the first request in the queue directly
without changing its state (i.e., staying in the HOT
state). Nr(t)← Nr(t)− 1. Rq ← Rq − 1.

(v) If there are no requests in the queue, i.e., Rq = 0, Sk
transitions to the COLD state and NH(t)← NH(t)− 1
as well as NC(t)← NC(t) + 1.

(vi) If none of the servers are in the COLD state (i.e.,
NC(t) = 0), the system verifies if the queue is full.
If not (i.e., Rq < R), Req is appended to the queue, i.e.,
Rq ← Rq + 1. Go to (iv).

(vii) If the queue is full (i.e., Rq = R), Req is rejected.

3.1 Assumptions and Notation

For the considered system, we make the following assump-
tions:

• All requests arrive at the system with a Poisson
distribution with the arrival rate λ as in [6] and [7].
Requests are served one by one.

• The processing time of requests is independent and
exponentially distributed random variables as in [18]
and [19]. For simplicity, all servers are sorted into
non-increasing order of their service rates µk (k =
1, . . . , N), i.e., S = (S1, S2, . . . , SN) with µ1 ≥ µ2 ≥
. . . ≥ µN .

• The delay time for servers for setups is an indepen-
dent and exponentially distributed random variable
with rate θ as in [3].

• The system availability which is defined as the prob-
ability of an adequate level of service [20] is ξ.
A server can be turned off (from HOT to COLD)
immediately if there are no requests in the queue.
Servers are turned on or off one by one, i.e., only one
transition at time t.

Based on the state transition of each server, the state
transition of the whole system is a stochastic process
Z(t) = (X(t),M(t)) where X(t) is the observed process
and M(t) denotes the control process [21]. X(t) represents
the system state at time t with X(t) = (Nr(t), NH(t)).
Nr(t)(0 ≤ Nr(t) ≤ N +R) is the number of requests in the
system at time t. NH(t)(0 ≤ NH(t) ≤ N) is the number of
servers processing the requests, i.e., there are NH(t) servers
in the HOT state at time t (all servers are in the COLD state
if NH(t) = 0). The state space set of X(t) (t ∈ [0,+∞)) is
denoted as Ω. For any time t, JC(t) = {j|Sj in COLD} and
JH(t) = {j|Sj in HOT} are the sets of NC(t) COLD servers
and NH(t) HOT servers respectively. The total service rates
for COLD and HOT servers are UI(t) =

∑
j∈JC(t) µj and

UH(t) =
∑
j∈JH(t) µj respectively.M(t) controls the current

state X(t), i.e., a decision is made to transit from X(t) to
X(t+ϑt) according to the number of requests and the power
consumption in the system where ϑt is the time period from
X(t) to the next state. As shown in Figure 1, there are only
three fundamental actions at time t.

(i) A0(t): No server is turned on or off.
(ii) A+

j (t): The jth (j ∈ JC(t)) server is turned on which
means NH(t)← NH(t) + 1 and NC(t)← NC(t)− 1.

(iii) A−j (t): The jth (j ∈ JH(t)) server is turned off which
means NH(t)← NH(t)− 1 and NC(t)← NC(t) + 1.

At any time t of the whole process, the state X(t+ϑt) is
determined by M(t) which conducts one and only one ac-
tion a(t) = {A0(t), A+

j (t), A−j (t)} according to the balance
between the expected response time and power consump-
tion.

Obviously, Z(t) = (X(t),M(t)) is a Markov Decision
Process (MDP). Two fundamental bases e0 = (1, 0) and e1 =
(0, 1) are introduced. For the current state X(t), there are
five possible states X(t+ ϑt):

(i) (Nr(t) + 1, NH(t)): A new request arrives while
the number of HOT servers remains constant, i.e.,

(Nr(t), NH(t)) + e0
A0(t)→ (Nr(t) + 1, NH(t)).

4

(ii) (Nr(t), NH(t) + 1): A COLD server is turned on, i.e.,

(Nr(t), NH(t)) + e1

A+
j (t)
→ (Nr(t), NH(t) + 1).

(iii) (Nr(t) − 1, NH(t)): A request finishes while the
number of HOT servers remains constant, i.e.,

(Nr(t), NH(t))− e0
A0(t)→ (Nr(t)− 1, NH(t)).

(iv) (Nr(t) − 1, NH(t) − 1): A request finishes and a HOT
server is powered down whenNr(t+ϑt) < NH(t+ϑt),

i.e., (Nr(t), NH(t))− e0− e1

A−j (t)
→ (Nr(t)− 1, NH(t)−

1).
(v) (Nr(t), NH(t)): The state does not change during ϑt.

(Nr(t), NH(t))
A0(t)→ (Nr(t), NH(t)).

For the three states (COLD, SETUP and HOT) of server
Sk, a sign function ψ(k) is defined as below.

ψ(k) =

−1 if Sk is in the SETUP state
0 if Sk is in the COLD state
1 if Sk is in the HOT state

In terms of K. Li [27], the power consumption of Sk in
HOT state is determined by PHk = wCV 2

k ηk, where w is
the switching activity, C the electrical capacitance, Vk the
supply voltage and ηk the clock frequency. For any physical
server in the HOT state with a rate µk, µk ∝ ηk and
ηk ∝ V φk with 0 < φ ≤ 1. ηk ∝ V φk implies Vk ∝ η

1/φ
k .

According to [23], µk ∝ ηk and Vk ∝ ηk imply Pk ∝ µαk
where α = 1 + 2/φ ≥ 3, i.e., PHk can be represented
by κµαk where κ is a constant and Sk consumes the mini-
mum amount of power if α = 3. The power consumption
is κµαk when Sk is in the HOT state while the power
consumption is constant (PCk) when Sk is in the COLD
state. According to [30], the power consumption of Sk is
PSk =

(
∑N
i=1 µi−λ)θ+λ(

∑N
i=1 µi+λ)κµαk∑N

i=1 µi(λ+θ)
when Sk in the SETUP

state. Therefore, the power consumption for server Sk is
calculated by

Pk =PCk +
(ψ(k) + 1)ψ(k)

2
κµαk+

(ψ(k)− 1)ψ(k)

2

(
∑N
i=1 µi − λ)θ + λ(

∑N
i=1 µi + λ)κµαk∑N

i=1 µi(λ+ θ)
.

(1)

3.2 Detailed Model
For incoming requests with a given rate λ, more servers im-
ply higher power consumption and reduced response times
for the requests. The expected response time is positively
correlated with the number of requests in the system with
a given arrival rate according to the Little’s Theorem [4].
The number of requests is used to measure the expected
response time. The tradeoff between the expected response
time and power consumption implies the allocation of a
number and type of servers to the stochastically arriving
requests.

Due to the stochastic and heterogeneous properties in
the system, the studied problem is divided into three
sub-problems: (i) Calculating the rejection probabilities for
server configurations in all states. (ii) Calculating the min-
imum required number of servers n ≤ N for the Nr(t)
requests, and (iii) selecting the appropriate type for the
servers for the Nr(t) requests.

For the number of servers n, the state space Ωn ⊂ ΩN
is certain. In fact, the number of servers in HOT NH(t) is
not bigger than the number of requests Nr(t) if Nr(t) is
less than n whereas NH(t) is not bigger than n if Nr(t) is
larger than n, i.e., Ωn =

{
(Nr(t), NH(t)) : Nr(t) = 0, . . . , n;

NH(t) = 0, . . . , Nr(t)
} ⋃ {

(Nr(t), NH(t)) : Nr(t) =

n+1, . . . , n+R;NH(t) = 0, . . . , n
}

. Obviously, NH(t) ≤ n.
Only the SETUP server consumes power when NH(t) = 0
and all HOT servers consume power when NH(t) = n.
When n > NH(t) > 0, power consumption is determined
by the HOT servers and the SETUP server. Among all the
|Ωn| states, the minimum power consumption is P[1] and
the maximum is

∑n
j=1(PC[j] + κµα[j]). Since the number of

requests in the system and the power consumption have
different ranges and units, we employ a min-max nor-
malization. W (Nr(t)) = Nr(t)

n+R for the Nr(t) requests in

the current state and W (P[j]) =
P[j]−P[1]∑n

j=1(PC
[j]

+κµα
[j]

)
for the

power consumption of the jth server. P[NH(t)+1] indicates
the power consumption of the SETUP server. If NH(t) = n,
no more servers will be set up, i.e., W (P[n+1]) = 0.

To optimize the tradeoff between the number of requests
and power consumption, the objective is to minimize the
function defined below.

Y (t) =

∫ t

0
y(x(τ))dτ, (2)

where

y(x(t)) = βW (Nr(t)) + (1− β)

NH(t)∑
j=0

W (P[j+1]). (3)

β is the weight of the objective and y(x(t)) is the weighting
function of the two objectives at time t.

4 PROPOSED METHODS

With the given request arrival rate λ and server config-
urations for all states, the rejection probability PR(~f) is
calculated using the Markov process analysis method. Ac-
cording to PR(~f) and the system availability ξ, the mini-
mum number of servers n ≤ N is determined by Binary-
Search. The Markov decision process is adopted to select
n appropriate servers to minimize the number of requests
and power consumption simultaneously. Since there are
N !

(N−n)! possible combinations when selecting n servers from
N heterogeneous servers, it is not hard to show that the
server selection is NP-hard which further implies that the
considered problem is NP-hard.

To balance the expected response time and power con-
sumption, the BETP (Balanced Expected response Time
and Power consumption) algorithm is proposed for the
considered problem. The framework of BETP, as depicted
in Algorithm 1, contains three components: (i) Evaluating
the rejection probability according to server configurations.
(ii) Determining the minimum number of hot servers. (iii)
Selecting the appropriate servers.

5

Algorithm 1: Balanced Expected Response Time and
Power Consumption (BETP)

1 begin
2 Calculate rejection probabilities according to

server configurations;
3 Call the Determining Server Number procedure;
4 Call the Server Selection procedure;

5 return.

4.1 Calculation of the rejection probability

The queueing system forms a Markov decision process
which is a two-dimensional state space. If the policy of the
dispatched servers is certain, the state space is reduced to
a Markov process. The state space Ωn ⊂ ΩN with states
X(t) = (Nr(t), NH(t)), is reduced to a Markov process.
According to the transition rules, the state transitions are
depicted in Figure 2 (where light gray states are immediate
states in the dynamic procedure of immediate transitions).
A policy ~f = (~h(0),~h(1), . . . ,~h(n)) is an M -dimensional
server rate vector. ~h(i) is the vector corresponding to the
ith (i = 0, . . . , n) row in Figure 2. ~h(i) contains n+R+ 1− i
identical elements µ[i]. All n+R+ 1 elements of ~h(0) are 0.
The Matrix-Geometric method [20], [30] and the delay time
of servers setting up in [24] is considered simultaneously to
analyze the Markov process.

Figure 2 demonstrates that there are M = (n+2+2R)(n+1)
2

states in total when the process becomes steady. To calculate
the rejection probability PR(~f), the infinitesimal generator
matrix Q

~f is first obtained as follows [20]:

Q
~f =

A0 C0

B1 A1 C1

. . .
. . .

. . .
Bn An Cn

Bn+1 An+1 Cn+1

. . .
. . .

. . .
Bn+R An+R

M×M
(4)

All M states are sorted by the order of those in Figure
2 from bottom to top and from left to right. The kth

(0 ≤ k ≤ n + R) row of Q~f corresponds to the transition
rates of the states in the kth column to the state space Ωn
with the state order (0, 0), (1, 0), (1, 1), (2, 0), . . . , (n, n+R)
in Figure 2. For example, A0 and C0 correspond to the
state (0, 0); An, Bn and Cn correspond to the state or-
der (n, 0), (n, 1), . . . , (n, n) (the column with the DIVISION
line). Each diagonal element of the matrix Ak represents
the output rates for the corresponding states. The delay
rate θ of the matrix Ak means the delay when setting-up
servers. If k = 0, the matrix A0 is described as A0 = (−λ).
If 0 < k ≤ n, the output rate of each state on the main
diagonal of Ak is closely related to η = −(λ + θ). The

(k + 1)× (k + 1) matrix Ak is:

Ak =

η θ
η − µ[1] θ

. . .
. . .

η −
k−1∑
i=1

µ[i] θ

−λ−
k∑
i=1

µ[i]

.

If n < k ≤ n + R, the output rate of each state on the
main diagonal of Ak is closely related to η = −(λ + θ).
The (n + 1) × (n + 1) matrix Ak = An. If k = n + R, the
(n+ 1)× (n+ 1) matrix Ak is:

Ak =

−θ θ
−θ − µ[1] θ

. . .
. . .

−
n∑
i=1

µ[i]

 .

Every matrix Bk (1 ≤ k ≤ n + R) describes the service
rate of the system for the corresponding states described in
Figure 2. If 1 ≤ k ≤ n, the matrix Bk is derived as:

Bk =

0
µ[1]

. . . ∑k
i=1 µ[i]∑k
i=1 µ[i]

(k+1)×(k+1)

.

If n < k ≤ n+R, the matrix Bk is derived as:

Bk =

0
µ[1]

. . . ∑n−1
i=1 µ[i] ∑n

i=1 µ[i]

(n+1)×(n+1)

.

Each matrix Ck (0 ≤ k ≤ n + R) illustrates the arrival
rates for the corresponding states of the system. For 0 ≤ k ≤
n, the matrix Ck is a k + 1 dimensional matrix obtained as:

Ck =

λ

λ
. . .

λ
λ

(k+1)×(k+1)

For n ≤ k ≤ n+R, the matrix Ck is a n+ 1 dimensional
matrix obtained as Cn.

After the infinitesimal generator matrix Q
~f is ob-

tained, we obtain the steady state probabilities vector π =
(π1, . . . , πM) for the state space Ωn which corresponds to
the states {(0, 0), (1, 0), (1, 1), . . . , (n + R,n)} as shown in
Figure 2. According to Q

~f and π, the balance vector equa-
tion is:

πQ
~f = 0, (5)

6

λ

[1]
[1]

[1]

[1]

[1] [2]

n+1,0

[1]

...,0

[1]

[1]

n,n n+1,n ...,n n+R,n

...,...

[]

1

n

i

i

n,...

n+1,...

[]

1

n

i

i

...,...

[]

1

n

i

i

n+R,...

[]

1

n

i

i

3,3

[]

1

i

i

...,3

n,3

[]

1

i

i

n+1,3

[]

1

i

i

...,3

[]

1

i

i

n+R,3

[]

1

i

i

2,2

3

[]

1

i

i

3,2

...,2

3

[]

1

i

i

n,2

3

[]

1

i

i

n+1,2

3

[]

1

i

i

...,2

3

[]

1

i

i

n+R,2

3

[]

1

i

i

1,1

[1] [2]

2,1

3,1

[1] [2]

...,1

[1] [2]

n,1

n+1,1

[1] [2]

...,1

[1] [2]

n+R,1

[1] [2]

0,0

1i

1,0 2,0 3,0 ...,0 n,0

n+R,0

0,1

1,2

2,3

...,...

n-1,n

DIVISION

Fig. 2: The state transition process in the proposed queueing system.

in which the steady state probability vector π satisfies the
following equation:

M∑
i=1

πi = 1. (6)

In terms of equations (5) and (6), the steady state prob-
abilities π1, . . . , πM can be obtained exactly. The incoming
request would be rejected when the number of requests in
the system equals n+R. According to the steady state prob-
ability vector π, the rejection probability PR(~f) is calculated
by the states of the last column shown in Figure 2, i.e.,

PR(~f) =
M∑

i=M−n
πi. (7)

To illustrate the above procedure, we give an example
with n = 1, R = 1, µ[1] = 2, θ = 3 and λ = 1. The obtained
Q
~f is

Q
~f =

−1 1 0 0 0
0 −4 3 1 0
2 0 −3 0 1
0 0 0 −3 3
0 0 2 0 −2

. (8)

The determinant of Q~f is 0. In terms of equations (5) and (6),
the determinant becomes non-zero by replacing any column
of Q~f with the vector (1, 1, 1, 1, 1)T . The 5 unknown quanti-
ties are obtained with π = (0.45, 0.11, 0.23, 0.04, 0.17) using
the elimination method.

4.2 Determining the number of servers

According to Equation (7), the rejection probability PR(~f) is
closely related to the number of selected servers n. In addi-
tion, PR(~f) is not more than 1− ξ, i.e., PR(~f) is constrained
by the system availability ξ. With an increase in n, the
rejection probability PR(~f) decreases whereas power con-
sumption increases. On the contrary, power consumption is
decreased by decreasing nwhile an increase in PR(~f) would
result in PR(~f) > 1 − ξ which does not meet the system

availability requirements. Therefore, it is desirable to find
an appropriate value for n. In this paper, the appropriate
number n is found by the Binary Search method as depicted
in Algorithm 2.

The lower and upper bounds nmin and nmax on the
number of selected servers are initialized as 1 and N re-
spectively. n is initialized to the median bnmin+nmaxc

2 . To
guarantee at least one choice of the n servers is feasible in
the following server selection process, we consider those
servers with the maximum service rates first. The first n
servers ~S= (S1, S2, . . . , Sn) with the highest service rates
~µ= (µ1, µ2, . . . , µn) are initially selected. At any time, the
system state is one of the M states as depicted in Figure
2. A policy ~f = (~h(0),~h(1), . . . ,~h(n)) is an M -dimensional
server rate vector. All n + R + 1 elements of ~h(0) are 0.
During the process to determine the number of servers, all
the n + R + 1 − i elements of ~h(i) are µi (some of them
might change in the following server selection strategy). In
terms of Equations (5), (6) and (7), PR(~f) is closely related
to ~f which depends on n. PR(~f) < 1 − ξ implies that
the appropriate number lies within [nmin,

bnmin+nmaxc
2], i.e.,

bnmin+nmaxc
2 should be the upper bound nmax. On the

contrary, the appropriate number is between bnmin+nmaxc
2

and nmax, i.e., the lower bound nmin is set to bnmin+nmaxc
2 .

The updating strategy leads to a new ~f . In terms of Equa-
tions (5), (6) and (7), we obtain a different PR(~f) which is
compared to 1 − ξ again. The procedure terminates when
the condition nmin ≤ nmax is met.

To illustrate the above procedure, the following example
is given: N = 6, λ = 5, R = 2, θ = 1, β = 0.5, µ1 =
6, µ2 = 4, µ3 = 3, µ4 = 0.3, µ5 = 0.2, µ6 = 0.1, ξ = 0.5.
The values of the variables and vectors in Algorithm 2 are
shown in Table 1. The minimum number of servers is 2, i.e.,
n = 2. The computational time complexity of the algorithm
to determine the number of servers is O(log(N)).

4.3 Server selection strategy
For the λ requests stochastically arriving at the system, the
required number of servers is not more than n where n is

7

Algorithm 2: Determining Server Number
Input: λ,N, θ, µ1, µ2, . . . , µN , ξ, β

1 begin
2 nmin ← 1, nmax ← N ;
3 while nmin ≤ nmax do
4 n← bnmin+nmaxc

2 ;
5 Construct ~µ, ~f ;
6 Calculate Q, π and PR(~f) using Equations

(4),(5),(6) and (7) respectively;
7 if PR(~f) ≤ 1− ξ then
8 nmax ← n;
9 else

10 nmin ← n +1;

11 return n, ~f ;

TABLE 1: Values of the binary search procedure example.

nmin nmax n ~S ~µ ~f PR(~f)

1 6 3 (S1, S2, S3) (6,4,3) (0,0,0,0,0,0,6,6,6,6,6,4,4,4,4,3,3,3) 0.401
2 3 2 (S1, S2) (6,4) (0,0,0,0,0,6,6,6,6,4,4,4) 0.492
1 2 1 (S1) 6 (0,0,0,0,6,6,6) 0.619
2 2 2 (S1, S2) (6,4) (0,0,0,0,0,6,6,6,6,4,4,4) 0.492

determined by Algorithm 2 when the system is in a steady
state. Using the Markov decision process, servers with the
minimum long-run expected reward E(Y (t)) are selected.
E(Y (t)) depends on the initial system state X(0) and the
policy ~f , i.e., E(Y (t)) = E

~f
X(0)Y (t). E(Y (t)) is the sum of

the expected rewards of all the included states Ωn, when
the system is in the steady state. A policy ~f determines the
controlling process M(t) of Z(t) for Ωn. All the states form
a Markov chain as shown in Figure 2. In terms of Rykov
and Efrosinin [21], the probability distribution P

~f
x of the

state x ∈ Ωn in Z(t) can be obtained for each given policy
~f when the system is in a steady state. The correspond-
ing long-run expected reward of each time unit g ~f is the
expectation of Z(t) with probability distribution P

~f
x , i.e.,

g
~f = lim

t→∞
1
tE

~f
X(0)Y (t). g ~f is closely related to ~f but not to

X(0). Therefore, the expected reward function Y (t) at any
time t is determined byE(Y (t)) = E

~f
X(0)Y (t) = tg

~f+v
~f
X(0).

v
~f
X(0) is a deviation function of ~f and X(0) when the system

is in a steady state. In this way, minE(Y (t)) is equivalent to
min~f{tg

~f + v
~f
X(0)}.

4.3.1 Server selection framework

Both g
~f and v

~f
X(0) are closely related to ~f . We develop

the following optimal server selection principle to minimize
the objective min~f{tg

~f + v
~f
X(0)} according to the optimal

principle for a one-chain Markov decision problem [25]:

(i) The gain g∗ = min
~f
g
~f exists.

(ii) Let ~f be a given reasonable policy, i.e., λ ≤
∑n
i=1 µ[i].

The system state is X(ζ) after a period of time ζ from
the initial state X(0). g ~f and v

~f
X(0) are determined by

v
~f
X(0) = raX(0) − g

~fζ +
∑
j∈Ωn

paX(0),X(ζ)v
~f
X(ζ) according

to Theorem 1. paX(0),X(ζ) is the transition probability

from X(0) to X(ζ) by the action a of ~f (which can be
obtained by (13)). paX(0),X(ζ) is obtained from Equation
(4) [4].

(iii) Since both g ~f and v
~f
X(0) are closely related to policy ~f ,

a newly constructed policy ~f ′ updates ~f if v
~f ′

(X(0)) ≤
v
~f
X(0) by Theorem 2.

Theorem 1 For a given reasonable policy ~f and the current
state space Ωn, X(ζ) is the reachable state from state X(0)
with probability paX(0),X(ζ) by action a on server Sa corre-

sponding to the service rate in ~f . ζ is the average time on
all possible reachable states from X(0) in the next decision
epoch and raX(0) is the actual reward during this period. The

deviation value of v
~f
X(0) satisfies the following equation.

v
~f
X(0) = raX(0) − g

~fζ +
∑

X(ζ)∈Ωn

paX(0),X(ζ)v
~f
X(ζ). (9)

Proof For any two different states s1, s2 ∈ Ωn, s1 is
reachable from s2, i.e., any state s ∈ Ωn is recurrent.
Let s be a recurrent state under the policy ~f . T

~f
X(0),s

and K
~f
X(0),s denote the expected time and the expected

reward respectively, of the first reach from the initial state
X(0) to the state s controlled by policy ~f , i.e., T

~f
X(0),s =

ζ +
∑

X(ζ)∈Ωn,X(ζ)6=s
paX(0),X(ζ)T

~f
X(ζ),s and K

~f
X(0),s = raX(0) +

∑
X(ζ)∈Ωn,X(ζ)6=s

paX(0),X(ζ)K
~f
X(ζ),s. In addition, g ~f =

K
~f
s,s

T
~f
s,s

according to the above assumptions and the renewal-reward
theorem in [4]. In terms of the above definition of de-
viation, v

~f
X(0) = K

~f
X(0),s − g

~fT
~f
X(0),s = raX(0) − g

~fζ +∑
X(ζ)∈Ωn,X(ζ)6=s

paX(0),X(ζ){K
~f
X(ζ),s−g

~fT
~f
X(ζ),s}. The fact that

s is recurrent (i.e., from state s back to s) implies that
K
~f
s,s − g

~fT
~f
s,s = 0. Therefore, v

~f
X(0) = yaX(0) − g

~fζ +∑
X(ζ)∈Ωn

paX(0),X(ζ)v
~f
X(ζ).

Theorem 2 A new policy ~f ′ is constructed by replacing the
action of state X(0) in ~f with action a. ~f ′ improves ~f if
G(X(0), a, ~f) ≤ v ~fX(0) where G(X(0), a, ~f) = raX(0)−g

~fζ+∑
X(ζ)∈Ωn

paX(0),X(ζ)v
~f
X(ζ).

Proof Let πX(0) (∀X(0) ∈ Ωn) be the steady state prob-
ability under the policy ~f ′, i.e.,

∑
X(0)∈Ωn

πX(0) = 1. Since

G(X(0), a, ~f) = raX(0) − g
~fζ +

∑
X(ζ)∈Ωn

paX(0),X(ζ)v
~f
X(ζ) ≤

v
~f
X(0), the following formula is true:∑
X(0)∈Ωn

πX(0)r
a
X(0)+

∑
X(0)∈Ωn

πX(0)

∑
X(ζ)∈Ωn

paX(0),X(ζ)v
~f
X(ζ)

−g ~fζ ≤
∑

X(0)∈Ωn

πX(0)v
~f
X(0).

8

Algorithm 3: Server Selection

Input: n, ~f, ξ
1 begin
2 Flag ← True;
3 while Flag = True do
4 foreach x ∈ Ωn do

5 Calculate v
~f
X(0) and g ~f for ~f using the

Policy Evaluation algorithm;

6 Construct a new policy ~f ′ using the Policy
Improvement algorithm;

7 Compute PR(~f ′) using Equation (7);
8 if PR(~f ′) ≤ 1− ξ then
9 ~f∗ ← ~f ′, g∗ ← g

~f ;

10 if ~f ′ = ~f then
11 Flag ← False;
12 else
13 Flag ← True, ~f ← ~f ′;

14 return ~f∗, g∗.

According to the definition of raX(0) in Theorem

1 and
∑

X(0)∈Ωn

πX(0) = 1, we obtain g
~f ′ζ − g

~fζ +∑
X(ζ)∈Ωn

πX(ζ)v
~f
X(ζ)a ≤

∑
x∈Ωn

πX(0)v
~f
X(0), i.e., g ~f ′ ≤ g

~f which

means that the new policy ~f ′ improves ~f by action a.

The above two theorems illustrate that a smaller v
~f
X(0)

also implies a smaller g ~f and a better policy ~f .
The server selection procedure for a given number of

servers n is iterative rather than a one-pass process. The
policy ~f starts from the initial feasible policy ~f0 obtained
by Algorithm 2. Deviation values for all the involved states
and the expected reward g ~f are obtained by the subsequent
Policy Evaluation algorithm which is based on Theorem
1. An improved policy ~f ′ is searched for by the following
Policy Improvement algorithm which is based on Theorem
2. ~f ′ is set as ~f∗ if the rejection probability is not higher
than the system availability ξ. The policy evaluation and
improvement procedures are repeated until ~f ′ = ~f . The
optimal policy ~f∗ and the expected reward per unit time g∗

are obtained. The proposed server selection framework is
depicted in Algorithm 3. The computational time complex-
ity for the server selection algorithm isO(max(M3, nNM2).

4.3.2 Policy evaluation

Since minE(Y (t)) is equivalent to min~f{tg
~f + v

~f
X(0)}, both

g
~f and v

~f
X(0) depend on ~f . Since ζ is the average time of

all possible reachable states from X(0) in the next decision
epoch which is included in t (generally several epoches are
included in t), Equation (9) cannot be applied directly to
obtain g

~f and v
~f
X(0). A different ~f leads to different g ~f

and v
~f
X(0). g ~f is closely related only to ~f . According to

the optimal server selection principle, v
~f
X(0) depends on

both the policy ~f and the initial state X(0). The above two
theorems indicate that g ~f and v

~f
X(0) interact with each other.

They can be obtained by Theorem 1. For all the M states in
Figure 2, there are M + 1 unknown quantities (M deviation
values v

~f
X(0) and g

~f) in M equations for each step in the
state transition in terms of Equation (9). In addition, the
special state (0,0) is firstly recurrent by visiting (0,0) and
(1,1) sequentially. According to the proof of Theorem 1, the
deviation value of the first recurrence of (0,0) is v

~f
(0,0). Let

ζ0, ζ1, ζ2 be the time periods from (0,0) to (1,0), from (1,0) to
(1,1) and from (1,1) to (0,0) respectively. In terms of Equation
(9), we obtain another equation as:

v
~f
(0,0) =ra(0,0) − g

~fζ0 + pa(0,0),(1,0)

[
ra(1,0) − g

~fζ1+

pa(1,0),(1,1)(r
a
(1,1) − g

~fζ2 + pa(1,1),(0,0)v
~f
(0,0))

]
(10)

The values of all the M + 1 unknown quantities v
~f
X(0) for

each state and g
~f can be calculated by the corresponding

M + 1 equations because the time ζ in each equation can be
obtained by matrixQ (details will be given in the following).

Before the calculation, we determine ζ , paX(0),X(ζ) and
raX(0) respectively.

• In the state sequence (0, 0), (1, 0), (1, 1), . . . , (n +
R,n), the position m of X(0) is searched for. The
time period ζ is − 1

Qmm
according to [4] where Qmm

is the mth diagonal element.
• For each state X(0) = (j, i) where j represents the

number of requests and i denotes the number of
servers, there are at most four transitions as depicted
in Figure 2 which can be uniformly denoted as

X(ζ) =X(0)− Sf (i)Sf (j)(1− z1)(1− z3)e0−
Sf (i)Sf (j)(1− Sf (j − i))(1− z1)(1− z3)z2e1

+ Sf (n+R− j)z1z2z3e0

+ Sf (n− i)(1− z1)z2z3e1 (11)

where Sf (l) is a binary function.

Sf (l) =

{
1 if l > 0

0 if l ≤ 0
(12)

Sf (l) = 1 if l > 0 and Sf (l) = 0 if l ≤ 0. Different
combinations of the three binary variables z1, z2 and
z3 are shown in Table 2. z1 ∈ {0, 1} denotes whether
a new request can enter the system (z1 = 1) or
not (z1 = 0) which corresponds to the first possible
state in subsection 3.1, i.e, the number of requests
is less than n + R (z1 = 1) or is n + R (z1 = 0).
z2 ∈ {0, 1} represents whether the server operated
by a is changed to the COLD state (z2 = 1) or is
kept in the HOT state (z2 = 0). z2 corresponds to the
third and fourth possible states. z3 ∈ {0, 1} indicates
whether a new server is added (z3 = 1) or not, which
corresponds to the second possible state. paX(0),X(ζ)
is calculated in terms of matrix Q as follows:

paX(0),X(ζ) =Sf (i)Sf (j)(1− z1)(1− z3)UH(0)ζ

+ Sf (n+R− j)z1z2z3λζ

+ Sf (n− i)(1− z1)z2z3θζ (13)

9

where UH(0) can be obtained from ~f .
• raX(0) = y(X(0))ζ is calculated in terms of the defi-

nition of raX(0) in Theorem 1.

TABLE 2: Transition types by combinations of the variables
z1, z2 and z3.

z1 0 0 0 0 1 1 1 1
z2 0 0 1 1 0 0 1 1
z3 0 1 0 1 0 1 0 1

Transition type (iii) × (iv) (ii) × × × (i)

Therefore, the deviation values v
~f
X(0) and g

~f can be
calculated with Equations (9) and (10).

We use the vector ~v= (v
~f
(0,0),v

~f
(1,0),v

~f
(1,1), . . . ,v

~f
(n+R,n), g

~f)
to denote the M + 1 unknown quantities and the
first M elements correspond to the state sequence
(0, 0), (1, 0), (1, 1), . . . , (n+R,n). All coefficients of the un-
known quantities are kept in a matrix [V](M+1)×(M+2). U1 is
the total service rates for servers in hot state. Since different
combinations of z1, z2 and z3 determine different states and
coefficients, we use k + z × min(n, j) + z0 where z =
(z1−1)(1−z2)(1−z3)+z1z2z3, z0 = z2z3 +(z3−1)(1−z1)
to denote the four possible locations of X(ζ) which are
k + min(n, j) + 1, k + 1, k − 1, k −min(n, j) − 1. In terms
of Equations (11) and (13), the values of [V](M+1)×(M+2)

are obtained. By the elimination method, all unknown
quantities are calculated. The policy evaluation process is
formally described in Algorithm 4. The time complexity of
computing [V](M+1)×(M+2) (steps 2-25) is O(nM) and that
of the elimination method isO(M3) (steps 26-36). Therefore,
the time complexity of Algorithm 4 is O(M3) as M � n.

To illustrate the above process, the example used in
subsection 4.2 is used again with n = 2 and a pol-
icy ~f = (0, 0, 0, 0, 0, 6, 6, 6, 6, 4, 4, 4). The set of states is
{x1 = (0, 0), x2 = (1, 0), x3 = (1, 1), . . . , xM = (4, 2)}.
The other parameters are identical to those in subsec-
tion 4.2. In terms of Algorithm 4, the deviation values of
the states are {0.087,-0.914,-0.1.04,-0.696,-0.107,0.078,-0.386,-
0.0074,-0.162,0.234,0.280,0.086} and expected reward g

~f =
1.149.

4.3.3 Policy improvement
In terms of Theorem 2, the current policy ~f can be improved
if G(X(0), a, ~f) ≤ v

~f
X(0). An average service rate µ̂ can be

estimated for a given system availability ξ and the value
obtained n from Equation (14) since ξ ≤ 1 − p′n+R. The
average rate on the n rates of ~f , i.e., ~µ= (µ1, µ2, . . . , µn),
is µ =

∑n
i=1 µi
n . µ̂ ≤ µ means that a is feasible to up-

date ~f to the new ~f ′. The new ~f ′ is updated with the
min

X(0)∈Ωn

∑
G(X(0), a, ~f).

Assume the n servers are homogeneous with the same
service rate µ̂ when the system availability is ξ, arrival rate
λ and queue capacity R. The system would be a traditional
M/M/n/n + R queuing model [26]. The probability p′i for
the state or the number of requests i (i = 0, 1, . . . , n + R)
can be easily calculated by:

p′i = Sf (n+ 1− i) λ
i

i!µ̂i
p′0 + Sf (i− n)

λi

n(i−n)n!µ̂i
p′0

Algorithm 4: Policy Evaluation

Input: n, ~f,Q, λ, θ,Ωn
1 begin
2 [V](M+1)×(M+2) ← 0;
3 for i = 0 to n do
4 for j = i to n+R do
5 x← (j, i), U1 ← 0, k ← 1;
6 for q = 0 to j − 1 do
7 if q ≤ n then
8 k ← k + q + 1;
9 else

10 k ← k + n+ 1;

11 k ← k + i, ζ ← − 1
Qkk

;
12 Calculate y(x) using Equation (3);
13 Vkk ← 1, Vk(M+1) ← ζ , Vk(M+2) ← y(x)ζ ;

/* Vk(M+2) is the actual reward
ra(j,i) of the state (j, i). */

14 for q = 0 to i do
15 U1 ← U1+ ~f((n+R+1)q− q(q+1)

2 +j+1);

16 µa ← ~f((n+R+ 1)i− i(i+1)
2 + j + 1);

17 for z1 = 0 to 1 do
18 for z2 = 0 to 1 do
19 for z3 = 0 to 1 do
20 Determine x(ζ) using Equ. (11);
21 Compute pax,x(ζ) by Equ. (13);
22 z ←

(z1−1)(1−z2)(1−z3)+z1z2z3;
23 z0 ← z2z3 + (z3 − 1)(1− z1);
24 k′ ← k + zmin(n, j) + z0;
25 Vkk′ ← −pax,x(ζ);

26 V(M+1)(M+2) ←
V1(M+2) + V12V2(M+2) + V23V3(M+2),
V(M+1)(M+1) ← 1

−Q11
− V12(1

Q22
+ V23

1
Q33

),
V(M+1)1 ← 1− V12V23V31 using Equation (10);

27 for k = 1 to M do
28 for i = 2 to M + 1 do
29 for j = k to M + 2 do
30 Vij ← VijVkk

Vik
− Vkj ;

31 ~v(M+1) ←
V(M+1)(M+2)

V(M+1)(M+1)
;

32 for i = M to 1 do
33 s← 0;
34 for j = i+ 1 to M + 1 do
35 s← s+ Vij~vj ;

36 ~vi ←
Vi(M+2)−s

Vii
;

37 return ~v.

where Sf (l) is determined in Equation (12).
Since

∑n+R
i=0 p′i = 1, we can obtain p′0 =(∑n

i=0
λi

i!µ̂i + nn

n!

∑n+R
i=n+1

λi

niµ̂i

)−1
. In addition,

nn

n!

∑n+R
i=n+1

λi

niµ̂i = nn

n!

(λ
nµ̂)n+1(1−(λ

nµ̂)R)

1− λ
nµ̂

= λ(n+1)[(nµ̂)R−λR]
n!nRµ̂(n+R)(nµ̂−λ)

.

10

Therefore, p′0 =
(∑n

i=0
λi

i!µ̂i + λ(n+1)[(nµ̂)R−λR]
n!nRµ̂(n+R)(nµ̂−λ)

)−1

. For the
artificial homogenous system, the rejection probability is

p′n+R =
λn+R

nRn!µ̂n+R
p′0. (14)

The system availability is ξ which implies that p′n+R ≤ 1−ξ.
Because of its convenience for solving unknown equations,
Matlab R2010b is applied to estimate the service rate µ̂ with
the following equation.

(1− ξ)

(
n∑

i=0

λi

i!µ̂i
+

λ(n+1)[(nµ̂)R − λR]

n!nRµ̂(n+R)(nµ̂− λ)

)
=

λn+R

nRn!µ̂n+R
(15)

If µ̂ > µ, ~f cannot be improved by conducting a, i.e., a is
unfeasible.

Let ~f ′ be the best policy of the current improvement
which is initialized to ~f . For the current policy ~f , ~vi(i=1,
. . . , M) are obtained by Algorithm 4. Each server ~S[i] (i =
1, . . . , n) is tested for a replacement by any of the servers
Si′ (i′ ∈ JC). For the updated policy ~f ′′, G(xk, Si′ , ~f ′′)(k =
1, . . . ,M) is calculated in terms of Theorem 2. The process is
repeated until all servers in ~S[i] are tested. The policy matrix
F[n(N−n)+1]×M contains all possible policies (which also in-
cudes the updated policy ~f ′′ and ~f) corresponding to what
deviation values are kept in matrix G[n(N−n)+1]×M . ~f ′(i)
is replaced by Fki if Gmin = Gki. The policy improvement
procedure is formally depicted in Algorithm 5. Though it
is hard to estimate the computational time complexity of
Algorithm 5 because of the complicated computation of µ̂
using Equation (15), it is much faster in practical testing. As
for Algorithm 5, the time complexity isO(n(N−n)M) since
M < n(N − n)M .

To illustrate the above process, the example used in
subsection 4.3.2 is used with policy ~f=(0,0,0,0,0,6,6,6,6,4,4,4).
The service rate µ̂ = 1.326 is evaluated in terms of Equation
(15). The two servers with rates 6 and 4 are in the HOT state
and JC = {3, 4, 5, 6} contains the substitution candidates.
There are eight candidate policies based on JC for each one
of the servers (one substitution for each server). A new pol-
icy ~f ′=(0,0,0,0,0,0.1,0.1,0.1,0.1,4,4,4) is determined by choos-
ing the minimal Gki(i = 1, . . . ,M) using Algorithm 5. ~f ′ is
reevaluated by Algorithm 4. There are eight candidate poli-
cies to improve ~f ′ among which four satisfy the µ̂ constraint.
The policy ~f ′=(0,0,0,0,0,0.1,0.1,0.1,0.1,4,4,4) is selected. Since
there is no further improvement, Algorithm 3 stops and
returns the optimal policy ~f∗=(0,0,0,0,0,0.1,0.1,0.1,0.1,4,4,4)
with g∗ = 0.497. Details are given in Table 3.

5 EXPERIMENTAL EVALUATION

Since there are no parameters and no algorithm component
candidates in the proposed BETP algorithm, no parameter
or component calibration is needed. This is actually a desir-
able characteristic of the proposed BETP algorithm. How-
ever, there are many system parameters which might affect
the performance of the proposal. First we test the effect
of the system parameters and then four similar algorithms
are compared with the BETP algorithm over both random
and real instances [31]. All compared algorithms are coded

Algorithm 5: Policy Improvement

Input: n, ~f,~v, ~S, JC
1 begin
2 ~f ′ ← ~f , G[n(N−n)+1]×M ← 0;
3 l← 1, F[n(N−n)+1]×M ← 0;
4 Calculate µ̂ using Equation (15);
5 for i = 1 to M do
6 G1i ← ~vi;

7
−→
F 1 ← ~f ′;

8 for i = 1 to n do
9 foreach j ∈ JC do

10 ~µ[i]← µj ;

11 µ←
∑n
i=1
−→µ [i]

n ;
12 if µ ≥ µ̂ then
13 l← l + 1;
14 Construct ~f ′′ in terms of ~µ;
15

−→
F l ← ~f ′′;

16 for k = 1 to M do
17 Compute G(xk, Si′ , ~f) by Theorem

2;
18 Glk ← G(xk, Si′ , ~f);

19 for i = 1 to M do
20 Gmin ← G1i, k ← 1;
21 for j = 2 to l do
22 if Gji < Gmin then
23 Gmin ← Gji, k ← j;

24 ~f ′(i)← Fki ;

25 return ~f ′.

TABLE 3: Optimal policy procedure.

Iteration times ~f ′ g
~f ′

0 (0,0,0,0,0,6,6,6,6,4,4,4) 1.149
1 (0,0,0,0,0,0.1,0.1,0.1,0.1,4,4,4) 0.497
2 (0,0,0,0,0,0.1,0.1,0.1,0.1,4,4,4) 0.497

in Matlab R2010b and run on an Intel Core i5-3470 CPU
@3.20GHz with 8 GBytes of RAM.

Equation (3) indicates the objective value for a state, the
performance is measured by the average expected value y
of all the states calculated by

y =

M∑
i=1

πi

[
βW (N i

r(t)) + (1− β)

NiH (t)∑
j=0

W (P[j])
]
× 100% (16)

where πi is the steady probability of the ith state determined
by equations (5) and (6). N i

r(t) and N i
H(t) are the number

of requests and servers in the ith state respectively.

5.1 System parameters influence on performance

Similar to the problem of performance analysis for cloud
centers in [7], the effects of the system parameters on
the proposal are analyzed on randomly generated testing

11

instances. The studied system parameters are: the sys-
tem availability parameter ξ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, the
arrival rate λ ∈ {{1, . . . , 10}, {11, . . . , 20}, {21, . . . , 30}},
the maximum number of servers N ∈ {5, 10, 15, 20},
the queue capacity R ∈ {10, 20, 30, 40}, the delay rate
θ ∈ {10, 20, 30} and the range of service rate µ ∈
{(0, 5], [5, 10], [10, 15], [15, 20]} (no test is needed for β be-
cause it is the weight of the objectives and it depends on
the preferences of users). There are 2,880 parameter com-
binations in total. Three instances are generated randomly
for each arrival rate λ and every service rate µ, i.e., nine
instances are generated for each combination. Therefore,
25,920 instances in total are tested for the combinations of
all parameter values.

Experimental results are analyzed by the multi-factor
analysis of variance (ANOVA) statistical technique. Three
main hypotheses (normality, homoscedasticity, and inde-
pendence of the residuals) are analyzed from the residuals
of the experiments. All three hypotheses can be accepted
considering the well-known robustness of the ANOVA tech-
nique. The p-values are less than 0.05 which means that all
the studied factors have a significant effect on the response
variables at the 95% confidence level within the ANOVA.

The means plot of the six studied factors on the average
expected value y with 95% HSD (Tukey’s Honest Signifi-
cance Differences) intervals are given in intervals is shown
in Figure 3. From Figure 3, it can be observed that:

(i) ξ exerts a great influence on y. With an increase in ξ, y
decreases. The differences are statistically significant. y
is the minimum (about 44%) when ξ = 0.9. The reason
lies in that a higher ξ implies that faster servers are
provided which further decreases the rejection proba-
bility.

(ii) λ exerts a great influence on y. With an increase in
the upper bound for λ, y increases with statistically
significant differences. y is the minimum (about 35%)
when λ takes values from {1, . . . , 10}. The reason
lies in that fewer arriving requests means that more
requests are accepted.

(iii) Similarly, µ has a big impact on y and the differences
are statistically significant. However, the tendency of y
is not monotone with an increase in µ because increas-
ing µ means an increase in power consumption and a
decrease in the number of requests in the system which
cannot be determined in advance. y is the minimum
when µ takes a value from [15, 20].

(iv) N has little influence on y. It seems that a greater N
results in more choices for the arriving requests and
possibly shorter response time. However, a greater N
also means more power consumption. According to
Equation (3), the tradeoff between the response time
and the power consumption makes N insensitive to y.

(v) R slightly influences y. In Equation (3), only W (Nr(t))

is closely related to R with W (Nr(t)) = Nr(t)
n+R . A

greater capacity R shows that more requests can be
accepted by the system, i.e., greater Nr(t). On the con-
trary, a lower R results in a lower Nr(t). Therefore, the
differences of the ratio W (Nr(t)) are not statistically
significant in R.

(vi) θ has little influence on y with differences being sta-

tistically insignificant. The reason is similar to that of
N .

5.2 Performance Comparison
Server selection is crucial for the performance of algorithms
for scheduling requests. In this paper, we compare four
BETP algorithms which are based on the BETP framework:
BETP, MAX, MIN and RAND. BETP is the algorithm pro-
posed in this paper. Similarly to the strategy adopted in
[12], MIN selects the n slowest servers. MAX selects the
n fastest servers for the requests. RAND selects n servers
randomly. The RATE dispatch policy given in [28] and [29]
selects servers with a probability µri∑N

i=1 µ
r
i

. For the considered
problem, we found that there is little difference when r = 2
and r = 3. Therefore, we just set r → 2 to select n servers
using the RATE policy with the probability of µ2

i∑N
i=1 µ

2
i

. Both
random instances and real instances from Alicloud [31] are
compared on the algorithms, respectively.

5.2.1 Performance comparison over random instances
In terms of the above analysis, instance parameters ξ, λ,
µ take the same values as those in Subsection 5.1. β takes
values from {0.3, 0.6, 0.9}. N , R, θ are all set to 10 because
of their statistically nonsignificant differences in y as per
the previous experiment. There are 180 combinations. Be-
cause there are no benchmark instances for the considered
problem, nine instances are randomly generated for each
combination. Therefore, 1,620 instances are conducted on
each of the five algorithms with the results shown in Figure
5.

Figure 5 indicates that when the arrival rate λ takes a
value from {1, . . . , 10}, MAX obtains the smallest y while
MIN obtains the largest. BETP and RAND perform simi-
larly. For the other two cases, BETP obtains the smallest
y compared to MAX, MIN, RAND and RATE. In other
words, with an increase in service arrival rate λ, BETP
becomes more effective than the other three algorithms.
MIN always demonstrates the worst performance among
the five compared algorithms.

With an increase in ξ from 0.5 to 0.9, BETP always results
in the smallest y whereas MIN obtains the largest. RATE
is always worse than MAX with a larger y while RATE is
better than RAND with a smaller y. The higher values of ξ
demonstrate the superiority of BEPT.

RAND has the largest y which is even a little higher
than MIN when µ takes a value from the interval (0, 5].
For the other three cases, MIN obtains the largest y. RATE,
RAND are worse than MAX. BETP is much more robust
than the other three algorithms, i.e., with an increase in
µ, the performance of BETP fluctuates less than the other
three. When µ takes values from [20, 25], MAX outperforms
BETP and the latter is similar to RAND. The reason lies in
that arriving requests can be processed by faster servers in
a shorter time no matter which strategy is adopted.

To compare the algorithms comprehensively, the average
performances on effectiveness (the average expected value)
and efficiency (CPU time) are shown in Table 4. According
to Table 4, we can observe that BETP obtains the smallest y,
50.8%, followed by 57.5% of MAX. MIN obtains the largest
y 70.8%. y of RAND is 65.7% which is better than MIN

12

Means and 95.0 Percent Tukey HSD Intervals

ξ μ

35

45

55

65

75

y
 (
%
)

.5 .6 .7 .8 .9 (0,5]{1,…,10} {11,…,20} {21,…,30} [5,10] [10,15] [15,20]
35

45

55

65

75

5 10 15 20

N

35

45

55

65

75

10 20 30 40

R

10 20 30

θ

A
v
er

ag
e

ex
p
ec

te
d
 v

al
u
e

(%
)

.3 .6 .9

β

A
v
er

ag
e

ex
p
ec

te
d
 v

al
u
e

(%

)

5 10 15 20
N

52

53

54

55

56

57

A
v
er

ag
e

ex
p
ec

te
d
 v

al
u
e

(%

)

λ

10 20 30 40
R

10 20 30
θ

10 20 30

Means and 95.0 Percent Tukey HSD Intervals

theta

.52

.53

.54

.55

.56

.57

V
al

u
es

y
y

Fig. 3: Means plot of the six studied system parameters with 95% confidence level Tukey HSD intervals.
Interactions and 95.0 Percent Tukey HSD Intervals

Algorithm

μ
(0,5]
[5,10]
[15,20]
[20,25]

28

38

48

58

68

78

88

98

A
v
er

ag
e

ex
p
ec

te
d
 v

al
u
e(

%
)

BETP MAX MIN RAND BETP MAX MINRAND BETP MAX MIN RAND

λ
{1,…,10}

{11,…,20}
{21,…,30}

ξ

.8

.7

.6
.5

.9

RATE RATE
Algorithm Algorithm

RATE

Fig. 4: Mean plots of the interaction between the five compared algorithms and the three main system parameters with
95% confidence levels Tukey HSD intervals.

TABLE 4: Algorithm comparisons

BETP MAX MIN [12] RAND Rate-based [28]

y (%) 50.8 57.5 70.8 65.7 62.1
CPU time 2.145 0.246 0.272 0.444 0.260

but worse than RATE. y of RATE is 62.1% which is worse
than that of MAX. BETP has the longest CPU time of 2.245
seconds among the five algorithms. The CPU time of MAX,
MIN, RAND and RATE is 0.246s, 0.272s , 0.444s, and 0.260s
respectively. However, the CPU time of BETP is acceptable
in practice.

5.2.2 Performance comparison over real instances
To evaluate the performance in real systems, the real pro-
duction Cluster-trace-v2018 [31] published by the Alibaba
Group is analyzed which contains eight-day sample data
from one of the production clusters. By analyzing the
start time [32] of requests, the arriving time interval is
obtained. According to start time and end time [33], the
execution times of all servers are calculated. The distribu-

tions of the time interval of each request and the execution
time of each server is exponential with different arrival rates
and service rates. The distributions of the time interval of
each request are exponential which implies that the arrival
rates are Poison distributed. Fig. 5 depicts the exponential
cumulative percents of the time intervals of three differ-
ent independent request types M3,M5,Mergetask [32]
and those of the execution time of three different servers
M 1114,M 2188,M 3654 [33].

The arrival rate λ is analyzed by different types of
requests [32]. The service rates µ[i](i = 1, . . . , N) are evalu-
ated by different types of servers [33]. Similar to the random
instances,N,R, θ are set to 10. The service rates are obtained
with {14.5, 15.4, 16.9, 17.4, 18.5, 19.4, 20.4, 21.3, 22.8, 23.9}
in terms of [33]. Fig.6 shows the expected values of the
five compared algorithms. It can be observed that BETP
algorithm always obtains the smallest values as λ increases.
MAX is always better than the MIN and RAND algorithms.
RATE fluctuates as λ increases. It is obvious that all the
compared algorithms have similar performances over both
random and real instances.

13

Exponential Probability Plot

-100 100 300 500 700 900 1100

M2

0.1

50

70
80

90

95

99

99.5

99.9

c
u

m
u

la
ti

v
e
 p

e
rc

e
n

t

Exponential Probability Plot

-100 300 700 1100 1500 1900 2300

M4

0.1

50

70
80

90

95

99

99.5

99.9

c
u

m
u

la
ti

v
e
 p

e
rc

e
n

t

Exponential Probability Plot

-10 40 90 140 190 240 290

M1

0.1

50

70
80

90

95

99

99.5

99.9

c
u

m
u

la
ti

v
e
 p

e
rc

e
n

t

Exponential Probability Plot

-100 1900 3900 5900 7900

M10

0.1

50

70
80

90

95

99

99.5

99.9

c
u

m
u

la
ti

v
e
 p

e
rc

e
n

t

Exponential Probability Plot

-100 200 500 800 1100 1400
M3

0.1

50

70
80

90

95

99

99.5

99.9

cu
m

u
la

ti
v

e
p

er
ce

n
t

-100 300 700 1100 1500 1900 2300

M5

-100 400 900 1400 1900 2400 2900

Mergetask

-20 30 80 130 180 230 280

M_1114

0.1

50

70
80

90

95

99

99.5

99.9

cu
m

u
la

ti
v

e
p

er
ce

n
t

-30 70 170 270 370 470

M_2188

-40 60 160 260 360 460 560

M_3654

Fig. 5: Exponential probability plot for different tasks and machines.

20 40 60 80 100 120 140 160 180 200
20

30

40

50

60

70

80

90

100
BETP
MAX
MIN

RAND
RATE

E
x

p
ec

te
d

 v
al

u
es

 (
%

)

Fig. 6: Expected values among the compared algorithms.

6 CONCLUSIONS AND FUTURE WORK

In this paper, a queuing system is constructed to balance
the expected response time and power consumption for
cloud centers with heterogeneous servers and setup time.
Heterogeneity results in different expected response time
and power consumption for different servers. The rejection
probability is constrained by system availability which de-
termines the number of servers for stochastically arriving
requests. The proposed BETP algorithm obtains a suitable
number of servers and selects the appropriate server types
to balance the expected response time and power consump-
tion. The best policy can be iteratively calculated by the
infinitesimal generator matrix of the state transition process.
Among all the studied system parameters, request arrival
rate, system availability and service rates of servers have a
great influence on the objective (the average expected value)
with statistically significant differences. BETP outperforms
the other three algorithms which are also based on the BETP
framework over a comprehensive set of random and real
instances.

For heterogeneous cloud centers there are still many

open issues that are worth studying in the future, e.g.,
the impatience of service consumers in cloud centers and
segmentation of servers into multiple queues for quickly
processing service requests etc.

ACKNOWLEDGMENTS

This work is supported by the National Key Research
and Development Program of China (No. 2017YFB1400801),
the National Natural Science Foundation of China (Nos.
61572127, 61872077, 61832004) and Collaborative Innova-
tion Center of Wireless Communications Technology. Rubén
Ruiz is partly supported by the Spanish Ministry of Science,
Innovation, and Universities, under the project “OPTEP-
Port Terminal Operations Optimization” (No. RTI2018-
094940-B-I00) financed with FEDER funds.

REFERENCES

[1] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey,
E. Masanet, N. Horner, I. Azevedo, and W. Lintner, “United states
data center energy usage report,” United States Data Center Energy
Usage Report, 2004.

[2] L. Wang, G. V. Laszewski, A. Younge, X. He, M. Kunze, J. Tao, and
C. Fu, “Cloud computing: a perspective study,” New Generation
Computing, vol. 28, no. 2, pp. 137–146, 2010.

[3] A. Gandhi, M. Harchol-Balter, and I. Adan, “Server farms with
setup costs,” Performance Evaluation, vol. 67, no. 11, pp. 1123–1138,
2010.

[4] H. C. Tijms, A First Course in Stochastic Models. Wiley, 2004.
[5] R. Ghosh, K. S. Trivedi, V. K. Naik, and D. S. Kim, “End-to-

end performability analysis for infrastructure-as-a-service cloud:
An interacting stochastic models approach,” in IEEE Pacific Rim
International Symposium on Dependable Computing, Tokyo, Japan,
2010, pp. 125–132.

[6] Y. Xia, M. C. Zhou, X. Luo, Q. Zhu, J. Li, and Y. Huang, “Stochas-
tic modeling and quality evaluation of infrastructure-as-a-service
clouds,” IEEE Transactions on Automation Science and Engineering,
vol. 12, no. 1, pp. 162–170, 2015.

[7] H. Khazaei, J. Misic, and V. B. Misic, “Performance analysis of
cloud computing centers using M/G/m/m+r Queuing Systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 5,
pp. 936–943, 2011.

14

[8] H. Khazaei, J. Misic, V. B. Misic, and S. Rashwand, “Analysis of
a pool management scheme for cloud computing centers,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 5, pp.
849–861, 2013.

[9] T. Atmaca, T. Begin, A. Brandwajn, and H. Castel-Taleb, “Per-
formance evaluation of cloud computing centers with general
arrivals and service,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 8, pp. 2341–2348, 2016.

[10] H. Khazaei, J. Ic, V. B. Ic, and N. B. Mohammadi, “Modeling the
performance of heterogeneous IAAS cloud centers,” in IEEE In-
ternational Conference on Distributed Computing Systems Workshops,
Philadelphia, PA, USA, 2013, pp. 232–237.

[11] C. Misra and P. K. Swain, “Performance analysis of finite buffer
queueing system with multiple heterogeneous servers,” in Dis-
tributed Computing and Internet Technology, International Conference,
Icdcit 2010, Bhubaneswar, India, February 15-17, 2010. Proceedings,
2010, pp. 180–183.

[12] F. Alves, H. C. Yehia, and L. Pedrosa, “Upper bounds on perfor-
mance measures of heterogeneous M/M/C queues,” Mathematical
Problems in Engineering, vol. 2011, no. 4, pp. 1884–1902, 2011.

[13] A. Tirdad, W. K. Grassmann, and J. Tavakoli, “Optimal policies
of M (t)/M/ C/C queues with two different levels of servers,”
European Journal of Operational Research, vol. 249, no. 3, pp. 1124–
1130, 2016.

[14] Z. Zhangab, “Analysis of job assignment with batch arrivals
among heterogeneous servers,” European Journal of Operational
Research, vol. 217, no. 1, pp. 149–161, 2012.

[15] Y. Tian, C. Lin, and K. Li, “Managing performance and power
consumption tradeoff for multiple heterogeneous servers in cloud
computing,” Cluster Computing, vol. 17, no. 3, pp. 943–955, 2014.

[16] X. Qiu, Y. Dai, Y. Xiang, and L. Xing, “A hierarchical correlation
model for evaluating reliability, performance, and power con-
sumption of a cloud service,” IEEE Transactions on Systems Man
and Cybernetics Systems, vol. 46, no. 3, pp. 401–412, 2016.

[17] P. Sun, Y. Dai, and X. Qiu, “Optimal scheduling and management
on correlating reliability, performance, and energy consumption
for multiagent cloud systems,” IEEE Transactions on Reliability,
vol. PP, no. 99, pp. 1–12, 2017.

[18] J. Cao, H. Kai, K. Li, and A. Y. Zomaya, “Optimal multiserver
configuration for profit maximization in cloud computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 6, pp.
1087–1096, 2013.

[19] J. Mei, K. Li, A. Ouyang, and K. Li, “A profit maximization scheme
with guaranteed quality of service in cloud computing,” IEEE
Transactions on Computers, vol. 64, no. 11, pp. 3064–3078, 2015.

[20] G. Bolch, S. Greiner, H. D. Meer, and K. S. Trivedi, Queueing Net-
works and Markov Chains: Modeling and Performance Evaluation With
Computer Science Applications, Second Edition. Wiley-Interscience,
2006.

[21] V. Rykov and D. Efrosinin, “Optimal control of queueing systems
with heterogeneous servers,” Queueing Systems, vol. 46, pp. 389–
407, 2004.

[22] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power
CMOS digital design,” IEEE Journal of Solid-State Circuits, vol. 27,
no. 4, pp. 473–484, 1992.

[23] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “Theoretical and
practical limits of dynamic voltage scaling,” in Design Automation
Conference Proceedings., San Diego, CA, United states, 2004, pp.
868–873.

[24] Z. G. Zhang and N. Tian, “Analysis of queueing systems with
synchronous single vacation for some servers,” Queueing Systems,
vol. 45, no. 2, pp. 161–175, 2003.

[25] V. Rykov and M. Y. Kitaev, “Controlled queueing systems,” Journal
of Applied Mathematics and Stochastic Analysis, vol. 8, no. 4, pp. 433–
435, 1995.

[26] D. Gross, J. F. Shortie, J. M. Thompson, and C. M. Harris, Funda-
mentals of Queueing Theory, Fourth Edition, 2013.

[27] K. Li, “Improving multicore server performance and reducing
energy consumption by workload dependent dynamic power
management,” IEEE Transactions on Cloud Computing, vol. 4, no. 2,
pp. 122–137, 2016.

[28] L. Na and D. A. Stanford, “Multi-server accumulating priority
queues with heterogeneous servers,” European Journal of Opera-
tional Research, vol. 252, no. 3, pp. 866–878, 2016.

[29] S. Doroudi, R. Gopalakrishnan, and A. Wierman, “Dispatching
to incentivize fast service in multi-server queues,” Acm Sigmetrics
Performance Evaluation Review, vol. 39, no. 3, p. 43, 2011.

[30] A. Gandhi, S. Doroudi, M. Harchol-Balter, and A. Scheller-Wolf,
“Exact analysis of the M/M/k/setup class of markov chains via
recursive renewal reward,” Queueing Systems Theory and Applica-
tions, vol. 77, no. 2, pp. 177–209, 2014.

[31] A. cloud. Alibaba 2018. [Online]. Available: https://github.com/
alibaba/clusterdata

[32] alibaba. (2018). [Online]. Available: http://clusterdata2018pubcn.
oss-cn-beijing.aliyuncs.com/batch task.tar.gz

[33] alibaba. (2018). [Online]. Available: http://clusterdata2018pubcn.
oss-cn-beijing.aliyuncs.com/batch instance.tar.gz

Shuang Wang received her B.Sc. in the College
of Sciences from the Nanjing Agricultural Univer-
sity in 2015. She is currently a Ph.D. candidate at
the School of Computer Science and Engineer-
ing, Southeast University, Nanjing, China. Her
main interests focus on Cloud Computing, Task
Scheduling.

Xiaoping Li (M09-SM12) received his B.Sc. and
M.Sc. degrees in Applied Computer Science
from the Harbin University of Science and Tech-
nology in 1993 and 1999 respectively, and the
Ph.D. degree in Applied Computer Science from
the Harbin Institute of Technology in 2002. He
is a full professor at the School of Computer
Science and Engineering, Southeast University,
Nanjing, China. He is the author or co-author
over more than 100 academic papers, some of
which have been published in international jour-

nals such as IEEE Transactions on Parallel and Distributed Systems;
IEEE Transactions on Services Computing; IEEE Transactions on Cy-
bernetics; IEEE Transactions on Automation Science and Engineering;
IEEE Transactions on Cloud Computing; IEEE Transactions on Sys-
tems, Man and Cybernetics: Systems; Information Sciences; Omega,
European Journal of Operational Research; International Journal of
Production Research; Expert Systems with Applications and Journal
of Network and Computer Applications. His research interests include
Scheduling in Cloud Computing, Scheduling in Cloud Manufacturing,
Service Computing, Big Data and Machine Learning.

Rubén Ruiz is full professor of Statistics and Op-
erations Research at the Universitat Politècnica
de València, Spain. He is co-author of more
than 80 papers in International Journals and has
participated in presentations of more than a hun-
dred and fifty papers in national and international
conferences. He is editor of the Elseviers jour-
nal Operations Research Perspectives (ORP)
and co-editor of the JCR-listed journal European
Journal of Industrial Engineering (EJIE). He is
also associate editor of other important journals

like TOP as well as member of the editorial boards of several journals
most notably European Journal of Operational Research and Com-
puters and Operations Research. He is the director of the Applied
Optimization Systems Group (SOA, http://soa.iti.es) at the Instituto Tec-
nológico de Informática (ITI, http://www.iti.es) where he has been prin-
cipal investigator of several public research projects as well as privately
funded projects with industrial companies. His research interests include
scheduling and routing in real life scenarios.

