

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/168885

Pons-Escat, L.; Sahuquillo Borrás, J.; Selfa, V.; Petit Martí, SV.; Pons Terol, J. (2020).
Phase-Aware Cache Partitioning to Target Both Turnaround Time and System Performance.
IEEE Transactions on Parallel and Distributed Systems. 31(11):2556-2568.
https://doi.org/10.1109/TPDS.2020.2996031

https://doi.org/10.1109/TPDS.2020.2996031

Institute of Electrical and Electronics Engineers

© 2020 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertisíng or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

1

Phase-Aware Cache Partitioning to Target both
Turnaround Time and System Performance

Lucia Pons, Julio Sahuquillo, Vicent Selfa, Salvador Petit, Julio Pons

Abstract—The Last Level Cache (LLC) plays a key role in the system performance of current multi-cores by reducing the number of
long latency main memory accesses. The inter-application interference at this shared resource, however, can lead the system to
undesired situations regarding performance and fairness. Recent approaches have successfully addressed fairness and turnaround
time (TT) in commercial processors. Nevertheless, these approaches must face sustaining system performance, which is challenging.
This work makes two main contributions. LLC behaviors regarding cache performance, data reuse and cache occupancy, that
adversely impact on the final performance are identified. Secondly, based on these behaviors, we propose the Critical-Phase Aware
Partitioning Approach (CPA), which reduces TT while sustaining (and even improving) IPC by making an effective use of the LLC
space. Experimental results show that CPA outperforms CA, Dunn and KPart state-of-the-art approaches, and improves TT (over 40%
in some workloads) over Linux default behavior while sustaining or even improving IPC by more than 3% in several mixes.

Index Terms—Cache memories, Multi-core multiprocessors, Memory structures, Memory hierarchy, Performance.

F

1 INTRODUCTION

A PPLICATIONS executing in modern high-performance
multi-core processors compete for shared resources.

Among these resources, the Last Level Cache (LLC), typ-
ically shared among all the cores, plays a key role in the
final performance. The common design choice taken by
computer architects is to provide a huge LLC, on the order
of a few MBs per core, which adds up to tens of MBs. This
capacity is much higher when the LLC is built using denser
technologies, like in the IBM POWER9 [1] or in the Intel
Knights Landing [2] architectures.

Cache sharing allows improving resource utilization and
presents important advantages over splitting the area de-
voted to the LLC into smaller private caches [3]. However,
sharing the LLC can lead to important shortcomings from
the system performance perspective. The inter-application
interference at the LLC makes the system and individual ap-
plication performance become unpredictable, thus leading
to undesired situations for both performance and fairness.

This interference can be addressed in some recent Intel
and ARM processors, which provide support to distribute
the LLC cache ways among the co-running applications. For
instance, Intel’s CAT technology allows assigning specific
cache ways to either groups of applications or cores. Several
cache partitioning approaches leveraging Intel CAT have
been proposed addressing different performance targets like
system fairness [3], turnaround time (TT) [4] and system
throughput [5]. These works achieve the objectives they
target by, among others, (severely) limiting the LLC space
some non-critical applications are able to occupy. This way
avoids that these applications slow down co-running ap-
plications that access the LLC less frequently, but whose
performance is more sensitive (critical) to LLC space. There-
fore, their performance can significantly impact on the final

• Department of Computer Engineering, Universitat Politècnica de
València, Valencia, Spain.
E-mail: lupones@disca.upv.es

system performance. Nevertheless, benefiting some specific
applications (e.g., to improve fairness) at the expense of
damaging the best performing ones negatively impacts on
the system throughput.

In a recent work [4], we proposed the Critical-Aware (CA)
Partitioning Approach aimed at addressing this issue. CA is
a conceptually simple but effective approach, that achieves
excellent results by dynamically classifying applications in
two main groups, namely critical and non-critical appli-
cations. The former category groups applications whose
performance is affected (critical) by the amount of cache
space, and the latter includes non-affected applications.
Then, the LLC is partitioned accordingly by limiting the
number of cache ways assigned to non-critical applications
and isolating critical applications in a single partition with
a larger amount of cache space.

In this work we propose the Critical-Phase Aware (CPA)
Partitioning Approach, which presents major improve-
ments over the CA approach but follows the same design
philosophy. CPA enhances the design of CA in four ways,
which are the contributions of this work.

1) An exhaustive characterization study from the LLC
perspective is performed, establishing the relation-
ship between an application’s LLC behavior and
its impact on the system performance. The study
analyzes LLC performance in terms of misses per
kilo-instruction (MPKI LLC), data reuse in terms
of hits per kilo-instruction (HPKI LLC), and cache
occupancy. To the best of our knowledge, this is the
first approach that uses the LLC occupancy to drive
the partitioning strategy. Monitoring the occupancy
allows our approach to identify applications wast-
ing cache space.

2) We propose the CPA partitioning approach that
considers the results of the characterization study
to deal with both TT and performance. We found
that LLC behavior changes are linked to (IPC) phase

2

changes of the application, therefore CPA is trig-
gered by phase changes instead of at fixed intervals,
reducing the overhead over existing approaches.

3) We found that CA does not properly work when the
level of criticality widely varies among the applica-
tions in sharing the critical partition. To deal with
this issue, the number of partitions is not limited a
priori, but additional partitions are used to isolate
programs based on their run-time behavior. This
provides a finer control of the LLC space assigned
to each application.

4) A wider set of applications, a total of 50, taken
from both SPEC CPU 2006 [6] and 2017 [7] suites,
has been studied in this work; thus broadening the
variety of behavioral patterns.

CPA has been evaluated in TT, average normalized
turnaround time (ANTT) –which provides some notions of
fairness– and system throughput (IPC). Experimental results
show that CPA on average outperforms KPart and Dunn
state-of-the-art approaches along the three studied metrics.

2 APPLICATION CHARACTERIZATION

This section characterizes in detail the behavior of SPEC
CPU 2006 and 2017 benchmark suites, analyzing the re-
lationship between MPKI LLC (misses per kilo-instruction
in the LLC), HPKI LLC (hits per kilo-instruction), IPC (in-
structions per cycle) and LLC occupancy. Since there are
applications whose name appears in both suites, from now
on the suffix _06 and _17 will be added to specify the
corresponding suite.

A seminal technique that characterizes the LLC behavior
of the applications and designs a partitioning approach,
assigning a particular management strategy to each cate-
gory, was presented in [4]. The characterization study iden-
tified two main groups of applications: Critical and Non-
critical applications. In the former group, an increase in
the assigned LLC space of these applications results in an
IPC increase. Similarly, the lower the number of assigned
cache ways the higher the MPKI LLC these applications
experience. In the latter, In contrast, the performance of
latter group does not improve by increasing the amount
of LLC space beyond two 1 MB ways1. Additionally, their
MPKI LLC is particularly low (less than 1), which easily
allows identifying these applications at run-time.

Based on the results of the characterization study, the
Critical-Aware Partitioning Approach (CA) [4] was pro-
posed, a dynamic algorithm that distributes the LLC space
according to the applications’ needs. This algorithm im-
proves performance for most of the studied workloads
mixes. Further insights can be found in Section 3.

2.1 Problematic Applications

A wider and deeper evaluation of the CA approach for
an extensive range of workload mixes revealed that some
applications do not fit well in any of the two categories
(i.e., critical and non-critical). We found that, even though

1. Notice that a 1-way LLC behaves like a direct-mapped cache so
performance can drop considerably (due to conflict misses rise).

Fig. 1: Average behavior of critical and problematic applica-
tions varying the LLC space.

CPA identifies some as critical (high MPKI LLC), their
performance did not improve with larger cache partitions.
Moreover, assigning larger partitions to these applications
increases the inter-application interference, thus reducing
the overall system performance. To deal with this short-
coming, CPA identifies these atypical behaviors at run-time
and treats them in a different way. Applications with these
behaviors will be referred to as problematic.

Looking further in this direction, we found that cache
block reuse can assist to distinguish critical and prob-
lematic behaviors. The reuse can be quantified with the
hits per kilo-instruction (HPKI LLC) metric, an additional
metric not considered by CA. Figure 1 shows the IPC,
MPKI LLC and HPKI LLC average values of three applica-
tions (xalancbmk_06, milc_06, and mcf_17), all of them
identified as critical by CA. For each application, the values
shown in the graph were obtained in isolated execution
increasing the number of assigned LLC space from 1 to
20 ways (the entire cache). As it can be observed, all of
them present an average MPKI LLC higher than 2 (an
average value expected in critical applications). With the
only exception of xalancbmk_06, the IPC does not signif-
icantly increases beyond 2 ways. For instance, milc_06’s
IPC slightly improves initially with 2 ways and then remains
constant. Similarly, the IPC improvement of mcf_17 is
scarce compared to that obtained by xalancbmk_06 with
larger partitions. Therefore, milc_06 and mcf_17 can be
classified as problematic applications.

Looking at the HPKI LLC in Figure 1, we can make
three interesting observations. Firstly, xalancbmk_06’s
HPKI LLC grows with the number of LLC ways, and,
conversely, the MPKI LLC decreases. As in other critical ap-
plications, this means that the performance (IPC) achieved
by xalancbmk_06 improves with the amount of LLC space.
Secondly, in contrast, milc_06’s HPKI LLC is always al-
most constant and close to 0, regardless of the number of
LLC ways that it has been assigned. This is because LLC
blocks are scarcely reused (accessed again) or not reused
at all before being evicted. Consequently, the performance
improvements are negligible with additional cache space.
In this work, refer to this kind of problematic behavior as
squanderer. Other contemporary works [5], [8], [9], [10] also
identify this type of cache polluter behavior, however, in this
work applications with this behavior are treated differently.

3

Fig. 2: Average behavior of critical and non-critical applica-
tions varying the LLC space.

Finally, mcf_17 presents the highest HPKI LLC, which
increases when the application is granted additional LLC
space. Nevertheless, assigning more cache ways over a
given number does not improve its performance. The reason
is that the out-of-order execution is not able to hide the
latency of most of accesses to the LLC, which eventually
causes stalls and prevents further performance gains. More-
over, there is an important number of LLC misses, even with
large LLC partitions, probably due to mcf_17’s cache access
patterns being difficult to predict and prefetch effectively.
This kind of problematic behavior will be referred to as
bully and, to the best of our knowledge, it has not been
identified in any previous work.

2.2 Degrees of Criticality
Taking a closer look to the behavior of critical applications as
initially identified by the CA algorithm, we found that some
of them presented a more relaxed behavior; that is, they
showed a higher IPC and lower MPKI LLC than other more
critical applications. That is, different degrees of criticality
can be appreciated. Figure 2 illustrates this fact by plotting
the average IPC and MPKI LLC of two critical applications
(xalancbmk_06) and (blender_17), and, for comparison
purposes, a non-critical application (gromacs_06). As in
Figure 1, the values were obtained in isolated execution
increasing the number of assigned LLC ways.

In contrast to gromacs_06, whose performance is not
affected, both critical applications present a significant per-
formance degradation with just 2 cache ways (2 MB). Nev-
ertheless, compared to xalancbmk_06, which experiences
a really poor IPC (less than 1) with this small cache space,
blender_17 presents a mild IPC (around 1.4). In addition,
blender_17’s IPC stabilizes much earlier (with 6 LLC
ways) compared to xalancbmk_06. Therefore, we claim
that blender_17 is less critical because: i) it presents higher
IPC than other critical applications with reduced LLC space,
and ii) it does not require as much LLC space to maximize its
performance. This means that it can be assigned to a smaller
LLC partition with a minor impact on its performance. This
way, more LLC space could be assigned to improve the
performance of other applications. Consequently, CPA must
ensure that less critical applications do not occupy more
LLC space than needed for performance by monitoring their
LLC occupancy (see further details in Section 2.6). This less

critical behavior will be referred to as medium, while the
more critical behavior has been named sensitive.

2.3 Dynamic Behavior of Applications

This section shows how applications may present different
phases, by executing them in isolation with 2 cache-ways,
the minimum LLC space assigned to an application in this
work (1 cache-way is not considered due to it behaves as
a direct-mapped cache which results in poor performance).
This analysis assist us to observe how applications behave
in each execution phase with limited (and available for itself
on average) LLC space.

Figure 3 illustrates the dynamic behavior of 5 applica-
tions, each representative of a category. The MPKI LLC met-
ric is depicted with a color-changing line and the HPKI LLC
with a dashed gray line. The column at the right side
labelled as IPC shows the colormap associated with the IPC
values. We found that a MPKI LLC and HPKI LLC value
below 0.5 means that the LLC does not negatively impact
the IPC and that there is a negligible data reuse, respectively.
Thus, a horizontal dotted black line at Y=0.5 is plotted in
each graph to facilitate the analysis. The three upper plots
of Figure 3 correspond to gromacs_06, xalancbmk_06
and blender_17, which show representative non-critical,
sensitive and medium behaviors, respectively. The left-
most graph corresponds to a typical non-critical behavior.
Gromacs_06 presents a MPKI LLC close to 0 throughout
the whole execution, which yields an IPC relatively high
(around 2), despite the limited cache space. The next two
graphs illustrate sensitive and medium behaviors, respec-
tively. As observed, xalancbmk_06’s IPC decreases as the
MPKI LLC increases, that is, a rise in the MPKI LLC line
matches a color change to a lighter color. Across all its
execution, this sensitive application presents a relatively low
IPC (below 1) and a MPKI LLC as high as 11.

In contrast, blender_17, the medium application,
presents a higher IPC than xalancbmk_06. Following
the same trend, blender_17 has lower MPKI LLC than
xalancbmk_06, although it can be considered high if
compared with the MPKI LLC of non-critical applications
which is close to 0. Thus, we can argue that with a reduced
cache space, the impact on performance is much lower for
a medium application than for a sensitive one. On the other
hand, the HPKI LLC metric is used to distinguish a critical
(sensitive or medium) from a squanderer behavior. This is
done by checking that there is at least some LLC reuse, that
is, the HPKI LLC is higher than 0.5 (dotted line at y=0.5).

The two lower plots of Figure 3 depict the two different
behaviors shown by problematic applications. The left-side
graph (Figure 3d) presents the behavior of milc_06, a
squanderer application with low LLC reuse. As observed,
it has a high MPKI LLC (similar to the sensitive application
xalancbmk_06) but its HPKI LLC is always lower than 0.5.
This behavior is homogeneous throughout the execution.
The right-side graph (Figure 3e) illustrates the behavior
of mcf_17, an application that presents a bully behav-
ior. Notice that this application does not present a bully
behavior during the whole execution but only in several
execution phases. For instance, it can be observed that from
approximately second 85 to second 150, both the MPKI LLC

4

(a) Non-critical application: gromacs_06 (b) Sensitive application: xalancbmk_06 (c) Medium application: blender_17

(d) Squanderer application: milc_06 (e) Bully application: mcf_17
Fig. 3: Dynamic behavior of the different application behaviors with 2 cache ways.

Application
Category IPC LLC

MPKI HPKI

Sensitive L (< 1.3) H (Eq.2 2) not VL (≥ 0.5)
Medium M (≥ 1.3) H (Eq.2 2) not VL (≥ 0.5)

Bully VL (≤ 0.6) VH (≥ 10) VH (≥ 10)
Squanderer × H (Eq.2 2) VL (< 0.5)
Non-critical otherwise

TABLE 1: Thresholds for each metric and level
(thMetric,Level) used to identify the categories. Columns
define the metric and H (high), M (medium), L (low), VH
(very high) and VL (very low) define the levels.

and HPKI LLC are dramatically high (both are above 10
most of the time), and thus, the IPC value drops down to
about 0.5. In this type of phase, the performance of mcf_17
would not significantly improve if more cache ways were
assigned to it. This is due to the high amount of time taken
by the LLC accesses, as explained in Section 2.1. Therefore,
even though the amount of LLC hits is very high, this bully
application will inevitably achieve poor performance.

2.4 Estimating Thresholds in Multi-Program Execution

While a 2 cache-way configuration –as the assumed in
the previous section for studying the dynamic behavior in
isolation– provides a relatively low amount of cache space,
it could be even lower in multi-program execution, as in this
case, the cache space is shared with other co-runners. This
means that, although the characterization analysis studies
the intrinsic behavior of each application, the threshold

2. See Section 4.2 for further details.

values should be determined empirically in multi-program
execution.

In this work, thresholds (upper and/or lower) were
empirically determined through thousands of experiments
for three main metrics: IPC, MPKI LLC and HPKI LLC. For
each metric, different levels have been defined, referred to as
Very High (VH), High (H), Medium (M), Low (L), and Very
Low (VL). Table 1 summarizes the values of the thresholds
used to perform the experiments presented in Section 6.
From now on we will use the term thMetric,Level to refer
to the threshold of a given level for given a metric. Notice
that threshold thIPC,L behaves as an upper threshold for
medium applications and as a lower threshold for sensitive
applications. All metrics have a fixed numeric threshold
except for MPKI LLC, which is determined by Equation 2
(Section 4.2), a variation of Equation 1 (Section 3.1) which
was used in CA.

2.5 Detecting Phase Changes
We found that IPC phases are linked to different LLC space
needs or LLC phases. For instance, notice that mcf_17’s
behavior, studied above as example of a bully application,
does not show this behavior during the whole execution. In
the execution phase that extends from the second 5 to the
second 75 approximately, mcf_17 behaves as sensitive. In
this phase, mcf_17 has lower HPKI LLC and MPKI LLC
values than in the plotted bully phase. Similarly, a non-
critical behavior appears at the end of the execution of both
xalancbmk_06 and blender_17. Table 2 classifies the
studied applications according to their dominant behavior.

Techniques dealing with phase-change detection have
been widely studied in the past [11] [12] [13]. The main

5

Critical Applications
Sensitive Medium

gcc 17, omnetpp 06,
omnetpp 17, soplex 06,

xalancbmk 06, xalancbmk 17

blender 17, cactuBSSN 17,
fotonik3d 17, GemsFDTD 06,

parest 17, roms 17, sphinx3 06,
zeusmp 06

Problematic Applications
Squanderer Bully

milc 06 mcf 06, mcf 17

Non-critical Applications

astar 06, bwaves 06, bwaves 17, bzip2 06, cactusADM 06,
calculix 06, cam4 17, dealII 06, deepsjeng 17, exchange2 17,
gamess 06, gobmk 06, gromacs 06, h264ref 06, hmmer 06,

imagick 17, leslie3d 06, lbm 06, lbm 17, leela 17, libquantum 06,
nab 17, namd 06, namd 17, povray 06, povray 17, perlbench 06,

perlbench 17, sjeng 06, tonto 06, wrf 06, wrf 17, x264 17

TABLE 2: Categorization of SPEC CPU 2006 (06) and SPEC
CPU 2017 (17) applications.

Fig. 4: Dynamic LLC occupancy of mix #17 with NP.

goal of detecting a new phase is to select the architectural
configuration leading to optimal performance for the incom-
ing phase. In particular, in this work we use phase-change
detection to select the best cache partitioning scheme. We
have devised an approach to detect phase changes based on
the method proposed by Liao et al. [14], Interval Coefficient
of Variation (ICOV), as part of an online phase detection
scheme that guides dynamic L2 cache partitioning, imple-
mented using page coloring. ICOV was chosen for two
main reasons, simplicity and effectiveness, as well as due to
hardware constraints since only four hardware performance
counters are available in our processor. This method mea-
sures the homogeneity of a given sample of numbers (IPC
values in this work). The lower the ICOV value, the closer
the IPC of the current interval is to the phase trend. We
found 20% as the best performing threshold for our proposal
and platform. See [14] for further details.

2.6 Dealing with LLC Occupancy

From the analysis of the defined categories we can sum-
marize the occupancy requirements of each category. Non-
critical applications require almost no occupancy and
present low interference, so they can be placed together
in a single partition. Critical applications have significant
LLC space requirements, but it is important to distinguish
sensitive from medium, since the latter does not need so

much space. Squanderer applications have little reuse, and
therefore, they hardly require any space like non-critical
applications. Finally, bully applications need a minimum
amount of LLC space in order to not degrade even more
their performance.

Figure 4 shows an example of the LLC space occu-
pied by each application of one of the studied mixes
(#17) under the default Linux scheduler, i.e., when no
partitioning (NP) policy is applied. This mix contains 1
medium application (parest_17), 1 sensitive application
(xalancbmk_17), and 6 non-critical applications. Two ob-
servations can be made. Firstly, there are non-critical ap-
plications like bwaves_06 and leslie3d_06 that occupy
more space than the critical ones. Secondly, parest_17 oc-
cupies the same (or even more) space than xalancbmk_17,
in spite of xalancbmk_17 having higher space require-
ments. Notice that CPA correctly address both observations
by properly identifying the different cache behaviors.

From this example we can conclude that the LLC oc-
cupancy metric cannot be used alone to classify applica-
tions into the categories previously defined, but other LLC-
related metrics like IPC, MPKI and HPKI, should be used in-
stead. Nevertheless, we can still leverage the LLC occupancy
of individual applications to check if, once classified, they
are making an efficient use of the cache space. For instance,
in the previous example, the LLC occupancy of a non-critical
application like bwaves_06 could be monitored to check if
it is using an excessive amount of cache space. Likewise,
by monitoring LLC occupancy and performance (IPC) of
critical applications, we can detect a wasteful usage of
LLC space performed by some medium applications, which
do not need as much LLC space as sensitive applications.
Further details can be found in Section 4.3.

3 CRITICAL-AWARE APPROACH

To make this paper self-contained, this section summa-
rizes the Critical-Aware (CA) Partitioning Approach [4].
The main aim is to improve system throughput by using
only two cache partitions or classes of service (CLOS) (see
Section 5): one for critical applications and another for non-
critical ones. CA consists of three main phases: i) application
classification, ii) base partition settings and, iii) dynamic
adjusting of partitions, discussed next.

3.1 Application Classification

At the beginning of the execution, before carrying out any
action, some time is taken to warm-up the cache. After that,
the algorithm enters the reset state, in which the MPKI LLC
of all the applications is computed. The algorithm computes
the rolling mean (µ) and standard deviation (σ) for the
last 10 time intervals of the MPKI LLC, considering all
the applications to detect outliers (that is, critical behavior)
by using Miller’s criterion [15]. Applications outliers are
detected comparing the MPKI LLC of the current interval
to the result of Equation 1.

Limit outlier MPKI LLC = µ+ 3× σ. (1)

6

CA cache configurations (# of used ways)

Critical Apps. CLOS #1 ways
(mask)

CLOS #2 ways (mask)

1 10 (0x003ff) 12 (0xfff00)
2 9 (0x001ff) 13 (0xfff80)
3 8 (0x000ff) 14 (0xfffc0)

0 or more than 3 20 (0xfffff) 20 (0xfffff)

CPA extensions

App. Type # CLOS(es) # of Ways (mask)

Bully/Non-critical 1 Same as CA
Critical 2, 3 or 4 Same as CA

Squanderer 5 or 6 2 ways/CLOS shared
with CLOS # 1

(0x00003 with 1 CLOS,
0x0000f with 2 CLOS)

TABLE 3: Initial cache mask configurations for CA and
extended configurations used in CPA.

3.2 Base Partition Settings

Once applications are classified, the algorithm creates two
partitions (CLOS #1 for non-critical and #2 for critical ap-
plications), whose sizes depend on the number of critical
applications detected. The higher the number of critical
applications, the more cache ways are assigned to CLOS
#2, except when no critical applications are found. Similarly,
when there is a majority of critical applications, the cache is
configured as a single partition (default configuration).

The initial partitions’ layouts, listed on the top part
Table 3, were empirically determined based on a deep and
thorough study of static configurations, evaluating applica-
tion mixes with different numbers of critical applications.
Notice that a partition size represents a given percentage of
the total LLC ways. For instance, with 1 critical application,
60% of the ways are allocated to the critical application’s
CLOS and 50% to the non-critical applications’ CLOS, hav-
ing 10% of the cache ways shared between both CLOS. Thus,
applying this observation the proposed approach could be
easily generalized and adapted to another CAT machine
deploying an LLC with different number of ways. The size
of the partitions is then dynamically adjusted at run-time
as discussed in Section 3.3. When the number of critical
applications varies due to a change in the behavior of an
application (from critical to non-critical or vice-versa), the
actual partitioning scheme must be updated. To this end,
the algorithm transitions back to the reset state setting the
default cache configuration (all applications in CLOS #1
with 20 ways). Then, the classification process starts again.

3.3 Dynamic Adjusting of Partitions

The layouts (i.e., bit masks) of the initial partitions are
dynamically adjusted by CA at run-time by following a
finite state machine (see [4] for further details). Upon a
state change, CA measures the impact of this change on the
system performance and checks if it matches the expected
one to provide feedback to the partitioning policy.

An issue CA faces when dynamically adjusting parti-
tions is that some applications tend to have phases in which
they are critical and phases where they are not. This is chal-
lenging because CA resets the partitioning when a change

Algorithm 1 CPA pseudo-code
1: —————– STEP 1 —————–
2: for all apps do
3: Read I, C, and LLC events (#misses,#hits, occupancy)
4: Compute metrics: IPC,MPKI,HPKI
5: end for
6: —————– STEP 2 —————–
7: if First Interval then
8: update clos = true
9: else

10: for all apps do
11: Compute ICOV
12: if ICOV > ICOVthreshold & app. behavior change then
13: update clos = true
14: end if
15: end for
16: end if
17: if update clos then
18: Update cache settings according to Table 3
19: return
20: end if
21: —————– STEP 3 —————–
22: for all critical apps do
23: if IPC > thIPC,L & LLCoccup > LLCoccupcritical/2 then
24: Reduce the #ways assigned to the CLOS
25: end if
26: end for
27: if NumCritical == 1 & NumMedium == 1 then
28: Enlarge CLOS #1 to leverage the free space
29: end if
30: —————– STEP 4 —————–
31: for all non-critical apps do
32: if LLCoccup > LLCCLOS1/3 &

MPKI < 0.5 & HPKI < 0.5 then
33: Isolate app. in a CLOS with few ways
34: end if
35: end for
36: —————– STEP 5 —————–
37: if NumCritical ≥ 1 then
38: Adjust cache sizes of CLOS #1 and critical CLOS(es) like CA
39: end if

in the number of critical applications occurs. A high number
of resets can reduce the potential system throughput. CPA
is a phase-change driven approach, so it deals with this
drawback.

4 CRITICAL PHASE-AWARE PROPOSAL

4.1 General Overview of the Approach
CPA, like CA, devotes the first intervals of execution to
warm up the cache. Initially, all applications are assumed
to be non-critical and allocated in CLOS #1, which spans the
whole cache (i.e., the default CAT configuration).

Algorithm 1 depicts the pseudo-code of CPA partitioning
policy which is applied (after the warm-up phase) peri-
odically in each time interval of the execution. Firstly, in
step 1, the hardware performance counters are read and
the collected data are used to calculate the inputs to the
algorithm. Five main hardware events are sampled for each
studied application: instructions (I), cycles (C), and three
LLC events (#misses,#hits, and occupancy). The gath-
ered values are used to compute the inputs of the algorithm
(MPKI LLC, HPKI LLC, IPC, and LLC occupancy).

In step 2, the ICOV value of each application is com-
puted in order to detect phase changes, which are detected
when the ICOV surpasses the ICOVthreshold value. In case a
phase change is detected, it is checked if a change in the ap-
plication behavior has also occurred. This is done comparing

7

the inputs of the algorithm with the thresholds presented
in Table 1. For instance, one application is categorized as
bully if its IPC is very low (less than thIPC,V L), and both
its MPKI LLC and HPKI LLC are very high (greater than
thMPKI,V H and thHPKI,V H , respectively). If a change in
the application behavior is found, the cache configuration
is updated according to the bottom part of Table 3. This
configuration update may imply moving the application
from one CLOS to another (e.g., from CLOS #1 to CLOS
#2) and/or updating the bit masks or number of cache ways
assigned to one or more CLOS.

The next steps further refine the cache configuration
by determining if the applications assigned to the cache
partitions are behaving properly regarding their LLC occu-
pancy. That is, CPA checks if an application is using more
cache space than it needs. In step 3, critical applications are
checked for a medium behavior. Since these applications
do not need so much LLC space as sensitive applications
(see Section 2.2), CPA checks if there is a critical applica-
tion that shows a medium behavior (IPC is higher than
thIPC,L) and occupies too much cache space (more than
half of the cache space occupied by the critical applications
LLCoccupcritical). In such a case, the number of ways as-
signed to the CLOS holding the medium application are re-
duced to the proportional part. That is, half if there is one or
two critical applications and one third in case there are three
critical applications. Given that each critical application
resides individually in one CLOS (see Section 4.3 for further
details), the space assigned to each critical application can be
easily managed. In case there is only one critical application
and it is detected as medium, the number of ways of CLOS
#1 are increased so no cache ways are left unused. Note
that, in case there are more than one critical application, at
least one should be considered as sensitive since halving the
space to, for instance, two critical applications will leave too
little space for them, damaging their performance.

In step 4, non-critical applications are checked. In this
case, CPA isolates applications that occupy an excessive
amount of LLC space (quantified as more than one third of
CLOS #1’s space) and that make no profit of it. That is, they
show a very low reuse (HPKI LLC) and misses per kilo-
instruction (MPKI LLC). These applications are isolated in
a separate CLOS with few cache ways shared with CLOS
#1. This cache arrangement avoids that these cache-greedy
applications occupy too much cache space.

Finally, in step 5, the partition sizes are adjusted as done
in CA. This mechanism has been implemented in a way
that it does not let critical applications take too much space
and confine the remaining applications to a marginal space.
Remark that every time the cache configuration is updated
in this step, CPA waits some idle intervals where it is not
adjusted again, leaving some time for applications to take
advantage of the additional space or reduce the amount they
are using to match the new configuration.

4.2 Identifying LLC Behaviors at Run-Time

LLC behaviors, summarized in Table 1, are checked as
follows. First, the algorithm checks for a bully behavior.
As discussed above, applications presenting this behavior
exhibit very high MPKI LLC and HPKI LLC values (higher

than thMPKI,V H and thHPKI,V H , respectively), and very
low IPC (less than thIPC,V L). Since the performance of these
applications does not improve by assigning them a higher
amount of cache ways, two solutions could, in principle,
apply, i) isolate it in a single and small CLOS or, ii) allow it to
remain in CLOS #1 together with non-critical applications.
We evaluated both design choices and found that the second
choice provides the best results, probably because they span
to a higher number of cache ways.

Second, CPA checks for critical (sensitive and medium)
behaviors. Notice that both sensitive and medium behaviors
are identified as critical in step 2, but they are differently
addressed in step 3, where the LLC space is adjusted ac-
cordingly. Critical applications present a high MPKI LLC
(greater than thMPKI,H). Note that in Table 1 threshold
thMPKI,H is not defined by a fixed value but by Equation 2.
Therefore, this threshold varies depending on the bench-
marks that make up the mix but, according to the equation,
the threshold value will be always in the high level range
(i.e.,> 1). Although many statistical studies use 3 × std over
the µ, we found empirically that a more relaxed threshold
(1.5 standard deviations) works well across the studied
mixes. Additionally, the equation excludes the MPKI LLC
of applications showing a previously detected problematic
behavior from the calculation of the mean and standard
deviation, since such high values skew the data model. Note
too that CPA does not only consider the MPKI LLC to detect
a critical behavior but also takes into account the achieved
IPC and the LLC reuse (i.e., HPKI LLC) (see Section 2).

thMPKI LLC,H = max(1, µ+ 1.5× std) (2)

Third, CPA checks for squanderer behavior. An appli-
cation exhibits this behavior whenever it fulfills two condi-
tions: i) it occupies a significant fraction of the LLC and, ii) it
presents a low reuse. The former means that the application
experiences a high MPKI LLC (fulfills Equation 2) , and
the latter that it has a very low HPKI LLC (less than
thHPKI,V L). Taking into account the previous rationale,
CPA isolates squanderer applications into a separate CLOS
with few cache ways (shared with CLOS #1) since no per-
formance benefits are achieved with additional space.

Finally, if the behavior of a given application does not
fulfill the criteria of any of the three mentioned behaviors,
then it is considered non-critical.

4.3 Dynamic CLOS Management: Allocation, Release-
ment and Adjustment

CPA leverages the data collected from the LLC occupancy
hardware counter, which measures the cache space occupied
by each application. To the best of our knowledge, this is the
first time this metric is used to drive a partitioning strategy.

When applications are placed together in a CLOS, the
space available is often not shared evenly. Applications
present different access rates and the LLC replacement
algorithm is driven, among others, by the access rate. This
means that if two applications sharing the same CLOS have
widely different access rates, the application accessing with
higher frequency will likely occupy much more space than
the other. Having an unconstrained number of CLOS allows
CPA to use private CLOS to host individual applications

8

(a) Initial configuration. All applications as-
signed to CLOS #1.

(b) Squanderer (CLOS #4) and critical
(CLOS #2) behaviors are detected.

(c) Another application from CLOS #1 is
detected as critical (CLOS #3).

(d) Application in CLOS #2 detected as
medium.

(e) Non-critical application is isolated in
CLOS #5.

(f) Application in CLOS #3 changes its be-
havior to bully.

Fig. 5: Cache partitioning example in CPA. Each column represents one cache way and each row one CLOS.

and easily control the cache ways assigned to them. Note
that a private CLOS does not necessarily means private
space, since the ways assigned to a CLOS may be shared
with another CLOS.

Private CLOS in CPA serve three main purposes, i) limit
the interference between medium and sensitive applica-
tions, ii) avoid unfair space distribution among non-critical
applications and iii) isolate squanderer applications. The
first purpose is achieved by placing each critical application
in a specific CLOS. The rationale behind this design choice
is to facilitate reducing the LLC space to medium applica-
tions since they need less space than sensitive applications,
so reducing the inter-critical application interference. The
second aim refers to non-critical applications. Even though
these applications have little space requirements, some non-
critical applications occupy more cache space than they
need, i.e., the same performance is achieved with less oc-
cupancy. This may affect the performance of co-runners
in case they they are left too little space (e.g., less than 1
MB). Thus, if this situation is detected, these applications
are isolated in a separate CLOS with a few cache ways.
Finally, the third aim is achieved by isolating squanderer
applications individually in private CLOS with few LLC
ways, since these applications have little reuse and barely
need LLC space. Notice that the space assigned to these
CLOS is shared with CLOS #1, unlike previous works which
isolated this cache pollutant applications in a private CLOS
with private ways (not share ways with other co-runners).
This fact, however, reduces the effective cache space that can
be accessed by the remaining applications, which is is not
the best design choice for performance [3]. Therefore, unlike
previous works, we allow the ways assigned to squanderer
applications to overlap with other applications. In particu-
lar, with the ways assigned to non-critical applications and
other problematic applications, which are less affected by
LLC interference than critical applications.

4.4 Working Example

To help understand how CPA works and illustrate how
cache partitions are disposed, this section presents a work-

ing example on a hypothetical execution scenario consid-
ering a mix made up of eight applications. The example
studies six different events that occur along the execution.
Figure 5 shows the active CLOS (following the criteria
shown in Table 3) and the LLC ways (from 1 to 20 ways)
associated to each CLOS on each event.

At the start of the execution (Figure 5a) all the 8 applica-
tions of the workload mix are in CLOS #1, which spans all
the cache (default cache configuration). After warming up
the cache (at First Interval), the behavior of each application
is checked. Let’s suppose that one of the 8 applications
exhibits a critical behavior and another one a squanderer.
Both of these applications are assigned each to a separate
CLOS, i.e., two new cache partitions sized with the initial
settings are created (see Figure 5b). In this case, CLOS #2
holds the critical application and is assigned 12 cache ways
(ways #1 to #12, see Table 3), and the squanderer application
is allocated in CLOS #5 with 2 cache ways (ways #19
and #20). The partition sizes are then dynamically adjusted
depending on their LLC requirements. For simplicity, the
dynamic adjustment is not shown in this example, since it
follows a complex state machine (see [4] for further details).
Some cache ways are shared (i.e., overlapped) among CLOS
#1 and #2 in order to improve the cache efficiency.

In the next event, Figure 5c, a non-critical application in
CLOS #1 experiences a phase change and starts showing a
critical behavior. Then, CPA creates a new partition (associ-
ated to CLOS #3) to host this application and the CLOS mask
is updated. Notice that each application showing a critical
behavior is placed on a different private CLOS, but initially
both partitions share the same ways. Lets assume now that
the critical application in CLOS #2 shows a higher IPC than
thIPC,L and it is occupying a high fraction of the critical
LLC space. This application is then labeled as medium, and
the CLOS #2 size is reduced to half (Figure 5d). The next
event (Figure 5e) assumes that an application in CLOS #1
starts showing a squanderer behavior (wasting the cache
space by occupying a high fraction of the partition) but
it presents a very low MPKI and reuse. To counteract this
situation, CPA creates a new partition (associated to CLOS

9

#6) to isolate this application. Notice that CLOS #5 and #6
are assigned 4 shared ways instead of 2 cache ways each, in
order to improve cache efficiency.

Finally, the critical (i.e., sensitive) behavior of the appli-
cation in CLOS #3 moves to a bully behavior (Figure 5f).
When this happens, two main actions are carried out. Firstly,
the application in CLOS #3 is returned back to CLOS #1.
Secondly, CLOS #2 is given back the space it had before
halving it and, in forthcoming intervals, this application will
be checked for a medium behavior again.

5 EXPERIMENTAL FRAMEWORK

The experiments have been conducted in an Intel Xeon
E5-2620 v4 processor, with 8 SMT cores running at 2.20
GHz. It has a 20-way 20MB (1MB/way) LLC that supports
CAT with 16 CLOS. To carry out the experiments we have
developed a framework that i) measures performance using
a library based on Linux perf [16], and ii) partitions the cache
using the primitives provided by the Linux 4.11 kernel.

Intel CAT allows assigning a given amount of LLC ways
to either a set of cores or applications, that is, it allocates
processor identifiers (PIDs) or logical cores to CLOS. For
each CLOS, the user specifies the applications or logical
cores assigned to the CLOS, and which cache ways are
written to the CLOS, defined with a capacity bitmask (CBM).

5.1 Workload Mixes
The workload mixes evaluated in this work were randomly
generated using 50 applications: 28 applications from the
SPEC CPU 2006 benchmark suite and 22 applications from
the SPEC CPU 2017 suite. Table 2 shows how applications
classify in the defined categories. It can be appreciated that
non-critical applications dominate both benchmark suites.
Taking this observation into account, 31 mixes consisting of
8 applications each (i.e., the number of cores in the system)
were randomly generated keeping non-critical applications
as the dominant group, and varying the number of critical
and problematic applications from 1 to 3.

Mixes have been ordered according to the number of
applications that the mix contains belonging to the critical
or problematic categories; that is, the higher the mix number
the higher the number of applications from these categories.
Mixes #1 to #12 contain one critical or problematic appli-
cation, mixes #13 to #24 contain two, and mixes #25 to #31
contain three.

5.2 Experimental Parameters
In addition to the thresholds in Table 1, we set the
ICOVthreshold to 0.20, the number of idle intervals to 5 and
the number of warm-up intervals to 10. Experiments use
CLOS #1 to host non-critical applications, and a new CLOS
is allocated whenever a new behavior that requires a private
partition is detected. For the 8-application mixes used in
this work, CPA considers a maximum of 6 CLOS: CLOS #1
devoted to non-critical and bully applications, CLOS #2, #3
and #4 for critical applications (CPA supports up to 3 critical
applications), and CLOS #5 and #6: for squanderer and
non-critical applications wasting LLC space, respectively.
Experiments were also performed using more CLOS but
results did not improve, thus the presented results only used
6 partitions.

(a) CA

(b) CPA

Fig. 6: Dynamic values of IPC and LLC occupancy of mix
#20 under CA and CPA.

5.3 Methodology

To calculate the IPC, MPKI LLC, HPKI LLC and
LLC occupancy values, we use the following Perf
hardware counters: instructions, ref-cycles,
mem_load_uops_retired.l3_hit, mem_load_uops
_retired.l3_miss and intel_cqm/llc_occupancy/.

Workload mixes are run until all the applications in
the mix have completed a fixed number of instructions.
This number corresponds to the number of instructions the
application executes when running alone for 60 seconds.
When an application reaches this limit, and it is not the last
one in the mix to reach such limit, it is restarted so the results
of the other applications are not skewed by the fact that
they have fewer co-runners. Nonetheless, when analyzing
the results, only the values of the first execution run of each
application are considered. At regular 500ms intervals, the
experimental framework reads the performance counters
and passes the values to the partitioning algorithm. Each
experiment is repeated 3 times, and the average values and
the standard deviation for each metric are derived. Results
in Section 6 are shown within a 95% confidence interval with
a margin of error lower than 3%.

6 EVALUATION

6.1 Impact of Newly Identified Behaviors

This section first illustrates the main differences between
CPA and CA regarding two key metrics (IPC and LLC
occupancy) through the study of a example mix (#20). The
mix consists of 1 critical (xalancbmk_06), 1 squanderer

10

application (milc_06), and 6 non-critical applications. This
mix was chosen to help understand why the squanderer
behavior is difficult to identify.

Figure 6 shows the IPC (before being restarted) and LLC
occupancy (for the whole execution) achieved along the
execution for each of the 8 applications in the example mix.
Figure 6a and Figure 6b present the results for CA and CPA,
respectively. Several observations can be made. Firstly, look-
ing at the X-axis, whose length is bounded by the TT (that is,
the execution time of the longest running application of the
mix, xalancbmk_06), it can be seen that CPA improves TT
significantly, nearly 20%. In this specific mix, CA achieves
similar results to the Linux default NP policy. The main
reason is that the behavior of squanderer applications is
not correctly detected. Squanderer applications present a
high MPKI LLC. Therefore, CA confuses milc_06 with a
critical application and allocates it into a partition with a
greater amount of LLC. However, since squanderer appli-
cations present very little reuse, this additional space does
not translate into performance gains. This behavior can be
observed in the LLC occupancy graph of Figure 6a (right
side), where milc_06 occupies a large fraction of the space
during nearly the whole execution.

CPA detects and handles this newly identified behavior,
so milc_06 is no longer allowed to occupy such a large
LLC space. At the beginning of the execution (by second
5), milc_06 is identified as a squanderer application be-
cause it presents high MPKI LLC and very low HPKI LLC.
This application shows the same behavior throughout its
execution time so it remains in a separate CLOS with
a reduced amount of LLC space. The space released by
milc_06 is taken by xalancbmk_06, a critical application
that benefits from additional cache space, and the remaining
non-critical applications. Notice that gains in TT are due
to xalancbmk_06, as a non-critical application is barely
affected. Looking at the IPC graphs, we can see that even
though milc_06 is assigned much less LLC space by CPA
than by CA, so its IPC (and execution time) is unaffected.
Compared to CA, CPA improves the IPC by nearly 4%.

6.2 Turnaround Time Evaluation

This section compares the turnaround time (TT) and average
normalized turnaround time (ANTT) [17] of CPA, CA, and
Dunn [3], a state-of-the-art partitioning policy.

Figure 7a plots the TT improvement (in percentage) of
the studied approaches with respect to NP across 31 8-
application workload mixes. CPA improves TT over 40%
in three mixes over NP. On average this improvement is of
11%, which is slightly higher in Dunn (12%) and lower (6%)
in CA. An interesting observation is that CPA improves TT
considerably with respect to Dunn and CA in those mixes
containing a squanderer application, e.g., mix #9 and mix
#10. This is because neither Dunn nor CA consider block
reuse and LLC occupancy; thus, they are not able to detect
behaviors strongly related to these metrics such as those
exhibited by squanderer applications; and, as explained
above, a wrong classification of squanderer applications
leads the system to performance losses. Finally, we would
like to remark that CPA manages to reach improvements
over 35% in four mixes.

While TT is primarily a user-oriented performance met-
ric [18], it does not consider the performance losses of
an application over isolated execution, which can lead to
misleading conclusions. To deal with this fact, we study a
complementary metric, ANTT, which should be analyzed
alongside with TT. For a given mix, the ANTT is calculated
as the average of the slowdown of the applications that
make up the mix. The slowdown is calculated as the TT
of the application in multi-program execution over the TT
of the application when executed alone. Figure 7b shows
the ANTT improvement (in percentage) achieved by the
studied policies over NP for each workload mix executed.
As observed, CPA shows the best results, reaching in three
mixes improvements over 4%. In contrast, Dunn degrades
this metric by more than 4% in four mixes since it is more
aggressive policy that tries to benefit most those application
showing highest slowdown (i.e., critical). An important
observation is that in those mixes where Dunn outperforms
CPA regarding TT, CPA is able to improve ANTT. For
instance, CPA manages to reach a TT improvement higher
than 50% in mix #18, where Dunn and CA improve by
58% and 20%, respectively. However, CPA outperforms the
other two approaches in ANTT by up to 5%. This means
that CPA successfully considers the applications’ individual
performance as well as the overall system performance and
that the gains in the latter are not at the cost of damaging
the performance of the co-running applications.

6.3 IPC Evaluation
In addition to TT and ANTT, the system throughput is also
evaluated in this work in terms of IPC. More specifically,
the geometric mean of IPC is used since the raw-IPC or
arithmetic mean can yield to misleading conclusions [19].

Figure 8 shows the improvement (in percentage) of the
IPC geometric mean with respect to NP for each workload
mix in the studied policies. Dunn allows the system to
achieve a good system fairness, however, when problematic
behaviors identified in this work are present in the mix,
the IPC can drop. The IPC is difficult to sustain in parti-
tioning approaches focused on multi-program workloads
mainly because, to deal with system fairness or TT, these
partitioning approaches seek to benefit those applications
showing an atypical behavior at the expense of damaging
the best performing ones. Nevertheless, in spite of this fact,
the devised CPA approach properly addresses the newly
identified behaviors, improving TT and ANTT while sus-
taining the IPC or even improving it over 3% in some mixes.

Overall, CPA (and CA but to a lesser extent) manages
to maintain and even improve, in some cases, the IPC,
whereas Dunn’s IPC is worse than NP in most cases. Even
though Dunn obtains, on average, a slightly better TT, this
improvement should never be at the cost of degrading the
system throughput. This principle was firstly drafted in CA
and has been fully tackled in this work.

6.4 Comparing CPA with KPart
This section compares our proposal with KPart [5]. This
approach groups applications into N clusters, this number
ranges from 2 to the number of applications in the mix
and each cluster is assigned to a cache partition, which has

11

(a) TT (b) ANTT

Fig. 7: TT and ANTT improvement (in %) w.r.t. NP for each workload mix.

Fig. 8: IPC (geometric mean) improvement (in %) w.r.t. NP.

Application KPart CPA
Time (s) IPC Time (s) IPC

sjeng_06 65.5 1.34 38.5 2.28
hmmer_06 60.1 1.45 41.0 2.14
nab_17 71.8 1.22 60.5 1.45

libquantum_06 38.3 2.29 61.5 1.43
tonto_06 41.6 2.10 63.5 1.38
soplex_06 109.3 0.80 65.0 1.35
sphinx3_06 61.1 1.43 85.5 1.03
mcf_06 211.9 0.41 123.0 0.71

TT/IPC(geomean) 211.9 1.23 123.0 1.39

TABLE 4: Execution time (s) and IPC the individual appli-
cations of mix #13, and TT and IPC (geomean) of the mix.

private ways. In order to run KPart in our experimental
platform, we adapted the cache partitioning technique to
work with a 20-way cache. We tried the same 31 mixes
described in Section 5.1, but the KPart framework was only
able to run 15 of them, as some SPEC benchmarks are
composed of multiple binaries and supporting that requires
important changes in the KPart architecture.

Results for IPC (geometric mean), TT and ANTT are
shown in Figure 9. For fair comparison purposes, we also
ran the application mixes in CPA until each application
of the mix committed 200 B instructions, like in KPart. As
observed, CPA outperforms KPart, on average, by 6% in
IPC (geometric mean), 30% in TT and 6% in ANTT.

To provide further insight into why CPA outperforms
KPart, we looked into those workloads where KPart
presents a poor performance and found three main reasons:
i) KPart allocates multiple applications to 1-way partitions,
ii) KPart places problematic and critical applications to-

gether, and iii) CPA is triggered when it is really needed
(phase changes), and does more precise changes.

For illustrative purposes, we present below a com-
parative study of mix #13, made up of 5 non-
critical applications (sjeng_06, hmmer_06, nab_17,
libquantum_06, tonto_06), 1 critical sensitive ap-
plication (soplex_06), 1 critical medium application
(sphinx3_06) and 1 bully application (mcf_06). Table 4
shows the results of the execution time and IPC obtained
for each benchmark of this mix. As it can be observed,
the performance (i.e., IPC) of some non-critical applications
drops considerably compared to CPA. KPart allocates firstly
these applications into the same 1-way CLOS, and then in
a CLOS with very little space (1 way/application). Conse-
quently, the partition behaves like a direct-mapped cache,
which results into performance degradation. In contrast,
CPA does not constrain non-critical applications to such
a reduced space, thus it does not present this downside.
Another important difference is that KPart is not able to
correctly identify bully applications like mcf_06. In this
example mix, KPart assigns firstly mcf_06 too little space
(1 way), which damages its performance considerably. In
the following cache disposal (that is, clustering applications
in CLOS and assigning them cache ways), it is placed
together with soplex_06 in a CLOS with a high number of
ways (14). However, as shown in the characterization study,
problematic applications (mcf_06 in this example) tend to
occupy and waste a high portion of their allocated LLC
space. Therefore, placing them in the same cluster as critical
applications results in lower performance, as they reduce
the space available for the critical ones, without significant
performance gains. In the last cache disposal, mcf_06 is
given too much space (9 private ways) that it is not able
to use profitably. Notice that CPA mostly uses shared cache
ways among CLOS which, as proved by [3], generally yields
a better performance (see Section 4.3).

Another difference between KPart and CPA is how often
the cache configuration is modified and the number of
applications/partitions affected. In this mix, KPart performs
a total of 3 cache disposals, compared to CPA which per-
forms 10 cache configuration updates (following criteria in
Table 3), and 23 cache adjustments (Step 5 in Algorithm 1).
CPA performs more frequent and precise cache configura-
tion updates, which adapts better to behavior changes of
the applications.

12

(a) GeoMean IPC (b) TT (c) ANTT

Fig. 9: CPA versus KPart: IPC (geometric mean), TT and ANTT.

Consequently, in this example mix CPA improves the
IPC (geomean) by 13% since it avoids low IPCs (2 out 8
applications present IPC below 1 in KPart). CPA also out-
performs by 61% in TT. We carried out further experiments
to estimate the impact of each of the analyzed aspects. We
found that TT drops to 53% when phase detection is not ap-
plied, and to 27% when using 1-way partitions, proving that
major performance gains come from the proposed strategy
that identifies new specific cache behaviors and performs
more precise cache configuration updates.

7 RELATED WORK

The first approaches dealing with cache partitioning were
implemented using simulation frameworks. Some ap-
proaches like UCP [8], ASM [20], Vantage [21] or PriSM [22]
modify the eviction and insertion policies to partition the
cache, hence they cannot be implemented in existing pro-
cessors. Other approaches like the filter cache [23], split the
cache in different structures to reduce the interference.

Recently, the research trend has changed, mainly due
to the fact that some recent processors provide support
to partition the cache, so nowadays the main focus is
on implementing cache partitioning policies in commercial
processors. Selfa et al. [3] cluster applications using the k-
means algorithm and distribute cache ways between the
groups, giving exponentially more space to the applications
suffering more interference, in order to improve system
fairness. El-Sayed et al. [5] also group applications into
clusters, assigning them to different CLOS. While it manages
to significantly improve throughput in selected workloads,
it uses a detailed profiling, resulting in a much more
complex algorithm than CPA. POCAT [24] uses Intel Top-
down Microarchitecture Analysis Method (TMAM), leveraging
machine learning to predict applications’ IPC for different
cache sizes. This model also captures IPC behavior changes
but it requires using a machine learning dataset, created
by previously collecting TMAM metrics and IPC values of
each application for each cache way setting. In contrast, CPA
detects IPC changes online and it does not require the use
of offline data. DCAPS [25] proposes a framework based on
predictors that uses miss rate curves and LLC occupancy
predictions. Their approach estimates the LLC occupancy
from the number of misses incurred, something that can
lead to wrong conclusions since there are applications that

present a low number of LLC misses but a high number
of memory accesses due to prefetches, so resulting in a
high LLC occupancy. Contrary to this work, we measure
the effective LLC occupancy to identify anomalous LLC
behaviors that can drop the performance of the co-runners.

Finally, recent research works [9], [26], [27] have been
published dealing with cache partitioning for cloud systems.
These systems present workloads with other characteristics,
like latency critical (LC) applications, where quality of ser-
vice must be satisfied, which run jointly with best-effort ap-
plications to improve the resource utilization. The partition-
ing schemes, however, are much simpler (e.g., Heracles [9]
only considers a partition for a single LC application).

8 CONCLUSIONS

This work has made two main contributions. Firstly, we
have presented a detailed characterization of the LLC be-
havior of the applications. The study has analyzed the
relationship between the system performance and the LLC
performance. The analysis has resulted in two important
findings: i) new cache behaviors like squanderer, bully, and
medium have been found, and ii) applications may expe-
rience different LLC behaviors throughout their execution
which match the IPC phases of the application. The main
contribution of the study is that, if the newly identified LLC
behaviors are not properly identified, the system perfor-
mance can significantly drop. Secondly, this work has pro-
posed the phase driven CPA approach, which relies on the
results of the characterization analysis to balance the cache
space. The proposed approach i) assigns a private CLOS to
each individual application provided that it exhibits critical
(sensitive or medium) or squanderer behavior, and ii) those
non-critical applications that overuse LLC space are isolated
in private and small partitions.

Experimental results show that CPA improves TT, over
Linux default behavior about 40% in mixes including appli-
cations showing the newly identified behaviors. Compared
to KPart, CPA outperforms on average TT by 30%, and
IPC and ANTT by 6%. Compared to Dunn, CPA achieves a
similar TT, but Dunn sacrifices system ANTT and IPC. CPA
source code is available at http://hdl.handle.net/10251/
143182.

13

ACKNOWLEDGMENTS

This work has been partially supported by Ministerio de
Ciencia, Innovación y Universidades and the European
ERDF under Grant RTI2018-098156-B-C51, and Generalitat
Valenciana under Grant AICO/2019/317.

REFERENCES

[1] S. K. Sadasivam, B. W. Thompto, R. Kalla, and W. J. Starke, “Ibm
power9 processor architecture,” IEEE Micro, vol. 37, no. 2, pp. 40–
51, Mar 2017.

[2] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod,
S. Chinthamani, S. Hutsell, R. Agarwal, and Y. C. Liu, “Knights
landing: Second-generation intel xeon phi product,” IEEE Micro,
vol. 36, no. 2, pp. 34–46, Mar 2016.

[3] V. Selfa, J. Sahuquillo, L. Eeckhout, S. Petit, and M. E. Gómez,
“Application clustering policies to address system fairness with
intel’s cache allocation technology,” in Procedings of PACT, 2017,
pp. 194–205.

[4] L. Pons, V. Selfa, J. Sahuquillo, S. Petit, and J. Pons, “Improving
system turnaround time with intel CAT by identifying LLC critical
applications,” in Proceedings of Euro-Par, 2018, pp. 603–615.

[5] N. El-Sayed, A. Mukkara, P.-A. Tsai, H. Kasture, X. Ma, and
D. Sanchez, “Kpart: A hybrid cache partitioning-sharing technique
for commodity multicores,” in Procedings of HPCA, 2018.

[6] Standard Performance Evaluation Corporation, SPEC CPU 2006:
http://spec.org/cpu2006.

[7] Standard Performance Evaluation Corporation, SPEC CPU 2017:
http://spec.org/cpu2017.

[8] M. K. Qureshi and Y. N. Patt, “Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance, Runtime Mechanism to Parti-
tion Shared Caches,” in Proceedings of MICRO, 2006, pp. 423–432.

[9] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis, “Heracles: Improving Resource Efficiency at Scale,”
in Proceedings of ISCA, 2015, pp. 450–462.

[10] H. Zhu and M. Erez, “Dirigent: Enforcing QoS for Latency-Critical
Tasks on Shared Multicore Systems,” in Proceedings of ASPLOS,
2016, pp. 33–47.

[11] A. S. Dhodapkar and J. E. Smith, “Comparing program phase
detection techniques,” in Proceedings of MICRO-36., Dec 2003, pp.
217–227.

[12] G. L. T. Chetsa, L. Lefevre, J.-M. Pierson, P. Stolf, and G. da Costa,
“A user friendly phase detection methodology for hpc systems’
analysis,” in Proceedings of GREENCOM-ITHINGS-CPSCOM, 2013,
pp. 118–125.

[13] A. Sembrant, D. Eklov, and E. Hagersten, “Efficient software-
based online phase classification,” in Proceedings of IISWC, Nov
2011, pp. 104–115.

[14] X. Liao, R. Guo, D. Yu, H. Jin, and L. Lin, “A phase behavior aware
dynamic cache partitioning scheme for cmps,” International Journal
of Parallel Programming, vol. 44, pp. 68–86, 02 2016.

[15] J. Miller, “Short report: Reaction time analysis with outlier ex-
clusion: Bias varies with sample size,” Journal of Experimental
Psychology, vol. 43, no. 4, pp. 907–912, 1991.

[16] I. M. T. Gleixner, “Performance counters for linux,” 2009.
[17] K. Luo, J. Gummaraju, and M. Franklin, “Balancing thoughput

and fairness in smt processors,” 02 2001, pp. 164 – 171.
[18] S. Eyerman and L. Eeckhout, “System-level performance metrics

for multiprogram workloads,” IEEE Micro, vol. 28, no. 3, pp. 42–53,
2008.

[19] S. Eyerman and L. Eeckhout, “Restating the Case for Weighted-
IPC Metrics to Evaluate Multiprogram Workload Performance,”
IEEE Computer Architecture Letters, vol. 13, no. 2, pp. 93–96, 2014.

[20] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu,
“The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-application Interference at Shared Caches and
Main Memory,” in Proceedings of MICRO, 2015, pp. 62–75.

[21] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and Efficient
Fine-grain Cache Partitioning,” in Proceedings of ISCA, 2011, pp.
57–68.

[22] R. Manikantan, K. Rajan, and R. Govindarajan, “Probabilistic
Shared Cache Management (PriSM),” in Proceedings of ISCA, 2012,
pp. 428–439.

[23] J. Sahuquillo and A. Pont, “The filter cache: A run-time cache
management approach1,” in 25th EUROMICRO ’99 Conference.

[24] Y. Kim, A. More, E. Shriver, and T. Rosing, “Application per-
formance prediction and optimization under cache allocation
technology,” in 2019 Design, Automation Test in Europe Conference
Exhibition, March 2019, pp. 1285–1288.

[25] Y. Xiang, X. Wang, Z. Huang, Z. Wang, Y. Luo, and Z. Wang,
“Dcaps: Dynamic cache allocation with partial sharing,” in Pro-
ceedings of EuroSys. ACM, 2018, pp. 13:1–13:15.

[26] S. Chen, C. Delimitrou, and J. F. Martı́nez, “Parties: Qos-aware
resource partitioning for multiple interactive services,” in Proceed-
ings of ASPLOS, 2019, pp. 107–120.

[27] J. Park, S. Park, and W. Baek, “Copart: Coordinated partitioning
of last-level cache and memory bandwidth for fairness-aware
workload consolidation on commodity servers,” in Proceedings of
EuroSys, 2019, pp. 10:1–10:16.

Lucia Pons received the BS and MS degrees
in computer engineering from the Universitat
Politècnica de València (UPV), Spain, in 2018
and 2019, respectively. She is currently working
towards a PhD degree at the Department of
Computer Engineering (DISCA) of the same uni-
versity. Her PhD research focuses on cache par-
titioning approaches and efficient use of shared
resources in multi-core.

Julio Sahuquillo (M’04) received the BS, MS,
and PhD degrees from the UPV, Spain, all in
computer engineering. He is a Full Professor
with the DISCA department at the UPV. He has
taught several courses on computer organization
and architecture. He has authored over 150 ref-
ereed conference and journal papers. His cur-
rent research interests include multicore proces-
sors, memory hierarchy design, GPU architec-
ture, and resource management.

Vicent Selfa received the BS, MS and PhD
degrees in computer engineering from the
UPV, Spain. He collaborates with the Paral-
lel Architecture Group (GAP) of the Universi-
tat Politècnica de València. His research inter-
ests include fairness-aware resource partitioning
policies, cache prefetching, and chip multipro-
cessor architectures.

Salvador Petit (M’07) received the PhD degree
in computer engineering from the UPV. Since
2009, he has been an Associate Professor with
the DISCA department, where he has taught
several courses on computer organization. He
has authored over 100 refereed conference and
journal papers. His current research interests in-
clude multi-core processors, memory hierarchy
design, GPU architecture, and resource man-
agement.

Julio Pons received the BS, MS, and PhD de-
grees from the UPV, Spain, all in computer en-
gineering. He is an Associate Professor with
the DISCA department. He has taught several
courses on computer organization and operat-
ing systems. His current research interests in-
clude multi-core processors, memory hierarchy
design, cache sharing and cloud computing.

