
Proceedings of The Third International

Workshop on

INFRASTRUCTURES AND
TOOLS FOR MULTIAGENT

SYSTEMS

ITMAS 2012

June 5, 2012
Valencia, Spain

First edition 2012

 © Editors:

Alessandro Ricci
Ana García-Fornes
Danny Weyns
Jose M. Such
Juan M. Alberola
Michal Pechoucek
Vicent Botti

 © of the present edition:
 Editorial Universitat Politècnica de València
 www.editorial.upv.es

ISBN: 978-84-8363-850-7
Publisher reference number: 2701

Any unauthorized copying, distribution, marketing, editing, and in general any other
exploitation, for whatever reason, of this piece of work or any part thereof, is strictly
prohibited without the authors’ expressed and written permission.

Printed in Spain

Workshop Organization

Programme Chairs

Juan M. Alberola (Universitat Politècnica de València, Spain)

Vicent Botti (Universitat Politècnica de València, Spain)

Ana Garcia-Fornes (Universitat Politècnica de València, Spain)

Michal Pěchouček (Czech Technical University in Prague, Czech Republic)

Alessandro Ricci (Alma Mater Studiorum-Università di Bologna, Italy)

Jose M. Such (Universitat Politècnica de València, Spain)

Danny Weyns (Katholieke Universiteit Leuven, Belgium)

Programme Committee

Juan M. Alberola (Universitat Politècnica de València, Spain)

Makoto Amamiya (Kyushu University, Japan)

Matteo Baldoni (Università degli Studi di Torino, Italy)

Fabio Bellifemine (Telecom Italia, Italy)

Juan A. Bot́ıa (University of Murcia, Spain)

Vicent Botti (Universitat Politècnica de València, Spain)

Juan M. Corchado (University of Salamanca, Spain)

Yves Demazeau (Laboratoire d’Informatique de Grenoble, France)

Nadia Erdogan (İstanbul Teknik Üniversitesi, Turkey)

Agustin Espinosa (Universitat Politècnica de València, Spain)

Ana Garcia-Fornes (Universitat Politècnica de València, Spain)

Dominic Greenwood (Whitestein Technologies, Switzerland)

Jomi F. Hübner (Federal University of Santa Catarina, Brazil)

Kamalakar Karlapalem (Int. Institute of Information Technology, India)

Michal Laclavik (Slovak Academy of Sciences, Slovak Republic)

Tim Miller (University of Melbourne, Australia)

Pavlos Moraitis (Paris Descartes University, France)

Andrea Omicini (Alma Mater Studiorum-Università di Bologna, Italy)

Michal Pechoucek (Agent Technology Center, Czech Republic)

Martin Purvis (University of Otago, New Zealand)

Alessandro Ricci (Alma Mater Studiorum-Università di Bologna, Italy)

Juan A. Rodriguez-Aguilar (IIIA-CSIC, Spain)

Michael Rovatsos (The University of Edinburgh, UK)

Murat Sensoy (University of Aberdeen, UK)

Michael Shumacher (University of Applied Sciences Western, Switzerland)

Carles Sierra (IIIA-CSIC, Spain)

Jose M. Such (Universitat Politècnica de València, Spain)

Pavel Vrba (Rockwell Automation Research Center, Czech Republic)

Danny Weyns (Katholieke Universiteit Leuven, Belgium)

External Reviewers

Manuel Atencia (IIIA-CSIC, Spain)
Christopher Frantz (University of Otago, New Zealand)

Preface

ITMAS 2012 follows the success of its predecessors ITMAS 2010 and ITMAS
2011. ITMAS 2010 and ITMAS 2011 were held in conjunction with AAMAS
2010 in Toronto (Canada) and Taipei (Taiwan) respectively. ITMAS 2012
is to be held standalone this time in Valencia (Spain). This year we had
17 submissions from which 13 were finally accepted. This clearly confirms
the growing interest in the workshop as well as its relevance for the whole
comunity working on infrastructures and tools for Multi-agent Systems.

ITMAS aims at bringing together leading researchers from both academia
and industry to discuss issues on the design and implementation of infras-
tructures and tools for Multiagent Systems. When developing applications
based on Multiagent Systems, developers and users demand infrastructures
and tools which support essential features in Multiagent Systems (such as
agent organizations, mobility, etc.) and facilitate the system design, man-
agement, execution and evaluation. Agent infrastructures are usually built
using other technologies such as grid systems, service-oriented architectures,
P2P networks, etc. In this sense, the integration and interoperability of such
technologies in Multiagent Systems is also a challenging issue in the area
of both tools and infrastructures for Multiagent Systems. A long term goal
is the industrial development of infrastructures for building highly scalable
applications comprising pre-existing agents that must be organized or or-
chestrated.

In order for Multiagent Systems to be included in real domains such as
media and Internet, logistics, e-commerce and health care, infrastructures
and tools for Multiagent Systems should provide efficiency, scalability, se-
curity, management, monitorization and other features related to building
real applications.

Alessandro, Anna, Danny, Jose, Juanmi, Michal, and Vicent.

Table of Contents

A Dynamic Account Payment Method for Integrating
Heterogeneous B2C Electronic Payment Systems 1

Jingzhi Guo, Chong-Wan Wong

A MAS-based Infrastructure for Negotiation and its Application to
a Water-Right Market . 13

Bexy Alfonso, Vicent Botti, Antonio Garrido, Adriana Giret

A New Platform for Developing, Management and Monitoring
Open MultiAgent Systems . 27

Carolina Zato, Javier Bajo, Juan Manuel Corchado

A Tool for Retrieving Meaningful Privacy Information from Social
Networks . 37

Ricard L. Fogues, Jose M. Such, Agustin Espinosa, Ana Garcia-
Fornes

Alpha Test-bed: A New Approach for Evaluating Trust Models 51

David Jelenc, Ramón Hermoso, Sascha Ossowski, Denis Trček

An agent platform for self-configuring agents in the Internet of Things 65

Inmaculada Ayala, Mercedes Amor, Lidia Fuentes

An Approach for the Qualitative Analysis of Open Agent Conversations 79

Emilio Serrano, Michael Rovatsos, Juan Botia

An Assistance Infrastructure to Inform Agents for Decision
Support in Open MAS . 93

Pablo Almajano, Maite Lopez-Sanchez, Inmaculada Rodŕıguez

Behaviour Driven Development for Multi-Agent Systems 107

Álvaro Carrera, Jorge Juan Solitario, Carlos Ángel Iglesias

Dynamic Monitoring for Adapting Agent Organizations 121

Juan M. Alberola, Luis Búrdalo, Vicente Julian, Andrés Terrasa,
Ana Garcia-Fornes

Multi-Agent Oriented Reorganisation within the JaCaMo
infrastructure . 135

Alexandru Sorici, Gauthier Picard, Olivier Boissier, Andrea Santi,
Jomi Fred Hubner

Providing Agents With Norm Reasoning Services 149

Natalia Criado, Jose M. Such, Vicent Botti

Social Multi-agent Simulation Framework . 163
Micha�l Wrzeszcz, Jacek Kitowski

A Dynamic Account Payment Method for Integrating
Heterogeneous B2C Electronic Payment Systems

Jingzhi Guo and Chong-Wan Wong
Department of Computer and Information Science, University of Macau, Taipa, Macau

{jzguo, ma56565}@umac.mo

Abstract
While the supported e-payment methods of online shops are different from the
applied e-payment methods of online consumers, a B2C e-payment mismatch
problem occurs and severely affects the online sales. This paper proposes a new
dynamic account payment (DAP) method to resolve the mismatch problem. The
main idea of DAP is that consumer can request a temporary e-payment account,
acceptable to the online shop s/he is shopping, from a third-party which has
pools of accounts in most e-payment systems. In this paper, DAP method is
technically designed in a framework of rules, events and agents, and is
implemented in two alternative approaches. Experiments have been made for
evaluating the performance of the two approaches. The experiment result
signifies that DAP method is feasible and efficient.

Keywords: e-payment mismatch problem, e-payment, electronic payment, B2C,
business-to-consumer, electronic commerce

1 Introduction
Electronic payment (e-payment) is now popularly adopted by both online shops and their
customers ([5], [7], [12], [17], [18]). An online shop may often support one or more
e-payment systems and an online consumer may also have one or several e-payment means.
Nevertheless, we have observed that when an online consumer makes an e-payment in an
online shop, his/her available e-payment means may not be supported by the e-payment
systems that the online shop adopts. For example, when an online shop accepts payments in
PayPal (paypal.com) and Visa credit card and a consumer only has the payment means of
AliPay (alipay.com), the consumer is unable to make payment for a successful transaction.
This is what we called a business-to-consumer (B2C) e-payment system mismatch problem
and typically leads to an unsuccessful online transaction between online shop and online
consumer.

Resolving B2C e-payment system mismatch problem is important since it can increase the
confidence of consumers of online shopping and enlarge the volume of online sales.
Existing methods of resolving this problem can be categorized into e-payment standards
([15], [2]) and e-payment system vendor-based integration (e.g. AliPay and YeePay in
Table 1). An e-payment standard often defines a set of standard payment message formats,
processes and commands for all adopters to follow. This approach is limited to only those
online shops, which share a set of same standards. Differently, the vendor-based integration
approach is often applied by specialized e-payment service providers, which integrate as
many as the existing known payment means and make close cooperation with merchants
and banks to clear and settle payments. This approach is often exclusive, that is, excluding

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

1

the other providers' e-payment systems in integration. This exclusive manner of integration
can be illustrated in Table 1 in a comparison between e-payment service providers of
PayPal (paypal.com), AliPay (alipay.com) and YeePay (yeepay.com), which are all large in
service size.

Table 1: Comparison of Payment Methods between AliPay, PayPal and YeePay
AliPay Mobile

phone
Online
banks

Payment
cards AliPay Credit card Escrow

service COD

PayPal PayPal Credit card

YeePay Mobile
phone

Online
banks

Payment
cards YeePay Credit card Phone

payment
Debit
payment

Source: The information is summarized from alipay.com, paypal.com and yeepay.com.

Table 1 shows that all AliPay, PayPal and YeePay do not accept payments from each other
but they accept payments from other means such as online banks and various card payments.
It implies that existing e-payment systems have vertical e-payment integration into existing
online banks and card payments. It does not, however, have horizontal e-payment
integration into other competitive e-payment systems. This phenomenon might be
explained as a result of heated competition between existing e-payment systems [15].
Nevertheless, such exclusive integration solution provided by single e-payment service
providers makes e-payment mismatch problem more severe, and it is thus worthwhile for us
to make a further research.

To relieve the problem caused by the B2C e-payment mismatch, this paper proposes a new
B2C e-payment method, which is called Dynamic Account Payment (DAP). The main idea
is: we design and implement an integrated e-payment portal, which registers several
e-payment accounts as an account pool from each existing e-payment system. A user-side
agent is installed in the consumer's computer or shop's merchant server. It asks for a
temporary account from the account pool for each payment transaction. This temporary
account is time-constrained with user-proposed spending limit such that the temporary
account will not be abused. By this new B2C e-payment method, we solve the B2C
e-payment mismatch problem.

The remainder of the paper will be organized as follows: Section 2 discusses some related
work relevant to the DAP method. Section 3 describes the design of DAP method. Section
4 provides two alternative implementations for the DAP method. Section 5 evaluates the
two alternative implementations. Finally, a conclusion is made with listing contributions
and future work.

2 Related Work
The design of DAP e-payment method relates to three kinds of technologies: agent systems,
business rules and event messaging.

2.1 Agent-Based Systems
In most multi-agent systems ([21], [13]), a middle agent usually acts as both a service
provider when it perceives a request and a service requester when it needs a service. It is
capable of “thinking” and produces intelligent feedback. Multi-agent systems are often used
as the infrastructure for data aggregation and communication [19] for flexible and
distributed control and automation (e.g. [20], [22]). In e-payment system design,
multi-agent systems are widely adopted to construct e-payment systems, for example,

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

2

SAFER [9]. SAFER enables multiple SAFER communities to be distributedly worked in a
modularized pattern, where payment agents could be created, evolved and roamed. SAFER
is distributed, flexible to accommodate multiple e-payment schemes to supports B2C
payments.

2.2 Rule-Based Modeling
Rule-based systems [1] are the systems that use stored knowledge patterns to dynamically
interpret information. They usually could model human behavior based on “rules that
stipulate that a certain action be initiated should a specific set of conditions occur” [3]. The
modeled systems are not rigorously designed but could be flexible by following rules that
may be edited. Rules are often used to trigger events for message input and dispatch. For
example, we can use a set of rules to modify the system behavior through a dispatching
service. In e-payment systems, rules could be used to design payment policies based on a
rule specification, for example, DMDCON multi-policies [14] or SAFER ruler on priority,
factor, condition and payment method name [9].

2.3 Event-Driven Architecture
Event-driven architecture (EDA) ([10], [11], [8]) is a software architecture pattern that is
event-based for message production, detection, consumption, and reaction. It can simplify
the systemic and uncertain input format. In this architecture, an event is a significant change
in state. For example, when an e-payment button is clicked (i.e. an event), the required
e-payment means is required for completing the deal. The idea of EDA can be applied to
build services distributed on Internet, which is light-weighted in a plug-and-play fashion,
for example, JEDI [6]. An event-driven design could represent more dynamic system
architectures when using an event-based architecture definition language (e.g. [16]). In
heterogeneous e-payment systems integration, the event-driven concept can be applied to
build distributed e-payment services, which are autonomously developed in various
locations.

3 Dynamic Account Payment Method
In this section, we describe our proposal of developing a new e-payment method, named
Dynamic Account Payment (DAP) to solve the e-payment mismatch problem.

3.1 An Architectural View of DAP Method
The design of DAP method applies the concepts of agents, rules and events. Particularly,
rules are used to build payment logic, for example, the payment protocol between consumer
and DAP module. Events are triggered messages for payment actions. Agents are software
modules that execute payment actions on the events. Based on the three concepts, the DAP
method is designed in an architecture as described in Fig. 1, which consists of four roles -
existing e-payment systems (EPS), DAP e-payment portal (DAP Portal), online shops, and
consumers.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

3

Figure 1: Architecture of DAP System Design

In Figure 1, E1 and E2 are the existing e-payment relations, where E1 denotes that an
online shop accepts an e-payment mean E1 of EPS and E2 refers to that consumer has an
e-payment mean E2 of EPS. Obviously, E1 and E2 are heterogeneous and are the cause of
the e-payment mismatch problem. In the architecture, the DAP method introduces a
third-party system, called DAP Portal, to mediate heterogeneous e-payments between
Consumer and EPS to solve the e-payment mismatch problem. The process of mediation
can be described in two aspects as follows.

The first aspect states that a designed DAP Portal must establish a long-term cooperative
relationship with every EPS. Such cooperation could be strategically made as a part of
value chain formation (Chen and He, 2009). Particular processes involved in the
cooperation are:

� P1 (Pool Account Setup). DAP Portal request every EPS to setup a pool of consumer
e-payment accounts for payment by anyone. Each account in the pool has attributes of
start use time, end use time, and use limit. This means that each account can be used
as a time-constrained temporary account for any consumer, but it is only valid
between start time and end time with a spending limit.

� P2 (Account Use Request). For every request of using an account from the account
pool, DAP Portal sends an account use request to an EPS with the information of
allowed time duration and spending limit by transferring money from its central
account in that EPS (or direct transfer) to the requested account. The EPS then
immediately sets the start use time and end use time, and allows a payment from this
temporary account.

� P3 (Account Use Response). EPS responds to DAP Portal after the allowed time
duration is finished, telling whether the limited money has be spent or not. This allows
DAP Portal to trace the consumer's payment status and determine how much it should
actually deduct from the consumer's deposit account in DAP Portal.

The Second aspect states that a consumer must register a deposit account in DAP portal for

EPS

Online Shop

E1

E2

P1. [Pool Account Setup]

P3. [Account Use Response]

P2. [Account Use Request]

Consumer

DAP Portal
U1. [Register]

U2. [Deposit]

U3. [Account Request]

U4. [Account Response]

U5. [Balance Notice]

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

4

temporarily using a DAP pool account for a target EPS payment. The processes, enabling a
consumer to avoid the e-payment mismatch problem, are:

� U1 (Register). A consumer register a DAP deposit account to obtain a DAP-unique
account number.

� U2 (Deposit). A consumer deposits some money in DAP Portal for future use.
� U3 (Account Request). When a consumer meets an e-payment mismatch, it requests a

temporary account of the target EPS from DAP portal by telling the needed payment
amount.

� U4 (Account Response). When DAP Portal has received the account request from the
consumer, it checks whether the consumer has enough fund in DAP deposit account. If
it has enough fund, it sends a temporary e-payment account of the target EPS with
spending limit and allowed payment time.

� U5 (Balance Notice). When the allowed e-payment time is passed, DAP Portal reports
the new balance to the consumer.

The above two aspects combined together show a high-level architectural design of DAP
method, which integrates heterogeneous B2C e-payment systems to avoid B2C e-payment
mismatch problem.

3.2 REA Framework

DAP method is technically designed in a framework of rules, events and agents (REA),
shown in Figure 2, based on the above-mentioned DAP architecture. It is effective for
separating graphic user interfaces from message event and event handling. It is beneficial to
seamlessly integrate the distributed roles of EPS, online shoppers and consumers in a
module-independent manner.

Figure 2: REA Framework

By REA framework, we design DAP method in a peer-to-peer (P2P) multi-agent network.
Each role in terms of DAP Portal, EPS, online shop and consumer is regarded as an agent,

Rules

Service Message Message Parser

Event Message Event Handler

DB

AGENT

AGENT

AGENT

Service Request

Service Response

Service Response

Service Request

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

5

which interacts with each other to solve e-payment mismatch problem. In this framework,
an agent is technically designed as a service provider, which both requests and responds an
e-payment message generated based on rules that have set. The service request (i.e. the
incoming service message of a receiving agent) is parsed based on the given message
templates and rules to generate an event message. This event message describes how the
request message should be handled and/or responded by predefined event handlers.

4 Two Alternative Implementations for DAP Method
In this section, we provide two alternative implementations of DAP method: one is a
manual approach and the other is an automatic approach.

4.1 Manual Approach of Implementing DAP Method
A manual approach, shown in Figure 3, implements DAP method by including three roles
of EPS, consumers and DAP Portal, where each one is regarded as an agent.

Figure 3: Manual Approach of Implementing DAP Method

In this approach, consumer is provided a plug-in agent, which is responsible for requesting
a temporary EPS account for using in a target online shop from DAP Portal. The agent
presents a graphic user interface to consumer for doing jobs of registering a DAP Portal
account, depositing money in DAP Portal account, requesting a temporary EPS account for
using in any target online shop, and checking DAP portal account status. Differently, EPS
plug-in agent is designed as an e-payment integration tool by DAP method. It consists of
account pool and account service manager to enable DAP Portal to setup accounts, set
account use constraints and manage account balance.

The advantage of the manual method is that online shop does not need to be involved in the
design and implementation of DAP method. The disadvantage is that consumer has to
manually request the temporary account for using in the target online shop, which
consumes more time and inconvenient.

4.2 Automatic Approach of Implementing DAP Method

An automatic approach, shown in Figure 4, implementing DAP method by removing the
consumer plug-in agent and adding a plug-in agent in online shop.

Plug-in Agent for EPS

Plug-in Agent for
Consumer

DAP Portal Agents

Pool Account Setup and Use

Temporary EPS Account request
and Use

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

6

Figure 4: Automatic Approach of Implementing DAP Method

In this approach, consumers do not need to manually request any temporary target EPS
account. The plug-in agent for online shop will launch an e-payment interface when the
shopping cart goes to the payment stage and a consumer selects the payment method of
DAP Portal. The consumer is asked to input the payment amount and his/her DAP Portal
account and password to trigger a DAP payment request. DAP Portal will automatically
respond to the online shop with a temporary EPS account with password. Before this
response, DAP Portal will have a conversation with the EPS agent to set a payment duration
and payment limit for the used account.

The advantage of this approach is that consumers are free of manual request and use of
target EPS account and the shopping efficient is increased. The disadvantage is that online
shops have to be integrated. Since there are millions of online shops we could find, such
integration is hard and time-consuming in view of marketing effort.

5 Performance Evaluation
We adopt three steps to make experiments on the performance comparison evaluation on
Manual Approach and Automatic Approach. Particularly, the steps are as follows:

(1) Implemented both Manual Approach and Automatic Approach as shown in the
processes Figure 5(1) and Figure 5(2), and generated some sample data in DAP portal and
several EPS.

(2) Made sample experiments on both Manual Approach and Automatic Approach to obtain
sample data of experiments. The sample experiment environment is the VMWare
Workstation installed in Lenova Thinkpad T60 with hard drive 100G, RAM 2G and CPU
Intel T2500 2.0GHz Core Duo.

(3) Simulated the two processes shown in Fig. 5(1) and Fig. 5(2) in SIMUL8 software
(simul8.com).

Plug-in Agent for EPS

Plug-in Agent for
Online Shop

DAP Portal Agents

Pool Account Setup and Use

Request temporary EPS Account

Consumer

Input DAP account info

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

7

Account
existing?

Y

Online
Shop DAP Portal

Enough
Money?

Y

Succeed?
Y

Account
existing?

Y

Consumer DAP Portal

Enough
Money?

Y

(1) Manual Approach (1) Automatic Approach

Figure 5: EPS account request process in Manual Approach and Automatic Approach

5.2 Sample Experiment Results
For Manual Approach, our sample experiments are divided into three separate
sub-experiments for three sub-processes, which are: (1) the time of sending the DAP Portal
login information to DAP Portal until responding the welcoming page of requesting
temporary EPS account, (2) the time of manual input of temporary EPS account request
information in web page form, and (3) the time of sending temporary EPC account request
information to DAP Portal until it responds the temporary EPS account information or
failure information. The results of the three sub-experiments are illustrated in Figure 6.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

8

Figure 6: Sample experiments on Manual Approach

The experiment results are summarized in Table 2, showing the time cost of minimum
(Min), average and maximum (Max) for all three sub-processes.

Table 2: Summary of sample experiment results on Manual Approach (Unit: Second)
Experiment Process Min Average Max
Response to DAP Portal login request 0.1 0.4 1.6
Manual input of EPS account request info 9 12 15
Response to EPS account request 0.5 0.8 1.6

Total 9.6 13.2 18.2

The sample experiments show that manual input of EPS account request information in a
web form occupies a large portion of the entire time this is spent.

For Automatic Approach, our sample experiments are made on an integrated process of
requesting temporary EPS account by online shop on behalf of a consumer. The result of
experiments are illustrated in Figure 7.

Figure 7: Sample experiments on Automatic Approach

The results can be summarized in Table 3, showing the response time at minimum (Min),
average and maximum (Max).

Table 3: Summary of sample experiment results on Automatic Approach (Unit: second)
Exper iment process Min Average Max
Response to request ing a tem porary EPS account 2 2.2 3

The sample experiments show that Automatic Approach spends much less time for
responding to a temporary EPS account request than Manual Approach.

5.3 Simulation Results
To fairly compare the performance of Manual Approach and Automatic Approach to
evaluate their acceptability in practice, we simulate the two approaches using the processes

 (1) Login & (3) EPS account response (2) Manual input of request info

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

9

described in Figure 5 (1) and Figure 5(2), using SIMUL8 software. For Manual Approach,
we set default condition of input period being operated to 1 minute and use Table 2 as the
running template. For Automatic Approach, we set default condition of input period being
operated to 10 seconds and apply Table 3 as the running template. With this setting, we
have simulation result, shown in Table 4.

Table 4: Simulation result for Automatic Approach and Manual Approach
Approach Run Time Number Entered Net Number Entered Success Percentage

Automatic
Approach

1 14109 13307 94%
2 14066 13259 94%
3 13950 13179 94%
4 14248 13475 96%
5 13847 13069 94%

Manual
Approach

1 2458 2187 89%
2 2474 2191 89%
3 2364 2154 91%
4 2407 2166 90%
5 2414 2179 90%

Table 4 shows that Manual Approach and Automatic Approach have success rates up to
89% and 94%, at the input time of 1 minute and 10 seconds, respectively.

Table 5: Simulation result for Automatic and Manual Approaches in 95% confident interval range
Approach Low 95% Range Average High 95% Range Input period

Manual
Approach

Net enter number 2156.39707 2175.4 2194.40293
1 (min) Enter number 2369.13222 2423.4 2477.66778

Success percentage 91% 90% 89%

Automatic
Approach

Net enter number 13070.08328 13257.8 13445.51672
10 (sec) Enter number 13853.7174 14044 14234.2826

Success percentage 94% 94% 94%

Table 5 shows the comparison of success rates between Manual Approach and Automatic
Approach at 95% confident interval. It is noticeable that Manual Approach and Automatic
Approach have a performance gap of 3% to 5%, but both are around or above 90% of
success rate. This experiment result indicates that input periods set to 1 minute and 10
seconds for Manual Approach and Automatic Approach, respectively, are appropriate.

5.4 Discussion of Experiment Results
The experiment result shows that the Automatic Approach is more efficient than Manual
Approach. However, whether this higher performance is an indicator of adopting Automatic
Approach needs further discussion. Since Automatic Approach that implements DAP
method relies on the integration of online shop, the adoption of this approach depends on
whether an online shop is strategically allied with DAP Portal. If an online shop is unknown
to DAP Portal without any integration, B2C e-payment mismatch problem still exists. In
this sense, Manual Approach is the only way of resolving the problem. Thus, we believe
that both implementation approaches are valuable to solving B2C e-payment mismatch
problem.

6 Conclusion
This paper has proposed a new dynamic account payment (DAP) method to resolve a B2C
e-payment mismatch problem. The idea of DAP method is that when B2C e-payment

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

10

mismatch problem happens, a consumer can request (or lease) a temporary payment
account of the required e-payment system from a third-party e-payment integrator. This
method is technically designed in a REA framework, applying the technical concepts of
rules, events and agents. The designed DAP method is implemented in two approaches of
Manual Approach and Automatic Approach. The former requires a consumer manually
requests the target e-payment account while the latter moves the request of target
e-payment account to online shops.

Performance evaluation shows that Automatic Approach is superior to Manual Approach in
payment efficiency. However, Manual Approach is indispensable because not all online
shops could be integrated into DAP systems.

DAP method is an important contribution to heterogeneous B2C e-payment integration. It is
a new method comparing with the other two existing methods of e-payment standardization
and vendor-based vertical integration. In future, we will implement a freeware based on the
Manual Approach.

References
[1] BADICA, C., BRAUBACH, L. AND PASCHKE, A. 2011. Rule-based Distributed

and Agent Systems. In Proceedings of 5th International Symposium on Rules (RuleML
2011). Lecture Notes in Computer Science, vol. 6826. Springer, Berlin, 3-28.

[2] BALFE, S. AND PATERSON, K. 2008. e-EMV: emulating EMV for internet
payments with trusted computing technologies. In Proceedings of the 3rd ACM
workshop on Scalable trusted computing (STC'08). ACM Press, 81-92.

[3] BERNARD, J. 1988. Use of a Rule-Based System for Process Control. IEEE Control
Systems Magazine, October, 3-13.

[4] CHEN, Y. AND HE, Y. 2009. Study on Value Alliance Model: A New E-business
Model for Enterprise. In Proceedings of 2009 International Symposium on
Information Engineering and Electronic Commerce, IEEE Computer Society,
388-392.

[5] CHOUDHARY, V. AND TYAGI, R.K. 2009. Economic incentives to adopt
electronic payment schemes under competition. Decision Support Systems, 46,
552–561.

[6] CUGOLA, G., NITTO, E. AND FUGGETTA, A. 2001. The JEDI Event-Based
Infrastructure and Its Application to the Development of the OPSS WFMS. IEEE
Transactions on Software Engineering, 27, 9, 827-850.

[7] DAHLBERG, T., MALLAT, N., ONDRUS, J. AND ZMIJEWSKA, A. 2008. Past,
present and future of mobile payments research: A literature review. Electronic
Commerce Research and Applications, 7, 165–181.

[8] DUNKEL, J., FERNÁNDEZ, A., ORTIZ, R. AND OSSOWSKI, S. 2011.
Event-driven architecture for decision support in traffic management systems. Expert
Systems with Applications, 38, 6, 6530-6539.

[9] GUAN, S-U., TAN, S. L. AND HUA, F. 2004. A Modularized Electronic Payment
System for Agent-based E-commerce. Journal of Research and Practice in
Information Technology. 36, 2, 67-86.

[10] HENDRICKSON, S., DASHOFY, E. AND TAYLOR, R. 2005. An
(architecture-centric) approach for tracing, organizing, and understanding events in
event-based software architectures. In Proceedings of 13th Int'l Workshop on Program
Comprehension (IWPC’05), IEEE, Los Alamitos, CA, 227 – 236.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

11

[11] JURIC, M. 2010. WSDL and BPEL extensions for Event Driven Architecture.
Information and Software Technology, 52, 10, 1023-1043.

[12] KIM, C., TAO, W., SHIN, N. AND KIM, K-S. 2010. An empirical study of
customers’ perceptions of security and trust in e-payment systems. Electronic
Commerce Research and Applications, 9, 84–95.

[13] LI, C. AND LI, L. 2011. A multi-agent-based model for service-oriented interaction in
a mobile grid computing environment. Pervasive and Mobile Computing, 7, 2,
270-284.

[14] LI, Z. AND YE, X. 2006. Towards a Dynamic Multi-Policy Dissemination Control
Model (DMDCON). SIGMOD Record, 35, 1, 33-38.

[15] LIM, A. 2008. Inter-consortia battles in mobile payments standardisation. Electronic
Commerce Research and Applications, 7, 202–213.

[16] LUCKHAM, D. AND VERA, J. 1995. An Event-Based Architecture Definition
Language”, IEEE Transactions on Software Engineering 21(9) pp. 717-734.

[17] MARTINS, S. AND YANG, Y. 2011. Introduction to bitcoins: a pseudo-anonymous
electronic currency system. In Proceedings of the 2011 Conference of the Center for
Advanced Studies on Collaborative Research (CASCON '11). IBM Corp. Riverton, NJ,
USA.

[18] SCHUH, S. AND STAVINS, J. 2010. Why are (some) consumers (finally) writing
fewer checks? The role of payment characteristics. Journal of Banking & Finance, 34,
1745–1758.

[19] SHAKSHUKI, E., HUSSAIN, S., MATIN, A. R. AND MATIN, A. W. 2006. P2P
Multi-agent Data Transfer and Aggregation in Wireless Sensor Networks. In
Proceedings of 2006 IEEE International Conference on Mobile Adhoc and Sensor
Systems (MASS 2006). IEEE, Los Alamitos, CA, 645 - 649.

[20] SUGAWARA, K. 2002. An Agent-Based Framework for Developing Flexible
Distributed Systems. In Proceedings of First IEEE International Conference on
Cognitive Informatics (ICCI'02), IEEE Computer Society, 101-106.

[21] TRZEBIATOWSKI, G., DENZINGER, J., TIMM, I.J. AND UNLAND, R. (Eds).
2004. Multiagent System Technologies. Lecture Notes in Artificial Intelligence, Vol.
3187, Springer-verlag, Berlin.

[22] YANG., X., SHENG, W. AND WANG, S. 2005. Agent-Based Distribution Control
and Automation. In Proceedings of IEEE International Symposium on
Communications and Information Technology (ISCIT 2005). IEEE, Los Alamitos, CA,
1257-1262.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

12

A MAS-based Infrastructure for

Negotiation and its Application to a

Water-Right Market

Bexy Alfonso, Vicente Botti, Antonio Garrido, and Adriana Giret
Departamento de Sistemas Informáticos y Computación

Universitat Politècnica de València
{balfonso,vbotti,agarridot,agiret}@dsic.upv.es

Abstract

This paper presents a MAS-based infrastructure for the specification of a
negotiation framework that handles multiple negotiation protocols in a coher-
ent and flexible way. Although it may be used to implement one single type
of agreement mechanism, it has been designed in such a way that multiple
mechanisms may be available at any given time, to be activated and tailored
on demand (on-line) by participating agents. The framework is also generic
enough so that new protocols may be easily added. This infrastructure has
been successfully used in a case study to implement a simulation tool as a
component of a larger framework based on an electronic market of water
rights.

Keywords: negotiation, multi-agent systems, water-right market

1 Introduction

Last decades have witnessed an increasing interest in the design and application
of computational infrastructures and tools, based on intelligent agents, to virtual
architectures and organizations that give support to multiple ways of negotiation.
Negotiation usually involves a dynamic collection of semi-independent autonomous
entities (representing heterogenous software agents or humans, departments, enter-
prises, information resources and other organizations) each of which has a range of
problem solving capabilities and resources at their disposal. These entities exhibit
complex behaviors; they usually co-exist, collaborate and agree on some compu-
tational activity, but sometimes they compete with one another in a ubiquitous
virtual scenario that is a sort of ‘looking-glass reflection’ of the real world.

Automated negotiation is essential to undertake complex behavior and archi-
tectures, including conflict identification, its management and resolution, search
for consensus, assessment of agreement stability and equilibrium analysis in sit-
uations where two or more parties have opposing preferences [15]. This line of
research has addressed developments for group decision support systems and meet-
ing support systems, which can be extrapolated to automated negotiation [8, 10].

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

13

Therefore, negotiation is interesting from an application point of view but also
to provide artifacts that facilitate the design, experimentation and simulation of
involving agreements. In this paper we intend to profit from that experience and
look at one of such artifacts: a generic negotiation MAS-based framework in which
different negotiation protocols may become available. The contributions of this
general framework are multiple. i) As it is defined for the Magentix2 [2] platform
for open MASs, it embodies easy communication and interaction protocols among
agents, roles and organizations. It also uses Jason [5] as a high-level language for
programming agents, providing them with high reasoning skills. ii) Interactions
among agents aim at achieving individual and global goals, and are structured
via collaboration, argumentation, negotiation and, eventually, via agreements and
contracts [19]. iii) It is composed of flexible negotiation mechanisms and their
supporting preparatory and ending activities. iv) As a by-product, it creates stan-
dardized negotiation modules to be grafted into larger scenarios or as plug-ins in
peer to peer interactions. v) It has been used as a proof of concept in mWater
[6, 13], a water-right market where negotiation is essential, also embedded in a
decision support system where water usage is subject to conflicts whose solution
may involve different types of negotiation. vi) It provides new areas of opportu-
nities for an agreement computing solution [19], including agility, heterogeneity,
reconfigurability, cooperation, argumentation, reputation and trust issues under a
MAS perspective.

2 Technological Background

There are various technologies involved in the implementation of our MAS in-
frastructure. First, the MAS platform in itself, which manages agents and their
interactions, allowing the information exchange among them and also with the
environment. Second, a language to define the agents behavior —in this case Ja-
son, which follows the agents’ BDI model. Third, to support the human-software
agents’ interactions it is necessary to design a Graphical User Interface (GUI) and
an artifact to orchestrate the communication between the GUI and the MAS.

2.1 MAS Platform

We use Magentix2 [2] as our MAS platform because: i) it provides powerful tech-
niques to facilitate agents’ communication; ii) it supports interactions protocols
between agents organizations/societies through conversations management; iii) it
allows the use of high-level reasoning structures when programming the agents;
and iv) it includes security issues for distributed systems, so it offers a dynamic
and flexible model for complex systems. In short, Magentix2 gives us support at
the three levels stated in [16]: organization level, interactions level and agent level.

Conversations Factory: an Artifact for Communication

A Conversations Factory [11] is mainly a Magentix2 mechanism to support FIPA
interaction protocols [12]. Each conversations factory allows us to keep a complete
interaction among two or more agents having an initiator (the one who starts the

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

14

conversation) and one or more participants (the other agents in the conversation).
The two main structures supporting conversations are CProcessor and CFactory.
The former manages the sent/received messages in each step of the conversation,
performing the corresponding actions, and determines the next step in the conver-
sation. The latter creates the conversations and the CProcessors that correspond
to a specific protocol. If the agent is playing the role of initiator, the conversation
can start without needing an external event. On the other hand, if the agent is a
participant an event is required for it to be part of the conversation.

2.2 Programming language

Magentix2 allows us to use a high-level language for programming agents, in this
case is Jason [5], which is an extension of the AgentSpeak language. AgentSpeak
allows us to define agents in terms of beliefs, goals and plans. Beliefs represent
the vision of each agent of the current state of the world in which such an agent
is situated. Beliefs change frequently due to a ‘perception’ of the agent over its
environment, because some information has been sent to it through a message,
or because it explicitly modifies those beliefs as a consequence of some previous
reasoning. Agents’ goals represent the agents’ intention to reach a state where
they believe the goals are true, what is called ‘achievement goal’. Another kind
of goal is satisfied when the agents retrieve updated information from their belief
base ‘test goals’. Finally, plans are just a sequence of steps that allow agents to
reach some goals. The fact of adding a goal acts as a triggering event for executing
the corresponding planned sequence of actions. There are other actions that act as
triggering events for plan executions as it is the case of the deletion of achievement
goals, adding and deletion of beliefs, and adding or deletion of test goals. If this
sequence of actions does not fail, the goal is successfully reached.

Jason provides a kind of action called ‘internal action’. It is a structure that
allows us the execution of legacy code (Java in this case). Thanks to this, the
agent has access to the structures provided by the platform [3] in order to make
use of the conversations factory in a more simplified way. By using some of the
Magentix2 predefined internal actions, each agent can customize what it does in
those steps of the conversations on which it needs to perform some ‘reasoning’,
delegating details such as synchronization, timeouts, errors management, etc. in
the platform. Magentix2 is also responsible for updating the state of each agent
(by updating its beliefs) for it to make decisions, which behaves as an indirect
communication.

3 Our Generic Negotiation Model

The infrastructure for a generic negotiation model can be seen as a set of entities
and roles regulated by mechanisms of social order, and created in order to negotiate
with some good, service or resource.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

15

Figure 1: Generic Negotiation workflow structure. Roles: g - guest; p - participant;
b - black; w - white; m - mediator; ntm - negotiation table manager; la - legal
authority.

3.1 Main Structure

Our negotiation model follows a MAS specification based on conversations, and
regulation on (structural) norms. It is defined as a generic organization for nego-
tiation (see Figure 1)1, where any participating agent may become involved in a
negotiation process.

After admission is granted, each negotiation involves first a preliminary process
of invitation and filtering of parties, then the negotiation process itself and, finally,
some form of settlement process through which the agreements among participants
are made explicit and, if appropriate, communicated to the organization.

3.2 Users and Roles

There are seven roles that interact in the model, as depicted in Figure 1. A guest
role (g) is a user that wants to enter the negotiation. The guest may be special-
ized into a real participant (p), and furthermore as black (b) and white (w) to
differentiate the parties that are acting in a given negotiation. Finally, there are
four types of staff roles. The mediator role (m) represents a negotiation facilitator
agent who runs standard activities, such as managing the specific parameters of
the negotiation protocols. The negotiation table manager role (ntm) represents an
agent who executes activities that are specific of a given negotiation protocol, for
example accept valid negotiators, tune negotiation parameters of the table, mediate
in the negotiation or conflict resolution process, expel negotiators, etc. The legal

1At a glance, each interaction/conversation represents an atomic process and/or dialog among
agents; a workflow represents complex interaction models and procedural prescriptions. The
dynamic execution is modeled through arcs and transitions, by which the different participating
roles of the organization may navigate.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

16

authority role (la) represents an agent who is in charge of activities for agreement
enactments that are executed as a result of a successful negotiation process.

Note that, unlike other approaches, our definition introduces an explicit intel-
ligent management into the negotiation model in the form of the mediator and
negotiation table manager. These two roles have demonstrated to be very helpful
to improve and facilitate the internal behavior of the organization. On the one
hand, the mediator must be aware of the organizational conventions, the rules of
the market and the negotiation structure. On the other hand, the negotiation ta-
ble manager must obey the particular rules of the protocol to be used within the
negotiation, and this is usually domain-dependant —different protocols require the
application of different sequences of steps.

3.3 Workflow

The workflow activities in the generic negotiation model of Figure 1 are specified
through a main structure which includes two other workflows: the NegotiationHall
and NegotiationTables, plus two supporting interactions, Admission and Agree-
mentEnactment.

Admission. It allows Guest agents to register to become a Party, and to ‘jump
start’ a negotiation process. Once negotiation is open, this interaction allows Party
agents to enter and negotiate by registering individual data for management and
enforcement purposes (these data are domain-dependent and can be used, for ex-
ample, for enforcing particular conventions and managing activities).

NegotiationHall. Actual negotiation starts here (see Figure 2), where Party
agents become aware of any activity and/or initiate concurrent activities for ne-
gotiation. There are three interactions that provide virtual scenarios for the: i)
creation of, and invitation to, negotiation tables (NTC); ii) exchange of informa-
tion about active agreements and ongoing negotiation tables (IE); and finally, iii)
execution of specific activities in case of an anomalous/critical situation (CS).

Negotiation Tables are created in two ways: i) by the organization itself, for
example periodic negotiation tables about a set of issues, or ii) initiated on-demand
by a participating agent. The negotiation tables are created in the NTC interac-
tion, which responds to the FIPA request standard protocol [12]. Figure 3 and 4
show the steps of the protocol from the Party’s perspective (initiator) and from the
Mediator’s perspective (participant), respectively. It issues the following illocution:

request(px,m, open, protocol(params), δ, pt, at, C), where the semantic is as fol-
lows. Party agent px requests (see Figure 3) to the Mediator, m, to open a negotia-
tion table with a given negotiation protocol. This protocol is instantiated with the
set of values for the parameters params. The table is created to negotiate about a
deal δ. The requesting party, px, will participate as pt that can take one of these
values: p, that is an observer Party; a Black party b; or a White party w. at is the
access type that can be Public, any body can be invited; or Private, only Party
agents that fulfill the set of constraints C can participate in the negotiation table.

When the Mediator, m, receives a request to open a negotiation table (see Fig-
ure 4), it instantiates a new Negotiation Table scenario with the requested negoti-

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

17

Figure 2: Negotiation Hall workflow structure.

Figure 3: Party’s behavior for requesting a New Negotiation Table.

ation protocol, for example a standard double auction, a face-to-face negotiation,
a blind double auction, etc., and the given parameters. Moreover, a Negotiation
Table Manager, ntm, is created to manage the execution of the negotiation table.
Next, m issues an information illocution to the px agent who requested the table.

inform(m, px, tableID, error), where tableID is the ID of the new table if it
was successfully created, or a null value when the table can not be created due to
error conditions.

In order to complete the negotiation table creation the Mediator needs to invite
other Party agents to the new negotiation table. When the created negotiation
table has a Public type of access, the m broadcasts an invitation message to all
the participants:

inviteAll(m, tableID, protocol, δ, C); in other words, the invitation message states
the tableID of the negotiation table that is receiving players; the negotiation pro-

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

18

Figure 4: Mediator’s behavior during the conversation for Opening a New Table.

tocol protocol used in that table; the set of issues, δ, that is being negotiated; and
the set of constraints, C, to participate in are also made public.

On the other hand, if the created negotiation table has a Private type of access,
the m has to select first the set of possible candidates to invite, say PtableID , and
then send an invitation message to every such candidate:

invite(m, py, tableID, protocol, δ, C), where each candidate py ∈ PtableID .

NegotiationTable. It is organized in a flexible and scalable fashion in order
to easily include new negotiation protocols. Each instance of a Negotiation Ta-
ble interaction is managed by a Negotiation Table Manager, ntm, who knows the
structure, specific data and management protocol of the given negotiation protocol.
The framework provides pre-defined protocols such as face-to-face, Dutch auction,
English auction, standard double auction, closed bid envelope, blind double auc-
tion with mediator, among others. Nevertheless, new negotiation protocols may be
easily added provided that the new definition complies with the generic structure.

Every generic negotiation table is defined as a three interaction structure (see
Figure 5). The first interaction is Registration, in which the ntm applies a filtering
process to assure that only valid agents can enter a given negotiation table (recall
situations when a private negotiation table is executing or only a sub-group of
Party agents that fulfill a set of constraints may participate in the table). The
specific filtering process will depend on the given negotiation protocol and possibly
on domain specific features. The second interaction is the negotiation protocol, in
which the set of steps of the given protocol are specified (see bellow for a sample
negotiation protocol specification). Finally, in the last interaction, Validation, a
set of closing activities are executed, for example registering the final deals, stating
the following steps for the agreement settlement, verifying that the leaving party
satisfies the leaving norms of the negotiation table, etc. The set of activities to be
executed in this interaction is domain specific and will also depend on the given
negotiation protocol.

AgreementEnactment. Once an agreement has been successfully reached, it is
settled here according to the given conventions. This may be a rather elaborate

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

19

Figure 5: Negotiation Table workflow structure.

process. First of all, the Mediator checks whether or not the agreement satisfies
some formal conditions. If the agreement complies with these, a transfer contract
is agreed upon and signed by the Party agents involved, and then the agreement
becomes active. Once an agreement is active it may be executed and, consequently,
other Party agents may initiate a grievance procedure that may overturn or modify
the agreement. Even if there are no grievances that modify a contract, parties
may not fulfill the contract properly and there might be some contract reparation
actions. If things proceed smoothly, the agreement subsists until maturity.

4 Case Study: mWater, a Water-Right Market

4.1 mWater Overall Description

Water scarcity is a major concern in most countries. It has been sufficiently argued
that more efficient uses of water may be achieved within an institutional framework
where water rights may be negotiated under different market conditions [20]. In
hydrological terms, a water market can be defined as an institutional, decentralized
framework where users with water rights are allowed to voluntarily trade them,
always fulfilling some pre-established norms, to other users in exchange of some
compensation [14, 20]. Because of water’s unique characteristics, such markets do
not work everywhere, they are not homogenous, nor do they solve all water-related
issues [20]. Also, even subtle changes in the market design (allowed participants,
legislation, protocols, etc.) are very costly and difficult to evaluate.

mWater is a particular instance of the MAS infrastructure for negotiation pre-

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

20

sented above, and it is used as a simulation tool for What-If Analysis of water-right
markets policies [6, 13]. More specifically, mWater assists in designing appropriate
water laws and regulate, either privately or publicly, the users’ actions, interactions
and their eventual trade.

4.2 mWater as a Simulation Tool

mWater builds on a MAS infrastructure, simulates a flexible water-right market,
and includes its own ontology for dealing with water issues and both the trading and
grievance processes. We have focused our model on humans’ actions: agents are the
crucial component in these models and our interest relies on the social aspect of the
market, which is usually missing in other markets in the literature. This simulator
includes heterogeneous and autonomous intelligent agents representing the different
independent entities in the market. We focus on demands and, in particular, on the
type of regulatory (in terms of norms selection and agents behavior), and market
mechanisms that foster an efficient use of water while also trying to prevent conflicts
among parties. In this scenario, this system plays a vital role as it allows us to
define different norms, agents behavior and roles, and assess their impact without
jeopardizing the real-world market, thus enhancing the quality and applicability of
its results as a decision support tool.

The user can configure simulation parameters such as: the group of water-users
that will participate in the market2, the norms and regulations that define the
policies in the market, the seasons in which the water-right transfer will take place,
etc. The simulation tool executes with a given configuration and the user can
assess the market’s behavior by means of indicators such as: number of water-right
transfer agreements, volume of water transferred, amount of money, overall social
satisfaction of the water-users that participated in the market, number of conflicts
generated, etc.

4.3 mWater in Action

Figure 6 shows a snapshot of the mWater simulator in action. This interface allows
the user, i.e. the water policy maker, to choose different input values that involve
simulation dates, participants, norms (in the form of protocols used during the
trading negotiation) and some decision points that can affect the behavior of the
participants3.

To implement human-agents interactions, in order to have a tool for studying
different behaviors and situations, it was necessary to create some GUIs with the
required options for the human to make changes in the system and pass information
to the rest of agents at execution time. For this we implemented a Web page with
PHP as scripting language and an interface application to ‘pass’ all the requests

2It is important to point out that the simulation we have developed is a mixed-initiative
simulation in which there are software agents that are completely autonomous/automated and
other software agents that are simple interfaces for human users. In this way, it is very easy to
include complex social behaviors that are hard to implement or highly time consuming.

3In our current implementation, these additional decision points rely on a random basis, but
we want to extend them to include other issues such as short-term planning, trust, argumentation
and ethical values.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

21

Figure 6: Snapshot of the mWater simulator.

from the Web page to the MAS, and all the results from the MAS to the Web page.
This makes possible to count on a MAS composed by a mixture of automated agents
and humans, and even a system completely based on automated agents. Figure
7 shows how a user can participate in a Japanese Auction of a water right, by
interacting with other human or automated agents.

This simulation tool allows users to analyze: i) how the conventions, norms and
negotiation protocols of the market change over time; ii) how participants in these
markets (re)act to these changes; and ii) how to extrapolate the empirical outcomes
of the market, in terms of economic and environmental impact, to deal with the
social (welfare) aspect of the market. Our preliminary experiments shed light on
the benefits that a collaborative AI perspective may bring to the policy makers,
general public and public administrators. Also, from the experts’ evaluation we
can conclude that a tool like this provides an advantageous tool to help build a
more efficient water market with more dynamic norms.

5 Further Uses for the Generic Negotiation Model

The infrastructure for generic negotiation that we have presented here has several
application uses, from both the academia and industry point of view. From the
academia standpoint, it can be used as a testbed for other developments within the
agreement technologies paradigm (http://www.agreement-technologies.org).
In particular, there are several challenging questions on:

• Organization and roles. How beneficial is the inclusion of collective, hetero-
geneous roles, their collaboration (and trust theories) and how the policies
for either flat or hierarchical group formation affect the system behavior?
To answer this we need to capture all those roles currently recognized by
legislation that have any impact on negotiation and agreement management,
specially in grievances and conflict resolution.

• Collective decision-making, reconfigurability, cooperation, social issues and

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

22

Figure 7: Snapshot of the human-agents GUI. The user can participate in a
Japanese auction with other humans and/or automated agents.

coordination. What is the impact of argumentation, judgement aggregation,
reputation, prestige and multi-party negotiation in the system performance?
The answer to this question is not straightforward and requires simulation
tools for performance assessment, as seen in section 4.

• Institutional limitations. What type of enforcement mechanisms are neces-
sary and how they change w.r.t the evolution of regulation? This is highly
related to the definition, adoption and compliance of (emerging) norms and,
more particularly, how to model and reason on them? To solve this, we need
to face the problem of expressiveness: the type of norms we have dealt with
so far has a formal representation, but other types of representation may be
more complex to handle. Finally, ensuring norm compliance is not always
possible (or desired), so norm violation and later detection via grievances
usually makes the environment more open, dynamic and realistic for taking
decisions.

From the industry standpoint, there exist further applications in the form of
simple tools that can be embedded within our MAS framework:

• A decision-support tool for policy simulation. Policy-making is a hard task.
Designing and taking legal decisions involves a complex balance among dif-
ferent factors, such as economic, social, administrative or environmental as-
pects. Consequently, a decision-support tool that allows policy-makers to

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

23

easily predict, analyze and measure the suitability and accuracy of modified
regulations for the overall system, before using other operational tools for the
real floor, shows very important. Our experiments with mWater shed light
on the benefits that a collaborative AI perspective for a water-right market
may bring to the policy-makers, general public and public administrators.

• A GUI tool for human negotiation that facilitates the human interaction with
software agents. Particularly, our GUI provides a simple, though effective way
to set up parameters and dynamic changes, which affect the performance of
the system, during the negotiation process (and also while simulating this
process). Moreover, it intuitively provides the results generated after such
an interaction process, which can be used as an analysis tool to evaluate
protocols.

• A general tool open to other negotiation processes, such as other electronic
markets; the workflow structure, roles and negotiation interaction remains
the same. Our experiences show that our negotiation framework is general
enough and can be valid for other markets. Particularly, we are applying
these ideas to a by-product exchange market to boost the re-use of waste,
thus being part of our current work.

6 Conclusions through Related Work

Computing has become an inherently social activity rather than a solitary one,
leading to new forms of conceiving computational systems which require both in-
teraction and negotiation. Some proposals have been effectively developed in liter-
ature to implement a negotiation framework. That is the case of the Jade platform
[1, 4], which is a FIPA compliant platform that provides Java classes to handle all
the FIPA interaction protocols. In this sense, the agents’ interactions must be also
programmed in Java by using the constructions provided by the platform. Another
multi-agent platform with support for interaction protocols is Jadex [7, 17]. Jadex
follows a typical BDI model and can be executed alone or under other communica-
tion platforms using adapters. A Jadex agent is defined through an XML file and
the Java classes that implement it. Jadex also owns the ‘interaction protocols’ capa-
bility, offering built-in support for most of the FIPA interaction protocols. However,
both Jade and Jadex use Java classes for implementing FIPA interaction protocols,
so the programmer can not use other specialized programming languages, such as
AgentSpeak, more expressive to model and describe agents. This does not prevent
us from addressing the problem using the Java approach; in fact, so far it has been
broadly used. However, in MASs, it is desirable to use tools and languages that
better fit with the autonomous and proactive agents’ nature. In this sense, Ma-
gentix2 [2] supports a high-level language for programming conversational agents
(i.e. agents whose interactions respond to interaction protocols) and the rest of the
capabilities offered by similar platforms. It also owns a conversations manager that
stores and automatically adds the information required in the creation of messages
during the conversation. Moreover, with Magentix2 it is possible to dynamically
modify the sequence of steps in the interaction protocol in order to create more

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

24

open and flexible conversations (new states and transitions between the conversa-
tion steps can be created at execution time). These features have been partially
included in other platforms, whereas all of them are included in Magentix2, which
makes it become an ideal infrastructure for a negotiation architecture.

From our point of view the common denominator in most of the current real, so-
cial systems is, interestingly, a negotiation process. Although some works have pro-
posed the construction of formal conceptual models with some negotiation [9, 18],
they do not always report significant advances from a collaborative AI perspective.
In this paper we have established the infrastructure foundations for the specifica-
tion of a multi-agent-based negotiation framework as the basis for modeling virtual
scenarios, and put it into practice within a water-right market, where negotiation
plays a vital role. The work presented in this paper is based on the lessons learned
in [6, 13]. But now, the generic negotiation framework has been implemented in
Magentix2 to offer a flexible and easy way to adapt to applications in which au-
tonomous features in regulated environments are required. Thus, the technical
contributions of this work are:

• Design a generic MAS infrastructure that captures the main steps that hap-
pen in an agent-based scenario, including mechanisms for exchanging infor-
mation, negotiating and dealing with the critical situations that may appear
thereafter.

• Introduce the users and intelligent roles that are necessary within an agent-
based setting. Differently to existing approaches, we introduce the roles of
intelligent mediators, which are very valuable for the process.

• Provide multiple negotiation strategies that are managed in a three-step uni-
fied way: registering, negotiating and validating the reached agreement. This
also allows us to include different protocols in a flexible fashion.

• In order to test the applicability of this generic framework, we have put
these ideas into practice with mWater. This water market is very illustrative
and has allowed us to explore the influence that the repetitive interaction
of participants exerts on the evolution of the market. Also, it has given us
enough evidence that the generic framework for negotiation provides a solid
foundation for complex markets.

Acknowledgments

This paper was partially funded by the Consolider AT project CSD2007-0022 IN-
GENIO 2010 of the Spanish Ministry of Science and Innovation; the MICINN
projects TIN2011-27652-C03-01 and TIN2009-13839-C03-01; and the Valencian
Prometeo project 2008/051.

References

[1] Jade. http://jade.tilab.com.

[2] J. M. Alberola, J. M. Such, A. Espinosa, V. Botti, and A. Garćıa-Fornes. Magentix:
a Multiagent Platform Integrated in Linux. In EUMAS, pages 1–10, 2008.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

25

[3] B. Alfonso, E. Vivancos, V. Botti, and A. Garćıa-Fornes. Integrating jason in a
multi-agent platform with support for interaction protocols. In Proceedings of the
compilation of the co-located workshops on AGERE!’11, SPLASH ’11 Workshop,
pages 221–226, New York, NY, USA, 2011. ACM.

[4] F. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent Systems with
JADE. John Wiley and Sons, 2007.

[5] R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming Multi-agent Systems
in Agent Speak Usign Jason. John Wiley & Sons, 2007.

[6] V. Botti, A. Garrido, J. A. Gimeno, A. Giret, and P. Noriega. The role of MAS as a
decision support tool in a water-rights market. In AAMAS 2011 Workshops, LNAI
7068, pages 35–49. Springer, 2011.

[7] L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: a BDI agent system combining
middleware and reasoning. In M. C. M. K. R. Unland, editor, Software Agent-Based
Applications, Platforms and Development Kits, pages 143–168. Birkhäuser-Verlag, 9
2005.

[8] G. B. DeSanctis and B. Gallupe. A foundation for the study of group decision
support systems. Knowledge based systems, 33(5):589–609, 1987.

[9] P. Eckersley. Virtual markets for virtual goods, 2003. Available at
http://www.ipria.com/publications/wp/2003/IPRIAWP02.2003.pdf (accessed May
2012).

[10] J. Fjermestad and S. Hiltz. Group support systems:a descriptive evaluation of case
and field studies. Journal of Management Information Systems, 17(3):115–161, 2001.

[11] R. L. Fogués, J. M. Alberola, J. M. Such, A. Espinosa, and A. Garćıa-Fornes. To-
wards Dynamic Agent Interaction Support in Open Multiagent Systems. In Proceed-
ings of the 13th International Conference of the Catalan Association for Artificial
Intelligence, volume 220, pages 89–98. IOS Press, 2010.

[12] Foundation for Intelligent Physical Agents. FIPA XC00025E: FIPA Interaction Pro-
tocol Library Specification.

[13] A. Giret, A. Garrido, J. A. Gimeno, V. Botti, and P. Noriega. A MAS decision
support tool for water-right markets. In Proceedings of the Tenth International Con-
ference on Autonomous Agents and Multiagent Systems (Demonstrations@AAMAS),
pages 1305–1306, 2011.

[14] J. Gomez-Limon and Y. Martinez. Multi-criteria modelling of irrigation water market
at basin level: a Spanish case study. European Journal of Operational Research,
173:313–336, 2006.

[15] G. Kersten and H. Lai. Satisfiability and completeness of protocols for electronic
negotiations. European Journal of Operational Research, 180(2):922–937, 2007.

[16] M. Luck and AgentLink. Agent technology: computing as interaction: a roadmap
for agent-based computing. Compiled, written and edited by Michael Luck et al.
AgentLink, Southampton, UK, 2005.

[17] A. Pokahr, L. Braubach, A. Walczak, and W. Lamersdorf. Developing Multi-Agent
Systems with JADE, chapter Jadex-Engineering Goal-Oriented Agents, pages 254–
258. Wiley and Sons, 2007.

[18] C. Ramos, M. Cordeiro, I. Praça, and Z. Vale. Intelligent agents for negotiation and
game-based decision support in electricity markets. Engineering intelligent systems
for electrical engineering and communications, 13(2):147–154, 2005.

[19] C. Sierra, V. Botti, and S. Ossowski. Agreement computing. KI - Künstliche Intel-
ligenz, 25(1):57–61, 2011.

[20] M. Thobani. Formal water markets: Why, when and how to introduce tradable
water rights. The World Bank Research Observer, 12(2):161–179, 1997.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

26

A New Platform for Developing,

Management and Monitoring Open

MultiAgent Systems

Carolina Zato1, Javier Bajo2, and Juan M. Corchado1
1Departamento Informática y Automática, Universidad de Salamanca, Salamanca, Spain

carol zato@usal.es,corchado@usal.es
2Universidad Pontificia de Salamanca, Salamanca, Spain jbajope@usal.es

Abstract

This article presents PANGEA, an agent platform to develop open mul-
tiagent systems, specifically those including organizational aspects such as
virtual agent organizations. The platform allows the integral management
of organizations and offers tools to the end user. Additionally, it includes a
communication protocol based on the IRC standard, which facilitates imple-
mentation and remains robust even with a large number of connections. The
introduction of a CommunicationAgent and a Sniffer make it possible to offer
web services for the distributed control of interaction

Keywords: multiagent platform, Web services, virtual organizations,
IRC protocol.

1 Introduction

One of the current lines of investigation for multiagent systems aims to create an in-
creasingly open and dynamic system. This involves adding new capabilities such as
adaption, reorganization, learning, coordination, etc. Virtual agent Organizations
(VOs) [9][12] emerged in response to this idea; they include a set of agents with
roles and norms that determine their behavior, and represent a place where these
new capabilities will assume a critical role. Possible organizational topologies and
aspects such as communication and coordination mechanisms determine in large
part the flexibility, openness and dynamic nature that a multiagent system can
offer. There are many different platforms available for creating multiagent systems
that facilitate the work of the agent; however those that allow for the creation of
VOs number much fewer, and it is difficult to find one single platform containing
all of the requirements for a VO. The remainder of the paper is structured as fol-
lows: the next section introduces some existing platforms. Section 3 presents an
overview of the main characteristics of the platform. Finally, section 4 explains a
case study and presents some results.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

27

2 Related Works

All platforms for creating multiagent systems existing to date should be studied
according to two principal categories: those that simply support the creation and
interaction of agents, and those that permit the creation of virtual organizations
with such key concepts as norms and roles. We will first present those platforms
that do not incorporate organizational aspects. The FIPA-OS [8] agent platform
was created as a direct derivative of the FIPA [25] standard. Another agent plat-
form is the April Agent Platform (AAP) [7] which, unlike the majority of platforms
using Java, implements the April language [24]; its development and technological
support has been discontinued. One of the strong points of this platform is that it
provides services to facilitate the development and deployment of agents on the In-
ternet and is also compliant with Web Services and Semantic Web standards. One
of the most recent platforms still in development is JASON [3] [4]. Its greatest
contribution is the easy implementation of BDI agents [28]. The Java-developed
platform contains AgentSpeak in its nucleus, an interpreter agent that acts as a
language extension [27]. The platform offers two operation modes: one that runs
all agents in the same machine, and another which allows distribution using SACI
(Simple Agent Communication Infrastructure) [29], which in turn uses KQML [10]
language instead of RIPA-ACL [11]. In practice, the most used platform for devel-
oping multiagent systems in real case studies is JADF (Java Agent Development
Framework) [2]. The JADE platform focuses on implementing the FIPA reference
model, providing the required communication infrastructure and platform services
such as agent management, and a set of development and debugging tools. Jadex [5]
is a software framework for the creation of goal-oriented agents following the belief-
desire-intention (BDI) model. The Jadex project facilitates a smooth transition
from developing conventional JADE agents to employing the mentalistic concepts
of Jadex agents. With the exception of JASON, these platforms follow the FIPA
standard, can create agents (some with different models), and manage communica-
tion among agents and services. With VOs, however, it is necessary to consider the
normative and organizational aspects that the platform itself must provide. Mad-
Kit [1] was one of the first platforms to consider basic organizational aspects. The
platform architecture is rooted in the AGR (agent-group-role) model [16]; however,
while it can handle the concept of role, it does not consider a role a class entity, and
the behavior associated with the role is directly implemented in the agent who as-
sumes it. Roles are strongly linked to agent architectures. This approach harms the
reusability and modularity of organizations [14]. Another pioneering platform with
regards to structural aspects was Jack Teams [23]. JACK Teams is an extension of
JACK Intelligent Agents [6], which provides a team-oriented modelling framework.
Both are extensions of the Java programming language; the implemented source
code is first compiled into regular Java code before being executed. S-MOISE+ is
an organizational middleware that follows the MOISE+ model [18]. It is an exten-
sion of SACI [29] where the agents have an organizational aware architecture. Our
research found systems developed in conjunction with JASON and using S-Moise+
as middleware to achieve a more complete model [17]. The result was J-Moise+
[1], which is very similar to S-Moise+ regarding overall system concepts. The main
difference is how the agents are programmed: in S-Moise+ agents are programmed

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

28

in Java (using a very simple agent architecture), while in J -Moise+ they are pro-
grammed in AgentSpeak. One of the main disadvantages of VO oriented platforms
is the slight loss in the concept of service and, consequently, the management of
these services and the Directory Facilitator (DF) described in the FIPA standard.
THOMAS was developed in response to this twofold need. THOMAS is based on
the idea that no internal agents exist and architectural services are offered as web
services. As a result, the final product is wholly independent of any internal agent
platform and fully addressed for open multiagent systems [15]. Finally, one of the
most complete and recent platforms that we found is Janus [13]. Janus is the next
step towards platform organizations known as TinyMAS (no longer under devel-
opment.). This platform was specifically designed to deal with the implementation
and deployment of holonic and multiagent systems. Its primary focus is to support
the implementation of the concepts of role and organization as first-class entities
(a class in the object-oriented sense). This consideration has a significant impact
on agent implementation and allows an agent to easily and dynamically change its
behaviour [14]. In conclusion, it could be said that when dealing with all aspects of
complex multiagent systems such as VOs, it is also necessary to deal with multiple
levels of abstractions and openness, which is not the case for most solutions.

3 PANGEA Overview

As we have mentioned, we are looking for a platform that can integrally create,
manage and control VOs. In general terms, the proposed platform includes the
following characteristics:

• Different models of agents, including a BDI and CBR-BDL architecture.

• Control the life cycle of agents with graphic tools.

• A communication protocol that allows broadcast communication, multicast
according to the roles or suborganizations, or agent to agent.

• A debugging tool.

• Module for interacting with FIPA-ACL agents.

• Service management and tools for discovering services.

• Web services.

• Allow organizations with any topology.

• Organization management.

• Services for dynamically reorganizing the organization.

• Services for distributing tasks and balancing the workload.

• A business rules engine to ensure compliance with the standards established
for the proper operation of the organization.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

29

Figure 1: Principal classes of the system

• Programmed in Java and easily extensible.

• Possibility of having agents in various platforms (Windows, Linux, MaccOS,
Android and IOS)

• Interface to oversee the organizations.

Figure 1 displays the principal entities of the system, and illustrates how the
roles, norms and the organizations themselves are classes that facilitate the inclu-
sion of organizational aspects. The services are also included as entities completely
separate from the agent, facilitating their flexibility and adaption.

When launching the main container of execution, the communication system is
initiated; the agent platform then automatically provides the following agents to
facilitate the control of the organization:

• OrganizationManager: the agent responsible for the actual management of
organizations and suborganizations. It is responsible for verifying the entry
and exit of agents, and for assigning roles. To carry out these tasks, it works
with the OrganizationAgent, which is a specialized version of this agent.

• InformationAgent: the agent responsible for accessing the database contain-
ing all pertinent system information.

• ServiceAgent: the agent responsible for recording and controlling the opera-
tion of services offered by the agents.

• NormAgent: the agent that ensures compliance with all the refined norms in
the organization.

• CommunicationAgent: the agent responsible for controlling communication
among agents, and for recording the interaction between agents and organi-
zations.

• Sniffer: manages the message history and filters information by controlling
communication initiated by queries.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

30

Figure 2: Architecture

The platform examines two modes of operation. In the first mode, the agents
reside in the machine itself, while in the second mode the platform allows for the
possibility of initiating all agents in different machines. The latter case has the
disadvantage of allowing only minimal human intervention since it is necessary to
previously specify the address of the machine where each of the agents are to reside;
however it has the advantage of greater system distribution. We hope to create a
service oriented platform that can take maximum advantage of the distribution of
resources. To this end, all services are implemented web services. This makes it
possible for the platform to include both a service provider agent and a consumer
agent, thus emulating a client-server architecture. The provider agent knows how
to contact the web service; once the client agent’s request has been received, the
provider agent extracts the required parameters and establishes the contact. Once
received, the results are sent to the client agent. Each suborganization or work
unit is automatically provided with an OrganizationAgent by the platform during
the creation of the suborganization. This OrganizationAgent is similar to the Or-
ganizationManager, but is only responsible for controlling the suborganizationn,
and can communicate with the OrganizationManager if needed. If another sub-
organization is created hierarchically within the previous suborganization, it will
include a separate OrganizationAgent that communicates with the Organization-
Agent from the parent organization. These agents are distributed hierarchically in
order to free the OrganizationManager of tasks. This allows each Organization-
Agent to be responsible for a suborganization although, to a certain extent, the
OrganizationManager can always access information from all of the organizations.
Each agent belongs to one suborganization and can only communicate with the Or-

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

31

Figure 3: OrganizationManager and OrganizationAgents

ganizationAgent from its own organization; this makes it possible to include large
suborganizational structures without overloading the AgentManager. All of the
OrganizationAgents from the same level can communicate with each other, unless
a specific standard is created to prevent this.

3.1 Communication Platform

This section will focus on describing the communication platform and protocol. As
observed in Figure 2, the communication platform includes two main agents: the
CommunciationAgent and the Sniffer. The first is in charge of checking the connec-
tions to confirm that the agents are online and see which ones have disconnected. It
is also in continual communication with the NormAgent to ensure that the agents
respect the lines of communication and comply with the standards. The Sniffer
is in charge of recording all communication, offers services so that other agents
can obtain history information, and facilitates the control of information flow for
programmers and users. The IRC protocol was used to implement communication.
Internet Relay Chat (IRC) is a real time internet protocol for simultaneous text
messaging or conferencing. This protocol is regulated by 5 standards: RFC1459
[26], RFC2810 [19], RFC2811 [20], RFC2812 [21] y RFC2813 [22]. It is designed
primarily for group conversations in discussion forums and channel calls, but also
allows private messaging for one on one communications, and data transfers, includ-
ing file exchanges [26]. The protocol in the OSI model is located on the application
layer and uses TCP or alternatively TLS [19]. An IRC server can connect with
other IRC servers to expand the user network. Users access the IRC networks by
connecting a client to a server. There have been many implementations of clients,

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

32

Figure 4: Sequence of steps for an agent to enter an organization

including mIRC or XChat. The original protocol is based on flat text (although it
was subsequently expanded), and used TCP port 6667 as its primary port, or other
nearby ports (for example TCP ports 6660-6669, 7000) [21]. The standard struc-
ture for an IRC server network is a tree configuration. The messages are routed
only through those nodes that are strictly necessary; however, the network status
is sent to all servers. When a message must be sent to multiple recipients, it is
sent similar to a multidiffusion; that is, each message is sent to a network link only
once [19] This is a strong point in its favor compared to the no-multicast protocols
such as SimpleMail Transfer Protocol (SMTP) or the Extensible Messaging and
Presence Protocol (XMPP). One of the most important features that characterize
the platform is the use of the IRC protocol for communication among agents. This
allows for the use of a protocol that is easy to implement, flexible and robust.
The open standard protocol enables its continuous evolution. There are also IRC
clients for all operating systems, including mobile devices. All messages include the
following format: prefix command command-parameters \r \n. The prefix may be
optional in some messages, and required only for entering messages; the command
is one of the originals from the IRC standard. The following diagram illustrates
the message flow required for an agent to enter an organization. These messages
use the command PRIVMSG followed by the parameters indicated by the arrows
in the diagram.

4 Case Study and Results

The platform we have developed can create a general type of organization, and
includes the possibility of creating open and highly dynamic systems. In order
to test the architecture, a case study was prepared to simulate a working envi-
ronment. Four organizations were created to simulate four different departments

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

33

Figure 5: Messages Delivered

within a company: accounting (composed of 4 accounting agents, one manager and
2 secretaries); quality control (composed of 2 evaluating agents and two training
specialist agents); technical services (composed of 6 technical agents); and cus-
tomer service (composed of 8 telephonist agents). According to the role of each
agent, there are specific services offered that allow them to resolve the queries they
receive. In one possible case, the client agent contacts the telephonist agent, which
simply receives the requests and redirects it to the agent qualified to resolve the
request. The telephonist agent extracts the key words from the message sent by
the client and contacts the Services Agent to determine which agent can address
the required service. If the message contains the keyword ”invoice”, the query
will be handled by the Accounting agent; if the keyword is ”switch on” it will be
handled by the Technical agent. Once the client is in contact with the appropriate
agent, the agent can communicate with other agents in its organization to carry
out the task. Four 30-minute simulations were performed with 20 different types
of requests randomly provided. Studying the Evaluation and Sniffer agents it was
possible to study how both the simulation and message flow unfolded. Focusing
specifically on the Sniffer, it is possible obtain summary charts and diagrams, and
specific numbers. Once the query is made, the Sniffer consults the database, filters
the data and returns a URL that displays the desired data. It is possible to obtain
the number of each type of message that a specific agent has received. Each mes-
sage includes a tag that identifies the type of message, which makes it possible to
filter information.

It is also possible to obtain a diagram of messages according to organization
instead of agents. Using the message identifier, it is also possible to see which
agents processed a given request; using the Evaluation agents we can determine the
number of requests processed by each agent. We can conclude that the architecture
we are developing has great potential to create open systems, and more specifically,
virtual agent organizations. This architecture includes various tools that make it
easy for the end user to create, manage and control these systems. One of the
greatest advantages of this system is the communication platform that, by using
the IRC standard, offers a robust and widely tested system that can handle a large
number of connections, and that additionally facilitates the implementation for
other potential extensions. Furthermore, the use of the Communication and Sniffer
agents, offers services that can be easily invoked to study and extract message
information.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

34

5 Acknowledgements

This project has been supported by the Spanish CDTI. Proyecto de Cooperacin
Interempresas. IDI-20110343, IDI-20110344, IDI-20110345, and the MICINN TIN
2009-13839-C03-03 project. Project supported by FEDER funds

References

[1] J. 20. Hbner. J -moise+ programming organisational agents with moise+ & jason.
Technical Fora Group at EUMAS’07, 2007.

[2] F. Bellifemine, A. Poggi, and G. Rimassa. Jade - a fipa-compliant agent framework.
Proceedings of the Practical Applications of Intelligent Agents, 1999.

[3] H. J. F. Bordini, R. H. and R. Vieira. Jason and the golden fleece of agent-oriented
programming. Multi-Agent Programming: Languages, Platforms and Applications.
Springer-Verlag. chapter 1, 3-37., 2005.

[4] H. J. F. Bordini, R. H. and M. Wooldridge. Programming multi-agent systems in
agentspeak using jason. John Wiley & Sons, Ltd., 2007.

[5] L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A short overview. Proccedings
Main Conference Net.ObjectDays 2004, pp. 195-207, 2004.

[6] R. R. H. A. Busetta, P. and A. Lucas. Jack intelligent agents - components for intel-
ligent agents in java. Technical report, Agent Oriented Software Pty. Ltd, Melbourne,
Australia, 1998.

[7] J. K. Dale, Jonathan and F. Labo. April agent plat-
form. http://designstudio.lookin.at/research/relate%20survey /Sur-
vey%20Agent%20Platform/April%20Agent%20Platform.htm, (accessed
11/29/2011).

[8] Emorphia. Fipa-os. http://fipa-os.sourceforge.net.

[9] F. M. Ferber, O. Gutknecht. From agents to organizations: an organizational view
of multi-agent systems. Agent-Oriented Software Engineering VI, Vol. LNCS 2935
of Lecture Notes in Computer Science, Springer-Verlag: 214-230, 2004.

[10] T. Finin and Y. Labrou. Kqml as an agent communication language. Bradshaw
(ed.), Software Agents, pp. 291-316. Cambridge, MA, 1997.

[11] T. F. for Intelligent Physical Agents. Fipa standar status specification.
http://www.fipa.org/repository/standardspecs.html, (accessed 11/29/2011).

[12] K. C. Foster, I. and S. Tuecke. The anatomy of the grid: Enabling scalable virtual
organizations. Int. J. High Perform. Comput. Appl, vol. 15, no. 3: 200–222, 2001.

[13] S. Galland. Janus: Another yet general-purpose multiagent platform. Seventh AOSE
Technical Forum, Paris, 2010.

[14] G. S. H. V. Gaud, N. and A. Koukam. An organizational platform for holonic and
multiagent systems. Proccedings of Sixth International Workshop on Programming
Multi-Agent Systems (ProMAS’08), of the Seventh International Conference on Au-
tonomous agents and Multiagent Systems (AAMAS). E. Hindriks, A. Pokahr and S.
Sardina (Eds.), pp. 111-126., 2008.

[15] A. Giret. An open architecture for service-oriented virtual organizations. Program-
ming Multi-Agent Systems: 7th International Workshop, ProMAS’09, 2009.

[16] O. Gutknecht and J. Ferber. Madkit: Organizing heterogeneity with groups in
a platform for multiple multi-agent systems. Technical Report R.R.LIRMM 9718,
LIRM, 1997.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

35

[17] B. R. P. G. Hbner, J.F. Using jason and moise to develop a team of cowboys.
Hindriks, K., Pokahr, A., Sardina, S. (eds.) Proceedings of the Seventh International
Workshop on Programming Multi-Agent Systems (ProMAS 08), Agent Contest, held
with The Seventh International Joint Conference on Autonomous Agents & Multi-
Agent Systems (AAMAS 2008), LNAI, vol. 5442, pp. 238-242. Springer, Heidelberg,
2009.

[18] J. S. S. Jomi Fred Hubner and O. Boissier. A model for the structural, functional,
and deontic specification of organizations in multiagent systems. Guilherme Bitten-
court and Geber L. Ramalho, editors, Proceedings of the 16th Brazilian Symposium
on Artificial Intelligence (SBIA’02), volume 2507 of LNAI, pages 118-128, Berlin.
Springer, 2002.

[19] C. Kalt. Internet relay chat: Architecture. RFC 2811, 2000.

[20] C. Kalt. Internet relay chat: Channel management. RFC 2811, 2000.

[21] C. Kalt. Internet relay chat: Client protocol. RFC 2812, 2000.

[22] C. Kalt. Internet relay chat: Server protocol. RFC 2813, 2000.

[23] A. O. S. P. Ltd. Jack intelligent agents teams manual. s.l. : Agent oriented software
pty ltd. 2005.

[24] F. G. McCabe and K. L. Clark. April-agent process interaction language. Proceedings
of the workshop on agent theories, architectures, and languages on Intelligent agents
(ECAI-94), Michael J. Wooldridge and Nicholas R. Jennings (Eds.)., 1994.

[25] P. D. O’Brien and R. C. Nicol. Fipa towards a standard for software agents. BT
Technology Journal, vol. 13, issue 3, pp. 51-59. Springer Netherlands, 1998.

[26] J. Oikarinen and D. Reed. Internet relay chat protocol. RFC 1459, 1993.

[27] A. S. Rao. Agentspeak(l): Bdi agents speak out in a logical computable language.
W. Van de Velde and J. Perram, editors, Proceedings of the Seventh Workshop on
Modelling Autonomous Agents in a Multi-Agent World (MAAMAW’96), no. 1038
in LNAI, pp. 42-55, London, 1996.

[28] G. M. P. Rao, A. S. Modeling rational agents within a bdi-architecture. J. Allen,
R. Fikes, E. Sandewall (Ed.), Proceedings of the 2nd International Conference on
Principles of Knowledge Representation and Reasoning (KR’91) (pp. 473-484). San
Mateo, CA, USA: Morgan Kaufmann publishers, Inc, 1991.

[29] SACI. Saci simple agent communication instrastructure.
http://www.lti.pcs.usp.br/saci/.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

36

A Tool for Retrieving Meaningful Privacy

Information from Social Networks

Ricard L. FOGUÉS1, Jose M. SUCH1, Agustin ESPINOSA1, and
Ana GARCIA-FORNES1

1Departament de Sistemes Informàtics i Computació, Universitat Politècnica de
València, {rilopez,jsuch,aespinos,agarcia}@dsic.upv.es

Abstract

The use of social networking services (SNSs) such as Facebook, Flickr,
or MySpace has grown explosively in the last few years. People see these
SNSs as useful tools to find friends and interact with them. SNSs allow their
users to share photos, videos, and express their thoughts and feelings. Even
though users enjoy the capabilities that these SNSs offer, they have became
aware of privacy issues. The public image of a subject can be affected by
photos or comments posted on a social network. Therefore it is important
for SNS users to control what others can see in their profile. Recent studies
demonstrate that users are demanding better mechanisms to protect their
privacy. An appropriate approximation to solve this problem is a tool that
automatically suggests a privacy policy for any item shared on a SNS. The
first step for any mechanism to recommend and predict privacy policies is to
retrieve meaningful privacy information from the SNS, such user communities
and the relationships of them. Most SNSs rely on groups to help users specify
their privacy policies. Therefore, a basic functionality of such a mechanism
is to group the user’s friends automatically. Although SNSs treat all of the
friends of a user the same, without taking into account different degrees of
the friendship, this is not a realistic approach. Hence, another factor to
consider when defining a privacy policy is the type of relationship between
the owner of the item being shared and its potential viewers. In this work, we
present a tool called Best Friend Forever (BFF) that automatically classifies
the friends of a user in communities and assigns a value to the strength of
the relationship ties to each one. We also explain the characteristics of BFF
and show the results of an experimental evaluation.

Keywords: Information retrieval, social network, social media, privacy,
tie strength.

1 Introduction

Social networking services (SNSs) are currently the services that are most more de-
manded by users worldwide. Facebook (with more than 800 million active users[1])
and Flickr (with 51 million registered members[2]) are two of the most successful

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

37

SNSs. People register to these SNSs and share images, videos, and thoughts because
they perceive a great payoff in terms of friendship, jobs, and other opportunities
[6]. However, the huge number of items uploaded to these SNSs and the persistence
of these items in the social networks have the potential to threaten the privacy of
their users[13]. For example, employers are becoming accustomed to checking the
profile of the candidates in popular SNSs. If the privacy of the profile of a can-
didate is not properly set, what an employer sees in that candidate’s profile may
affect the employer’s decision. It might even be possible for a stalker to infer the
address of a person by looking at that person’s photos posted in a social network.

Recent studies show that SNS users’ awareness of privacy issues has increased
lately [3]. To cope with these privacy threats users tend to adjust and modify
the default privacy settings set up by the SNS since they feel that these default
settings are not enough to protect them. Nonetheless, the current privacy setting
mechanisms offered by the SNS seem difficult or confusing for users [16, 22]. For
example, Facebook offers five privacy levels for each element shared: “public”,
“friends”, “only me”, “personalized”, or “groups”. While these five levels may
seem sufficient, they require a certain amount of work by the user before they can
be applied. In other words, groups have to be built in advance by the user. If we
consider that the average number of friends in Facebook is 130 [1], classifying all
of them into groups can represent a serious challenge. Furthermore, once groups
are defined, if the user decides to exclude specific users of a group from seeing the
shared content, he/she has to specify the excluded persons one by one.

Another problem users find when defining privacy policies is that most of the
SNSs base their privacy models entirely on groups. Every friend of a user is the
same; close friends, family or mere acquaintances are not distinguished. As Wiese
et al demonstrated in [24] the willingness of users to share in social networks is
dependent on the closeness (tie strength) of relationships. The works of Gilbert et
al. [10, 9] and Xiang et al.[25] showed that it is possible to predict the strength of
the relationship ties with the information available at the SNSs. As these related
works prove, in order to suggest good privacy policies for SNS users the strength
of the relationship ties must be taken into account.

These complications and obstacles may lead users to have privacy policies that
do not fit their preferences. Another effect of not using properly adapted privacy
policies is that the users feel as though they have lost control of their information
and how it is shared among the SNS. Users both desire and need more tools to
allow them to regain control over their privacy. Thus, in the long term, our aim is
to develop autonomous agents that would help users define their privacy policies
by automatically recommending them privacy policies that are appropriate.

A first step in creating appropriate privacy policies is to gather information
about how the user interacts with others in the social network. In other words, we
need to know more details about the social network connections of the user. In this
work, we introduce Best Friend Forever (BFF), which is a tool that automatically
obtains friend groups and a value for the strength the relationship ties. Moreover,
it provides support so that the user can refine the results. The tool has been
implemented as a Facebook application and is publicly available at gti-ia.dsic.
upv.es/bff. The main objective of BFF is to offer users enough information to
modify and adapt their privacy policies on Facebook. Our experimental results

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

38

suggest that our software accurately predicts user groups and tie strength values,
and also requires little user intervention.

The rest of the paper is organized as follows. Section 2 introduces preliminary
notions of tie strength and community finding algorithms in social networks. Sec-
tion 3 presents an overview of BFF and its different elements. Section 4 reports
the results of the experimental evaluation. Section 5 discusses some related works.
Finally, Section 6 concludes the paper and outlines future research directions.

2 Background

One of the main features of our tool is that it is able to predict a value for the tie
strength of each of the social connections of the user. Current SNSs have made
little effort to differentiate users. Users are either friends or strangers, with nothing
in between. This approach does not properly represent human relationships. As
introduced in the paper of Granovetter[12], the concept of tie strength defines
the relationship between two individuals. In his work, Granovetter describes two
different types of ties: strong and weak. On the one hand, strong ties usually
include relationships such as family and close friends. On the other hand, weak
ties may refer to coworkers or less trusted friends. Granovetter defined four tie
strength dimensions: duration, intimacy, intensity and reciprocal services. Later
works proposed three additional dimensions[4, 23, 15]. These three additional
dimensions are: (i) structural, which refers to factors like social circles, (ii) social
distance, which refer to factors like political affiliation or education level, and (iii)
emotional support, which embodies elements such as offering advice.

In Wiese’s work [24], the authors find a high correlation between the willingness
to share information and tie strength. Their research proved that the strength of
a tie is even more significant than grouping for predicting sharing. They suggest
that a mixture of grouping and tie strength might provide richer sharing policies.
Their conclusions support our thesis that tie strength is an important variable
when deciding who is able to access a given information. Therefore, it is necessary
to know the tie strength in order to suggest adequate privacy policies.

Automatic friend grouping is the other main feature of our software. Many
SNSs offer grouping features. However, they are not automatic and the users need
to take an effort and group all their contacts. If we consider that the average
number of contacts in Facebook is 130, this can represent a time-consuming task.
Friend groups become useful when defining privacy policies. It is easier for a human
user to assign the same access privileges to a group of friends than specifying a
privacy policy separately for each persons in the group.

In order to group persons we use communities [11]. Communities are usually
defined as natural divisions of network nodes into densely connected subgroups.
In our context, the nodes are the contacts or friends of a given participant, and
the connections between the nodes are friend relationships. There are many com-
munity finding algorithms [8]. In this work we use the the hierarchical diffusion
algorithm proposed by Shen et al. in [20]. Section 3.2 introduces some details of
this algorithm.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

39

Figure 1: BFF Overview

3 Best Friend Forever

This section introduces our tool and gives a complete overview of it. BFF aims
to retrieve information from the social network of a participant in order to help
to automatically recommend privacy policies. Specifically, the data needed is tie
strength and friend groups. BFF is written in PHP and Javascript and is publicly
accessible. Due to our experimentation needs, BFF is currently working as a web
page; however, in the future, we plan to distribute BFF as a software program that
users can execute in their own computers or on a trusted web server in order to
preserve their privacy.

BFF is composed of two modules: (i) community prediction, and (ii) tie strength
prediction. The community prediction module is in charge of create chunks of users
from the participant’s contacts. The tie strength prediction module establishes a
value of tie strength to each one of the participant’s friends. In general, the input
of BFF is the Facebook account of the participant, and the output is a set of user
groups and a value of tie strength for each one of those users.

Figure 1 shows an overview of BFF and how it works. The interface between
BFF and the user is a web page. BFF collects information from the user’s Facebook
account. Therefore, before users can use BFF, they have to login to Facebook and
give permission to BFF to access their Facebook information. Once the permis-
sion is given, BFF requests information from the Facebook server. When all the
necessary information has been collected, the information is passed to the commu-
nity prediction module and to the tie strength prediction module. These modules
predict a set of groups and tie strength values for the friends of the user. The
predictions are shown to the user as a suggestion. The dotted line represents the

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

40

Figure 2: Result Sample

possibility of the user to modify and adapt the suggestions created by the two
modules. These modifications are stored in the database for future reference.

BFF aims to be a tool that can be used by real users of Facebook. Therefore,
it has to work as fast as possible. BFF allows the users to configure the amount
of time they want the whole process to take. The user can choose among three
options fast, normal, and thorough. The amount of information collected depends
on the configuration chosen by the user. The fast configuration only collects the
user’s most recent information on Facebook, normal configuration collects some
old information, and thorough configuration collects every available information.
Clearly, a faster process will be less accurate and more inclined to prediction errors
than a thorough process where more information is collected.

Figure 2 shows the screen where the results of BFF are presented to the user. In
this example, the figure only depicts one of the communities automatically created
by BFF. Part of the name of the members of the community has been hidden to
preserve their privacy. As shown in Figure 2, the members of the community are
sorted by their tie strength value. The participant can change the name of the
community, remove members from the community, add new ones, and change the
tie strength value for any member in that community.

3.1 Tie Strength Prediction Module

As stated in the introduction, BFF predicts the tie strength of the relationships
of the participant with each person that is socially connected to her. We model
tie strength as a linear combination of predictive variables. During the creation of
BFF the usability of our tool was a key factor. With this in mind, BFF has to be

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

41

capable of predicting the tie strength accurately in a reasonable amount of time,
and every user should be able to get an accurate prediction. These two requisites
(time cost and generalization) conditioned the selection of predictive variables.
Next paragraph explains the selected predictive variables.

The variable Days since last communication measures the recency of the com-
munication. Days since first communication is an approximation of the duration
of the friendship. Wall messages counts the number of messages exchanged using
the wall. Photos together counts the photos where both persons (participant and
friend) are tagged. Links shared counts the number web page links traded between
the friend and the participant. Initiated wall posts counts the number of publica-
tions posted by the friend on the participant’s wall. “Likes” counts the number of
likes given by the friend to the participant’s publications. Inbox messages exchanged
counts the number of private messages traded between both persons. Number of
friends is the total number of friends of the friend. Educational difference measures
the difference in a numeric scale: none = 0, high school = 1, university = 2, PhD
= 4. Finally, the mean strength of mutual friends is also taken into account, and
it captures the idea of how a relationship is modified by the tie strength of mutual
friends.

The selected predictive variables are based on the variables proposed in [10].
In their work, the authors propose a set of 72 predictive variables. The authors
did not consider the cost of collecting the variables and their generalization, they
only considered the predictive capabilities of the variables. As stated before, two
requisites for the predictive variables are their collecting cost and their general-
ization. With regard to time cost, BFF collects the information from Facebook;
each time BFF needs to ask Facebook for an item, it has to send an HTTP request
to Facebook. This operation may take a few seconds; therefore, collecting many
variables from a very active participant account can take a long time. BFF had to
restrict the number of predictive variables. In the matter of generalization, BFF
tie strength prediction cannot depend on variables that require the participant to
have specific characteristics. For example, language dependent variables are inap-
propriate as they would limit the different users that would be able to use BFF.
The ten selected predictive variables for BFF satisfy both requisites, they can be
collected fast and are valid for any user. Moreover, the selected predictive variables
cover every tie strength dimension. Table 1 shows the tie strength dimensions and
the predictive variables that belong to each dimension.

The equation below represents the tie strength si of the ith friend. Ri stands
for the vector of ten predictive variables of the ith friend. μM is the mean strength
of mutual friends between the user and the ith friend. Finally, β is the vector of
weights applied to the predictive variables and γ is the weight applied to the mean
strength of mutual friends. In order to set the weight of each variable we used the
findings of [10] as we wanted to avoid the use of a model that completely lacked
information on the relative importance of each variable to predict tie strength. As
a future work, we plan to perform a fine tunning of the weights of the variables.

si = βRi + γμM

M = {sj : j and i are mutual friends}

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

42

Dimension Variables
Intimacy Number of days since first communication.

Number of friends.
Intensity Wall messages. Initiated wall post. Inbox

messages exchanged.
Duration Days since first communication.
Social distance Educational difference.
Reciprocal services Links shared
Emotional support Likes
Structural dimension Mean strength of mutual friends.

Table 1: Predictive variables and tie strength dimensions

After collecting the predictive variables for the friends of the user, the variables
are normalized. Then, the tie strength is calculated for each user. The results
are normalized to a numeric scale 1-5, where 1 represents that both persons are
very distant (mere acquaintance) and 5 that they are very close. The results are
presented graphically, as shown in Figure 2, so that users are sorted by group and
by tie strength. It is easier to figure out the value of the tie strength of a person by
comparing that relationship to others. As in the grouping step (explained below),
the participant can refine the results of the tie strength calculation.

3.2 Community Prediction Module

The community prediction module is based in the hierarchical diffusion algorithm
proposed by Shen et al. in [20]. The algorithm is founded on the triadic closure
principle, which suggests that, in a social network, there is an increased likelihood
that two people will become friends if they have friends in common. The algorithm
is divided into two steps: (i) the thresholding step, and (ii) the diffusion step. In
the first step, the core members of the communities are chosen. These members
are those users that are highly connected to others. Once the core members have
been selected, the diffusion step performs a cascade joining, and new members are
added to the communities formed by the core members. The diffusion step follows
a direct-benefit model in networks, which states that people benefit from directly
copying others’ decisions. In their paper, the authors did not test their algorithm
on a network of a SNS like Facebook. However, according to the results of our
experimental evaluation, it performs very well in this environment. Moreover, this
algorithm has great performance in terms of computational cost for the average
size of Facebook communities.

When the participant uses our software, the community prediction module
queries Facebook about the friends of the participant and the friends of those
friends (mutual friends) in order to build the graph that will be the input of the
algorithm. The community prediction module suggests the community division
calculated by the algorithm. The participant can accept the groups proposed or
modify them at will.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

43

4 Experimental Evaluation

The goal of our experimental study is to evaluate the accuracy of our BFF tool in
terms of community and tie strength prediction. Specifically, we want to answer
the following questions:

• How effective is the community module in grouping the contacts of a user?

• How accurate are the predictions of the tie strength module?

• Do users perceive that BFF is a good tool in general? In other words, do
they think that BFF is capable of inferring accurate information from their
available data on Facebook?

To answer these questions, we performed an experimental evaluation with Face-
book users. Our results indicate that BFF is an effective tool. Furthermore, users
considered BFF to be a good tool and valued it positively. In what follows, we first
introduce the experimental settings and then report our findings.

4.1 Participants

Our 17 participants were mostly students and members of the Polytechnic Univer-
sity of Valencia. The sample consisted of 4 women (23.5%) and 13 men (76.5%) .
The minimum number of Facebook friends was 58; the maximum was 529 (mean
of 186.94). In total, we analyzed 3178 friend relationships. All of the participants
used Facebook regularly.

4.2 Method

The participants in our experiment had to try BFF and evaluate its performance.
BFF was created to ensure that its use would be easy for anyone. The participants
only had to access to the web page of BFF, log in with their Facebook account, and
start the application. During the experimental evaluation, the time configuration
was deactivated since we wanted all of the participants to evaluate BFF with the
same configuration settings. The forced configuration was “normal”, which on
average takes 10 minutes to complete for a user with a number of friends of around
100.

After BFF completed its process, the participants were requested to correct any
possible errors in tie strength prediction and in user grouping. Users could change
the tie strength value of any contact, move users freely from one community to
another, and create new communities. These possible corrections were stored in
order to evaluate the performance of BFF.

Finally, the participants were requested to answer a short survey to find out
their opinion about BFF. The survey was composed of the four following questions:

1. How well did BFF group your friends into communities?

2. How well did BFF predict the tie strength between you and your friends?

3. In general, how accurate do you think BFF is?

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

44

4. How accurate do you think BFF is considering it only accesses your informa-
tion on Facebook? For example, if one of your friends on Facebook is your
brother, but you have never interacted with him on Facebook, it is impossible
for BFF to accurately predict the tie strength between you and your brother.

Each question was rated on a scale 1-5: 1 = very bad, and 5 = very good. The
first and second question addressed specific parts of BFF (the grouping feature
and the tie strength prediction respectively). The third and fourth questions were
general questions. The intention of the fourth question was to clarify the limita-
tions of BFF to the users. Currently, BFF is limited to the bounds of Facebook;
therefore, it only considers the interactions and social connections that occur on
Facebook. In future work, we expect to collect information from different sources
than Facebook, so BFF will be able to avoid this limitation.

4.3 Results

With regard to tie strength prediction, the module performed very accurately. It
achieved a Mean Absolute Error of 0.1155 on a discrete scale 1-5, where 1 is the
weakest and 5 is the strongest. We chose to discretize1 the tie strength in order
to facilitate the understanding of the results to the users. Moreover, according to
our findings, when the tie strength module predicted incorrectly, 51% of the time
it overrated tie strength and 49% of the time it underrated the strength. This
suggests that tie strength prediction is not biased.

The performance of the community prediction module was also very accurate;
it achieved an accuracy of over 95%. The participants performed mainly two types
of modifications on friend community predictions:

• The participant divided the largest community into several sub-communities.
An interesting fact about this situation is that the moved contacts usually
had a low tie strength (2.5 average). Thus, tie strength may affect the way a
user groups his/her friends. An idea for future research is to determine how
tie strength may play a role in the community prediction.

• The second more common modification was the user combining communi-
ties formed by only one or two members with low tie strength into a larger
community. These new communities can be identified as communities of ac-
quaintances. It seems that participants preferred to manage these contacts
as a single group, even when they did not share anything but the fact that
they had few friends in common and a low tie strength value.

Another important factor to analyze was the number of corrections that the
participants needed to make to the suggestions. As stated previously, SNS users
struggle to set up privacy settings. If the aim of BFF is to lighten the burden of this
task, its suggestions cannot contain a huge number of errors that need correction.

1The discretization process might have caused a higher prediction error. For example, a user
with a tie strength of 3.6 and another with a strength of 4.4 will be both assigned a strength of
4 during the discretization process. As future work, we plan to study the effect of discretization
in the prediction error, so that we could achieve a trade-off between the understandability of the
results and the error introduced because of the discretization.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

45

Figure 3: Mean and standard deviation for the survey questions

The mean number of corrections made was 19.3 per participant. Specifically, the
participants made an average of 13.12 tie strength corrections and an average of
6.2 community corrections. Considering that the average number of friends of our
participants was 186.94, having to perform only 19.3 changes could speed up the
process of organizing friends before setting privacy policies.

The participants also rated the performance of BFF by answering a short survey.
The results show that the participants rated BFF performance positively. The
participants perceived a slightly better accuracy in community prediction than
in tie strength. This shows that tie strength prediction is a more complex task
due to the high number of variables that the model considers. Another result
to note is that the participants rated the second general question (question 4)
higher than the first general one (question 3). When answering the first general
question, the participants did not consider the limitations of BFF. Therefore, even
when almost every friend was rated correctly, they detected mistakes. Due to the
brief explanation in the second question about how BFF works, the participants
realized that BFF is limited by the bounds of Facebook, and, for example, that
it cannot predict the tie strength of a relationship that mainly occurs outside
Facebook. When the participants became aware of the limitations of BFF, they
took into account how they interacted with others on Facebook in order make their
judgments. This explains the better rating for the second general question.

5 Related Work

Recent works have proposed models to predict tie strength. Gilbert et al.[10]
proposed a model, based on Granovetter’s work, that predicted tie strength among
the users of Facebook. The authors identified a set of 74 predictive variables that
can be found on Facebook. They achieved an accuracy of 84%. Another work that

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

46

predicts tie strength of social links is [14]. Like in the work of Gilbert, the authors
define a set of 50 predictive variables. In this work the authors aim to discriminate
strong links from weak links. However, they do not consider a scale in the strength
of the link, they are either strong or weak. These two works use a supervised
learning model that needs human intervention to work properly. Aiming at the
same objective, Xiang et al.[25] proposed a model to infer relationship strength
based on profile similarity and interaction activity, with the goal of automatically
distinguishing strong relationships from weak ones. It is worth noting that this
model relies on an unsupervised learning method, but it lacks a empirical evaluation
with real users. All three works show that it is possible to infer tie strength from
the available personal data in a SNS. These three works differ from ours in that
they aim to create models to predict tie strength from the information available on
a SNS. However, they do not offer tools that social network users can use to help
them to form friend groups and set privacy policies. Moreover, they only consider
the predictive capabilities of the variables chosen for their models, but they do not
take into account factors like the computational cost of collecting these variables,
which is an important factor when creating a usable tool.

The other main feature of BFF is that it suggests friend groups to the partic-
ipant user. The main idea is that with the grouping and tie strength information
the user has enough elements to create appropriate privacy policies. The work of
Fang and coworkers [7] proposes a tool that suggests privacy policies for certain
elements of a Facebook user profile. This work bases the privacy suggestions in
grouping user’s contacts in contexts. Every contact in the same context is granted
the same access permissions. The authors present a tool called Privacy Wizard
that helps user to set the privacy policies to protect user’s traits, like birth date,
address, and telephone number. However, this work does not consider tie strength,
and as the authors proved in [24], it is a key variable to consider when determining
the disclosure degree of the elements being shared in a social network.

Other works present mechanisms that can partially infer users’ social network
and its characteristics from sources of information different than SNSs. In [5]
the authors propose a method that extracts a social network for a user given
her mailbox and the information available on Internet. A similar approach is
presented in [18]. In this work the authors present POLYPHONET. From a given
set of persons, the authors find the social connections among them by querying
to Google. The authors estimate the strength of the relationship between two
persons by co-occurrences of their two names. These two works differ from ours in
that they do not rely in a SNS to extract social information from users. However,
this approach also has limitations. Relying on information sources that do not
necessarily contain social relevant information may lead to errors. For example,
two persons may appear in several web pages together but do not have any social
link. In order to avoid this problem, both works ([18, 5]) require a predefined
set of persons that will form the social community. In contrast, relying only on
Facebook data guarantees that the social links will actually exist, but may also
lead to errors. Even when the connection truly exists, the interactions between
two persons may occur outside Facebook. Therefore, the strength of such link will
be incorrectly predicted by our software. In the future, we plan to expand the
search of variables for defining the groups and the tie strength with information

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

47

that can be found outside the social network, like the information available in the
participant’s mailbox or in the personal web page of a user of the social network.

The work of Murukannaiah and Singh [19] presents Platys Social. The authors
developed a software that runs on a mobile device. This software learns a user’s
social circles and the priority of the user’s social connections from daily interac-
tions. The software infers the interactions from information that is available on
mobile devices, such as wi-fi networks, bluetooth connections, phone calls, and text
messages. The work of Murukannaiah and Singh presents a new approach for ex-
tracting social information from the real world, and not only from Internet. Their
work and ours could be merged so that tie strength could be computed taking into
account day by day encounter frequency and the information stored on a SNS like
Facebook.

6 Conclusions and Future Work

In this paper, we have presented a new tool for social network mining. This tool
is our first attempt to build a software that can help users to better understand
their social relationships on a SNS like Facebook. Currently, BFF is focused on
community and tie strength prediction. However, in the long term, we plan to
expand it with new functionalities and features. The modular architecture of BFF
allows us to develop new modules that can be easily added to BFF. These new
modules will rely on the capability of BFF to properly predict tie strength and
user communities. In order to be confident in the current capabilities of BFF, we
evaluated it using real-world data from real users of Facebook. BFF achieved a
Mean Absolute Error of 0.1155 for predicting tie strength and an accuracy of 95%
in friend grouping. Furthermore, on average, participants only needed to perform
19.3 corrections to BFF suggestions, taking into account that the average number
of friends of the participants was 186.94, BFF can positively accelerate the process
of organizing friends. Finally, users considered that BFF was good at predicting
tie strength and groups, and they considered it to be a good tool overall.

Many research paths open from here. The first one, and the motivation of
this work, is to use the extracted information to predict privacy policies. Users
limit what they share and with whom depending on the type of the relationship.
Therefore, a tool that correctly infers the types of relationships may be able to
predict suitable privacy policies. Furthermore, the ability of BFF to create groups
of users also matches the functionality of many SNSs that offer the possibility
for users to group their friends. Using these two features, we can create a new
functionality for privacy policy recommendation. Users perceive the utility of SNSs
by sharing photographs, videos, and other items with their contacts. However,
privacy issues can stop users from fully enjoying the functionalities of a SNS. By
automating the process of privacy policy definition and how the information is
disclosed on a SNS, we can reduce the burden that these systems impose on users,
thus increasing their utility.

Another path for further research is to add the possibility for BFF to predict
tie strength and friend communities using not only the information available at
Facebook, but also using other environments for searching. As the works [5, 18, 19]

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

48

prove, social information can be extracted from several different environments. The
information available at users’ mailbox, personal web pages, Internet search engines
could be collected by BFF. The development of a module that could be deployed
on a mobile device would allow BFF to also consider daily user interactions. The
addition of new sources of information will change how tie strength and grouping
are predicted. For the tie strength model, new variables will have to be considered,
so the weight of the variables may have to change. With regard to the community
finding algorithm, connections outside Facebook may increase the weight of some
edges, thus changing the selection of core members during the threshold step.
Besides, it will be necessary to take into account how the addition of new variables
can affect the efficiency of the tie strength and community predictions.

Apart from being of crucial importance for developing autonomous agents that
recommend privacy policies to users, the information that our tool provides can
also be the basis (or at least it can play a very important role) to solve many
other problems. For instance, the tie strength among agents is used to obtain the
optimal social trust path in complex social networks [17]. Moreover, agents could
judge the outcome of a negotiation as being distributively fair based on the tie
strength between them [21].

7 Acknowledgements

This work has been partially supported by CONSOLIDER-INGENIO 2010 under
grant CSD2007-00022, and TIN 2008-04446 and PROMETEO/2008/051 projects.
Ricard L. Fogués is working with a FPI grant from Programa de Ayudas de Inves-
tigación y Desarrollo (PAID) de la Universitat Politècnica de València.

References

[1] Facebook website. Facebook Statistics http://www.facebook.com.

[2] Yahoo advertising solutions. http://advertising.yahoo.com/article/flickr.html.

[3] D. Boyd and E. Hargittai. Facebook privacy settings: Who cares? First Monday,
15(8), 2010.

[4] R. Burt. Structural holes: The social structure of competition. Harvard Univ Pr,
1995.

[5] A. Culotta, R. Bekkerman, and A. McCallum. Extracting social networks and con-
tact information from email and the web. 2004.

[6] N. Ellison, C. Steinfield, and C. Lampe. The benefits of facebook friends: social
capital and college students use of online social network sites. Journal of Computer-
Mediated Communication, 12(4):1143–1168, 2007.

[7] L. Fang and K. LeFevre. Privacy wizards for social networking sites. In Proceedings
of the 19th international conference on World wide web, pages 351–360. ACM, 2010.

[8] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174,
2010.

[9] E. Gilbert. Predicting tie strength in a new medium. In Proceedings of the ACM 2012
conference on Computer Supported Cooperative Work, CSCW ’12, pages 1047–1056,
New York, NY, USA, 2012. ACM.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

49

[10] E. Gilbert and K. Karahalios. Predicting tie strength with social media. In Proceed-
ings of the 27th international conference on Human factors in computing systems,
pages 211–220. ACM, 2009.

[11] M. Girvan and M. Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences, 99(12):7821, 2002.

[12] M. Granovetter. The strength of weak ties. American journal of sociology, pages
1360–1380, 1973.

[13] R. Gross and A. Acquisti. Information revelation and privacy in online social net-
works. In Proceedings of the 2005 ACM workshop on Privacy in the electronic society,
pages 71–80. ACM, 2005.

[14] I. Kahanda and J. Neville. Using transactional information to predict link strength
in online social networks. In Proceedings of the Third International Conference on
Weblogs and Social Media (ICWSM), 2009.

[15] N. Lin, W. Ensel, and J. Vaughn. Social resources and strength of ties: Structural
factors in occupational status attainment. American sociological review, pages 393–
405, 1981.

[16] H. Lipford, A. Besmer, and J. Watson. Understanding privacy settings in facebook
with an audience view. In Proceedings of the 1st Conference on Usability, Psychology,
and Security, pages 1–8. USENIX Association Berkeley, CA, USA, 2008.

[17] G. Liu, Y. Wang, and M. Orgun. Optimal social trust path selection in complex social
networks. In Proceedings of the 24th AAAI Conference on Artificial Intelligence,
AAAI, pages 1391–1398, 2010.

[18] Y. Matsuo, J. Mori, M. Hamasaki, T. Nishimura, H. Takeda, K. Hasida, and
M. Ishizuka. Polyphonet: An advanced social network extraction system from the
web. Web Semantics: Science, Services and Agents on the World Wide Web, 5(4):262
– 278, 2007. World Wide Web Conference 2006Semantic Web Track.

[19] P. Murukannaiah and M. Singh. Platys social: Relating shared places and private
social circles. Internet Computing, IEEE, (99):1–1, 2011.

[20] K. Shen, L. Song, X. Yang, and W. Zhang. A hierarchical diffusion algorithm for
community detection in social networks. In Cyber-Enabled Distributed Computing
and Knowledge Discovery (CyberC), 2010 International Conference on, pages 276–
283. IEEE, 2010.

[21] C. Sierra and J. Debenham. The LOGIC negotiation model. In AAMAS ’07: Pro-
ceedings of the 6th international joint conference on Autonomous agents and multi-
agent systems, pages 1–8. ACM, 2007.

[22] K. Strater and H. Lipford. Strategies and struggles with privacy in an online social
networking community. In Proceedings of the 22nd British HCI Group Annual Con-
ference on People and Computers: Culture, Creativity, Interaction-Volume 1, pages
111–119. British Computer Society, 2008.

[23] B. Wellman and S. Wortley. Different strokes from different folks: Community ties
and social support. American journal of Sociology, pages 558–588, 1990.

[24] J. Wiese, P. Kelley, L. Cranor, L. Dabbish, J. Hong, and J. Zimmerman. Are you
close with me? are you nearby? investigating social groups, closeness, and will-
ingness to share. In Proceedings of the 13th international conference on Ubiquitous
computing, pages 197–206. ACM, 2011.

[25] R. Xiang, J. Neville, and M. Rogati. Modeling relationship strength in online social
networks. In Proceedings of the 19th international conference on World wide web,
pages 981–990. ACM, 2010.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

50

Alpha Test-bed: A New Approach

for Evaluating Trust Models

David Jelenc1, Ramón Hermoso2, Sascha Ossowski2, and Denis
Trček1

1University of Ljubljana, Faculty for Computer and Information Science, Tržaška
25, Ljubljana, Slovenia, {david.jelenc,denis.trcek}@fri.uni-lj.si

2University Rey Juan Carlos, CETINIA, Calle Tulipán s/n, 28933 Móstoles,
Madrid, Spain, {ramon.hermoso,sascha.ossowski}@urjc.es

Abstract

During last years many trust models have been proposed in the litera-
ture. However, test-beds that evaluate how well trust models perform are
scarce. Most of the approaches evaluate trust models by measuring utility
gains of agents that use trust models. We argue that such measurements
are ambiguous, because they actually measure the quality of the deci-
sions that agents make and not the quality of the calculations that their
respective trust models produce. In this paper we put forward a novel
test-bed that directly measures the outputs of trust models instead of
decision-making processes. We achieve this by evaluating the rankings of
agents that we derive from a trust model’s estimations. We provide two
metrics, namely accuracy and coverage, to qualitatively assess the per-
formance of trust models. We also provide a prototype implementation
of the test-bed.

Keywords: trust model, test-bed, agent, multi-agent system.

1 Introduction

The concept of trust has become a cornerstone in many areas. Examples in-
clude multi-agent systems (MAS) [1], service-oriented architectures (SOA) [2],
wireless-sensor networks (WSN) [3], P2P networks [4] and many others [5]. In
all those areas participants, commonly referred to as agents, have some degree
of autonomy, which allows them to freely select interaction partners. But such
selections must be prudent if agents are to achieve desired goals. Trust mod-
els are proven to be helpful in such cases. Research so far has been focused
in three areas, namely i) the design of trust models that estimate an agent’s
trust by aggregating its local experiences and obtained opinions, ii) the de-
velopment of reputation mechanisms that present significant advances in the
analysis and processing of opinions, and iii) design of test-beds that evaluate
(the well-functioning of) trust models. While the first two have attracted most
of the attention, we deal with the third in this paper.

We argue that most of the proposed test-beds evaluate trust models with
two important drawbacks. First, ad-hoc implemented test-beds are often con-
strained to a certain domain, for which the originally-tested trust models were
intended, and we cannot reuse them in other scenarios. The second problem

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

51

of the existing approaches lies in the evaluation procedure and in the metrics
they use for evaluation. Their evaluation procedure measures an utility that
an agent with a trust model gathers as a result of interactions. Their rationale
is that the trust model guides the agent to select the best collaborators for in-
teractions. However, we argue that calculated trust is not the only factor that
influences the selection of partners – an agent usually considers various aspects
of potential counterparts, and while trust is important, it is only one of many.
Thus when we evaluate trust models by measuring the utility obtained in in-
teractions, we are in effect evaluating not the validity of the calculated trust
but the validity of the made decisions (that is, partner selections). Moreover,
such evaluation is troublesome even if we disregard all other aspects and as-
sume that partner selections are only influenced by trust. This is because such
approach evaluates only a subset of a trust model’s output – it validates only if
the most trusted agent is actually the correct one. Trust estimations towards
other agents are ignored and thus not evaluated. Moreover, the metrics in
the existing test-beds depend on the utility that is measured. Examples range
from computer network metrics, such as the accuracy of routing and number of
hops [6], to more abstract ones, like the amount of earnings in an art appraisal
contest [7]. While such metrics are sufficient to rank trust models, they offer
poor insight into their actual performance.

In this paper we put forward a test-bed to tackle the presented shortcom-
ings. We describe the design and present an implementation of a test-bed called
Alpha. Alpha test-bed evaluates trust models by validating rankings of agents
that emerge from trust models’ estimations. The main idea of the test-bed is
to give a trust model to a particular agent, called agent α, and then fix the
other agents in the system with a pre-defined behaviour. Additionally, the
test-bed also assigns interaction partners to agent α. This way we ensure that
agent α receives the same information regardless of the trust model it uses.
This enables us to easily compare the performance of different trust models –
all we have to do is change α’s trust model and run the evaluation with the
same parameters. The remainder of the paper is organised as follows: Section 2
introduces suitable trust models and formally describes their components that
are relevant for evaluation. We propose the Alpha test-bed in Section 3 follow-
ing above described principles. Then we present a prototype implementation
in Section 4. We discuss the proposal with related work in Section 5, and
conclude the paper with Section 6.

2 Trust models

Trust models form trust from various types of information sources. These
include experiences from interactions, opinions from other agents in the system,
the analysis of underlying social structures of agents and so on. However,
most of the models only pay attentions to the use of experiences and opinions,
which is why we shall restrict ourselves to investigate only such models. This
section describes an information environment, in which agents with such trust
models operate, and presents a formal notation of their components. Despite
the mentioned restriction, we believe that the architecture of the test-bed as
we present it here, is applicable even to models that use additional information
sources. In such cases, one would have to provide additional facilities that
generate suitable information that would later be given to the trust model.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

52

2.1 Information sources and information flows

The sources of information and its flow through an agent are shown in Fig. 1.
The main parts of the figure are agent α, which represents the agent whose
trust model we intend to test, opinions from agents, which represents agents
that provide agent α with opinions about third parties, and the interactions
with agents, which represent agents that interact with agent α. We also show
an environment component, which represents other types of information from
which α can estimate trust (social networks, virtual organizations), but we
shall not utilize it in this proposal. Agent α’s internal architecture is further
decomposed into i) interpretation, ii) trust model and iii) decision making.

Trust values

TRUST MODEL

Selected counterparts
for interactionsDECISION MAKINGOpinions given

to other agents

Obtained
opinions

OPINIONS
FROM AGENTS

ExperiencesOpinions

Interaction
outcomesINTERPRETATION

INTERACTIONS
WITH AGENTS

Agent αAgent α

ENVIRONMENT
Environmental

information

Figure 1: Sources and flow of trust information

The two information flows in this schema are the interaction flow and the
opinion flow. The interaction flow goes from interactions to agent α and then
back to interactions. In this flow α’s interpretation component processes in-
teraction outcomes and outputs experience values that are then conveyed to
the trust model. The trust model uses experiences (as well as opinions) to
calculate trust values. The latter are then used by the decision making com-
ponent to select collaborators for interactions. Decision making is usually a
very complex process and while trust values are an important part of its input,
decision making in selecting interaction counterparts may also consider other
factors. However, they are domain specific and generally independent from the
trust model. The opinion flow goes from opinions to agent α and then back
to opinions. When agent α obtains an opinion the interpretation component
transforms the opinion to an understandable format for the trust model. The
trust model then uses those transformed opinions (as well as experiences) to
compute trust values that are used by the decision making component to report
trust values to the other agents.

2.2 Formalization

Here we formally represent concepts that are relevant for evaluation. We denote
the set of all agents in the system with A. Even though α is an agent and part
of the system, we exclude it from A due to his special status (individual to be
tested), thus α /∈ A. Additionally, we denote the set of all types of services
that agents offer with S.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

53

Experiences An experience ε ∈ E is a record of an interaction between some
agent and agent α. We denote experience as a tuple ε = 〈a, s, t, λ〉, where a ∈ A
represents the agent that provided α with service s ∈ S at time t ∈ T , and
λ ∈ Λ represents the assessment that α gave to the interaction. An assessment
λ ∈ Λ is a value with which agent α evaluates the performance of the service
provider. While the test-bed is agnostic to the types of assessments (numeric,
qualitative, binary, descriptive), it requires that the user provides a mapping
from [0, 1] to the set of assessments Λ. The mapping is needed for interpreting
interaction outcomes and converting them into assessments. The set of all
experiences is denoted with E .

Trust values A trust value τ ∈ Θ represents α’s trust towards a particular
agent. We denote trust value as a tuple τ = 〈a, s, ω〉, where ω ∈ Ω represents
α’s trust degree towards agent a ∈ A for service s ∈ S. A trust degree ω ∈ Ω is
a value with which an agent expresses the level of trust towards another agent.
Similar to assessments, the test-bed permits all kinds of trust degrees, but it
requires that the user provides a mapping from [0, 1] to the set of trust degrees
Ω. The mapping is needed for interpreting opinions and converting them into
trust degrees that the tested model can understand. Additionally, the test-bed
requires that set Ω is totally ordered, which means that any two trust degrees
have to be comparable with a greater-than-or-equal relation. Analogously, we
denote the set of all possible trust values with Θ.

Often we will need to reference a single component of a trust tuple. In such
cases we will use projections; the agent projection πA(〈a, s, ω〉) = a, the service
projection πS(〈a, s, ω〉) = s and the trust degree projection πΩ(〈a, s, ω〉) = ω.

Opinions An opinion o ∈ O is a statement about trust that was given by
one agent about a third party to agent α. We denote opinion as a tuple o =
〈ao, ap, s, t, ω〉, where ao ∈ A denotes the agent that told α that its trust degree
towards agent ap ∈ A for service s ∈ S is ω ∈ Ω. Symbol t ∈ T denotes the
time at which opinion was given and O denotes the set of all possible opinions.

Trust model A trust model is an architectural component that computes
α’s trust towards other agents. We denote trust model as a set function
TrustModel : T × P(E)× P(O) → P(Θ) that at any given time t ∈ T takes a
set of experiences εset ∈ P(E) and a set of opinions oset ∈ P(O) and outputs a
set of trust values τset ∈ P(Θ), thus τset = TrustModel(t, εset, oset).

3 The Alpha test-bed

Trust is hard to measure directly. An often used approach is to measure the
utility that an agent endowed with a trust model obtains from interactions.
Such evaluation coincides with measuring the interaction outcomes in Fig. 1.
This is troublesome, because it directly measures not the effect of the trust
model but the effect of the decision making (since this is the component di-
rectly responsible for selecting interaction partners). And while the trust model
influences the decision making, there are also other factors that come into ac-
count. Measuring interaction outcomes thus has two important consequences.
First, the results of such evaluation are ambiguous, because one cannot assure
whether the obtained utility is due to the use of a good trust model or due to

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

54

the use of a good decision making component. Secondly, it forces evaluation
to use metrics that are specific to the gained utility. Such metrics measure the
performance of an agent but not the actual quality of its trust model.

Our goal is to test the performance of a trust model directly and indepen-
dently of the decision making component. The problem is that while trust
model and decision making have different goals, they also influence each other.
The goal of the decision making component is to select such interaction part-
ners that an agent maximizes its utility in interactions. Decision making can
use calculated trust values to reach better decisions. On the other hand, the
goal of a trust model is to provide a comparable mental attribute of an agent’s
potential partners – to provide estimations of their trustworthiness. But be-
cause trust model estimates trust from experiences (which are derived from
past interactions), the decision making also influences the trust model. This
means that two agents, who have the same trust models but different decision
making components, can eventually reach different trust estimations. The dif-
ference will be due to different partner selections in the past and thus different
inputs to their trust models. To overcome this inter-dependency, we propose
the test-bed to be in charge of the decision-making process and thus in charge
of the partner selection process.

We put forward a test-bed that directly measures the output of a trust
model – calculated trust values. During the evaluation the test-bed generates
the complete information that represents α’s experiences and obtained opinions.
In other words, the test-bed controls not only the behaviour of other agents in
the system but also the selection of α’s interaction counterparts. The generated
information is given to α’s trust model, whose output is then evaluated.

3.1 Capability of agents

As stated above, the test-bed controls the behaviour of agents in A. It controls
how they behave in interactions with α and also how they report opinions to
α. We model behaviour of agents in such situations with capabilities.

Definition 1 (Capability) A capability represents the ability and willingness
of an agent a ∈ A to provide a reliable service s ∈ S to agent α at time t ∈ T .
We express it as a real number from [0, 1], where 0 and 1 represent the lowest
and highest capability, respectively, thus C : A× S × T → [0, 1].

Capabilities represent the ground truth – the actual performance of agents
in interactions. We use capability as a basis (i) to construct α’s experience (to
simulate interactions outcomes) and (ii) to create opinions that agents give to
α. (Detailed descriptions of generating interaction outcomes and generating
opinions are given in sections 3.3 and 3.4.) The actual capabilities are never
revealed to α, so it can only infer from interactions or when agents provide
opinions about other agents. Therefore we use capabilities as an integral part
of evaluation.

3.2 Metrics

Estimating the quality of future interactions is the essential task of any trust
model [8]. Since capabilities define the quality of interactions, we can evaluate
the trust model’s performance by measuring the similarity between calculated
trust and the actual capabilities of agents. We could measure similarity by

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

55

computing differences between estimated trust degrees and the capabilities of
agents, but this would require all trust models to estimate trust with values
from [0, 1]. While some models represent trust in this way, there are also many
others, which use different representations. Mapping estimations to the interval
[0, 1] may be unsuitable for some models, because they were not intended for
such cases. However, trust degree is a comparable attribute, which means
that any trust model should be able to rank agents by their trustworthiness
(regardless the actual domain of trust degrees).

Definition 2 (Evaluation) Evaluation function Eval : Θ × Θ × T → {0, 1}
determines if a pairwise comparison of given trust values 〈ai, s, ωi〉 , 〈aj , s, ωj〉 ∈
Θ is aligned with the pairwise comparison of the respective agents’ capabilities
at time t ∈ T .

Eval(〈ai, s, ωi〉 , 〈aj , s, ωj〉 , t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if [ωi ≥ ωj

∧ C(ai, s, t) ≥ C(aj , s, t)]
∨ [ωi < ωj

∧ C(ai, s, t) < C(aj , s, t)]
0 else

Since the set of trust degrees Ω is totally ordered, we can evaluate any pair of
trust values with the pairwise comparison from Def. 2. The pairwise comparison
of trust values is aligned with the pairwise comparison of capabilities when, for
a given service s and time t, the capability of agent ai is lower than (or equal
to) the capability of agent aj , while the degree of trust towards agent ai is also
lower than (or equal to) the degree of trust towards agent aj . The comparison
is also aligned, if, analogously, the capability of agent ai is greater than the
capability of agent aj , while the degree of trust towards agent ai is also greater
than the degree of trust towards agent aj . In all other cases the comparison of
trust values is not aligned with the comparison of capabilities.

To evaluate an entire set of trust values, we invoke evaluation function for
every possible pair of trust values in that set. We call this accuracy.

Definition 3 (Accuracy) Accuracy Acc : P(Θ)×S×T → [0, 1] evaluates all
trust values from a given set τset ∈ P(Θ) that concern the given service s ∈ S.
The evaluation is performed at given time t ∈ T .

Acc(τset, s, t) =

∑
τ1,τ2∈τset
πS(τ1)=s
πS(τ2)=s
τ1 �=τ2 Eval(τ1, τ2, t)

Count(τset, s) · (Count(τset, s)− 1)

where function Count : P(Θ)×S → N0 returns the number of trust values that
in set τset ∈ P(Θ) concern the given service s ∈ S.

Count(τset, s) = |
⋃

τ∈τset
πS(τ)=s

πA(τ)|

The accuracy tells us how well does the ranking of agents imposed by the
calculated trust values coincide with the ranking of agents imposed by their
actual capabilities. In the numerator we sum the invocations of evaluation
function, in which we compare all possible pairs of trust values that concern the
given service. In the denominator we calculate the total number of comparisons.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

56

This serves as a normalization factor, which ensures that when all evaluated
pairs of trust values are correct, the accuracy is 100%.

The differences in capabilities between agents are often very small. In such
cases, we require that trust model differentiates only between agents that have
substantial differences in capabilities. For such purposes we redefine accuracy.

Definition 4 (Accuracy with sensitivity) Accuracy with sensitivity para-
meter Acc : P(Θ) × S × T × [0, 1] → [0, 1] evaluates only those pairs of trust
values, in which the difference in capabilities between agents is larger than the
sensitivity parameter δ ∈ [0, 1]. This type of accuracy is defined as follows:

Acc(τset, s, t, δ) =

∑
τ1,τ2∈τset
πS(τ1)=s
πS(τ2)=s
τ1 �=τ2 Eval(τ1, τ2, t) · Cmp(πA(τ1), πA(τ2), s, t, δ)∑

τ1,τ2∈τset
πS(τ1)=s
πS(τ2)=s
τ1 �=τ2

Cmp(πA(τ1), πA(τ2), s, t, δ)

where the comparable function Cmp : A×A×S×T ×[0, 1] → {0, 1} determines
whether the difference in capability between given agents ai, aj ∈ A for the
selected service s ∈ S and at time t ∈ T is big enough.

Cmp(ai, aj , s, t, δ) =

{
1 if |C(ai, s, t)− C(aj , s, t)| ≥ δ
0 else

In the numerator of the redefined accuracy, we use comparable function to
determine when to take the evaluation function into account, while the sum of
invocations in the denominator serves as the normalization factor. As expected,
in case we set sensitivity parameter to δ = 0 the accuracy from Def. 4 collapses
to the accuracy from Def. 3.

The accuracy by itself says nothing about the number of trust values in the
given set with respect to the number of all agents. For instance, if the set of
trust values contains three values, but the entire society consists of 100 agents,
the accuracy can still be 100% if the pairwise comparison of those three values
is correct. But this is hardly a good result. Such cases show the need for an
additional metric.

Definition 5 (Coverage) Coverage Cov : P(Θ) × S → [0, 1] indicates the
percentage of agents towards which, for a given service s ∈ S, trust value is
defined in the given set τset ∈ P(Θ).

Cov(τset, s) =
Count(τset, s)

|A|
Coverage returns the percentage of agents towards which α is able to com-

pute trust for a given service. In the case of 3 out of 100 agents the coverage
is 3%. To get a sense of how good calculated trust values are, we have to
consider both, accuracy and coverage. While accuracy tells us how accurate is
the ranking of agents imposed by the trust model, the coverage tells us what
is the percentage of agents towards which trust model can estimate trust.

3.3 Generating experiences

Interactions between α and other agents are not actually performed, they
are simulated. When α interacts with an agent, we create an experience

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

57

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(a) Capability = 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(b) Capability = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(c) Capability = 0.9

Figure 2: Example of PDFs for interaction outcomes

ε = 〈ai, s, t, λ〉, where ai denotes the providing agent, and symbols s, t and
λ denote the type of service, time of interaction and the assessment of the in-
teraction, respectively. We calculate the assessment in a two-step procedure.
First, we determine the outcome of the interaction, and then we convert it into
an assessment.

3.3.1 Modelling interaction outcomes

The outcome of an interaction depends on the capability of the agent that pro-
vides the service. Therefore we represent interaction outcomes as values from
[0, 1], where 0 and 1 represent the worst and best possible interaction out-
comes, respectively. But to simulate a realistic setting, a particular interaction
outcome can be different than the actual capability of the providing agent. The
difference, however, should not be substantial and in the long run, interaction
outcomes should resemble the actual capabilities of providing agents. For this
purpose we generate interaction outcomes with a pseudo-random generator.
The generator operates with a probability distribution function (PDF) that is
parametrized with the capability of the providing agent. The general shape of
the PDF is defined as follows:

p(x;μ, σ) =

⎧⎪⎨
⎪⎩

e
− (x−μ)2

2σ2

∫ 1
0
e
− (t−μ)2

2σ2 dt

0 ≤ x ≤ 1

0 else

This is PDF of a truncated normal distribution with mean μ and standard
deviation σ. Truncation ensures that a) the probability of obtaining a value
outside of the interval [0, 1] is 0, and that b) the area under the PDF curve
equals to one (i.e. that the p(x;μ, σ) is a proper PDF). To generate an inter-
action outcome between α and agent ai for service s and at time t, we invoke
a pseudo-random generator and set the parameter μ to the capability of the
providing agent, thus μ = C(ai, s, t), while σ can be arbitrary. For example,
Fig. 2 shows probability density functions for three agents with capabilities 0.1,
0.5 and 0.9, respectively. The σ is set to 0.15 in all three cases.

3.3.2 Converting interaction outcomes to assessments

Once the outcome of the interaction is determined, we convert it to an as-
sessment. For that purpose the user must define an assessment conversion
function ConversionΛ : [0, 1] → Λ. Conversion is specific to the trust model, we
are testing. For instance, if the set of assessments Λ is the same as [0, 1], the

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

58

conversion function can be an identity function, otherwise the user must pro-
vide some other appropriate mapping. In summary, the complete procedure to
create an experience consists of (i) generating a random value and (ii) convert-
ing that value into an assessment. The random value represents the interaction
outcome and is selected from [0, 1] using a PDF that is parametrized with the
capability of the agent that provides the service. The assessment is computed
from the interaction outcome with the user-provided conversion function.

3.4 Generating opinions

Agents in set A are supposed to provide opinions to α. In the real world, those
opinions would come from their trust models. Since we are not interested in
the performance of those trust models, only in the performance of α’s trust
model, we simulate trust models of other agents with a carefully configured
pseudo-random generator. Thus we ensure that α receives the same opinions
in every test, regardless its own and other’s trust model.

Opinions are defined as tuples o = 〈ai, aj , s, t, ω〉, where ω denotes trust
degree that agent ai told α to have towards agent aj for service s at time
t. In comparison to generating experience, generating opinions is a three-step
procedure. First, we determine the trust degree of agent ai towards agent
aj . This trust degree is internally represented with a value from [0, 1], where
values 0 and 1 represent the lowest and the highest degrees, respectively. In
the second step we determine how agent ai is going to report this value to α.
This means that we determine if agent ai is going to lie to α, and if, how. In
the third step, we convert internally represented trust degree to a trust degree
that is compatible with α’s trust model. The latter is accomplished using a
user-provided mapping. Following sections explain the details of these steps.

3.4.1 Calculating internal trust degrees

We calculate internal trust degrees between agents in a similar way that we
calculate interaction outcomes – we use a pseudo-random generator with a
PDF that is parametrized with the capability of the agent that provides the
service1. Thus, the internally represented trust degree of agent ai towards agent
aj for service s and at time t is calculated with a pseudo-random generator with
PDF that has the mean parameter set to μ = C(aj , s, t). The parameter σ can
be, similar to before, arbitrary. The calculated value (in [0, 1]) represents the
internal trust degree of agent ai towards agent aj for service s and at time t.

3.4.2 Modelling deception

In the second step of generating an opinion, we determine whether the agent
that gives the opinion will be truthful and if not, how will the cheating process
look like. We compute the value that will be reported to α with a deception
model. The deception model is thus a mapping d : [0, 1] → [0, 1]. The test-
bed assigns a deception model to every agent. The assignment also depends
on which agent the opinion is about, the service, and the current time, thus

1The underlying assumption is that agents (as service providers) provide services with
the same quality to all consumers. We handle quality discrimination (the case of providing
different quality of service depending on the identity of the consumer) with deception models,
which are described in the following subsection.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

59

Deception : A×A×S ×T → D, where D stands for the all possible deception
models. An example of such a set is given below.

We will borrow deception models from Yu and Singh [9]. They used three
models of deception; complementary, exaggerated positive and exaggerated
negative. In the complementary model agents report opinions with the com-
plementary trust degrees – if the actual degree is good, they report bad and
vice-versa. In the exaggeration models agents provide opinions with trust de-
grees that are in comparison to the actual trust degrees either overestimated
(in case of positive exaggeration) or underestimated (in the case of negative
exaggeration). The three models are shown in Fig. 3. To contrast the differ-
ence between actual and reported values, we used a dotted blue line to plot a
truthful model – a model in which agents provide honest opinions.

0.2 0.4 0.6 0.8 1.0

Actual
value

0.2

0.4

0.6

0.8

1.0

Reported
value

(a) Complementary model

0.2 0.4 0.6 0.8 1.0

Actual
value

0.2

0.4

0.6

0.8

1.0

Reported
value

(b) Positive exaggeration

0.2 0.4 0.6 0.8 1.0

Actual
value

0.2

0.4

0.6

0.8

1.0

Reported
value

(c) Negative exaggeration

Figure 3: A graphical representation of deception models

We are adding two more models to this set, a random model and a silent
model. In random model agents provide opinions with trust degrees that are
chosen randomly, while in silent model agents do not provide opinions at all.
The silent model simulates behavior of agents that are either unwilling or unable
to share their opinions. Set D represents the set of all deception models that
can be used in an evaluation. In our case we have D = {dt, dc, dpe, dne, dr, ds},
where every model is defined as follows (parameter 0 ≤ κ ≤ 1 denotes the
exaggeration coefficient; Fig. 3 uses κ = 0.25):

• truthful model dt(x) = x;

• complementary model dc(x) = 1− x;

• positive exaggeration model dpe(x) = x · (1− κ) + κ;

• negative exaggeration model dne(x) = x · (1− κ);

• random model dr = U(0, 1);

• silent model ds = ∅.

Deception models in D constitute the most common ways of providing opin-
ions in an open and dynamic multi-agent environment; there are some agents
that provide honest opinions, some that lie extensively [9] and some that are
biased in either positive or negative direction [10]. Random model simulates
the most unpredictable agents whose opinions are the least reliable, while the
silent model accounts for the scarcity of trust information in such environments.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

60

We can also use deception models to simulate discriminating behaviour of
agents as service providers. When an agent behaves differently towards Alpha
than it behaves towards other agents, then the opinions of other agents about
this particular provider become lies from Alpha’s standpoint. For Alpha, there
is no difference between an agent providing a false opinion about a third party,
and an agent providing a truthful opinion about the same third party, if the
third party discriminates. In either case, the opinion is of no use to Alpha.

3.4.3 Conversion of internal trust degrees

In the last step of generating an opinion we convert internally represented trust
degrees to trust degrees that are compatible with the tested trust model. Trust
degrees that we used so far were internal, which means they were all expressed
on a closed interval [0, 1], with 0 and 1 being the lowest and the highest degrees,
respectively. But because not all trust models use such representation of trust
degrees, we have to convert it into a proper domain. We do this with an user-
provided trust degree conversion function ConversionΩ : [0, 1] → Ω. The same
principles used for the assessment conversion function also apply here.

Therefore, the complete procedure to create an opinion consists of (i) gen-
erating a random value, (ii) calculating the reported value and (iii) converting
that reported value into a trust degree. The random value represents internal
trust degree between two agents and is selected in the range [0, 1] using a
PDF that is parametrized with the capability of the agent in question. The
calculated number is then modified with the deception model of the agent that
provides the opinion. Finally, the reported value is transformed into a proper
trust degree with the user-provided conversion function.

4 Alpha implementation

Since the evaluation is performed in discreet time steps, we implemented the
Alpha test-bed as an agent-based simulator. We used the Repast Simphony
[11] as a platform, since it offers many of the needed facilities, such as event
scheduling, graph plotting or data exporting. Alpha test-bed is thus a standard
Repast model with a couple of additional features that enable dynamic addition
of new trust models and other pluggable components.

4.1 Pluggable approach

We designed the Alpha test-bed to be extendible. This means that we hard-
coded only the main concepts, while some parts can be changed by providing
a suitable plug-in. Alpha test-bed currently supports four types of pluggable
components, namely scenarios, trust models, metrics and deception models.
While we provide default implementations for all components, adding new ones
is straightforward. The user implements the interface of the desired component,
packages the implementation in a JAR and annotates the JAR with a standard
Service Provider configuration file. Once placed inside test-bed’s classpath, the
test-bed dynamically loads JAR at runtime.

Scenarios are responsible for generating experiences and opinions. They
i) assign capabilities and deception models to agents; ii) define the order,
in which agent α interacts with other agents; and iii) define the order, in

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

61

which agent α queries other agents for opinions. We use scenarios to con-
struct an information environment, in which we evaluate trust models. For
instance, to test a trust model in an environment, in which agent α inter-
acts only with a small number of agents and has to rely on its reputation
mechanism to calculate trust towards the remaining agents, we should use a
scenario that reflects such setting – that generates appropriate experiences and
opinions. On an implementation level, scenarios are classes that implement
IScenario interface. Implementing classes have to provide methods to gen-
erate experiences Set<Experience> generateExperiences(Time), generate
opinions Set<Opinion> generateOpinions(Time) and generate capabilities
Map<Agent, Capability> getCapabilities(Service, Time). The current
version has a few scenario implementations, but new ones can be easily added.

Trust models are parameters of the evaluation, but they are loaded by
the test-bed as plug-ins. They have to be programmed as classes that im-
plement the ITrustModel interface. The class must provide a method void

calculateTrust(Set<Experience>, Set<Opinion>), which updates the mo-
del with new experiences and opinions, and a method Map<Agent, Rank>

getRankings(Service), which returns the rankings of agents for the given
type of service.

The third type of plug-in are metrics. Their implementations are defined
by the IMetric interface. While we provide Accuracy and Coverage out of the
box, users can add new ones by implementing double evaluate(Map<Agent,

Rank>, Map<Agent, Capability>).

4.2 Running an evaluation

Running an evaluation is a two phase process. First, the user has to bootstrap
the test-bed and set up the parameters. Once this is done, the evaluation starts
as a series of discrete time steps. During the evaluation the test-bed outputs
various data that are shown to the user.

At the bootstrapping phase the user has to select a scenario, a trust model,
and set of metrics. Loading scenario often requires passing in additional pa-
rameters, such as the number of agents and different types of services in the
system, the assignment of capabilities and deception models to agents, and so
on. Trust models may also require additional parameters – the number and
the type of these parameters depend on the trust model. The third type of
parameters concerns metrics. Some metrics require parameters (i.e. accuracy
with sensitivity), while others do not (i.e. coverage). Once all plug-ins are
loaded and initialised with parameters, we can start the evaluation.

The evaluation consists of a series of operations that are carried out at every
tick. At the start of a tick, the test-bed requests new experiences and opinions
by invoking scenario with Set<Experience> generateExperience(Time) and
Set<Opinion> generateOpinions(Time). Then it conveys the results to the
trust model by calling calculateTrust(Set<Experience>, Set<Opinion>).
Next, the test-bed queries the trust model for rankings by invoking Map<Agent,
Ranking> getRankings(Service). The rankings are finally evaluated by call-
ing double evaluate(Map<Agent, Rank>, Map<Agent, Capability>). The
test-bed repeats the last two operations for every type of service and for every
metric. Once the results are calculated, the Repast facilities plot graphs of
metrics and, optionally, write the results to a file. The described sequence is
repeated at every tick.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

62

5 Related work

When a new trust model is proposed, its authors often build an ad-hoc and
domain oriented simulator [1, 12]. Whilst such simulators can demonstrate the
effectiveness of proposed models, they cannot be used as general purpose test-
beds, since they are domain specific. This means that when one wants to test
another, slightly different trust model, one has to add additional reasoning to
it, just to be compatible with the specific domain of that test-bed. This limits
the test-beds generality and the generality of its results.

Only a few researchers address the problem of building a general purpose
test-bed. The ART test-bed [7] was a courageous and well-known initiative to
fill this gap. They proposed a test-bed, in which agents enact the role of art
appraisers. Agents have to estimate the actual worth of paintings by either
using their own judgement (capabilities are assigned to them by the test-bed)
or by asking other agents for help. Agents can use trust models to i) evaluate,
how other agents can help them in estimating prices of paintings and to ii)
decide, how opinions from other agents can help them in finding additional
appraisers. During evaluations the test-bed pays agents for their appraisals
in proportion to how accurate their appraisals are. Moreover, agents can use
earnings to purchase opinions or appraisals from other agents and thus improve
quality of their own appraisals. At the end of competition the agent with the
most earnings wins. The setting of ART test-bed is a good example of a
competitive multi-agent environment, where agents need complex reasoning to
perform well. Analysis of past ART competitions revealed that the successful
competitors did not concentrate much on developing good trust models, but
more on deciding how to invest their earnings (i.e. building a good decision
making processes) [13].

TRMSim-WSN [6] is a dedicated test-bed for benchmarking trust and rep-
utation models in the wireless-sensor networks. The test-bed creates a WSN,
equips nodes with a tested trust model and defines, which sink-nodes will be-
have benevolently and which maliciously. Then it simulates WSN traffic. The
nodes have to send packets to benevolent sink-nodes and avoid malicious ones.
Test-bed’s main metric is accuracy, which tells the percentage of nodes that
send packets to benevolent sinks. TRMSim-WSN in effect measures decision
making, but in comparison to ART test-bed, calculated trust is the only factor
to consider. This approach evaluates only a subset of trust model’s estimations
– as long as the tested trust model selects a benevolent sink to be the most
trustworthy (even when this is not the “best” sink), the model receives perfect
score. However the Alpha test-bed evaluates the entire output of a trust model.

We distinct between system-oriented and individual-oriented approaches.
Some test-beds, such as [12, 6], measure the trust model’s effect on the global
utility of the system, while others, such as [7, 1], measure the effect of trust
model for an individual agent. In both cases, test-beds measure utility, which
in our opinion yields ambiguous results.

6 Conclusion

We have put forward a novel test-beds for evaluating trust models. While
others evaluate trust models by measuring an utility that an agent with a trust
model gains in interactions, we evaluate trust models directly by measuring
their outputs – trust values. We have demonstrated that existing test-beds

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

63

measure not the quality of an agent’s trust model, but the quality of the agent’s
decisions. And we have demonstrated (with arguments and with examples in
the literature) that this distinction is anything but minute. We have presented
objective and comparable metrics, which are general and intuitive. Moreover,
we designed and implemented a test-bed called Alpha to cover the mentioned
issues. We thus provide a way of thoroughly testing and comparing trust
models, which fills the existing gap in the literature. In future, we intend to
thoroughly document and publicly release Alpha’s source code together with
additional user documentation. We also plan to test different trust models and
compare their results.

References

[1] Trung Huynh, Nicholas Jennings, and Nigel Shadbolt. An integrated trust and
reputation model for open multi-agent systems. Autonomous Agents and Multi-
Agent Systems, 2006.

[2] Damjan Kovač and Denis Trček. Qualitative trust modeling in soa. Journal of
Systems Architecture, 2009.

[3] Javier Lopez, Rodrigo Roman, Isaac Agudo, and Carmen Fernandez-Gago. Trust
management systems for wireless sensor networks: Best practices. Computer
Communications, 2010.

[4] Ernesto Damiani, De Capitani di Vimercati, Stefano Paraboschi, Pierangela
Samarati, and Fabio Violante. A reputation-based approach for choosing reliable
resources in peer-to-peer networks. In CCS ’02: Proceedings of the 9th ACM
conference on Computer and communications security, 2002.

[5] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation
systems for online service provision. Decision Support Systems, 2007.

[6] Félix Gómez Mármol and Gregorio Mart́ınez Pérez. Trmsim-wsn, trust and
reputation models simulator for wireless sensor networks. In Proceedings of the
2009 IEEE international conference on Communications, 2009.

[7] Karen K. Fullam, Tomas B. Klos, Guillaume Muller, Jordi Sabater, Andreas
Schlosser, K. Suzanne Barber, Jeffrey S. Rosenschein, Laurent Vercouter, and
Marco Voss. A specification of the agent reputation and trust (art) testbed:
experimentation and competition for trust in agent societies. In In Proceedings
of the 4th International Joint Conference on Autonomous Agents and MultiAgent
Systems, 2005.

[8] Kevin Hoffman, David Zage, and Cristina Nita-Rotaru. A survey of attack and
defense techniques for reputation systems. ACM Computing Surveys, 2009.

[9] Bin Yu and Munindar P. Singh. Detecting deception in reputation manage-
ment. In Proceedings of the second international joint conference on Autonomous
agents and multiagent systems, 2003.

[10] Paul Resnick and Richard Zeckhauser. Trust Among Strangers in Internet Trans-
actions: Empirical Analysis of eBay’s Reputation System. In The Economics of
the Internet and E-Commerce. Emerald Group Publishing Limited, 2002.

[11] M. J. North, T. R. Howe, N. T. Collier, and J. R. Vos. A declarative model
assembly infrastructure for verification and validation. In Advancing Social Sim-
ulation: The First World Congress, 2007.

[12] Ramón Hermoso, Holger Billhardt, Roberto Centeno, and Sascha Ossowski. Ef-
fective use of organisational abstractions for confidence models. In Proceedings
of the 4th European Workshop on Multi-Agent Systems EUMAS ’06, 2006.

[13] Mario Gómez, Jordi Sabater-Mir, Javier Carbó, and Guillaume Muller. Anal-
ysis of the agent reputation and trust testbed. Inteligencia Artificial, Revista
Iberoamericana de Inteligencia Artificial, 2008.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

64

An agent platform for self-configuring

agents in the Internet of Things

Inmaculada Ayala1, Mercedes Amor1, and Lidia Fuentes1
1Universidad de Málaga, Departamento de Lenguajes y Ciencias de la Computación,

{ayala,pinilla,lff}@lcc.uma.es

Abstract

The Internet of Things (IoT) envisions a world in which an heterogeneous
set of devices are interconnected and collaborate using the Internet in order
to provide valuable services for users. For the developer, the deployment of
applications and services for the IoT requires managing an heterogeneous set
of devices, communication protocols and underlying networks, in order to re-
solve interoperability issues due to the heterogeneity of the IoT nodes. Agent
technology offers the necessary means to manage distribution and many other
requirements of the IoT satisfactorily, however current agent platforms nei-
ther deal adequately with the heterogeneity of these environments, nor pro-
vide support for a self-configuring communication in Multi-Agent Systems.
In this contribution we present Sol, an agent platform to develop IoT ap-
plications deployed as a family of self-configuring agents for heterogenous
devices. We illustrate the benefits of our approach for several scenarios of an
Intelligent Museum, and show its feasibility in terms of the response time of
reconfiguration, and wireless data exchange, so important in the IoT.

Keywords: Agent Communication Technologies, Aspect Orientation, In-
ternet of Things, Agent Platforms, Sensors, Handheld devices.

1 Introduction

The Internet of Things (IoT for short) envisions a world in which everyday objects
(such as mobile phones, vehicles, electrical appliances, medical instruments, etc.)
are interconnected and collaborate using the Internet in order to provide valuable
services for users. This vision defines the IoT as a dynamic global network infras-
tructure with global self-configuring capabilities, based on standard and interop-
erable communication protocols where physical and virtual things have identities,
physical resources and are seamlessly integrated into the information network [4].
Many technologies and new technological advances are making this vision possible:
Ambient Intelligent (AmI) environments, automatic object identification (such as
RFID and NFC), ubiquitous connectivity, just to mention a few. The possibilities
offered by the IoT make the development of a huge number of novel applications
possible with the goal of improving the quality of our lives: at home, while travel-
ing, when being a tourist, when sick, or at work.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

65

However, the IoT vision can be achieved by a convergence of technologies to
cover the heterogeneity in different contexts inherent to these kind of systems [18].
The development of services and applications for the IoT demands dealing with
a diverse set of heterogeneous devices (typical of AmI environments). A service
must be able to be executed in a diversity of devices, with a variable set of phys-
ical features and software services availability. Also, new devices are continually
appearing, so the IoT underlying technologies should provide the means to update
the set of considered devices. Moreover, inter-device communication is a prior-
ity issue for the IoT, but the set of communication technologies and protocols is
also diverse and sometimes the objects involved in a IoT application do not share
the same communication protocol. In fact, sometimes the access to services is
restricted by the set of communication protocols of each device, which is not desir-
able. Capabilities for different kinds of self-configuration, specially those focus on
solving inter-communication differences, is considered a high priority for the IoT.
So, the IoT needs an open architecture to maximize interoperability among het-
erogeneous systems and distributed resources including providers and consumers
of information and services, whether they be human beings, software, smart ob-
jects or devices. This architecture should also consider that IoT can be formed
by a myriad of different devices, which must addressed and located, using efficient
mechanisms easy to use for application developers.

The agent technology offers the necessary means to manage many of IoT dis-
tribution requirements satisfactorily: software agents are reactive, proactive and
their communication is supported by distributed agent platforms (APs). There are
different APs which work in some of the IoT devices. So, agents running in IoT
nodes provide a good way to encapsulate functionality, abstracting applications
from underlying heterogeneous hardware and implementation details. Moreover, if
every object or IoT node is an agent, the discovery of new agents is feasible (i.e
new objects and IoT nodes) through the Directory Facilitator (DF) provided by
the AP, dealing adequately with the addressability problem of the IoT.

However, current APs and agent development toolkits for lightweight devices
are not completely capable of managing heterogeneity and have strong limitations
for ensuring interoperability as IoT requires. The existing agent solutions that
could be applicable to the IoT are available only for a specific set of devices. For
example, Jade-Leap facilitates the execution and communication of agents on top
of Android and J2ME-based lightweight devices using a TCP/IP based commu-
nication, while Agent Factory Micro Edition (AFME) allows the execution of a
deliberative agent on top of mobile phones with CLDC/MIDP profiles and Sun-
SPOT sensor motes by means of TCP/IP and Zigbee protocols. But also, the
interoperation among different agent solutions is difficult to achieve. For exam-
ple, Jade-Leap agents and AFME agents cannot communicate, even if using the
same communication protocols, nor does AFME support the communication be-
tween agents in mobile phones, neither with desktop computers, nor with agents in
SunSPOT sensor motes. In addition, current agent infrastructures do not provide
explicit support for the dissemination of data to a group of related IoT nodes.
The agent has to maintain itself, the set of IoT nodes interested in their data,
and disseminate, through individual messages, new data when it is available. This
solution can be a resource-consuming task when the number of interested target

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

66

agents is high, and also complicates agent implementation.
Our approach addresses these limitations of agent technology in the IoT at two

different levels: (i) improving the design of a communication subsystem inside the
agent architecture (i.e. agent level) to facilitate the reconfiguration of an agent
communication mechanism to adjust it to different contexts; and (ii) endowing the
agent infrastructure with the necessary means to manage interoperability limita-
tions because of device and communication protocol heterogeneity, and extending
the message transport service (MTS) provided by the agent infrastructure to sup-
port an efficient group communication (i.e. the AP level). At the agent level, we
provide agents with the capacity of self-configuring their internal architecture in
order to use different communication protocols, taking into account the context and
the necessities of the application. This flexibility inside the agent’s internal design
also makes easier the simultaneous use of different message distribution mecha-
nisms easier. In this paper we focus on the agent infrastructure level, presenting
the design and implementation challenges of an AP, named Sol, which facilitates
(1) the communication and interoperation of agents running in heterogeneous set
of devices (such as SunSPOT sensor motes, Android-based lightweight devices and
other mobile phones) and even using different communication protocols; (2) group
message delivery (one-to-many communication) in an efficient manner. The Sol AP
supports the native communication protocols of each device (e.g. ZigBee, WiFi)
and acts as a gateway, performing specific functions in order to ensure interoper-
ability. In order to address the efficient group message distribution, the Sol AP
provides support for membership management (joining and leaving members) and
adequate communication mechanisms when possible (e.g. using IP multicast). We
illustrate the benefits of our approach with several scenarios of an Intelligent Mu-
seum, and show its feasibility in terms of the response time of reconfiguration, and
wireless data exchange, so important in the IoT

The paper is organized as follows: Section 2 presents a case study and the
motivation behind our work and gives details about the implementation of the
Sol AP and section 3 shows some results that validate our proposal. The paper
concludes with a section of discussion and work and some conclusions.

2 An agent platform for IoT applications

2.1 Case study and motivation/contribution

In order to illustrate how to use the AP, the IoT scenario we have chosen for a case
study is an Intelligent Museum (IM). These kinds of buildings normally include a
considerable number of sensors and personal lightweight devices and mobile phones,
spread throughout the halls and rooms of the museum, which provide context-
aware data and services. Sensors provide data and services that help museum
guides and security staff in their work, and additionally, brings location based
services to visitors. The IoT system has different services for their target users: in
the case of the guide, it provides support for the organization of the route inside
the museum considering the presence of other groups in the halls and rooms of
the museum, and helps share information between the guide and him/her group
of visitors; in the case of the security staff, the IoT nodes (sensors and personal

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

67

lightweight devices) provide information on the presence of people in the museum
and environmental conditions (temperature, light, humidity,...) and sends global
notifications to the different groups of people that are in the museum; and in
the case of visitors, we take advantage of the fact that most people usually bring a
mobile phone with them in order to provide location based information for example
details about an exhibit. This IoT scenario is designed as a Multi-Agent System
(MAS) whose agents are located in devices that people (visitors, guides and security
staff members) bring with them (such as tablets, smart phones and mobile phones)
and inside sensors located in the building. The MAS has four types of agents: one
for the guides (GuideAgent), another for security staff members (SecurityAgent),
another for visitors (VisitorAgent) and another for the sensors (SensorAgent), each
one running in a specific device. These agents are deployed in the AP named Sol,
presented in this paper, that runs in a desktop computer.

The set of communication scenarios and devices involved will help us to illus-
trate how our approach deals with the challenges raised in the introduction, which
can be summarized as:

C1-Device Heterogeneity. We need to have intelligent agents able to be
executed in any typical IoT device, which can range from sensors to hand-held
devices. Additionally, it is necessary to have highly reconfigurable agents able to
adapt to the hardware and software resources available in each device.

C2-Communication Heterogeneity. In this heterogeneous environment it is
necessary to provide the technological means to enable the communication between
agents that do not support the same transport protocols.

C3-Flexible Communication Infrastructure. Nowadays, the appearance
and disappearance of new end systems and wireless communication technologies is
becoming usual. In recent years we have seen how some of them have became obso-
lete (such as IrDa1) while new ones have appeared (e.g. NFC2 and Wi-Fi Direct3).
However, it is rather complex to extend current agent architectures to support
new capabilities, which is not straightforward and depends on the programmer’s
expertise on certain agent architecture. More flexible agent architectures should
allow software agents to cope with the evolution and emergence of new technologies
e.g. new transport services, message encoding, etc. So, it is desirable to have both
agent architectures and infrastructures (i.e. AP) easy to extend with new com-
munication means, including the possibility to enable or disable these mechanisms
even at runtime and to use them simultaneously when needed.

C4-Efficient Group-based Data/Message Distribution. Many of the ap-
plications and services deployed in the IoT require the dissemination of data to a
set of group-related nodes. In practice, the realization of this type of communica-
tion one-to-many has to be performed by the agents themselves. Each agent has to
manage and maintain the list of IoT nodes interested in its data, and disseminate,
through individual messages, new data when it is available. This solution can be a
resource-consuming task when the number of interested target agents is high, and
also complicates agent implementation.

1http://en.wikipedia.org/wiki/Infrared_Data_Association
2http://en.wikipedia.org/wiki/Near_Field_Communication
3http://en.wikipedia.org/wiki/Wi-Fi_Direct

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

68

Sol

-profiles : Hashtable<String,AgentProfile>
-connections : Hashtable<String,SenderConnection>
-services : Hashtable<String,List<Service>>

#sendMessage(msg : SolMessage) : void
#registerConnection(id : String, c : SenderConnection) : void
#unregisterConnection(id : String) : void
#registerService(type : String, ser : Service) : void
#queryService(type : String) : List<Service>
#unregisterService(name : String) : void
#unregisterService(name : String, owner : String) : void
#joinGroup(msg : SolMessage) : void
#leaveGroup(msg : SolMessage) : void

GroupConnection

-connections : Hashtable<String,SenderConnection>

SenderConnection

+sendMessage(msg : SolMessage) : void

SolVocabulary

+bluetooth : String = BLUETOOTH
+ip : String = IP
+zigBee : String = ZIGBEE

+getName() : String
+setName(n : String) : void
+getOwner() : String
+setOwner(ow : String) : void

Service

-name : String
-owner : String

AgentProfile

-agentClass : String
-transports : List<String>

BluetoothConnection

SunSpotBroadcaster

MulticastConnection

SunSpotConnection
BluetoothListener

SunSpotListener

TCPConnection

TCPListener

SolMessage

<<use>> <<use>>

<<use>>

Figure 1: UML class diagram of the Sol agent platform.

2.2 The Sol agent platform

The Sol AP (see fig. 1), partially implements the FIPA4 abstract architecture for
lightweight devices. The main goal of the Sol AP is to support the interoperability
of agents deployed in different IoT devices, through heterogeneous communication
protocols. The current version of the AP works with a wireless personal area net-
work (WPAN) mainly composed of MIDP/CLDC phones, Android devices and
SunSPOT sensor motes. This AP acts as a middleware that provides a set of ser-
vices to the agents that are deployed on it, and behaves as a gateway to support
communication heterogeneity (fullfils C2). Specifically, our AP supports: (1) the
registering and discovering of agents (Agent Management Service-AMS); (2) the
registering and discovering of services (Directory Facilitator-DF); (3) The regis-
tration and membership of groups (Group Management Service - GMS); and (4)
message communication service (MTS), which allows the communication between
agents registered in the AP, extended to facilitate the distribution of group-based
communication. The distribution of communication messages is supported inter-
nally by the Internal Platform Message Transport (IPMT), which resolves com-
munication interoperability issues. Note that the AMS, DF and MTS are classical
services provided by any AP. However, we have extended the MTS to support an
efficient group communication, which is complemented with the GMS.

The internal design of Sol AP is shown in fig. 1. The main class (named Sol)
supports the services enumerated below and stores information about the agents
and groups deployed in the AP and the services provided by agents that are signed
up in the MAS. However, agents do not interact with this class directly to access
those services. Instead, all the interaction between the AP and the agents attached
is ACL message-based. The ACL messages are represented in a special string-based
format named SolMessage (see fig. 1).

Once an agent starts its execution, its first interaction is to join the AP (i.e.
register in the Sol AP). Requests for registration are attended to Listeners. The AP

4http://www.fipa.org/

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

69

provides specific listeners for different protocols and technologies (TCP, SunSpot,
Bluetooth listener in fig. 1). Internally, these classes instantiate threads which
have sockets to listen to requests from handheld devices (Android enabled devices
and mobile phones with MIDP profile) and SunSPOT sensor motes. Agents send
a request message to register into the AP through this listener. In the registra-
tion message they specify its type, its identifier and the set and type of transport
protocols (e.g. Bluetooth) supported. This information is stored in an instance of
the AgentProfile class. Agent profiles are stored in a hash table (attribute profiles)
indexed by the agent identifier. This data will be used for helping the agent access
the MTS. Additionally, the Sol AP adds this agent to a group composed of all the
agents with the same type. Both MTS access and groups are described further on
in this section.

The DF provided by the Sol AP supports the main functions of a FIPA DF. This
service is also supported by a set of specific listener classes. Agents may register
their services with the DF or query the DF to find out what services are offered by
other agents. Service descriptions provided by agents at the DF registration are
stored in an internal hash table (services attribute in fig. 1). In the IM, each agent
registers the services that it can provide to the system. For example, a SensorAgent
that can measure and provide data on acceleration, luminosity and temperature,
it registers in the AP as a provider of these data sensing services. So, if another
agent needs to monitor luminosity, it queries the DF of the Sol AP to find out
the identifiers of the agent providers of that service. Finally, it sends a request for
data to the sensor agent, which periodically sends inform messages with data on
luminosity.

Another of the contributions of Sol is the support for different communication
paradigms and technologies. Specifically Sol supports peer to peer communication
(the usual communication paradigm in FIPA compliant MAS) and multicast com-
munication, which is often required by ubiquitous systems. Multicast communica-
tion facilitates the distribution of the same information to clustered components of
the system (achieving C4). In order to introduce this kind of communication in the
MAS the Sol AP incorporates the concept of group. A group is formed by a set of
agents that share features. By default, there is a group for each type of agent that
comprises the system, but additionally the user can define its own groups taking
into account the role that the agent plays in the MAS and the application commu-
nication needs. For instance, since it is usual to communicate simultaneously with
a set of service providers, we can define a group to include all the agent providers
of the same service. A group is defined to facilitate the propagation of information
between agents, and to make service provision more efficient. For example, in the
IM we can define a group for all the agents that monitor a specific room. Although
these agents monitor and provide different data (e.g. presence or humidity), they
are situated in the same room, which is considered the common feature used to
define the group (i.e. their position in the museum). The definition of this group
is useful for the IM, for example for a SensorAgent which could send a message
room empty to the group of agents present in the room. With this information the
agents of the group could decrease their activity in order to save energy.

The AP provides a GMS for the creation, joining and leaving multicast groups.
Agents request joining to a group, usually as part of the IoT application functional-

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

70

ity. If it is the first member of the group, then a new group is created represented by
an instance of GroupConnection. The joining of an agent to a group depends on its
profile (AgentProfile class in fig. 1). If the agent supports TCP/IP and multicast
IP, a MulticastConnection is created (whether there is not a MulticastConnection
in this group) and added to the GroupConnection. A MulticastConnection has
assigned a multicast IP address. Once the joining process ends, the AP sends a
message to the agent that includes the IP multicast address and port (how the
agent uses this information to complete the joining process is described in Section
2.3) where group messages are sent. If the agent does not support TCP/IP (or mul-
ticast IP) then the individual (and preferred) agent transport address (represented
by an implementation of SenderConnection interface) is included in the group con-
nection object. In the case of Bluetooth, an active BluetoothConnection object is
added to the corresponding GroupConnection (if the connection is not established,
then it is created). Finally, agents that communicate using Zigbee do not require
any special type of connection (i.e. MulticastConnection) for multicasting because
they communicate using UDP datagrams.

Coming back to our case study, consider a group of TouristAgent which is
visiting the museum with a guide. All of them form a group in the Sol AP,
which will be useful for the guide to distribute contents to his/her tourist group.
Each tourist may have a different kind of device, many of which probably do not
include a Wi-Fi interface. Also, for some of them, Bluetooth would be the preferred
communication option. For those tourist devices supporting Wi-Fi,the preferred
option for receiving additional guide contents will be IP multicast, which provides
better times (as we show in Section 3).

The MTS delivers messages between agents registered in the Sol AP. All the
agents have access to at least one specific MTS provided by the AP. The MTS
of Sol is supported by a set of connections. For each agent that is registered in
the AP, the AP maintains a connection. After registering the agent through the
AMS, a connection between the agent and the AP is established using the tech-
nology access that has been detailed at the registration stage. A connection is
supported by concrete implementations of the SenderConnection interface. All the
active connections are stored in a hash table. For each connection, the informa-
tion stored is the identifier of the agent or the group in the AP and a class that
implements the interface SenderConnection. The AP supports five types of connec-
tions (i.e. implementation of the interface): TCPConnection, BluetoothConnection,
MulticastConnection, SunSpotConnection and GroupConnection. TCPConnection
and BluetoothConnection are used by agents running in handheld devices to send
and receive messages by means of TCP sockets and Bluetooth connections. These
devices can receive multicast messages using UDP sockets by means of Multicast-
Connection objects. The SunSpotConnection is used to send UDP datagrams in
order to communicate with SunSPOT sensor motes. Finally, GroupConnection
represents a group of devices and stores an internal list of connections (connec-
tions attribute), which can refer to the other types of connections that have been
described. With this design it is easy to add new devices and communication pro-
tocols to the MTS of the AP, since we only have to implement a listener (for the
AMS and the DF service) and the SenderConnection interface for the new type
of connection or device specific communication mechanism. The features that are

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

71

aspects
Distribution

+handleInputMessage(msg : Object) : Object
+handleOutputMessage(msg : Object) : Object...

...

FIPAAgentPlatform

+startAP(args : Object[]) : void
+stopAP() : void
+deployAgent(args : Object[]) : void
+killAgent() : void
+registerService(args : Object[]) : void
+unregisterService(args : Object[]) : void
+getServiceProviders(args : Object[]) : Object

SolAPInterface

+joinGroup(args : Object[]) : void
+leaveGroup(args : Object[]) : void

BluetoothPlugin

MulticastPlugin

SolPlugin

0..*

Figure 2: UML class diagram of the SolPlugin

described at this point address the C2 challenge presented in Section 2.1 because
our AP has support for heterogeneous communication means.

In addition, we have already checked how this design meets challenge C3: The
case of SunSPOT sensor motes is special and different to Bluetooth and classical
TCP/IP because these devices connect to the Sol AP by means of the so called
SunSPOT base station. The problem is that each time the base station is plugged
into the system it is bound with a different IPv6 address, which must be known
by the sensor motes to connect to it. Therefore an initial discovery process is
necessary. This discovery process is implemented in the SunSpotBroadcaster class,
which is a thread that periodically sends broadcast messages with the IPv6 address
of the base station. Finally, SunSpotListener is an UDP socket to listen/sending
datagrams from/to SunSPOT sensor motes.

As mentioned before, the distribution of messages to groups is also implemented
as another type of connection (GroupConnection). GroupConnection has an inter-
nal hash table of SenderConnection implementations. The reason is that, although
the best way to multicast a message to a group is to use a multicast IP address,
we can not be sure that all the devices in the group support TCP/IP, UDP or IP
multicast. So, although the Sol AP defines a IP multicast group, which uses it to
multicast the message, the AP sends an unicast message to the groups members
that do not support IP multicast. In this way, we still fulfill C2.

The Sol AP IPMT supports Bluetooth RFCOMM, UDP and TCP protocols
at the transport level. It functions as a bridge since it resolves the differences
in the communication protocols at the data link level. Sensors are normally con-
nected forming a wireless sensor network (WSN) using the IEEE 802.15.4 standard
(also known as ZigBee), while hand held devices use WiFi (802.11) and Bluetooth
(802.15.1) as the access technology. So, Sol allows SunSPOT sensor motes to
communicate with each other and with the so-called SunSPOT base station using
ZigBee, but it also allows them to send and receive data from hand held devices
behaving as a gateway. Apart from the differences of the data link level protocol,
the Sol AP implementation has to deal with the limitations imposed on the TCP
protocol implementation by the 802.15 network interface, especially those related
with the number of active connections.

2.3 The communication concern inside the agent

The basis to achieve challenge C3 is an agent architecture that endows software
agents with enough flexibility to communicate using different access technologies

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

72

and communication protocols (even simultaneously). By doing this, we solve the
interoperability issue as part of the agent architecture, which gives more control to
the agent developer to adapt the agent to operate and communicate through any
network interface and communication protocol supported by the device. The AP
presented has been designed to work with a family of agent architectures called
Self-StarMAS [6]. Prior to describing the mechanism inside the agent to communi-
cate using the Sol AP, some details of Self-StarMAS are given. The main feature of
the internal architecture of a Self-StarMAS agent is that it is composed of a set of
components and aspects5 that helps to keep the application specific functionality
from the communication-related concerns separate. These concerns, which are en-
capsulated as aspects, are the formatting of messages (Representation aspect) and
the distribution of the messages using different communication means (Distribution
aspect), among others. The advantages of separating these aspects can be found
in [3]. The most important benefit of the aspect orientation is that it enhances
the internal modularization of the system, defining loosely coupled architectures,
that are easy to reconfigure even at runtime. Our agents can use different distri-
bution aspect implementations to distribute messages, which can be changed or
used simultaneously whenever it is necessary (achieving C3). The Self-StarMAS is
therefore considered a family of self-configuring agent architectures for lightweight
devices. The different versions of Self-StarMAS are able to be executed in Android
devices, mobile phones with MIDP/CLDC profile, desktop computers and Sun-
SPOT sensor motes (achieving C1). Additionally, the current implementation of
Self-StarMAS provides implementations of the distribution aspect for Bluetooth,
the Jade-Leap AP and for the Sol AP, which is the subject of this section.

The distribution aspect has the same design for the agents running in the dif-
ferent devices (sensors, hand held devices and desktop computers). This aspect
allows the agent to communicate by means of different MTSs through the Sol AP.
It receives the incoming messages and delivers outgoing messages through a spe-
cific network access technology (Bluetooth or Wi-FI) or communication protocol
(TCP, UDP). This aspect hides communication dependencies defining a high-level
interface to send and receive messages to and from different communication tech-
nologies. For each network interface and protocol the agent can access, this aspect
is in charge of instantiating the corresponding device and API-dependent function-
ality. For example, in SunSPOT sensor motes use UDP sockets instead of the TCP
sockets used by the other devices. Additionally, they do not need a special class
for receiving messages from groups because new instantiations of the UDP socket
for multicasting can be used for communicating with Sol. Moreover, these devices
require a discovery process, while other implementations do not. Finally, the Blue-
tooth side of the AP is not included for SunSPOT sensor motes and there are some
differences between the implementations for Android devices and mobile phones
with MIDP/CLDC profile, mainly related to how the API sets and establishes the
connection.

Internally, this communication concern is divided in two parts (see fig. 2), one
to access the AMS, DF and GMS services of the platform (SolAPInterface) and
the other for the communication through the platform (SolPlugin, MulticastPlugin
and BluetoothPlugin). The SolAPInterface realizes the FIPAAgentPlatform inter-

5http://www.aosd.net

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

73

Sol
SensorAgentSecurityAgent

DF
Luminosity:A1,A3,..

Acceleration:A2
Temperature:A1,A2
Orientation:A1,A2,..

...

AMS
A1:dir
A2:dir

...Representation

SolPlugin

Protocol

ACL MSG

TCP UDPSol Native MSG

Representation

SolPlugin

Protocol
IPMT

WiFi ZigBee

ACL MSG

Sol Native MSG

Bytes Datagrams

GMS

Figure 3: Schema of the communication in Sol agent platform

face. This interface is common to all the distribution aspects and allows a uniform
access to FIPA compliant APs. The SolAPInterface extends the services of FIPA-
AgentPlatform with services to allow the joining and leaving of groups.

The SolPlugin and the BluetoothPlugin classes extend the Distribution aspect
and permit sending messages to the Sol AP using a specific transport or access
technology. They are implemented as threads that listen to messages. In the case
of the SolPlugin, from TCP socket connection established with the Sol AP, and in
the case of the BluetoothPlugin from a RFCOMM Bluetooth connection to a service
also running in the AP. The case of MulticastPlugin is special because it is a thread
only for listening to messages targeted at multicast group. As stated before, agents
can ask the Sol AP to join a group and this is done by means of the SolAPInterface.
If the technology for the connection is IP then the Sol AP answers the request
with a multicast IP address and a transport port. With this information a new
MulticastPlugin is instantiated and added to the agent architecture. If an agent
wants to send a message to a group, this is done via SolPlugin or BluetoothPlugin
and using as receiver the identifier of the group. When the message arrives in Sol,
this sends the message using the corresponding GroupConnection as described in
Section 2.2.

As stated before, aspect orientation gives the Self-StarMAS agents the possibil-
ity of using different APs and mechanisms for communication. But as a counterpart
it also requires the transformation of the messages during sending and reception
in order to compose messages in the format used by the underlying AP. This task
can be defined as a translation, which is encapsulated in the Representation as-
pect [3]. For our case study, SensorAgent and SecurityAgent are involved in an
interaction ruled by a protocol that consists of SensorAgent periodically sending
reading light to the SecurityAgent. The SensorAgent sends an ACL message that
is transformed by the Representation aspect to a SolMessage and is sent to the Sol
AP as a datagram by SolPlugin. When the message arrives at the AP, this is sent
by means of the TCPConnection that sends the message as a stream of bytes to
the SecurityAgent.

3 Validation

As stated before, the AP presented here has been designed to support the inter-
operation of a family of self-configuring agents called Self-StarMAS. These agents
can accomplish different tasks for self-configuring: (T1) change the sampling fre-
quency of a monitoring component/aspect; (T2) change the distribution aspect at

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

74

����

����

����

����

����

�����

�����

�����

�	���

	�
� �� �� �� ��

��
����

�����

Figure 4: Times (in milliseconds) for the T3 task for different numbers of agents.

runtime; and (T3) require a new service provider of data in case of failure of the
service provider. T1 and T2 are related with the internal architecture of the agent
and are beyond the scope of this paper, but T3 is directly related with the work
of the Sol AP presented here. In [5], we evaluate this task considering that the
agent each time it loses the service provider, queries the DF of the Sol AP in order
to get a new service provider. Then, it sends request messages to all the service
provider agents that can provide the required service and chooses one sending a
confirm message and discarding the others sending a refuse message.

In this section, the set of service provider agents will be replaced by a group
(GroupConnection, see section 2.2) and we see the benefits of the group mechanism
comparing it with the classical unicast messaging (TCPConnection, SunSpotCon-
nection or BluetoothConnection). Specifically, we compare one GroupConnection
with a set of SunSpotConnections to see benefits for the T3 self-configuring task.
The tests have been performed in a Samsung Galaxy Nexus6 mobile phone and
SunSPOT sensor motes. All the experiments has been repeated fifty times and the
average and the standard deviation has been calculated.

In order to evaluate T3 with the two communication mechanisms (a single
GroupConnection and a set of SunSpotConnections), we have deployed different
scenarios of the IM, mainly composed of one SecurityAgent (executing in an An-
droid enabled phone) and a variable number of SensorAgents. The number of
SensorAgents can vary from just one sensor (for instance providing luminosity
data) to various tens. All the SensorAgents of the system are registered as service
providers of the specific service which fails and causes the T3 reconfiguration. The
average of the results of this experiment are depicted in figure 4 and the standard
deviation is approximately 2 seconds for all cases. The results show that time for
self-configuring scales up with the number of agents following a logarithmic curve in
the case of the set of SunSpotConnections (SunSpot label). However, the resulting
times are affordable and the scalability of the self-configuring task using this mech-
anism is good, the benefit of using the mechanism for group-based communication
(Group label) is clear. The time using the GroupConnection is lower in all the sce-
narios. Additionally, note that when the number of sensors and agents increases
by more than 250%, the time required for self-managing increases 140% in the case
of the set of SunSpotConnections and 120% in the case of the GroupConnection.

6http://www.google.es/nexus/

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

75

4 Related work

There are different approaches to develop IoT applications, the majority of them
based on middlewares [4], services [8] or frameworks [13]. These solutions, as does
the work presented here, integrate technologies such as RFID, smartphones or
sensors and offer mechanisms to build applications based on them. Mainly, they
offer a transparent access to the remote resources of the system alleviating the
problematic of building distributed applications or in other cases they provides a
communication infrastructure for heterogeneous devices. An interesting approach
in this trend is the MundoCore middleware [2], that not only provides a transpar-
ent access to services, additionally it supports the communication using different
transport protocol (e.g. TCP/IP, Bluetooth,. . .) and communication paradigms
(e.g. peer to peer, publish/subscribe,. . .). These approaches are different to agent
approaches, since they support different application layers. Middleware are at the
infrastructure level, while agent-based solutions are at the application level and can
use services provided by the middleware in order to fulfill their goals. The work
presented here has similar goals to MundoCore middleware (support for communi-
cation and services) but adapted to the agent paradigm.

There are different agent approaches that can be used to develop IoT appli-
cations. However, there are no specific solutions for IoT systems, so this section
mainly shows agent approaches for AmI/ubiquitous computing area, which can be
used for the development of IoT systems. Among these approaches, we can find
agent technologies that support heterogeneous devices and approaches for a sin-
gle type of target device. In this section we are going to show and compare our
approach with some of them.

One of the most important approaches that tries to tackle the heterogene-
ity in MAS is Agent Factory Micro Edition (AFME) [14, 15]. This is a frame-
work that seeks to address the constraints and heterogeneity of AmI environments.
AFME provides a set of tools that support the execution of a deliberative agent
architecture that are able to execute on desktop computers, mobile phones with
CLDC/MIDP profile and SunSPOT sensor motes. However, this approach does
not support the communication between agents using TCP/IP based communi-
cations (agents in mobile phones and desktop computers) and agents that uses
ZigBee (agents in SunSPOT sensor motes), as our approach does. Jade-Leap [7]
is a lightweight implementation of the Jade AP for desktop computers, mobile
phones with MIDP/CLDC profile and Android enabled devices. This proposal has
been used in different AmI projects [11, 17], but does not have support for more
lightweight devices such as sensors, so important in IoT environments. Another
approach that has tried to tackle the heterogeneity of ubiquitous environments
is 3APL-M [10] that enables the execution and communication of BDI agents in
mobile phones and desktop computers. Java Standard Edition (J2SE) has the
connectivity technology to develop IoT applications based on TCP or UDP and
additionally, it can be executed in desktop computers and more lightweight devices
such as PDAs. Therefore, agent approaches implemented in J2SE can be used to
develop IoT applications based on agents for a limited set of heterogeneous devices,
this is the case of Jack [9] and FIPA-OS [16].

As stated before, there are agent technologies that support one single type of

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

76

target device but they are useful for the development of IoT systems because their
target devices are typical of IoT systems. This is the case of Andromeda [1], an
agent approach only for Java for Android and the case of other approaches for
SunSPOT sensor motes, such as MAPS or MASPOT [12].

Finally, our AP has support for agents running on desktop computers, mobile
phones with CLDC/MIDP profile, Android enabled devices and SunSPOT mote
sensors, which makes this approach the agent proposal which covers the greatest
number of devices. Moreover, our AP enables the communication between agents
that use different transport protocols, which is not the case of other similar ap-
proaches.

5 Conclusions

The IoT envisions a world in which heterogeneous set of devices (i.e objects) are
interconnected and collaborate using the Internet in order to provide valuable ser-
vices for users. For the developer, the deployment of applications and services for
the IoT requires managing a heterogeneous set of devices, communication proto-
cols and underlaying networks, in order to resolve interoperatility issues due to
the heterogeneity of the IoT nodes. More than other technologies, agents seem to
have the necessary characteristics to support the development of applications and
services for the IoT. However, agent technologies have to address a set of chal-
lenges in order to be used to develop IoT systems. They have to support device
and communication heterogeneity (C1 and C2), to have a flexible communication
infrastructure (C3) and to have efficient group-based data multicast (C4).

To address these challenges, our approach defines the Sol AP, which facilitates
(1) the communication and interoperation of agents running in a heterogeneous set
of devices (such as SunSPOT sensor motes, Android-based lightweight devices and
mobile phones) and even using different communication protocols; (2) group mes-
sage delivery (one-to-many communication) in an efficient manner. The Sol AP
supports the native communication protocols of each device (e.g. ZigBee, WiFi)
and acts as a gateway, performing specific functions in order to ensure interoper-
ability. At the agent level, we provide agents with the self-configuration of their
internal architecture in order to use different communication protocols taking into
account the context and the necessities of the application. This flexibility inside
the agent’s internal design also makes the simultaneous use of different message
distribution mechanisms easier.

We have illustrated the benefits of our approach with several scenarios in an
Intelligent Museum, and we have shown the feasibility of this approach in terms
of the response times of reconfiguration, and wireless data exchange, so important
in the IoT. In previous works [5, 6] we have presented and validated the internal
architectures of our self-managed agents for heterogeneous devices, while the pre-
sented work has focused in the underlying AP. As future work, we plan to extend
the Sol AP to more lightweight devices such as Tiny OS sensor motes and validate
our proposal with more experiments and application scenarios.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

77

Acknowledgments.

This work has been supported by the Spanish Ministry Project RAP TIN2008-
01942 and the regional project FamWare P09-TIC-5231.

References

[1] J. Agüero, M. Rebollo, C. Carrascosa, and V. Julián. Model-driven development
for ubiquitous mas. In ISAmI 2010, volume 72 of Advances in Intelligent and Soft
Computing, pages 87–95. 2010.

[2] E. Aitenbichler, J. Kangasharju, and M. Mhlhuser. Mundocore: A light-weight
infrastructure for pervasive computing. Pervasive and Mobile Computing, 3(4):332
– 361, 2007.

[3] M. Amor and L. Fuentes. Malaca: A component and aspect-oriented agent archi-
tecture. Inf. Softw. Technol., 51(6):1052–1065, June 2009.

[4] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. Computer
Networks, 54(15):2787 – 2805, 2010.

[5] I. Ayala, M. Amor, and L. Fuentes. Self-configuring agents for ambient assisted
living applications. Personal and Ubiquitous Computing. Accepted for publication.

[6] I. Ayala, M. Amor, and L. Fuentes. Self-management of ambient intelligence systems:
a pure agent-based approach. In Proc. of AAMAS. IFAAMAS, 2012. To appear.

[7] F. Bergenti and A. Poggi. Leap: A fipa platform for handheld and mobile devices.
In Intelligent Agents VIII, volume 2333 of LNCS, pages 436–446. 2002.

[8] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio. Interacting with the
soa-based internet of things. IEEE Transactions on Services Computing, 3(3):223
–235, july-sept. 2010.

[9] N. Howden, R. Rnnquist, A. Hodgson, and A. Lucas. Intelligent agents - summary
of an agent infrastructure. In Proc. of AAMAS, 2001.

[10] F. Koch, J.-J. Meyer, F. Dignum, and I. Rahwan. Programming deliberative agents
for mobile services: The 3apl-m platform. In PROMAS, volume 3862 of LNCS, pages
222–235. 2006.

[11] T. C. Lech and L. W. M. Wienhofen. Ambieagents: a scalable infrastructure for
mobile and context-aware information services. In Proc. of AAMAS, pages 625–631,
New York, NY, USA, 2005. ACM.

[12] R. Lopes, F. Assis, and C. Montez. Maspot: A mobile agent system for sun spot. In
10th ISADS, pages 25 –31, march 2011.

[13] M. Mitchell, F. Sposaro, A.-I. Wang, and G. Tyson. Beat: Bio-environmental android
tracking. In 2011 IEEE RWS, pages 402 –405, jan. 2011.

[14] C. Muldoon, G. O’Hare, R. Collier, and M. O’Grady. Agent factory micro edition:
A framework for ambient applications. In ICCS, volume 3993, pages 727–734. 2006.

[15] C. Muldoon, G. O’Hare, M. O’Grady, and R. Tynan. Agent migration and commu-
nication in wsns. In Proc. of PDCAT 2008., pages 425 –430, dec. 2008.

[16] S. Poslad, P. Buckle, and R. Hadingham. The fipa-os agent platform: Open source
for open standards. In Proc. of PAAMS, volume 355, page 368, 2000.

[17] N. Sánchez-Pi, J. Carbó, and J. Molina. Jade/leap agents in an aml domain. In
Hybrid Artificial Intelligence Systems, volume 5271 of LNCS, pages 62–69. 2008.

[18] O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker, A. Bassi, I. Ju-
bert, M. Mazura, M. Harrison, M. Eisenhauer, and P. Doody. Internet of things
strategic research roadmap. Internet of Things: Global Technological and Societal
Trends, page 9, 2009.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

78

An Approach for the Qualitative Analysis

of Open Agent Conversations

Emilio Serrano1, Michael Rovatsos2, and Juan A. Bot́ıa1
1University of Murcia ∗, {emilioserra,juanbot}@um.es
2University of Edinburgh, michael.rovatsos@ed.ac.uk

Abstract

This paper presents an approach for the qualitative analysis of data ob-
tained from past communicative interactions in an open multiagent system.
Such qualitative analysis focuses on the use of high-level agent communica-
tion languages to infer theories about agents with mental states which are
normally not accessible for the outside observer. The inference of these the-
ories, or context models, is based on logging semantic data available from
protocol execution traces and using this information as samples for the appli-
cation of data mining algorithms. These context models can be applied both
by system developers and agents themselves at run-time for various tasks,
e.g. to predict future agent behaviour, to support the process of ontological
alignment in communication, or to assess the trustworthiness of agents. An
implementation of the approach presented is also given, the ProtocolMiner
tool, which automates the building of context models from arbitrary protocol
executions.

Keywords: Agent communication languages, interaction protocols, in-
teraction analysis, data mining, agent-oriented software engineering.

1 Introduction

The interaction among autonomous, rational agents is one of the essential charac-
teristics of a multiagent system (MAS). For this reason, most MAS platforms offer
various mechanisms to support such interaction, including an infrastructure for
sending and receiving messages, establishing conversations, following interaction
protocols, sharing vocabularies using ontologies, etc.

Most of the analysis tools included in MAS development frameworks fall into
two categories: (1) analysis of agents’ mental states, and (2) analysis of the in-
teractions among agents. The analysis of mental states usually assumes that the

∗Acknowledgments: This research work is supported by the Spanish Ministry of Science
and Innovation under the grant AP2007-04080 and in the scope of the Research Projects TSI-
020302-2010-129, TIN2011-28335-C02-02 and through the Fundación Séneca within the Program
04552/GERM/06. Facultad de Informática, Campus Universitario de Espinardo, 30100 Murcia,
Spain.

1

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

79

agents’ implementation is known and available. This constraint is very restrictive
in open MAS that run on interoperable agent interaction platforms where different
agents can be added to the system by different users at runtime. On the other
hand, methods for interaction analysis often remain very superficial and address
only fixed syntactic elements that can be observed in message exchanges (e.g. per-
formative, sender and receiver, successful/unsuccessful completion of the protocol,
etc). This paper covers these shortcomings employing the semantics of interactions
to perform a qualitative analysis which is able to infer theories about agents with
hidden mental states.

To appreciate the utility of a qualitative analysis, let us take the FIPA Contract-
Net protocol as example [1]. This protocol describes an agent (the Initiator) who
wants one or more agents (the Participants) to perform a task. In this proto-
col, there are a large number of analysis tasks that can be performed following
a quantitative analysis: (1) obtaining the number of conversations in which each
agent has participated; (2) conversations in which an error occurred in the flow of
messages defined by the protocol; (3) number of agents which rejected a proposal;
(4) number of tasks that a participant was unable to perform after committing to
them; etc.

Although this quantitative analysis can be very useful for a developer, more
interesting information is usually captured in the specific semantics of messages,
i.e. qualitative properties. The developer of the Initiator agent, for example, may
be interested in which tasks are usually rejected by agents or, more specifically,
how the process used by a Participant to accept or reject a task is implemented
(in the sense of a decision rule in the agent’s reasoning mechanism). Of course,
this information is hidden if the Participant agents’ implementation is unknown by
the Initiator. Nonetheless, considering a concrete past execution of the protocol,
the Initiator agent can easily recognise if a particular task has been accepted or
rejected by a specific Participant. What is more, after several executions of the
protocol, the Initiator can generalise the individual cases to build a more general
theory that explains participants’ behaviours.

We call theories which allow a developer to perform a qualitative analysis con-
text models. As illustrated in the example, these models correlate the status of log-
ical constraints attached to interaction protocol specifications to perceived agent
behaviour. In other words, they map the conditions under which a certain be-
haviour occurs to the resulting behaviour itself.

Construction of these context models is based on capturing regularities in pre-
viously observed interactions by using data mining techniques. Context models are
able to reveal implicit causal relationships between states of the system and the
reasoning and decision-making mechanisms of all agents involved. These models
can be used for various purposes: (1) to make predictions about future behaviour;
(2) to infer the definitions other agents apply when validating logical constraints
during an interaction; and (3) to analyse the reliability and trustworthiness of
agents based on the logical coherence of their utterances.

In addition to the definition, construction and use of the context models; the
contribution of this paper is to present an approach to automatically generate these
models and an implementation of this approach, the ProtocolMiner tool.

The remainder of the paper is structured as follows. After reviewing related

2

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

80

work in section 2, we introduce the formal approach in section 3. The Proto-
colMiner tool is presented in section 4. Section 5 gives empirical results obtained
in a case study. Finally, section 6 concludes.

2 Related work

Many tools for run-time multiagent systems analysis address the testing, debug-
ging, validation or verification of these systems. For example, the Tracer Tool [9]
provides a semi-automated solution for agent software understanding, using high-
level agent concepts instead of detailled execution traces and programming data
structures. The tool proposed in [14] for the JADEX agent platform can be used
to verify the consistency of internal events and message declarations and to obtain
an overall communication structure as a three-dimensional graph. The inspector
tool [6] for the the Agent Factory Agent Programming Language (AFAPL) provides
support for the inspection of the internal states of agents, and for monitoring the
performance of the underlying agent components. Similarly, INGENIAS [8] pro-
vides a visual debugging tool to inspect agents’ mental states. These approaches
are, however, only suitable for systems in which the mental states of the agents can
be inspected by the designer, i.e. effectively only for systems whose code has been
disclosed a priori, or who have been designed by the user performing the analysis
themselves.

In contrast to this, there are also methods aimed at design-time (static) analysis
of multiagent systems properties such as MABLE [15]. This imperative program-
ming language uses the SPIN model checker to automatically verify properties of
the system. While valuable, these approaches can only verify certain properties
of agent interactions (based on observed interactions or on design-time specifica-
tions). However, they cannot derive any additional and explicit knowledge about
the emergent behaviour of the system apart from whether agents are behaving
correctly or not.

The only exception to this is some work that has recently emerged in the area
of ontology matching [3, 4]. In these contributions, hypotheses about the possible
meanings of unknown terms used by the other agent are filtered based on structural
knowledge of the protocols. This is achieved by either (1) looking at the ontological
relationships between candidate concepts based on the terms that appear earlier in
the same dialogue or in previous dialogues, or (2) by reasoning about the overall
syntactic structure of the protocol. However, this kind of reasoning is only used
to resolve ontological conflict. On the other hand, the approach presented in this
paper is able to infer more general emergent properties of interactions.

The notable limitation of all (but the latter) existing work is that it does not
consider semantic elements of interactions for analysis, e.g. the constraints used by
the agents while they are executing protocols, and which cause a concrete protocol
execution to unfold in a particular way. Also, they fail to induce compact, explicit
theories about the ways in which interaction evolves in a system, and which could
be useful for the design of adaptive agents.

3

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

81

3 Formal approach for a qualitative analysis

Beyond the presentation of the ProtocolMiner tool, which uses a specific protocol
specification language, the analysis provided by this tool is based on a formal
approach. This approach for qualitative interaction analysis is independent of
the specific development platform used. This section formalises: how to define
protocols that are semantically annotated; how to obtain a context model from the
execution of these protocols using data mining techniques; and how to build the
training data set for these techniques.

3.1 Defining a protocol and its context

In brief, our framework is based on defining a protocol model as a graph G = (V,E).
In this graph, each node v ∈ V is labelled with a message m(v) = q(X,Y, Z) with
performative q (a string) and sender / receiver / content variables X, Y , and
Z. Besides, each edge is labelled with a (conjunctive) list of (say, n) constraints
c(e) = {c1(t1, . . . , tk1

), . . . , cn(t1, . . . tkn
)}. Each constraint ci(. . .) has arity ki,

head ci and arguments tj which may contain constants, functions or variables (in
general the label of an edge could be an arbitrary formula φ ∈ L of a logical
language L). All variables that occur in such constraints are implicitly universally
quantified. The framework also assumes that all outgoing edges of a node result
in messages with distinct performatives, i.e. for all (v, v′), (v, v′′) ∈ E, (m(v′) =
q(. . .) ∧ m(v′′) = q(. . .)) ⇒ v′ = v′′. Therefore, each observed message sequence
corresponds to (at most) one path in G by virtue of its performatives. Figure 1
shows an example protocol model in this generic format for illustration purposes.

The semantics of a protocol model G can be defined by looking at the pairs
〈π, θ〉 which specify the path and variable substitution that any message sequence
m corresponds to in protocol model G. With this, we can define the context of
m as c(G, 〈m1, . . . ,mn〉) =

∧n−1
i=1 c(ei)θ where G(m) = 〈π, θ〉. Crucial to our

view of qualitative interaction analysis is the assumption that for any observed
message sequence m, the conjunction of edge constraints described by the context
c(G, 〈m1, . . . ,mn〉) was logically true at the time of the interaction.

3.2 Obtaining a context model by data mining

The basic method for applying data mining methods to protocol interactions is as
follows: Consider a protocol model G, and message sequences m obtained from
past executions of G. Any such sequence can be translated to a pair G(m) =
〈π, θ〉 as defined above. This approach assumes that only sequences allowed by
G occur (if necessary, G can be modified on the fly to accommodate unexpected
messages by adding constraint-free edges and message nodes). Assuming that a set
of such substitution-annotated paths are used as a training data set D, an inductive
learning algorithm L : D → H can be used to map any concrete data set D ⊆ D,
where D is the set of all possible observations, to a learning hypothesis h ∈ H taken
from the hypothesis space of the machine learning algorithm in question [10].

This paper proposes to augment the learning data by the logical context of the
data samples, i.e. to include the logical formula c(G,m) in the data samples, which

4

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

82

termsWantedA(T) inStockB(T)

alternativeB(T) altAcceptableA(T)

�keepNegotiatingA(T)

priceWantedA(T,P)

inStockB(T,P)

alternativeB(T,P)
altAcceptableA(T,P)

�keepNegotiatingA(T,P)

�altAcceptableA(T) ^ keepNegotiatingA(T)

�altAcceptableA(T,P) ^ keepNegotiatingA(T,P)

Figure 1: A simple negotiation protocol model: A decides the terms of a desired
product, and requests T from B. The initial response from B depends on availabil-
ity: if terms T cannot be satisfied, A and B go through an iterative process of ne-
gotiating new terms for the item, depending on the keepNegotiating , altAcceptable,
and alternative predicates. In case of acceptance, the process of negotiation is
repeated to decide the price P for the product. Edge constraints are annotated
with the variable representing the agent that has to validate them (subscript A
or B). Additional (redundant) shorthand notation ci/mj is introduced. Different
out-edges represent XOR if constraints are mutually exclusive, and OR else.

can be directly inferred using the logical constraints provided by the definition of
G. The model obtained with the learning algorithm using the context as training
data is what we call a context model.

Determining the most suitable learning algorithms for a particular context min-
ing task is beyond the scope of this paper, our method does not depend on the
use of a specific algorithm. For example, figure 2 shows the context model for the
constraint altAcceptableA of the protocol described in figure 1 when used in a car
trading system. In this case, a decision tree algorithm has been employed to learn
a specific constraint in the protocol.

3.3 Preparing the training data set

Due to the nature of multiagent interaction, additional design decisions have to be
made before standard data mining machinery can be used, which are to do with
the details of how exactly training data is constructed from raw protocol execution
traces. We discuss these in the following sections.

5

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

83

1 persons = 2: F (158)

2 persons = 4: F (158)

3 persons = more

4 | lug_boot = small

5 | | doors = 2: F (8)

6 | | doors = 3: F (7)

7 | | doors = 4: F (8)

8 | | doors = 5-more: T (105)

9 | lug_boot = med

10 | | doors = 2: F (13)

11 | | doors = 3: F (8)

12 | | doors = 4: F (13)

13 | | doors = 5-more: T (120)

14 | lug_boot = big: T (402)

Figure 2: Context model of the altAcceptableA constraint, obtained using the
J48 decision tree algorithm after 1000 negotiations using the protocol described
in figure 1. The notation a =v : T/F denotes that “if a has value v the target
predicate has value T/F”. Every leaf includes the number of instances classified
under a certain path in parentheses.

3.3.1 Dealing with different agents

In defining the datasets to be used for protocol mining, one important design de-
cision is how to deal with the presence of multiple agents. If all messages and
contexts that occur in observed interactions were treated as features of learning
samples this would amount to an attempt to derive globally valid interaction pat-
terns. This learning strategy would imply that a shared theory regarding logical
constraints and a shared ontological understanding of all terms used in commu-
nication exists among agents. In many cases, however, the purpose of interaction
mining is to infer definitions of constraints or behavioural patterns that are specific
to an agent or a group of agents.

To be able to make these distinctions, we need a method for filtering data ob-
tained from protocol executions according to individual agents or groups of agents.
Assume an assignment σ : Var → Ag where Var is the set of all variables occurring
as sender/receiver variables in nodes of the graph, and Ag the set of agent names.
Then for any agent a ∈ Ag , Vσ(a) are the nodes that correspond to messages sent
by agent a under role assignment σ, and Eσ(a) are the incoming edges to those
messages (formally, Eσ(a) = {(v, v′) ∈ E|v′ ∈ Vσ(a)}). We generalise these notions
to Vσ(A)/Eσ(A) for A ⊆ Ag by taking the union over the respective sets for agents.

As an example, consider the protocol model depicted by the graph in figure 1.
Assuming a set of agents Ag = {a1, a2}, a role assignment σ = {[A/a1], [B/a2]},
and the request-provide-termsAccepted path, Vσ(a1) would contain the request
and termsAccepted messages and Eσ(a1) = {termsWanted(T)} as the only con-
straint of the incoming edges to utterances performed by a1.

The most cautious form of data filtering in this setting would be to reduce
the path π of every sample to those nodes and edges that pertain to the learn-

6

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

84

ing agent ai. Only contextual information c(Gai
,m) from the restricted graph

Gai = 〈Vσ(ai), Eσ(ai)〉) would be considered because ai can safely verify “own”
constraints along π. With this strategy, all logical constraints verified by other
agents are dropped. Note, however, that the path π and substitution θ used in the
learning sample are still based on the full graph, as the observed messages were
objectively perceived, i.e. G(m) = 〈π, θ〉.

At the other end of the spectrum, if ai fully trusts the other agent(s) and can
safely assume that all agents’ ontologies and logical theories are fully aligned, it
can use the entire path information as part of each learning sample. This strategy
assumes that the definitions of constraints are common to all agents and that every
agent verifies the constraints reliably and honestly.

3.3.2 Dealing with paths, loops, and variables

Standard data mining algorithms assume a fixed number of attributes (features)
and values. Because of this, in our approach to qualitative analysis a number of
issues arise that require certain further design decisions to be made.

Firstly, when collecting different paths for inclusion in the training dataset, their
labels (messages/constraints) and the set of variables contained in these labels may
differ. This is not a problem in principle, as data samples can be “padded” with
“unknown” values for all messages and context constraints that do not occur in
them, but this can be computationally wasteful. In many practical cases, it will be
more appropriate to create a different data set for each observed path π. This is
because any model learnt over such path-specific training data captures better the
precise circumstances under which it occurs.

Moreover, at a domain-specific level, one can merge data across different paths
into a single set while only observing a fixed set of certain messages and con-
straints. Different messages along the path can even be ignored introducing a sin-
gle path label (or path group label) for each path to predict interaction outcomes.
For example, an artificial boolean label success can be attached to a number of
paths, effectively classifying different paths into two categories (where paths with
success = true belong to the category of successful interactions, and all other paths
are deemed unsuccessful).

Secondly, the results of the constraints functions in the context (but not the
attributes in the arguments of these constraints) should be removed when the
learning algorithm tries to predict the “outcome” value. This information is explicit
in the definition of the protocol and is reflected in the path models it provides.
Moreover, including these results may hinder learning techniques from relating the
details of constraint argument values (note that the definition of the constraints in
the protocol is still necessary) to the overall outcome of the protocol.

Thirdly, many common interaction protocols (e.g. negotiation protocols like
auction and bargaining protocols) involve iterations of sub-sequences that can be
repeated an arbitrary or number of times. The existence of a loop in a proto-
col means that variables occurring in a logical constraint or messages used in the
loop can have several constants as ground instantiations in the same execution
{g1, g2...gn}, where n is the number of iterations in the loop. Moreover, n may
vary depending on the number of iterations occurred in each run. Different strate-

7

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

85

1 a(participant , B) ::

2 request(X) <= a(initiator , A) then

3 (agree(X) => a(initiator , A) <- consider(X) then

4 (informDone(Y) => a(initiator , A) <- performed(X,Y))

5 or

6 (failure () => a(initiator , A))

7) or (refuse () => a(initiator , A))

Figure 3: LCC implementation of the “participant” role in the FIPA Request
Interaction Protocol

gies can be employed to obtain fixed-length samples for use in the training dataset.
(1) If N is the maximum number of iterations observed in a protocol across various
runs, N “copies” of each variable can be kept (with copies of messages and context
predicates that contain it as attributes in the learning samples). This, however,
introduces a lot of redundancy in paths with fewer than N iterations of the loop
which will have to use a value of “unknown”. (2) Considering only the first/last
ground term g1/gn for a specific variable V in a loop. In many cases (e.g. nego-
tiations) keeping two copies of each variable, one for the first and one for the last
value will suffice as intermediate steps are less important for the outcome of the
interaction.

4 ProtocolMiner

ProtocolMiner is a prototypical tool that provides comprehensive functionality for
qualitative protocol mining. While the tool itself is designed for use by a human
designer, an application programming interface (API) is also provided to allow
agents to exploit emerging knowledge extracted from past interaction.

We first briefly introduce the definition of semantically annotated protocols
that ProtocolMiner is designed to operate on. This is followed by details about
how ProtocolMiner implements the formal approach described in Section 3.

4.1 Defining protocols in ProtocolMiner

The ProtocolMiner tool is a plugin for the OpenKnowledge platform [13], a pro-
tocol specification and execution platform designed for large-scale heterogeneous
multiagent systems. ProtocolMiner automates the construction of context models.
This includes the registration and recovery of the training data for any protocol
implemented and executed in OpenKnowledge. OpenKnowledge uses a protocol
definition language called the Lightweight Coordination Calculus or LCC [11], a
language that uses declarative Prolog-like constraints in protocol specifications.
As an example, an implementation of the “participant” role in the FIPA Request
Interaction Protocol [2] in LCC is shown in figure 3. This specification defines
a role a(participant,B) (binding the concrete agent identifier to variable B at
runtime when the agent adopts the role) in terms of the message sequences allowed
for that role. Incoming/outgoing messages are denoted by double arrows <= and

8

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

86

Figure 4: ProtocolMiner user interface

=> from/to another role identifier, and guards (preconditions) on messages appear
on the right hand side of a message exchange, prefixed by a single arrow <- (the
language also allows for postconditions prefixed by ->, these are not used in the
above example). Sequential concatenation, disjunction, and iteration are captured
by keywords then, or and Prolog-like recursive calls of role clauses, respectively.
In this specific example, the constraint consider(X) is used to determine whether
to agree or refuse the request for X.

Although ProtocolMiner has been implemented to use LCC based protocol
specifications, other interaction platforms may be used as data sources as long
as their specification mechanism can be translated to the protocol-model graph
structure defined in section 3.1.

4.2 ProtocolMiner features

The ProtocolMiner user interface is shown in figure 4 after logging executions
of the case study presented for evaluation purposes in the following section. As
explained above, ProtocolMiner allows a developer to define a protocol which meets
the requirements specified in section 3.1 using LCC language. ProtocolMiner also
integrates the Weka [5] algorithms allowing the tool to use a large number of data
mining algorithms to obtain the context models describes in section 3.2. The
strategies to build a training data described in section 3.3 are also implemented in
the tool. The ProtocolMiner GUI, shown in figure 4, allows a developer or agent to
select the agents considered in the dataset through SQL expressions. For example,
if the developer is only interested in agents a1 and a2, the “add filter” option can be
used to introduce A=’a1’ and B=’a2’. Additionally, the list of selected attributes
in the dataset allows for arbitrary selections of subsets of constraints (or edges)
to be considered by the data mining procedure. The tool also allows a developer
or agent to select the paths considered in the data set and to label them with an
“output attribute” by means of the option “add label”. Moreover, several paths
that only differ in the number of iterations of a loop can be selected and merged

9

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

87

to a single path using the “join paths” option. Besides, the tool can be configured
to (1) log all the values given to an attribute in a path (every value is stored in a
new attribute), (2) to log only the first and last values along a path, or (3) to log
only the last value given to an attribute at the end of a protocol execution.

5 Case study

To illustrate the usefulness of our approach, we have analysed data generated in a
car selling domain, where agents negotiate over cars using the protocol shown in
figure 1.

5.1 Description of the system under test

To make the discussion concrete, we apply our system to a well-known database for
car evaluation [7]. This database includes the technical characteristics and prices
which are used in the system. More specifically, a potential customer (role A) is
requesting offers from a car selling agent (role B) where T specifies the technical
characteristics including number of doors, capacity in terms of persons to carry, the
size of luggage boot and estimated safety of the car. For the interactions analysed
in the case study, we assume that the values for car characteristics are given as a
tuple T = (doors, persons, lug boot , safety).

After negotiating the car’s technical features, the agents use the protocol to ne-
gotiate the price and maintenance terms (below we refer to these as “price terms”).
Specifically, the potential customer (role A) requests price terms P from a car sell-
ing agent (role B) for the negotiated features T . Price terms are given as a tuple
P = (buying ,maint), where the two attributes refer to the cost of purchase and
maintenance.

We define ten customer agents Ci, where 1 ≤ i ≤ 10, with associated mental
states, i.e. different preferences regarding T and P that determine what offers they
will accept, where Ci := MS i mod 5. Therefore, agents C1 and C6 have mental
state MS 1, C2 and C7 have mental state MS 2, and so on.

For the purposes of this case study, we assume that a single seller (S) is
analysing the system evolution from its local point of view, aiming to predict the
different outcomes of its interactions based on perceived regularities regarding the
observed behaviour of the customers1.

5.2 Strategy to build the training data

In converting raw sequences of message exchanges to training data samples (see
section 3.3), we make use of the simplest, most general data generation method
that ProtocolMiner offers.

Firstly, we consider the agent B = S (S is the seller agent name) who performs
the analysis to obtain knowledge about the others agents’ (opaque) mental states.

1Due to space limitations, this section does not detail the possible values of T , P , the mental
states for the customers, and the decisions made by customers and sellers to follow the protocol
described in figure 1. An extended version of this evaluation can be found at http://ants.dif.
um.es/staff/emilioserra/QA/EE.pdf, and provides the necessary detail to reproduce our results.

10

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

88

Therefore, the learning input is restricted to Vc(A) and Ec(A), where c is the
customer role in the protocol and A is any agent participating in this role.

As far as variables occurring in constraints are concerned, we uniformly record
all attributes contained in “terms” descriptions T and P , including a “?” (un-
known) value for those not mentioned in a given execution trace. Our strategy to
deal with loops is to only record the last value of every variable occurring in mul-
tiple iterations. We introduce a variable outcome ∈ {S, F,N} to denote Successful
completion of the negotiation (path ended with m11, see figure 1), Failure to un-
successful (paths m4 and m6) and Neutral for a “neutral” outcome (the remaining
paths).

Three open source implementations of data mining techniques are employed
using their default parameters to illustrate the impact of using different algorithms
in an exemplary way, and also to show that our method does not depend on the
use of a specific learning algorithm. More specifically, we use the J48 decision
tree algorithm (an implementation of the C4.5 algorithm), the NNge classification
rules algorithm (Nearest neighbor like algorithm) and the BayesNet technique (a
Bayesian network classifier) [5].

5.3 Learning a context model for a constraint

In our first experiment, the seller tries to learn a context model for a single con-
straint, c4 = altAcceptableA(T), and a single customer agent, C1.

The output of the J48 algorithm after 1000 protocol executions is shown in
figure 2. The time taken to build the model (on a 2.4 Ghz 4GB RAM machine) is
0.01 seconds and a tree with 15 nodes is obtained as the hypothesised mental state
that corresponds to the logical formula

altAcceptableC1(T) ⇔(persons(T) = more ∧ lug boot(T) = small ∧ doors(T) = 5-more)∨
(persons(T) = more ∧ lug boot(T) = med ∧ doors(T) = 5-more)∨
(persons(T) = more ∧ lug boot(T) = big)

This formula is logically equivalent to the mental state implemented by the cus-
tomer, MS 1(T), and, therefore, the constraint has been learned completely by the
seller using context models even without having access to the customer’s imple-
mentation.

5.4 Protocol outcome prediction by context models

To conduct a more exhaustive evaluation, a seller tries to learn a context model for
the overall outcome of the protocol. Figure 5 shows the average model accuracy
across 100 repeated experiments. The accuracy of the context models is evaluated
using cross-validation across 100 experiments with 10000 negotiations each.

The experiments demonstrate that accurate context models can be built using
contextual information extracted from concrete executions of a protocol to predict
its final outcome. More specifically, after an average of 200 total negotiations
(i.e. 20 per customer), the models classified at least 80% of all instances correctly.
Therefore, as the following section shows, an agent can build a context model
after only a few negotiations, consider a specific context as input for the model,

11

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

89

65%

70%

75%

80%

85%

90%

95%

100%

%
CC

I�f
or
�C
ro
ss
�V
al
id
at
io
n

Negotiations

J48�

NNge��

Bayes��

Figure 5: Average model accuracy (based on cross-validation) shown across total
number of negotiation (100 experiments). Learning algorithms: J48, NNge and
BayesNet. Error bars show standard deviation.

and predict the outcome of the protocol without actually interacting with another
agent.

5.5 Agents predicting interactions by context models

In this section, we show how agents can use context models directly to improve
their own performance in communicative exchanges with others. For this, we enable
customers to build and use context models to choose a good seller for the concrete
context (including the product) they are looking for. Assume that we have three
sellers, S1, S2 and S3, who are able to offer products which satisfy the different
mental state models used by customers.

We compare the prediction accuracy of our system against two alternative anal-
ysis strategies: (1) Random and (2) Quantitative. For (1), the seller is chosen
randomly – this provides a baseline for the minimum performance that could be
achieved without any use of context models. An optimal strategy is not included,
as 100% success constitutes the upper bound of what can be achieved in this sce-
nario (we ensure that there are always sellers in the system who can provide the
requested items). For (2), the seller is chosen using a distance function based on
the number of past successes and failures with them in the customer’s personal
experience. The function used is D(s, f) = 1−(1+ s

2f+1)
−1, where s is the number

of successes and f the number of failures with a particular seller, and the seller to
interact with is chosen with a probability proportional to D(s, f) [12].

As figure 6 shows, after 100 negotiations (10 negotiations per customer) the use
of context models (independently of the data mining technique used) greatly out-
performs the random and quantitative strategies. Besides, the use of decision trees
converges faster to optimal performance than the other two learning techniques
considered. In these experiments, using context models built with J48 or NNge,
customers reach over 90% of successes after only 750 negotiations (75 negotiations

12

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

90

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 250 500 750 1000 2500 5000 7500 10000 25000

%
Su

cc
es
se
s

Negotiations

J48 NNge NaiveBayes Random Quantitative

Figure 6: Average number of successful negotiations against number of total
negotiations (100 experiments); error bars show standard deviation. Learning al-
gorithms: J48, NNge and BayesNet.

per customer) and over 99% after 7500 conversations.

6 Conclusions and future work

In this paper, we have presented a novel mechanism to exploit qualitative infor-
mation provided by high-level ACLs and interaction protocols. In these protocols,
messages are associated with logical constraints, which can be used as “semantic”
annotations of communication in a natural way. This work is motivated by short-
comings in existing multiagent systems analysis methods which mostly ignore this
rich source of contextual information when analysing run-time multiagent interac-
tions. The main advantage of using contextual information is that data mining
methods can be used to infer qualitative information from observed message ex-
changes.

A formal approach has been detailed with the aim of making interaction data
available for qualitative data mining. In this approach, information about the
shared protocol models has been used as background knowledge. As part of the
approach presented, this paper has discussed different alternatives for dealing with
the specific nature of agent interaction protocols when converting interaction ex-
periences to training data. This involves addressing issues such as the presence
of multiple agents, variable-length execution paths, and loops that are commonly
present in common multiagent interaction protocols. Subsequently, an implemen-
tation of our formal approach, ProtocolMiner, has been presented. Finally, a case
study has been described (with an extended version available on-line) to hint at
the potential of applying data mining in real-world multiagent systems.

In the future, we aim to apply our analysis methods to more real-world examples
in order to extract guidelines for making appropriate choices when selecting training
data extraction strategies and appropriate data mining algorithms. We would also
like to explore the use of more advanced machine learning methods to learn logical

13

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

91

theories of, for example, the internal ontological conceptualisations agents use, and
to rate their competence and trustworthiness based on the knowledge they appear
to have based on their interaction behaviour. We believe these to be promising
practical avenues for addressing one of the fundamental problems of open systems,
which is to be able to derive knowledge of the internal workings of other agents
without being able to observe their internal state.

References

[1] FIPA Contract Net Interaction Protocol Specification. SC00030, 2002. Foundation
for Intelligent Physical Agents.

[2] FIPA Request Protocol Specification. SC00026, 2002. Foundation for Intelligent
Physical Agents.

[3] M. Atencia and W. M. Schorlemmer. I-SSA: Interaction-Situated Semantic Align-
ment. In OTM’08, volume 5331 of Lecture Notes in Computer Science, pages 445–
455. Springer, 2008.

[4] P. Besana and D. Robertson. Probabilistic Dialogue Models for Dynamic Ontology
Mapping. In URSW’08, volume 5327 of Lecture Notes in Computer Science, pages
41–51. Springer, 2008.

[5] R. R. Bouckaert, E. Frank, M. Hall, R. Kirkby, P. Reutemann,
A. Seewald, and D. Scuse. Weka manual (3.7.1), June 2009.
http://prdownloads.sourceforge.net/weka/WekaManual-3-7-1.pdf?download.

[6] R. W. Collier. Debugging Agents in Agent Factory. In PROMAS’06, pages 229–248,
2006.

[7] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[8] J. J. Gómez-Sanz, J. Botia, E. Serrano, and J. Pavón. Testing and Debugging of
MAS Interactions with INGENIAS. In AOSE’08, pages 199–212, Berlin, Heidelberg,
2009. Springer-Verlag.

[9] D. N. Lam and K. S. Barber. Comprehending agent software. In F. Dignum,
V. Dignum, S. Koenig, S. Kraus, M. P. Singh, and M. Wooldridge, editors, AA-
MAS, pages 586–593. ACM, 2005.

[10] T. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[11] D. Robertson. A lightweight coordination calculus for agent systems. In DALT’04,
pages 183–197, 2004.

[12] E. Serrano, A. Quirin, J. A. Bot́ıa, and O. Cordón. Debugging complex software
systems by means of pathfinder networks. Inf. Sci., 180(5):561–583, 2010.

[13] R. Siebes, D. Dupplaw, S. Kotoulas, A. P. De Pinninck, F. Van Harmelen, and
D. Robertson. The OpenKnowledge system: an interaction-centered approach to
knowledge sharing. In OTM’07, pages 381–390, Berlin, Heidelberg, 2007. Springer-
Verlag.

[14] J. Sudeikat, L. Braubach, A. Pokahr, W. Lamersdorf, and W. Renz. Validation of
BDI Agents. In PROMAS’06, pages 185–200, 2006.

[15] M. Wooldridge, M. Fisher, M.-P. Huget, and S. Parsons. Model checking multi-agent
systems with MABLE. In AAMAS’02, pages 952–959, New York, NY, USA, 2002.
ACM.

14

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

92

An Assistance Infrastructure to Inform
Agents for Decision Support in Open MAS∗

Pablo Almajano1, Maite Lopez-Sanchez2, and Inmaculada Rodriguez2

1Artificial Intelligence Research Institute (IIIA-CSIC), palmajano@iiia.csic.es
2WAI research group, University of Barcelona, {maite,inma}@maia.ub.es

Abstract

Organisations are an effective mechanism to define the coordination model
that structure agent interactions in Open MAS. Execution infrastructures me-
diate agents interactions while enforcing the rules imposed by the organisa-
tion. Although infrastructures usually provide open specifications to agents,
understanding this specification and participating in the organisation could
result a difficult task to agents, specially when the system is hybrid (i.e partic-
ipants can be both human and software agents) and its specification becomes
more and more complex. In this paper we further formalise a two layered
Assistance Infrastructure in order to enable and evaluate different Assistance
Services to agents in MAS. We also formalise the Information Service and
evaluate it using the case study of a water market. Experiments results show
that the information service increases agents satisfaction and helps the sys-
tem meets its organisational goals. In addition, different information services
may support individual agents in their decision processes when they follow
alternative strategies.

Keywords: Decision Support, Assistance Infrastructures, Assistance Services

1 Introduction
Usually, multi-agent systems (MAS [15]) design and implementation involves the
specification of a coordination model and the development of an infrastructure in
charge of enacting it. In Open MAS, systems are populated by heterogeneous
agents trying to achieve particular and/or collective goals. These agents are de-
veloped by third parties so that the number and the cognitive abilities of agents
that may participate in an Open MAS is unknown at development time, and varies
at runtime [16]. Organisation Centred MAS (OCMAS [12]) have proven to be an
effective mechanism to define the coordination model that structures agent inter-
actions in MAS, and infrastructures give support to their execution by imposing

∗This work is partially funded by EVE (TIN2009-14702-C02-01 / TIN2009-14702-C02-02),
AT (CONSOLIDER CSD2007-0022) and TIN2011-24220 Spanish research projects, EU-FEDER
funds.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

93

interaction rules between participants. Although OCMAS infrastructures usually
provide open specifications to agents [11] [14], understanding these specifications
and participating in the organisation could result a difficult task to agents, specially
as its specification becomes more and more complex. If we take the humans in the
loop and consider hybrid systems, where agents may be humans or software agents,
the complexity increases and facilitating agent participation becomes a mandatory
issue [3] [19].

This paper focuses on the challenge of improving agents’ participation in the
organisation by means of an Assistance Infrastructure. Certain data about the
organisation and its environment require complex computational processes in order
to be useful for agents. Therefore, agents would improve their participation in
the organisation if the infrastructure could provide them with some assistance
mechanisms that facilitate such processes. Our aim is to help agents in achieving
their goals, and, when they are aligned with global goals, lead to a better system’s
global performance [18].

In this paper we further formalise an extension of the Assistance Infrastruc-
ture defined by Campos et al. [7] in order to enable and evaluate assistance in
Open OCMAS systems. Our framework is composed by: i) the extension of the
Organisational Layer, which regulates the participation of the agents in the system
and manages the historical information about the organisation and its execution
state; and the addition of an Assistance Layer, populated by Personal Assistants
which provide general Assistance Services to agents in the organisation. In a pre-
vious work [1], we have preliminarily formalised four main categories of Assistance
Services. Here, we further formalise the Information Service, provide a specific
example, and evaluate it in a prototype based on amWater [1], which implements
a water market in the agriculture domain.

In our experiments we first execute a base-line configuration without assistance.
Then, data from this initial configuration are used in three alternative configura-
tions that provide information assistance about Runtime Properties. An Assistance
Quality of Service measure evaluates whether the assistance is an useful decision
support tool for participant agents (i.e helps agents to satisfy their goals) and helps
the systems to meet its goals (when they are aligned with participants’ goals).

The paper is structured in the following parts. First, section 2 summarizes
the related work. Second, section 3 provides definitions and notation in order to
formalise both the proposed Assistance Infrastructure and the Information Service.
Next, section 4 empirically evaluates information service. Finally section 5 gives
some conclusions and future work.

2 Related work
There are two main lines of active research in assistance to MAS provided by
Software Agents: organisational assistance services [8] [5] [6], and agent assistance
services [10] [17] [9]. Regarding organisational assistance, Centeno et al. [8] de-
fined an incentive mechanism (Incentivators) which induces individual participants
to follow organisational goals by learning their preferences and doing modifications
in the environment. On the other hand, Bou et al. [4] defined an Electronic Insti-

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

94

tution with autonomic capabilities that allows it to adapt its regulations to comply
with institutional goals despite varying agent’s behaviours (Autonomic Electronic
Institutions). In a preceding work, they also applied Case-Based Reasoning (CBR)
to reason about the process of adapting the norms of an Electronic Institution
when certain system-wide measures differ from the expected ones [5]. Finally, the
Two Level Assisted MAS Architecture (2-LAMA [6]) also provides organisational
assistance services. It is composed by two levels. In the domain-level (DL) agents
perform domain specific activities. On top of it, a distributed meta-level (ML) is in
charge of providing assistance to the DL. This assistance is performed by changing
the norms of the organisation and it is provided to groups of not overlapped and
fixed clusters of agents. Our approach goes in the line of agent assistance service,
so it differs from previous ones in organisational perspectives.

Other works focus on agent assistance services. Electric Elves [10] is a system
that applies agent technology in service of the day-to-day activities of the Intelligent
Systems Division of the University of Southern California Information Sciences
Institute. Chalupsky et al. developed specific Software Personal Assistants (SPA)
for project activities coordination and external meetings organisation. Since our
proposal is general for MAS our Assistance Layer can include such kind of services.

These and other proposed SPA’s abilities were evaluated in a conceptual frame-
work that simulated human behaviour in different MAS structures [18]. In this
research, Okamoto et al. evaluated the impact that SPAs have on the individ-
ual performance and on the collective performance of the organisation as a whole.
They built a computational model of human organisations and analysed two types
of agent’s organisational structures: hierarchical and horizontal. One SPA mea-
sured ability that is close to our proposal is the decision support (see section 3.2).
They concluded that supporting decision tasks in human organisations increases
the success rate (i. e., to meet the deadline with higher probability) and the speed
performance average (i. e., to meet the deadline more rapidly), this is particularly
the case in organisations with hierarchical structure.

A recent work presented a generic assistant agent framework in which vari-
ous applications can be built [17]. As a proof of concept application, it imple-
mented a coalition planning assistant agent in a peacekeeping problem domain.
A more general framework for organising MAS [9] contains Informative Organisa-
tional Mechanisms and Regulative Organisational Mechanisms, a generalisation of
the Incentivators [8]. As mentioned approaches, we also propose a general frame-
work. Moreover, we propose to offer planning as an advice service in our infras-
tructure (see section 3.2) as in the former. The latter, Informative Organisational
Mechanisms, is a generalisation of our Agent’s Assistance Services.

Existing OCMAS infrastructures already offer some kind of information about
the organisation to a participant. In the S −Moise+ [14] middleware, the OrgMan-
ager provides useful information for the organisational reasoning of agents and its
organisational coordination. In this model, an agent is allowed to know another
agent information if their roles are linked by an acquaintance relation (defined in
the social level). Moreover, the OrgManager also informs actors about the new per-
missions, obligations, and goals they can pursue when a new state is reached in the
organisation. Our framework provides similar information services and elaborated
ones, e.g., statistics on information that may be unknown for participants.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

95

Figure 1: Assistance Infrastructure overview

3 Assistance Infrastructure formalisation
With the aim of assisting –further than enabling– agent coordination, we propose
the Assistance Infrastructure depicted in Figure 1. It is composed by Organisa-
tional Layer (OL) and Assistance Layer (AL). The OL contains i) a set of running
agents (rtAg), ii) the specification of the organisation (Org) and iii) historical infor-
mation from previous system executions (Trac). The AL contains a set of personal
assistants (pA) which provide support to rtAg. Three arrows show the private com-
munication channel between both layers in Figure 1. First, pA use organizational
information (i.e. Org and Trac data) in order to provide assistance. Second, rtAg
may reveal personal information (e.g., their goals) and request help to pA in order
to be adequately assisted. The last one is devoted for pA to provide the services
(response) to rtAg. We illustrate the formalisation in amWater scenario, a water
market where participants negotiate water rights. A transaction is the result of
a negotiation where a seller settles with a buyer to reallocate (part of) the water
from its water rights for a fixed period of time in exchange for a given amount of
money1.

3.1 Organisational Layer
We propose an Organisational Layer (OL) specification for Open MAS extended
from the definition of Campos et al. [6]. Our main contributions in this layer are:

1We give a further explanation in section 4.1.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

96

i) the extension of the Organisation Specification (Org) to include elements related
to assistance and ii) the addition of the Organisational Trace (Trac).

3.1.1 Organisation Specification

Eq. 1 presents our proposed Organisation Specification (Org) (extensions appear
in bold text).

Org = 〈O, SocStr, SocConv,DomP, Goals,AssQoS〉 (1)
SocStr = 〈AgP,Rol, Rel〉 (2)

SocConv = 〈Prot,Activ,ActivRel, Norms〉 (3)
Goal = 〈OrgGoal,AgSat〉 (4)

–Ontology. O is a conceptualization of the domain (actions and possible do-
main concepts). For example, in amWater StartRound corresponds an action and
Transaction (trans) is a concept with some properties (e.g., trans.quantity).

–Social Structure. SocStr is a social structure (Eq. 2) consisting of: i) a set
of agents properties (AgP), common for all participants; ii) a set of roles (Rol),
where each role rol ∈ Rol contains the set of properties, RolP, characterizing it,
rol = 〈RolP〉 and iii) Rel, the relationships among roles.

In general, we consider a property as a triple 〈name, type, v〉 with a name2,
a type and its visibility (v). Visibility implements the natural privacy policy of
any organisation. A private property can only be accessed by its owner. An agent
rtAg perceives a property defined as restricted whenever it deploys role rol such
as restricted = 〈RoleV 〉 and rol ∈ RoleV . Finally, public denotes it is completely
visible within the organisation.

In amWater, the different roles are irrigator – with buyer and seller subroles
(inheritance ∈ Rel) –, market facilitator and basin authority. The property
trans.quantity is public, agent owned water rights are private and auction’s starting
price is restricted to the market facilitator role.

–Social Conventions. SocConv stands for the social conventions agents
should conform to and expect others to conform to. It is defined in Equation 3
and is composed by a set of Protocols (Prot), a set of Activities (Activ), their
relationships ActivRel and a set of Norms (Norms).

First, a protocol prot ∈ Prot is defined as prot = 〈ProtSpec,ProtP〉, where
ProtSpec specifies the interaction mechanism between agents and ProtP is the
set of its properties. Second, an activity activ ∈ Activ is defined as activ =
〈ActivP,ActivProt〉, where ActivP is a set of properties and ActivProt ⊆ Prot
is a set of protocols that can perform it. One activity can be instantiated multiple
times and each instance can have one different protocol associated. Third, Ac-
tivRel defines the activities relationships as a work-flow specifying the possible
transitions between different activities. Finally, Norms are applied by the organ-
isation with the aim of further regulating the activities. Norms could be specific
of one activity or apply to the overall system. Note that norms can be violated
by agents whereas protocols’ rules can not. In our example scenario, we have

2We use the notation x.name to refer to property name of component x (e.g., buyer1.credit
denotes the property credit of agent buyer1).

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

97

one Auction activity, following a multi-unit Japanese auction protocol to negotiate
transfers. As an example of a norm is “buyers can acquire a maximum of 40%
of the total quantity of water”. A relationship between activities in our model is:
after registering rights in a Registration activity, a seller may move to Waiting And
Information activity.

–Domain properties, defined as DomP = 〈OrgP,EnvP〉, are differentiated
between: organisation internal properties (OrgP), such as the list of transactions
(Trans); and environmental properties (EnvP), such as the water needs of a cul-
tivation.

–Goals (Goal) are defined in Eq. 4 as a duple containing a set of organi-
sational goals (OrgGoal) and a method to calculate agent satisfaction (AgSat).
OrgGoal describe the organisation design purpose in terms of desired values for
certain properties. AgSat is a method (may be asking the agents) to obtain the
participants’ degree of satisfaction at runtime. In amWater, one organisational goal
is to minimise the auction time and the degree of agent satisfaction for a buyer
can be related to the quantity of water bought.

–Assistance Quality of Service (AssQoS) mainly evaluates whether the as-
sistance layer helps agents to satisfy their goals (AgSat) and, when they are aligned
with organisational goals (OrgGoal) led to a better system performance. In sec-
tion 4.3, we have tested Information Services defined in section 3.2.2 by comparing
the values that AgSat and OrgGoal take in different configured executions.

3.1.2 Organisation Historical Information

At runtime, agents enter the organisation, interact trying to achieve their goals
and finally exit. As the result of these (inter)actions, the state of the organisation
changes. The Organisational Layer keeps the sequence of Execution States (S) and
the agent Runtime Actions (RtA) within the Organisational Trace (Trac).

–Execution States. An state S contains current runtime (Rt) values of non-
static organisational elements. Eq. 5-11 specify these elements based on Eq. 1-
4. The applicable norms at runtime, RtNorms, specify (see Eq. 9): i) a set of
active norms (RtAct); ii) the list of norm violations (RtV io); and iii) the list of
consequences due to both norm applications or norm violations (RtCon).

S = 〈RtSocStr,RtSocConv,RtDomP,RtGoals,RtAssQoS〉 (5)
RtSocStr = 〈RtAg〉; rtAg = 〈RtAgP,RtRolP 〉, rtAg ∈ RtAg (6)

RtSocConv = 〈RtActiv,RtNorms〉 (7)
rtActiv = 〈RtActivP,RtProtP 〉, rtActiv ∈ RtActiv (8)

RtNorms = 〈RtAct,RtV io,RtCon〉 (9)
RtDomP = 〈RtOrgP,RtEnvP 〉 (10)
RtGoal = 〈RtOrgGoal, RtAgSat〉 (11)

–Runtime Actions, RtA = {rtA1, . . . , rtAn}, is the set of agents’ actions per-
formed at runtime, where n is the number of agents of the institution and rtAi is
the action performed by an agent i. We assign the idle action to rtAi (rtAi = idle)
when agent i does not perform any action.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

98

–Organisational Trace, Trac, contains the trace of the organisation (Eq. 12)
specified by: i) a set of time stamps, T ; ii) the sequence of execution states at each
time stamp, S; and iii) a set of agent actions performed at each state, RtA. S0

is the initial state, Sc is the current state and in general Si is the organisation
execution state at step i, RtAi is the set of actions that take place at such step
and Ti indicates the time at which Si occurred. S only keeps information about
changes in the organisation.

Trac = {〈T0, S0, RtA0〉, . . . , 〈Tc, Sc, RtAc〉} (12)

Table 1 shows an example of Trac in amWater. The property “state” of one auction
activity at step occurred at time t (rtActivi ∈ St.RtSocConc.RtActiv) has the
value opened, therefore the auction has not yet started. It just starts when agent
rtAgj enacting market facilitator role (RtRolrtAgj = MarketFacilitator) performs
the illocution “StartRound”. Then, the property “state” is updated and S changes
at step t+1.

T S RtA

t rtActivi.state = opened StartRound(rtActivi, rtAgj)

t+1 rtActivi.state = running

Table 1: Example of amWater Organisational Trace at time t and t+1

3.2 Assistance Layer
The Assistance Layer depicted at the top in Figure 1 is in charge of providing
decision support to agents in the Organisational Layer. It is populated by the so-
called Personal Assistants, a set of organisational agents offering a set of Assistance
Services to participants in the Organisational Layer.

We propose the Assistance Layer to provide the following services (AsServ =
{Info,Adv, Just, Est}): i) refined information (Info), ii) advice (Adv), iii) justifi-
cation (Just) of either action consequences or applied constraints when performing
an action and iv) estimation (Est) of action consequences.

3.2.1 Personal Assistant Agents

We define PA as the set of Personal Assistant Agents which belong to the or-
ganisation. One personal assistant pAi ∈ PA provides direct and sole support
to one agent3 rtAgi ∈ RtAg. We have formalised two assistance communication
processes4:

AsServ : Org × Trac → Res (13)
AsServReq : Req ×Org × Trac → Res (14)

Since Personal Assistants are organisational agents, they are allowed to use organ-
isational information5 in order to provide assistance. However, they only provide

3An agent, as an autonomous entity, can freely use the given support in its decision process.
4The private communication channel is depicted as arrows in Fig. 1.
5We assume in this definition that the infrastructure sends information about the organisation

specification (Org) and its execution state (Trac).

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

99

responses (Res) concerning properties that respect visibility6 constraints. First,
Eq. 13 defines the process by subscription (AsServ). It can be provided at different
frequencies of subscriptions: each time the information changes, e.g. when a new
water right has been registered to transfer; at concrete moments, e.g. the first time
entering the organisation the agent receives a “welcome pack”; and never, e.g. sub-
scription disabled. Second, Eq. 14 defines the process under request (AsServReq).
The request, Req, can include personal information of the agent (e.g., its goals)
which can decide whether to reveal it or not7. The specification of both Req and
Res illocutions contains first the sender agent, second the receiver agent and a set
of parameters in the request, Req = 〈rtAgi, pAi, Par〉, or a set of values in the
response, Res = 〈pAi, rtAgi, V al〉.

As previously introduced, we propose to establish a private communication
channel between a personal assistant pA and its assisted agent rtAg in order to
preserve the privacy of the information in the communications. To ensure the
use of private information in the defined terms and conditions, a service contract
may be signed between pA and rtAg. On one hand, this contract commit pA to
keep personal information private, to not exploit it, and to offer services pursuing
rtAg’s private information following social conventions. On the other hand, rtAg
is responsible for the use it makes of the services rendered based on the personal
information revealed by it and can decide when the personal information should be
erased by the assistants. As a pA is designed to use organisational trace and per-
sonal information in a private way, we consider that agents should have confidence
using them.

3.2.2 Information Services Specification

We consider 3 main reasons for agent needing of information. First, the specifi-
cation of the organisation could be difficult to understand for some participants.
Second, runtime data could not be perceived by participants, because, even though
it is visible to them, they were not notified about it. Finally, data from previous
executions may require to be processed in order to be useful for agents’ decisions,
e.g., the weighted average value of transactions’ prices in amWater along a previ-
ous market execution. Therefore, Information Service can be divided into three
subcategories of services: i) Organisation Specification, ii) Runtime Organisation
Specification and iii) Runtime Properties. Next we define the different parame-
ters of the request (Par) and the values provided in the response (V al) for each
subcategory.

Organisation Specification (Os) is information about the organisation as
defined at design time. The only parameter of the request is the name of a com-
ponent8 in the organisation specification (Org). The response contents the value
of such a component at design time. For example, let imagine that in amWater
an agent Pablo (rtAgPablo, rtRolPablo = seller) wants to participate in a registra-
tion activity following protocol protj and require the roles allowed to participate
in such a protocol to his personal assistant: ReqOs(rtAgPablo, pAPablo, protj .Rol),

6Properties visibility is further explained in section 3.1.1
7We stress that the more relevant information revealed, the better services will be provided.
8It should be specified by using the access variable values operators mentioned in section 3.1.1

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

100

obtaining as response ResOs(pAPablo, rtAgPablo, {seller,marketFacilitator}).
Runtime Organisation Specification (RtOs) is information of the organisa-

tion specification based on the current situation of the agent within the organisation
at runtime. In this case, one parameter par ∈ {actions, location, destination} in-
dicates the type of specification requested: i) the allowed actions, ii) the current
location or iii) the possible destinations in the organisation. The values in the
response can be i) a set of permitted actions; ii) a location loc expressed as an ac-
tivity identifier or an activity’s relationship, loc ∈ {Activ, ActivRel} ; or iii) a set
of destinations, where a destination des is expressed in the same way as a location
(des ∈ {Activ, ActivRel}). Following with the example in amWater, once Pablo has
joined the registration activity rtActivj , he could ask for the actions he is allowed to
perform at current state. The request will be ReqRtOs(rtAgPablo, pAPablo, actions)
and one response could be ResRtOs(pAPablo, rtAgPablo, {register, exit}).

Runtime Properties (Rt) is (processed) information about historical values
of the observable properties. The parameters of the request are the name of a prop-
erty in S, and two timestamps defining a period: tini, indicating the beginning,
and tfin, indicating the end. The response will content the corresponding values of
such a property at runtime between the specified timestamps. Continuing with the
previous example, Pablo can request for a low transactions price in order to decide
the starting price of his water rights in the negotiation. One possible request could
be about transactions of a previous auction activity k between rounds with time
stamp t1 and t80: ReqRt(rtAgPablo, pAPablo, 〈rtActivk.T rans.lowPrice, t1, t80〉).
One possible response could be ResRt(pAPablo, rtAgPablo, 9.00).

4 Assistance Evaluation
This section is devoted to evaluate our proposed Assistance Infrastructure by test-
ing different information service configurations in a water market case study.

4.1 amWater: a Demonstrator of Assistance Scenario
As a case study, we have enacted an assisted electronic market of Water rights
(amWater9) based on mWater [13]. The Organisational Layer corresponds to an
Electronic Institution (EI [2]) and the Assistance Layer improves the market by
providing Runtime Properties Information Service. Considering an agricultural
context, amWater is associated to an irrigation basin which is divided in geo-
graphical areas of interconnected lands (and their associated water rights). Water
transfers between lands are possible by using available basin’s infrastructures.

External agents join this water market enacting either buyer or seller subroles
while market facilitator and basin authority are designated for staff agents (Rol
and Rel in Eq. 2). Specifically, agents can join three activities (Activ in Eq. 3):
Registration, where the market facilitator is in charge of registering sellers’ rights;
Waiting and Information, where irrigators can ask for information about auctions
to the market facilitator; and Auction, where the negotiation of water rights takes
place. We have selected a multi-unit Japanese Auction protocol (Prot in Eq. 3)

9Notice that this domain is naturally structured and requires organisation.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

101

Figure 2: An example execution of a Multi-unit Japanese protocol

because it is suitable for divisible and perishable goods, in our case, water. In
this protocol, the market facilitator conducts the auction of registered water rights
–composed by several m3 of water– in a round-iteration-step schema. Figure 2
shows an example execution of such a protocol. Rounds are divided in several
iterations which are further divided in several steps. The market facilitator starts
a new round for each registered water right at the starting price established by
the seller. Subsequent iterations follow these four rules. First, one iteration is
composed by several steps where the price increases in regular increments (0.5e
in Fig.2). Second, buyers are allowed to place bids for consecutive steps. Third,
the iteration ends when i) just one buyer bids at current step and becomes the
winner or ii) no bids are performed, so the winners are determined to be the buyers
that bid at previous step. Last, winners request the amount of water desired (e.g.
Buyer1 buys 20,000m3). If there is more than one winner (e.g. Buyer2 and Buyer3
in second iteration), then the water is assigned by following a proportional alloca-
tion algorithm (i.e. 40,000m3 for each buyer). Once an iteration is finished, the
basin authority validates the result(s) and announces the resulting transaction(s).
Afterwards, if it remains water in the right, then a new iteration starts. No bids
then would imply the ending of both the iteration and the round. The negotiation
is over when all rights have been traded.

4.2 Experiment configuration
In order to asses the benefits (in terms of system performance and quality of service)
of our information service, we have configured four alternative experiments. The
first one does not use it and, thus, acts as a base-line for comparison purposes.
The other configurations use the service (which gathers trace information from the
base-line) by issuing different information requests.

Agents in the base-line configuration include staff agents, which follow a prede-
fined and fixed behaviour, and an heterogeneous population of 100 buyers and 100

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

102

sellers. All buyers and sellers (rtAgi, rtRoli = buyer|seller) aim at buying/selling
the same fixed water quantity (rtAgi.quantity = 100,000). The variation in their
behaviour is modelled in terms of the purchasing/sale price of water rights. Specif-
ically, we assume buyers have an inner maximum purchasing price whose value is
normally distributed, N (μ, σ2), with μ = 12 (i.e. 12 e/1,000m3) and σ2 = 2. As
for sellers, their starting price is low enough to ensure sales and follows a normal
distribution N (4, 1). In order to preserve similar market conditions, just sellers’

Configuration Parameters of request (Par) Value of response (V al)
base-line no information –

low 〈Trans.lowPrice, t1, t80〉 Trans.minPrice− k

medium 〈Trans.medPrice, t1, t80〉 Trans.wAvePrice− k

high 〈Trans.highPrice, t1, t80〉 Trans.maxPrice− k

Table 2: Request performed in each configuration and the subsequent response

price strategies are changed among the other test configurations. As Table 2 shows,
sellers request for a different information service in different configurations. These
services represent a decision support tool for setting seller’s starting price. Thus,
if the seller strategy is to set low starting prices, the corresponding information
service will provide the minimum transaction price in the trace with a k decre-
ment. Similarly, the seller can request a medium or a high starting price (Par),
and the values of the responses (V al) will be a value k below the weighted average
(wAvePrice) or the maximum historical price respectively. Equation 15 details the
wAvePrice computation over a set of transactions (Trans), where transi.quantity
and transi.price denote the water quantity and price of transaction i.

wAvePrice(Trans) =

|Trans|∑
i=1

(transi.quantity × transi.price)

|Trans|∑
i=1

transi.quantity

(15)

4.2.1 Goals

We have defined three Organisational Goals, and four Agent Satisfaction parame-
ters (OrgGoal and AgSat in Eq. 4), two for buyers and two for sellers:

OrgGoal = {transPerform, transRevenue,marketRevenue}
AgSat = {buyerQuantity, buyerPrice, sellerQuantity, sellerPrice}

On one hand, OrgGoal contains the following components: i) Transaction Per-
formance (transPerform), inverse to the average number of steps to complete
a transaction (the more steps, the worse performance); ii) Transaction Revenue
(transRevenue), transactions’ average price (e) per water unit (1,000 m3) (com-
puted as the wAvePrice in Equation 15); and iii) Market Revenue (marketRevenue),
percentage of the actual revenue (i.e. total transacted water quantity times weighted
average price) over the maximum possible revenue (i.e. total auctioned quantity
times maximum transactions’ price).

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

103

Figure 3: Average OrgGoal and AgSat values of ten executions

On the other hand, AgSat is composed by: i) buyerQuantity, percentage of
transacted water quantity over the total quantity that buyers aim to acquire (i.e.
buyer satisfaction increases with water acquisitions); ii) buyerPrice, a price value
which indicates the difference of the average of buyers’ maximum purchasing price
(rtAg.maxPrice) with respect to the actual average price (wAvePrice) (i.e. buyer
satisfaction decreases when the price on the market exceed its inner maximum pur-
chasing price); iii) sellerQuantity, the percentage of water quantity actually trans-
acted over the total quantity registered by sellers (i.e. seller satisfaction increases
with water sales); iv) sellerPrice, the percentage of wAvePrice with respect to
the maximum transaction price (i.e. sellers’ satisfaction increases when the price
on the market gets closer to the maximum historical price).

4.3 Assistance Quality of Service
In order to evaluate our information assistance infrastructure (AssQoS in Eq. 1), we
have conducted the experiments defined in section 4.2. Figure 3 shows the averaged
results of executing ten times each of the four configurations10. The graphic on the
left contains thick horizontal bars which correspond to the number of steps required
to close a transaction (the inverse of transPerform). Thin vertical bars go from
the starting prices (responses of each information request) to the weighted average
transaction prices (transRevenue). The latter becomes the centre of a circle whose
area represents both, buyers’ and sellers’ quantity satisfaction (buyerQuantity and
sellerQuantity)11. The area value labels the circle. buyerPrice value is represented
by a vertical bar just on the right of each circle. It starts in transRevenue and ends
in the average buyers’ maximum purchasing price, in our case 12. Additionally,
the table on the right completes the results by providing the marketRevenue and

10For these experiments, we have fixed k to the 10% of the respective Trac value
11Note that we have buyerQuantity = sellerQuantity because rtAgi.quantity = 100,000 for

all buyer and seller agents.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

104

sellerPrice. Since the information services under evaluation target seller agents,
we will focus on their satisfaction and the overall system performance.

As we can observe, the values obtained for low configuration get a sellerPrice,
sellerQuantity, marketRevenue and transRevenue that are as high as the base-
line configuration, with the advantage that they are reached in far less time (see
the average number of steps). Thus, we can argue that the low information service
drastically improves performance (transPerform). Accordingly, if we assume that
system and agent goals are aligned, a seller agent can use this service to reduce the
time of its sales without affecting any of its other satisfaction attributes.

On the other hand, seller pricing strategies may be more aggressive and pursue
a higher sellerPrice. The results of the medium and high configurations show us
that if the seller agent follows the corresponding services’ advice when setting the
starting price, then the sellerPrice can be increased close (95%) to the maximum
sold price. Nevertheless it takes the risk of not being the one who is actually selling
at the desired higher price (since the proportion of transactions, sellerQuantity, de-
creases down to 9 and the marketRevenue moves down to 10%). Moreover, taking
higher risks has the additional positive effects of further improving transPerform
and transRevenue (i.e. transactions are performed faster and at higher prices).

Overall, we can conclude that these experiments show that system performance
and agent satisfaction (and thus, the quality of service) increase with the addition
of information services. Furthermore, different services can be useful for decision
support processes being carried out by following alternative strategies.

5 Conclusions and future work
In this paper we have formalised both an Assistance Infrastructure and an In-
formation Service to support agents participation in Open MAS. The Assistance
Infrastructure is composed by two layers. First, the Organisational Layer is com-
posed by a set of Running Agents, an extension of an Organisation Specification
and the addition of the Organisational Trace, which keeps historical information of
previous organisation executions. Second, the Assistance Layer has been populated
with one Personal Assistant per each Running Agent. Information Services offers,
in addition to basic organisational information, more elaborated information, e. g.
specific statistics on data that might be unknown to participants.

In order to illustrate and evaluate our approach we use an OCMAS example sce-
nario that implements an electronic market of water rights. In the tests performed,
we have compared the values that different agent satisfaction parameters and sys-
tem goals take when agents request for different information services, using as a
base-line a configuration without enabling assistance services. The experiments
show that system performance and agent satisfaction (and thus, the quality of as-
sistance service) increase with the addition of information services. Furthermore,
individual agents following alternative strategies can use different services as an
useful decision support tool. As future work, we plan to enable and evaluate both
the Os and RtOs information services, the rest of services (advice, justification and
estimation) as well as include and evaluate assistance for human participants by
means of a 3D Virtual World interface.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

105

References
[1] P. Almajano, M. Lopez-Sanchez, M. Esteva, and I. Rodriguez. An assistance infras-

tructure for open mas. In CCIA ’11, volume 232, pages 1–10. IOS Press, 2011.
[2] J. Arcos, M. Esteva, P. Noriega, J. Rodríguez-Aguilar, and C. Sierra. An integrated

development environment for electronic institutions. In Software Agent-Based Ap-
plications, Platforms and Development Kits, pages 121–142. 2005.

[3] A. Bogdanovych, M. Esteva, S. Simoff, C. Sierra, and H. Berger. A methodology for
developing multiagent systems as 3d electronic institutions. volume 4951 of LNCS,
pages 103–117. Springer Berlin / Heidelberg, 2008.

[4] E. Bou, M. López-Sánchez, and J. Rodríguez-Aguilar. Towards self-configuration in
autonomic electronic institutions. volume 4386 of LNCS, pages 229–244, 2007.

[5] E. Bou, M. López-Sánchez, and J. A. Rodríguez-Aguilar. Autonomic electronic
institutions’ self-adaptation in heterogeneous agent societies. In Organized Adaption
in Multi-Agent Systems, volume 5368, pages 18–35. Springer, 2009.

[6] J. Campos, M. Esteva, M. López-Sánchez, J. Morales, and M. Salamó. Organi-
sational adaptation of multi-agent systems in a peer-to-peer scenario. Computing,
91:169–215, 2011.

[7] J. Campos, M. López-Sánchez, and M. Esteva. Coordination support in multi-agent
systems. In AAMAS’09, pages 1301–1302, 2009.

[8] R. Centeno and H. Billhardt. Adaptive regulation of open mas: an incentive mech-
anism based on online modifications of the environment (extended abstract). In
AAMAS’11, pages 1243–1244, 2011.

[9] R. Centeno, H. Billhardt, R. Hermoso, and S. Ossowski. Organising mas: a for-
mal model based on organisational mechanisms. In Proceedings of the 2009 ACM
symposium on Applied Computing, pages 740–746, 2009.

[10] H. Chalupsky, Y. Gil, C. A. Knoblock, K. Lerman, J. Oh, D. V. Pynadath, T. A.
Russ, and M. Tambe. Electric elves: Applying agent technology to support human
organizations. In IAAI’01, pages 51–58. AAAI Press, 2001.

[11] M. Esteva. Electronic institutions. from specification to development. PhD thesis,
Universitat Politecnica de Catalunya, 2003.

[12] J. Ferber, O. Gutknecht, and F. Michel. From agents to organizations: An organi-
zational view of multi-agent systems. In Agent-Oriented Software Engineering IV,
volume 2935, pages 443–459. 2004.

[13] A. Garrido, A. Giret, and P. Noriega. mwater: a sandbox for agreement technologies.
In CCIA’09, pages 252–261, 2009.

[14] J. Hübner, J. Sichman, and O. Boissier. S −Moise+: A middleware for developing
organised multi-agent systems. In Coordination, Organizations, Institutions, and
Norms in Multi-Agent Systems, volume 3913, pages 64–77. 2006.

[15] N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and
development. Autonomous Agents and Multi-Agent Systems, 1:7–38, 1998.

[16] I. J. Jureta, M. J. Kollingbaum, S. Faulkner, J. Mylopoulos, and K. Sycara.
Requirements-driven contracting for open and norm-regulated multi-agent systems.
Technical report, 2007.

[17] J. Oh, F. Meneguzzi, K. Sycara, and T. J. Norman. Prognostic agent assistance for
norm-compliant coalition planning. In ITMAS’11, pages 126–140, 2011.

[18] S. Okamoto, K. Sycara, and P. Scerri. Personal assistants for human organizations.
In V. Dignum, editor, Organizations in Multi-Agent Systems. 2009.

[19] T. Trescak, M. Esteva, and I. Rodriguez. Vixee an innovative communication infras-
tructure for virtual institutions. In AAMAS’11, pages 1131–1132, 2011.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

106

Behaviour Driven Development for

Multi-Agent Systems

Álvaro Carrera, Jorge J. Solitario, and Carlos A. Iglesias
Dpto. de Ingenieŕıa de Sistemas Telemáticos
Universidad Politécnica de Madrid, UPM

Madrid, Spain
{a.carrera,jjsolitario,cif}@dit.upm.es

Abstract

This paper presents a testing methodology to apply Behaviour Driven De-
velopment (BDD) techniques while developing Multi-Agent Systems (MAS),
so called BEhavioural Agent Simple Testing (BEAST) methodology. It is
supported by the developed open source framework (BEAST Tool) which
automatically generates test cases skeletons from BDD scenarios specifica-
tions. The developed framework allows testing MASs based on JADE or
JADEX platforms and offers a set of configurable Mock Agents which allow
the execution of tests while the system is under development. BEAST tool
has been validated in the development of a MAS for fault diagnosis in FTTH
(Fiber To The Home) networks.

Keywords: agent, test, simple, management, development, BDD, multi-
agent systems, MAS, mock-agents, JADE, JADEX.

1 Introduction

Understanding stakeholders requirements and fulfilling their desired functionality
is considered as the most important aspect for a software project to be considered
successful [4]. Thus, requirements engineering plays a key role in the development
process. The main challenges of requirements engineering are [17]: (i) improving
the communication between the stakeholders and the implementation team and
(ii) understanding the problem.

Nevertheless, the process of eliciting requirements and communicating them is
still an issue and some authors consider it the next bottleneck to be removed from
the software development process [2]. The main reasons for this communication
gap between stakeholders and the development team are that [2] (i) imperative
requirements are very easy to misunderstand; (ii) even the obvious aspects are not
so obvious and can be misinterpreted and (iii) requirements are overspecified, since
they are expressed as a solution, and focus on what to do and not why, not allowing
the development team whether discuss if those requirements are the best way to
achieve stakeholders’ expectations.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

107

In order to bridge this communication gap, the agile movement has proposed
to shift the focus of requirements gathering. Instead of following a contractual
approach where the requirements documents is the most important goal, they put
emphasis on improving the communication among all the stakeholders and devel-
opers to have a common understanding of these requirements. Moreover, given
that requirements will have inconsistencies and gaps [3], it has been proposed to
anticipate the detection of these problems by checking the requirements as soon
as possible, even before the system is developed. In this line, Martin and Melnik
formulated the equivalence hypothesis: “As formality increases, tests and require-
ments become indistinguishable. At the limit, tests and requirements are equiva-
lent” [18].

As a result, they have proposed a practice so called agile acceptance testing,
whose purpose is improving communication by using real-world examples for dis-
cussion and specifications of the expected behaviour at the same time, which is
called Specification by Example (SBE). Different authors have proposed to express
the examples in a tabular form (Acceptance Test Driven Development (ATDD)1

with Fit test framework [19]) or as scenarios (BDD [25] with tools such as JBe-
have [24] or Cucumber [30]). In this way, requirements are expressed as acceptance
tests, and these tests are automated. When an agile methodology is followed, ac-
ceptance tests can be checked in an automated way during each iteration, and thus,
requirements can be progressively improved. Most frameworks provide a straight
forward transition from acceptance tests to functional tests based on tools such
as the xUnit family [14]. Agile acceptance testing complements Test Driven De-
velopoment (TDD) practices, and it can be seen as a natural extension of TDD
practices, which have become mainstream in among software developers. In this
way, software project management can be based not only on estimations but on the
results of acceptance and functional tests. In addition, these practices facilitate to
maintain requirements (i.e. acceptance tests) updated along the project lifespan.

In the multi-agent field, there have been several efforts in the testing of multi-
agent systems. Multi-agent systems testing present several challenges [20], given
that agents are distributed, autonomous and it is interesting not its individual
behaviour but the emergent behaviour of the multi-agent system that arises from
the interaction among the individual behaviours. A good literature review of MAS
testing can be found in [20, 21, 16]. To the best of our knowledge, there is no
previous work dealing explicitly with acceptance testing in Agent Oriented Software
Engineering (AOSE). Thangarajah et al [28] propose to extend the scenarios of
the Prometheus methodology in order to be able to do testing of scenarios as part
of requirements or acceptance testing. The work describes also a novel technique
for integrating agent simulation in the testing process. Nevertheless, their proposal
of acceptance tests seems targeted at technical users, given than the scenarios are
described for based on percepts, goals and actions. Nguyen et al. [22] propose an
extension of the Tropos methodology by defining a testing framework that takes
into account the strong link between requirements and test cases. They distinguish
external and internal testing. External testing produces acceptance tests for being
validated by project stakeholders, while internal testing produces system and agent
tests for being verified by developers. They focused on internal testing.

1A literate review of ATDD can be found in [15].

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

108

The research context of this article was a research project contracted by the
company Telefonica. They requested us to develop a multi-agent system for fault
diagnosing in their network. From a software engineering point of view, the main
challenges were: (i) they required managing the project using the agile SCRUM
methodology [26], (ii) the project involved integration with a wide range of exter-
nal systems and the emulation faulty behaviour of network transmission and (iii)
the development team was composed of students with different timetables, so they
were not working together most of the time. After the first release, the main prob-
lems we encountered were communication problems between the development team
and the customer (expert network engineers), communication problems within the
development team, where agents were being developed in parallel, and lack of au-
tomation in the unit testing process, which involved to test physical connections
with a manual and very time consuming process.

After analysing several AOSE proposals based on agile principles [8, 12], we have
not found any proposal which covers acceptance tests and provides a good starting
point for its application in an agile context. Thus, this research aims at bridging
the gap between acceptance testing and AOSE. The key motivation of this paper
is to explore to what extent acceptance testing can benefit MAS development, in
order to provide support in the development of MAS in agile environments. This
brought us to identify the need for an agile testing methodology for MAS.

The rest of the article is organised as follows. First, we propose a testing
methodology for MAS based on BDD techniques in Sect. 2 which is supported by
an open source tool. Sect. 3 presents a worked example of the application of the
methodology and the tool. Then, Sect. 4 presents an evaluation of the benefits of
the proposed approach. Finally, Sect. 5 presents some concluding remarks.

2 BEAST Methodology

In order to cover the problems identified in Sect. 1, we should identify which re-
quirements should have the testing methodology. First, our primary concern is
that it should help in improving the communication between the stakeholders and
the development team. In addition, it should help to improve the communica-
tion between the development team. Another requirement comes from the overall
methodology: it should be compatible and suitable for its application in combina-
tion with agile techniques. Finally, it should not be tied to a specific MAS tool,
and it should be feasible to integrate with other MAS environments with low effort.

The BEAST methodology is intended to be used in agile environments, with
special focus on providing traceability of stakeholder requirements. With this end,
requirements are automated as acceptance tests, which are linked with MAS testing.
The main benefit of this approach is that it improves the understanding of the real
advance of the project from the stakeholders perspective, and, moreover, it provides
a good basis for reviewing the objectives of each iteration (so-called sprints in
SCRUM terminology). As a result, requirements negotiation and specification can
be done in an iterative way, and can be adapted to the improved understanding of
the desired system by both stakeholders and development team.

BEAST consists of four phases (Fig. 1): System Behaviour Specification, MAS

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

109

Figure 1: Beast Testing Methodology

Behaviour Specification, Agent level testing and MAS level testing, which are ap-
plied in each agile iteration.

2.1 System Behaviour Specification

The System Behaviour Specification phase aims at providing a communication
bridge between the project stakeholders and the development team during require-
ments gathering. This phase follows the BDD technique [25]. System behaviours
are derived from the business outcomes the system intends to produce. These busi-
ness outcomes should be prioritized by the stakeholders. Then, business outcomes
are drilled down to feature sets. Feature sets decompose a business outcome into
a set of abstract features, which show what should be done to achieve a business
outcome. These feature sets are the result of discussions between stakeholders and
developers. Features are described using user stories. Then, user stories are de-
scribed in scenarios for each particular instantiation of a user story. These scenarios
are the basis of acceptance tests. Instead of using plain natural language, BDD
proposes the usage of textual templates (Tables 2 and 3). These templates should
be instantiated by the pertinent concepts. These concepts are part of the ubiqui-
tous language [11] which establishes the common terminology used by stakeholders
and developers. Thus, these terms will be used in the implementation, helping in
reducing the gap between technical and business terminology.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

110

[Story title] - description

As a [Role]

I want a [Feature]

So that [Benefit]

Figure 2: User Story template

Scenario [Scenario name]

Given [Context]

And [Some more contexts] ...

When [Event]

Then [Outcome]

And [Some more outcomes] ...

Figure 3: Scenario template [25]

2.2 MAS Behaviour Specification

This phase has the goal of architecturing the multi-agent system. Based on the fea-
tures identified in the previous phase, the new features are realised with the MAS
system. This can involve adding, removing or modifying behaviours developed in
the previous iterations. In order to maintain traceability and improve communica-
tion within the development team, we have found useful to use the same approach
than in the previous phase for specifying the MAS behaviour. Thus, business ben-
efits are described by features which are assigned to agent roles. As previously,
features can be obtained in different contexts which are described as scenarios,
which can involve one or more agent roles in the case of cooperative scenarios. In
the case of emergent features coming from emergent behaviour, they will be only
verified when the full system has been developed. This kind of emergent behaviour
will be specified at MAS level in the agent stories, instead of for a particular agent
role.

This phase could be skipped and system behaviours could be directly translated
into agent unit tests (Sect. 2.3). In fact, our first version of the framework did not
include this step. Nevertheless, we have found it very useful in order to make
explicit how stakeholders specifications are translated into MAS requirements, and
provide better insight for developers about them.

2.3 Agent level testing

Based on the previous phase, agents are designed and developed. For this purpose,
any of the available AOSE methodologies can be used for modelling and imple-
menting agents. Since we are focused on testing aspects, this phase has two main
steps (Fig. 1): (i) developing mocks of the external systems an agent interacts with
and (ii) developing the unit tests of every agent.

The first step (Sect. 2.3.1) requires to simulate the intended behaviour of the
external systems according to the scenarios described in the previous phase. In our
methodology, an external system includes other agents different from the one we
are developing.

The second step (Sect. 2.3.2) provides mapping rules from the specifications
developed in the previous phases to executable code.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

111

2.3.1 Mock development

There have been several research works developing the concept of using mock test-
ing for agent unit testing. Coelho et al. [9] proposed a framework for unit testing
of MAS based on the use of mock agents on top of the multiagent framework
JADE [5]. They proposed to develop one mock agent per interacting agent role.
Mock agents were programmed using script-based plans which collect the messages
that should be interchanged in the testing scenarios. Tiryaki et al. [29] proposed
the framework SUnit on top of the multiagent framework Seagent [10]. They ex-
tended JUnit testing in order to cope with agent plan structures testing. Zhang [31]
generated automatically mock agents from design diagrams developed within the
Prometheus methodology.

We propose to use a mock testing technique for simulating external systems,
being agents or any other system. In addition, we need that the framework is
valid for different MAS platforms, such as JADEX [7] and JADE [5]. In addition,
the mocking framework should allow an easy configuration of the mock objects (or
agents), with patterns such as when(< some input >).thenReturn(< some answer
>). After analysing available mocking frameworks, we have selected Mockito [1]
framework, because of its easiness to be learnt, its popularity and its wide coverage
of mocking functionalities. Thus, we have extended Mockito in order to be able to
use it in MAS environments.

Given that we are interested in simulating the behaviour of agents, we have
created several classes which provide a simple FIPA interface. In particular, we
provide these three agent classes:

• ResponderMockAgent: mock agent that replies to predetermined incoming
messages.

• MediatorMockAgent: mock agent that sends a message to a third agent based
on predefined filters.

• ListenerMockAgent: mock agent that just receives messages.

Mock agents allow the specification of the simulated behaviour using Mockito
constructions. Here follows an example.

when(mockAgent.processMessage(

eq(‘‘REQUEST’’),

eq(‘‘VoD Loss Rate’’)))

.thenReturn(‘‘INFORM’’,‘‘Loss Rate=0.2’’)

2.3.2 Agent testing

Our approach to agent level testing has consisted of extending JUnit framework in
order to be able to test MAS systems. Mapping rules have been defined in order to
provide full traceability of acceptance tests defined previously. Thus, JBehave has
been extended with this purpose. Mapping rules [27] provide a standard mapping
from scenarios to test code. In JBehave, a user story is a file containing a set of
scenarios. The name of the file is mapped onto a user story class. Each scenario

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

112

step is mapped onto a test method using a Java annotation. This Java annotation
text provides the name for the test method.

In BEAST, a stakeholder user story (obtained in System Behaviour Specification
phase) is a file that contains agent stories (obtained inMAS Behaviour Specification
phase). These agent stories are files which contain a set of scenarios. BEAST
Tool translates a “Given/When/Then” scenario to a test case class which extends
JBehave JUnitStory class and contains three key methods which facilitates the
connection to the MAS platform:

• setUp method. The “Given” scenario condition previously defined in natural
language is translated into Java. This method typically initialises agents and
configures their state (goals, beliefs, . . .) as well as initialises the environ-
ment.

• launch method. The “When” scenario condition is implemented in Java.
This method generates and schedules the trigger event to start the test.

• verify method. The “Then” scenario condition is checked here. The expected
states (goals, beliefs, etc.) are checked in this method once test execution is
over.

In order to provide MAS platform independence, a testing interface selector
has been defined, so called PlatformSelector (see Fig. 4). This selector provides the
proper platform access according to the MAS framework specified in the configu-
ration file. This access consists of three interfaces that should be implemented in
order to integrate a MAS platform:

• Connector interface provides an abstract interface to agent managing func-
tions (launch platform, start an agent, etc.).

• Messenger interface declares methods for sending and receiving messages from
the platform.

• Agent Introspector interface provides access to the agent model (such as goals,
beliefs, etc.).

These interfaces have been implemented for JADE 4.0 [5] and JADEX 2.0 [7].
A requirement for integrating an agent platform is that it provides methods for
external interaction. For example, the integration of JADEX 0.96 was too complex
to be carried out because of the lack of these interfaces.

2.4 MAS level testing

The MAS level testing phase has two purposes. First of all, once agents have been
developed, integration testing can be done replacing mocks by the real systems.
Second, emergent features should be validated in the developed scenario Simulation
techniques can complement this phase to simulate different system configurations.

Currently we do not provide specific facilities for this phase and will be de-
veloped as future work. Nonetheless, we would like to point out that once mocks
objects have been replaced by the real entities they emulate, business requirements

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

113

Figure 4: Beast Test Case

can be tested on the real system. Thus, acceptance testing is straight forward, and
stakeholders’ expectations can be checked without discussing about ambiguities or
omissions in the requirements document. The main benefit of BDD techniques is
the continuous validation of user requirements in each iteration. This helps for re-
fining iteratively requirements based on the current project advance and available
resources.

3 Case Study: MAS for fault diagnosis on Fiber
To The Home (FTTH) scenario

To properly frame our proposed BEAST Technique, a network management project
was chosen to examplify the use of BEAST. In this example, our stakeholder is a
network operator company which wants a tool to reduce the management cost of
FTTH networks.

The first step of the project is to write a high level project proposal and to
explore different possible approaches to solve the problem. The result of this phase
is that the solution that best fits the problem is a MAS architecture. The project
and BEAST Methodology, assisted by the BEAST Tool, is used in the project. For
exemplification purposes, it is exposed how tests can be implemented in JADEX [7]
framework.

So, one of the next tasks that the development team has to do is to arrange
a meeting with the stakeholder to specify a set of requirements. In this meeting,
the main requirements of the stakeholder are written in BDD format (see Sect. 2).
Table 1 shows an example of one gathered requirement.

Notice here that the stakeholder does not know anything about the solution,
in this case, a Multi-Agent Systems (MAS). So, the written requirements do not
refer at all to the final agents. These requirements are the acceptance tests of the
project.

Once the developers have the requirements, they can write even more test cases
in BDD format. Let us suppose at this point that the development team has
identified two agent roles (Probe and Diagnosis) for implementing the requested
behaviour as shown in Table 1).

The first role, Probe Agent, is responsible for monitoring the service quality,

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

114

As a operator network,

I want to have a system to diagnose faults root cause

So that time-to-repair is below the SLA with the customer.

Scenario: System diagnoses a QoS decreasing failure

Given a user that has a Video On Demand (VoD) service connected through

a FTTH access network and the user requests a film from the streaming

server,

When loss rate is higher to 1%, latency is higher to 150ms or jitter

is higher to 30ms,

Then the system must diagnose the root cause of fault is

’Damaged Fibre’, ’Inadequate Bandwidth’ or ’Damaged Splitter’.

Table 1: Stakeholder Requirements Example

As a Diagnosis Agent,

I want to diagnose failures when I receive a symptom

So that I am able to report the diagnosis result to other agents.

Scenario: Diagnosis Agent diagnoses Damaged Splitter

Given a ‘high loss rate’ symptom is received from a Probe Agent,

When two or more geographically close users have loss rate higher to 1%,

Then the Diagnosis Agent must diagnose the root cause of the

problem is ‘Damaged Splitter’.

Table 2: Developers Test Cases

while the second role, Diagnosis Agent, is responsible for diagnosing faults. These
two roles will be implemented in a distributed fashion. Thus, the previous ac-
ceptance tests is further refined and, as a result, several detailed test cases are
obtained, shown in Table 2).

These tests can be further refined and more specific test cases can be defined
for obtaining a suitable testing coverage of the desired agent behaviour.

At this stage, the developer has not developed yet Probe and Expert agents.
Since they are required for implementing the aforementioned tests, a mocking facil-
ity of BEAST Tool will be used. As previously introduced, BEAST Tool includes
several Mock patterns. In this case, the Mediator Mock Agent is suitable for imple-
menting both Probe and Expert agents. Thus, this mock is configured for sending
symptoms and network information, respectively.

about the network status around the location of the user. Table 3 shows a
sample of an implementation of the setUp method in the BEAST test case class.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

115

public void setUp() {

startAgent("DiagnosisAgent","DiagnosisAgent.agent.xml");

AgentBehaviour mockBeh = mock(AgentBehaviour.class);

when(mockBeh.processMessage(eq(INFORM),

eq("Generate High Loss Rate Symptom")))

.thenReturn("DiagnosisAgent", INFORM, "Loss rate=0.15");

MockConfiguration mockConf = new MockConfiguration();

mockConf.addBehaviour(mockBeh);

MockManager.startMockJadexAgent("ProbeMockAgent","MediatorMock.agent.xml",

mockConf,this);

}

Table 3: setUp method implementation

public void launch() {

sendMessageToAgent("ProbeMockAgent", INFORM, TRIGGER_EVENT);

setExecutionTime(2000);// Waiting time in milliseconds

}

Table 4: launch method implementation

public void verify() {

checkAgentsBeliefEquealsTo("DiagnosisAgent",ROOT_CAUSE,DAMAGED_SPLITTER);

}

Table 5: verify method implementation

In a similar way, the other two methods of the test class are programmed. The
launch method of the test case generates a trigger event that initiates the test and
fixes the test duration(see Table 4). Then, the verify method consists of checking
the expected status of the agent under test (see Table 5).

After this test coding task, tests can be launched using standard development
tools, since it is a standard JUnit test.

4 Evaluation

The results of the proposed BEAST Methodology have been evaluated in a quan-
tifiable way using source code metrics. In particular, we have measured the number
of test code lines required to implement tests. One of the most important benefits
of developed BEAST Tool is that automatically creates a wrapper of the MAS
platform and allows developers to interact with a friendly interface simplifying the

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

116

(a) JADEX evaluation (b) JADE evaluation

Figure 5: Test code lines (Y axis) per Test Case (X axis) comparison for JADEX (a)
and JADE (b)

implementation of tests. These metrics are strongly associated with the test im-
plementation time that a developer consumes during this phase of development.
The savings in number of code lines and in percentage are shown because they are
quantifiable objective data, in comparison the time to develop a test that depend
on the programming skills of the developer.

BEAST Tool is already adapted to test JADE [5] and JADEX [7] MAS and
the evaluation process has been carried out for both platforms. To simplify the
comparison, only twelve different test cases have been chosen for this evaluation.
These test cases are quite different among them, some of them use Mock Agents,
different number of agents are involved in each one, etc.

Notice that graphics shown in Fig. 5(a) and in Fig. 5(b) are in logarithmic
scale. In both graphics, columns represent the code lines of agents under testing
and lines represent the code lines required to implement the test with (solid line)
and without (dashed line) BEAST Tool. Fig. 5(a) shows the benefits of BEAST
Tool in number of lines required to implement the same test using BEAST Tool and
without it for JADEX. The improvement is, in average, 247.91 lines per test, i.e.
a saving of 97.22%. Fig. 5(b) shows the same comparison for JADE with similar
test cases. The improvement in this case is, in average, 262,08 lines per test, i.e. a
saving of 97,36%.

Nevertheless, the main advantages of the BEAST approach do not come from
the saving in coding tasks. The main benefit of our approach is the significant
increase in communication between all the stakeholders of the software project,
thanks to the usage of an ubiquitous language and its formalisation using BDD
templates. Moreover, this BDD technique is also used for developing MAS, which
also improves communication among developers.

5 Conclusions and future work

Advances in MAS testing has been introduced in this paper using BEAST Tech-
nique and BEAST Tool. BDD perfectly fits its specification describing behaviours
of a determined agent or of a set of agents. Furthermore, the use of BDD facilitates
the communication between stakeholders and designers or developers which, usu-

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

117

ally, it is a gap between both of them. To solve this problem, BEAST Technique
establishes that stakeholders must generate a set of behaviour specifications that
describes the whole system. Later, MAS designers must generate the set of agent
behaviour specifications that fits the solution of the problem. These behaviours in
BDD format are translated automatically with BEAST Tool to JUnit test cases.
During this process, text plain in natural language is always available to facilitate
the specification compression and communication between both parts.

Other common issue in MAS development is the need of other agents to test the
behaviour of an Agent Under Test (AUT). Since these agents are not developed
yet, BEAST uses Mock Agents to allow developers to ensure the correct behaviour
of an AUT. To add flexibility to Mocks, Mockito framework is integrated with
BEAST Tool to allow the use of Mock Agents, Mock Web Services, Mock Java
Objects, etc.

Besides, the use of MAS testing techniques or methodologies are commonly
strongly connected to a specific MAS platform [9, 13, 23]. BEAST Tool are easily
adaptable for any MAS framework. Currently, JADE and JADEX testing are
supported.

For future work, we will study in depth the use of simulations for MAS Level
Testing (see Sect. 2) in order to cover all possible test like non-functional tests, for
example, performance of all agents working together or the achievement of high
level goals that can be only in a collaborative way. For this purpose, MASON
framework will be explored.

We also plan to improve BEAST Tool to support other MAS frameworks, like
JASON [6], to maximize the scope of the developed tool.

Finally, other interesting issue is to evaluate other non-BDD approaches for
system specifications provided by a stakeholder, like FIT [19], that support the
specification of test cases with concrete examples that provide real data. This first
step of the methodology is really important and the capability for stakeholders
to choose the format of system specifications can be a key point for a successful
project.

References

[1] Mockito Framework. http://mockito.org. Accessed March 25, 2012.

[2] G. Adzic. Bridging the Communication Gap: Specification by Example and
Agile Acceptance Testing. Neuri Limited, United Kingdom, 2009.

[3] G. Adzic. Specification by Example: How Successful Teams Deliver the Right
Software. Manning Publications, 2011.

[4] N. Agarwal and U. Rathod. Defining success for software projects: An ex-
ploratory revelation. International Journal of Project Management, 24(4):358–
370, May 2006.

[5] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent Sys-
tems with JADE, volume 5 of Wiley Series in Agent Technology. Wiley, 2007.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

118

[6] R. H. Bordini, M. Wooldridge, and J. F. Hübner. Programming Multi-Agent
Systems in AgentSpeak using Jason (Wiley Series in Agent Technology). John
Wiley & Sons, 2007.

[7] L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A BDI-Agent System
Combining Middleware and Reasoning. In R. Unland, M. Calisti, M. Klusch,
M. Walliser, S. Brantschen, and T. Hempfling, editors, Software Agent-Based
Applications, Platforms and Development Kits, Whitestein Series in Software
Agent Technologies and Autonomic Computing, pages 143–168. Birkhäuser
Basel, 2005.

[8] N. Clynch and R. Collier. Sadaam: Software agent development-an agile
methodology. In Proceedings of the Workshop of Languages, methodologies,
and Development tools for multi-agent systems (LADS007), Durham, UK,
2007.

[9] R. Coelho, U. Kulesza, A. von Staa, and C. Lucena. Unit testing in multi-agent
systems using mock agents and aspects. In Proceedings of the 2006 interna-
tional workshop on Software engineering for large-scale multi-agent systems,
SELMAS ’06, pages 83–90, New York, NY, USA, 2006. ACM.

[10] O. Dikenelli, R. Erdur, and O. Gumus. Seagent: a platform for developing
semantic web based multi agent systems. In Proceedings of the fourth interna-
tional joint conference on Autonomous agents and multiagent systems, pages
1271–1272. ACM, 2005.

[11] E. Evans. Domain-driven design: tackling complexity in the heart of software.
Addison-Wesley Professional, 2004.

[12] I. Garćıa-Magariño, A. Gómez-Rodŕıguez, J. Gómez-Sanz, and J. González-
Moreno. Ingenias-scrum development process for multi-agent development. In
International Symposium on Distributed Computing and Artificial Intelligence
2008 (DCAI 2008), pages 108–117. Springer, 2009.

[13] J. Gómez-Sanz, J. Bot́ıa, E. Serrano, and J. Pavón. Testing and Debugging of
MAS Interactions with INGENIAS. In M. Luck and J. Gomez-Sanz, editors,
Agent-Oriented Software Engineering IX, volume 5386 of Lecture Notes in
Computer Science, pages 199–212. Springer Berlin / Heidelberg, 2009.

[14] P. Hamill. Unit test frameworks. O’Reilly, first edition, 2004.

[15] B. Haugset and G. Hanssen. Automated acceptance testing: A literature
review and an industrial case study. In Agile, 2008. AGILE ’08. Conference,
pages 27 –38, aug. 2008.

[16] Z. Houhamdi. Multi-agent system testing: A survey. International Journal of
Advanced Computer, 2011.

[17] A. Marnewick, J.-H. Pretorius, and L. Pretorius. A perspective on human fac-
tors contributing to quality requirements: A cross-case analysis. In Industrial
Engineering and Engineering Management (IEEM), 2011 IEEE International
Conference on, pages 389 –393, dec. 2011.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

119

[18] R. C. Martin and G. Melnik. Tests and requirements, requirements and tests:
A möbius strip. IEEE Software, 25(1):54–59, 2008.

[19] R. Mugridge and W. Cunningham. Fit for developing software: framework for
integrated tests. Prentice Hall, 2005.

[20] C. D. Nguyen. Testing Techniques for Software Agents. PhD thesis, 2009.

[21] C. D. Nguyen, A. Perini, C. Bernon, J. Pavón, and J. Thangarajah. Testing
in multi-agent systems. In Proceedings of the 10th international conference on
Agent-oriented software engineering, AOSE’10, pages 180–190, Berlin, Heidel-
berg, 2011. Springer-Verlag.

[22] C. D. Nguyen, A. Perini, and P. Tonella. Goal oriented testing for mass. Int.
J. Agent-Oriented Softw. Eng., 4(1):79–109, Dec. 2010.

[23] D. Nguyen, A. Perini, and P. Tonella. A Goal-Oriented Software Testing
Methodology. In M. Luck and L. Padgham, editors, Agent-Oriented Software
Engineering VIII, volume 4951 of Lecture Notes in Computer Science, pages
58–72. Springer Berlin / Heidelberg, 2008.

[24] D. North. JBehave. A framework for Behaviour Driven Development (BDD).
http://jbehave.org. Accessed March 28, 2012.

[25] D. North. Introducing: Behaviour-driven development. http://dannorth.

net/introducing-bdd, 2007. Accessed March 28, 2012.

[26] K. Schwaber. Scrum development process. In Proceedings of the 10th Annual
ACM Conference on Object Oriented Programming Systems, Languages, and
Applications (OOPSLA, pages 117–134, 1995.

[27] C. Solis and X. Wang. A study of the characteristics of behaviour driven
development. In Software Engineering and Advanced Applications (SEAA),
2011 37th EUROMICRO Conference on, pages 383 –387, 30 2011-sept. 2 2011.

[28] J. Thangarajah, G. Jayatilleke, and L. Padgham. Scenarios for system re-
quirements traceability and testing. In The 10th International Conference
on Autonomous Agents and Multiagent Systems - Volume 1, AAMAS ’11,
pages 285–292, Richland, SC, 2011. International Foundation for Autonomous
Agents and Multiagent Systems.

[29] A. Tiryaki, S. Öztuna, O. Dikenelli, and R. Erdur. Sunit: A unit testing
framework for test driven development of multi-agent systems. Agent-Oriented
Software Engineering VII, pages 156–173, 2007.

[30] M. Wynne and A. Hellesy. Cucumber. Behaviour driven development with
elegance and joy. http://cukes.info. Accessed March 28, 2012.

[31] Z. Zhang, J. Thangarajah, and L. Padgham. Automated testing for intelligent
agent systems. In M.-P. Gleizes and J. Gomez-Sanz, editors, Agent-Oriented
Software Engineering X, volume 6038 of Lecture Notes in Computer Science,
pages 66–79. Springer Berlin / Heidelberg, 2011.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

120

Dynamic Monitoring for Adapting Agent

Organizations

Juan M. Alberola, Luis Búrdalo, Vicente Julián, Andrés Terrasa, and
Ana Garćıa-Fornes

Departament de Sistemes Informàtics i Computació,
Universitat Politècnica de València, Camı́ de Vera s/n. 46022, València. Spain,

{jalberola,lburdalo,vinglada,aterrasa,agarcia}@dsic.upv.es

Abstract

Multiagent technologies are usually considered to be suitable for con-
structing agent organizations capable of running in dynamic and distributed
environments, and being able to adapt to changes as the system runs. The
necessary condition for this adaptation ability is to make agents aware of sig-
nificant changes in both the environment and the organization. This paper
presents Trace&Trigger, an adaptation framework for agent organizations
consisting of a monitoring mechanism, which helps agents detecting adap-
tation requirements dynamically at run time, and an adaptation assistant,
which provides organizational agents with information related to the costs
and benefits of carrying out an adaptation process at each moment of the
execution. This framework intends to overcome some of the problems which
are present in other approaches by allowing the dynamic specification of the
information that has to be retrieved by each agent at each moment, avoid-
ing the transference of useless information for adaptation deliberation. This
framework has been integrated in the Magentix2 multiagent platform and, in
order to test its performance benefits for any agent organization, an example
based on a market scenario is also presented.

Keywords: monitoring, organization, adaptation, events.

1 Introduction

Nowadays, one of the goals of multiagent systems is to construct systems capable
of autonomous and flexible decision-making, and of cooperating with other entities
within a society. In these scenarios, dynamic agent organizations which are able
to adjust themselves in order to gain advantage in their current environments are
likely to become increasingly important [15]. Dynamic agent organizations have
to modify/adapt their structure and behavior by adding, removing or substitut-
ing components while the system is running and without bringing it all down. In
these cases, as pointed out by Dignum et al. in [10], changes in the environment of
agents are the ones which trigger reorganization and thus, this dynamic adaptation
demands that systems can evaluate their own health in order to find out when an

1

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

121

adaptation is needed. Being able to monitorize an agent organization is important
in order to determine why and when an organization needs to be adapted. Accord-
ing to [12], monitoring is essential in order to be able to detect undesirable behavior
that needs to be corrected. However, detecting these changes in the environment
is not trivial.

Current approaches for agent organization adaptation propose different tech-
niques for monitoring the organization in order to figure out when an adaptation is
required. Most of them have in common that both the internal adaptation logic for
deciding when an adaptation is required and the information required to be mon-
itored are usually predefined at design time and cannot be modified during the
execution. This restriction assumes that requirements associated to the adaption
process are always known in advance. However, as stated in [1], adaptive systems
may cause monitoring requirements to change throughout the agent organization’s
life-span and thus, the information required to be monitored can also change during
the execution depending on the current requirements of the system.

Assuming that monitoring needs are static and known in advance at design time
makes it difficult to develop dynamic applications which can adapt at run time.
It is necessary to count on an adaptive approach which allows to overcome these
monitoring limitations imposed by static designs. Thus, an adaptive approach
should apply not only to the behavior and structure of the system, but also to the
design of the monitoring system [17], specially when dealing with the management
of complex systems over long periods of time.

This paper presents Trace&Trigger, an agent organization adaptation frame-
work which consisting of a monitoring mechanism and an adaption assistant. The
monitoring mechanism helps agents detecting adaptation requirements dynamically
at run time and also feeds the adaption assistant, so that it can provide organiza-
tional agents with information related to the costs and benefits of carrying out an
adaptation at each moment of the execution.

The rest of the paper is organized as follows. Section 2 details previous work by
other authors in the field of monitoring and adapting multiagent systems. Section
3, describes in detail the adaptation framework itself. Section 4, shows an example
of how to incorporate the framework to an adapting agent organization and in
Section 5, the performance of the organization is evaluated. Finally, Section 6
presents the main conclusions of this work.

2 Monitoring Agent Organizations for Adaptation

Current approaches for organization adaptation propose different techniques for
monitoring the organization in order to figure out that an adaptation is required.
Some of these approaches define the monitoring process as an automatic response to
events that cause an adaptation such as the addition or deletion of a new role, agent,
etc. These events cause the agent organization to make the required adjustments
in order to fulfill its goals or to improve its performance. Other approaches provide
an implicit mechanism for reasoning about the current estate of the organization
so that it can decide that an adaptation is required.

Weyns et al. presents in [19] a middleware that provides support for the man-

2

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

122

agement of organization adaptation. In this approach the adaptation is carried out
in a distributed way triggered by external events (e.g. when an agents stops play-
ing a role) and changes in the environment (e.g. when the traffic state in a traffic
monitoring application changes). Adaptation purposes are specified by means of
rules (called laws), which describe how agents can join and leave the organization,
as well as how to restructure the organizations by merging and splitting organi-
zations. However, the specification of these rules is carried out at design time. A
similar problem is presented in other adaptation approaches such as [9, 18, 13],
which define adaptation requirements as rules that are specified at design time and
cannot be modified at run time.

Other works provide a more proactive decision mechanism for detecting that an
adaptation is required. An example of this support can be viewed in the work of
Campos et al. [7, 6]. In this adaptation approach the monitoring process is carried
out in a distributed way between assistant agents. Each assistant perceives partial
information about a cluster of agents and this information is later shared with other
assistants in order to make the decisions. However, in spite of being less reactive
than the above referred works, this is still a static monitoring approach, since the
information to be retrieved from agents and the other assistants is predefined and
cannot be changed while the system is running. In a similar way, the adaptation
approach presented in [14] allows the implementation of different agents that are
in charge of determining when an adaptation is required. As the monitoring is
implemented by agents, these can enter dynamically in the system or they can learn.
However, the monitoring mechanisms are not defined by adaptation approach level
and should be implemented by the system designer providing his own methods and
tools for the specific application.

Static mechanisms that do not consider changes regarding which information
has to be monitored may result useful in small application domains with a priori
well known organizational structures, but they would not be suitable for large-
scale or complex systems. As the number of agents in the organization and their
complexity grows, much more information than required is exchanged between
agents. Most of this information is not useful at every moment of the execution
and only contributes to considerably increase the traffic in the system, specifically
in approaches in which a middleware or centralizing entity is the responsible of
adaptation deliberation or implementation such as in [8]. Also, the internal logic
of agents can become very complex and costly. And finally, situations to trigger
an adaptation will not be suited to the system’s performance, preventing it from
correctly adapt to changing situations.

This work proposes the use of event tracing as a dynamic monitoring mechanism
in order to allow agents to specify which information they want to receive at each
moment of the execution. In this way, the amount and type of information which
each agent has to deal with to determine if an adaptation has to be done will
depend on the actual state of the organization and it will also vary as the system
adapts.

3

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

123

3 The Trace&Trigger Framework

The Trace&Trigger framework presented in this work has been designed to run on
the Magentix2 multiagent platform [11], a platform for open multiagent systems,
developed in Java. This platform provides a specific mechanism to obtain the
information necessary for any adaptation (Section 3.1). Also, specific mechanisms
have been incorporated to let agents determine the costs and benefits of performing
an adaptation at run time (Section 3.2), as well as the mechanisms required to carry
on the necessary actions to perform that adaptation (Section 3.3).

3.1 Magentix2 Event Tracing Support

In addition to the message-based communication layer, Magentix2 also provides an
event tracing based communication layer, which allows agents to throw and receive
trace events at run time. These event tracing facilities have been incorporated to
the platform according to the TRAMMAS abstract model and architecture [5].

The model establishes a publication/subscription mechanism, by which (1) any
agent can publish the types of events which it is able to generate (in advance of
generating them), and (2) any agent can subscribe to those trace events on which it
is interested (before starting to receive them). This publication/subscription mech-
anism is dynamic, in the sense that, at any time during the execution, agents can
change their publications and subscriptions. In order to give support to this publi-
cation/subscription mechanism, trace events are offered to agents in the system as
tracing services, in a similar way to traditional services offered in the multiagent
system. Agents have to send an ACL message to an specific agent, called Trace
Manager (TM), whenever they want to publish or unpublish their available tracing
services, as well as when they want to subscribe to a tracing service or to unsub-
scribe from it. The TM agent interacts with the Magentix2 communication layer
so that trace events thrown by an agent are only injected to the network if there is
any agent interested in receiving them and no trace event is received by any agent
unless it has previously requested it.

3.2 Organization Management Module

Magentix2 provides support to virtual organizations by means of the THOMAS
architecture [16], which defines flexible services that can be used by agents. This
architecture has been used to define the organization’s management, as well as the
services provided by agents. The THOMAS architecture is composed by a Service
Facilitator (SF) and an Organization Management System (OMS). The SF allows
for the registration and search of services provided by internal or external entities
by following Service-Oriented Architectures guidelines. The OMS is in charge of
the management of the organizations, taking control of their underlying structure,
services provided by the agents and their relationships. This module allows for the
development of open and dynamic multiagent systems, where agents are able to
dynamically enter and leave the system, change their services, their relationships
or the roles that they play in the organizations. A special agent, which is called
manager agent, is defined for managing the execution of each organization. This

4

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

124

agent has complete information about the current state of the organization and
has permission to interact to the SF and OMS for changing it.

3.3 Adaptation Module

Being in charge of coordinating every adaptation process in an agent organization,
the manager agent estimates the impact for each potential change. This impact
represents the costs/benefits that the application of an individual change (such
as the addition or deletion of a service) would cause, not only to those compo-
nents involved in the change, but also to other components in the organization.
Furthermore, it also shows the cost for carrying out the application of this change.

The Reorganization Facilitator service (RF) [2] is the service in charge of cal-
culating at any time which adaptation has the lowest impact for the system. Indi-
vidual impacts which are calculated by the organization manager agent are trans-
ferred to the RF in order to calculate the organization adaptation. This service
implements an adaptation mechanism based on organization transitions in order
to obtain the best adaptation from a current organization.

This process finds the organization whose transition impact is the lowest and
the sequence of steps required to achieve it. Several changes can be considered
by using the Multi-Transition Deliberation Mechanism (MTDM) presented in [4].
This mechanism calculates transitions in different dimensions (roles, services, re-
lationships, agent population) to other organizations with high expected utility
based on the cost for transition to these organizations. The MTDM decides which
transition is finally implemented and provides the sequence of changes required to
carry out the transition.

3.4 Adaptation Life-Cycle

Figure 1 shows how agents in the multiagent system interact with each other and
make use of the different facilities provided by the Trace&Trigger framework in
order to evaluate the state of the system at run time, calculate the costs and
benefits of any potential adaptation and carry on that adaptation.

The organization manager needs to obtain certain information referred to the
organization performance at run time. This organizational knowledge which the
manager agent possesses is used in order to estimate the adaptation impacts of
individual changes. The monitoring of the organization behavior is carried out by
means of the event tracing support provided by Magentix2. To share their relevant
information, agents in the organization publish their tracing services by sending
an ACL message to the TM. Those agents in the system which are interested in
that information, subscribe to those tracing services by requesting it to the TM via
an ACL message too. Since information required for adaptation deliberation can
change at run time, the organization manager agent sends requests to the TM agent
for subscribing or unsubscribing dynamically, according to these requirements. In
this way, the organization manager agent retrieves all the information it needs at
each moment in a transparent way for the rest of the agents.

Organizational agents may also require some runtime information regarding the
organization. These agents can also subscribe to tracing services and unsubscribe

5

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

125

�����

�����
	������

�����

��

	������

�����

��

������

������

�����

����������
���������

�	

� �

�������������������

���������

� �!���"#� ��!�#
��$#! �%&���#

����
��'�"	���(
�	����
"
�)��

���	�"�*�
��

	�
���
"
���	�
�"
���	���

���"	��������
��$��#+"& �!���"#� ��!�

(�%�$��#+"& �!���"#� ��!�
��$#! �$�"&�"& �!���"#� ��!�

(�#�$#! �$�", �-"& �!���"#� ��!�

���%&�&���
!��!���&���

���%&�&���
 �.��#&

�	

�	

Figure 1: Trace&Trigger framework

from them. In this way, organizational agents can carry out tasks that do not
affect other agents in the organization and that do not require the supervision of
the organization manager. With the information received from the system, the
organization manager has to determine which specific changes can be carried out.
In order to do so, the organization manager has to interact with the RF service,
which provides a sequence of changes that could be applied in order to improve
the organization performance. If there is any promising adaptation that could be
applied, the organization manager can interact with the OMS and the SF services
in order to carry out this adaptation.

4 Case of study

To help on the demonstration of how the Trace&Trigger framework can improve the
adaptation capabilities of an agent organization, a case of study based on a market
domain has been implemented. The following conceptual elements are considered
in this domain: factories, which generate products, and enterprises, which are able
to sell these products to consumers as well as providing stock to other enterprises.
In this case of study, the set of enterprises are designed as an agent organization
which objective is to make as much profit as possible, attending to the products that
are being sold by the enterprises. The organization can improve its performance
at run time by means of adapting to the needs and demands of the market.

The agent organization has been modelled following the notation presented in
[3]. At a given moment t, the agent organization is composed as a set of agents
At = {a1 . . . an}, which represent the different enterprises. Each agent ax is able to
provide a set of services St(ax), which are a subset of all of the services provided by
the organization: St(ax) ⊆ St = {s1 . . . sp}. Each agent ax that provides a service
sy at a given moment t is represented as providert(ax, sy) and has associated a
current stock stockt(ax, sy). This stock is the maximum number of products that
ax can sell or provide to other agents at time t. Each agent is connected to other
agents by acquaintance relationships which allow agents to share their stock to

6

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

126

other agents. An acquaintance relationship acquaintancet(az, ax) allows an agent
az being a stock provider of service sy for agent ax at time t. An agent ax that
provides a service sy at time t has associated a list of stock providers, represented
as SP t(ax, sy) = {az, . . . , an}.

At each time step, the organization passes through three states: Serve (state
S), Restock (state S′) and Reorganize (state S′′). At the beginning of each time
step, the organization remains on a state S for receiving consumer requests. In this
state, each agent ax receives a number of requests for each service sy it provides,
represented as requestst(ax, sy). Sales of a product sy carried out by a provider
ax at time t is represented as:

salest(ax, sy) =

{
requestst(ax, sy) if stockt(ax, sy) > requestst(ax, sy)
stockt(ax, sy) otherwise

These sales cause the stock to be reduced: stockt(ax, sy)− salest(ax, sy).
After receiving the consumer requests, the organization reaches the state S′, in

which agents have to restock their products depending initially on the sales that
were carried out in the previous state: restockt(ax, sy) = salest(ax, sy). Each agent
tries to restock their services through one of their stock providers.These providers
are requested sequentially until one of them agrees restocking the required amount.
If agent ax and stock provider az reach an agreement, the required stock is trans-
ferred from az to ax, incurring in a transportation cost for each individual product
represented as tcost(az, ax, sy). If any of the stock providers is able to restock its
demand, finally the agent requester ax can restock the product directly from the
specific factory F (sy) as a last resort. This requires a higher transportation cost
that is represented as tcost(F (sy), ax, sy).

The agent ax may in turn receive requests from other agent aw that requests
restock for a service sy. In this case, the agent ax only agrees to restock aw if the
amount requested is less than its current stock: stockt(ax, sy) ≤ restockt(aw, sy);
and if ax can restock in turn this amount from its provider (being az or F (sy)
according to the above paragraph). If the restock is agreed, then the available
stock of ax is reduced to stockt(ax, sy)− restockt(aw, sy) and the restock required
by ax is increased according to the stock required to be transferred transf t(ax, sy),
denoting this later term the amount of products transferred to other agents.

Once all the restock agreements are carried out, each agent ax restocks all the
services from one of its stock providers or from the factory. Finally, the last state
S′′ represents the state of adaptation deliberation. In this state, the organization
manager tries to distribute the services to agents in order to improve the organi-
zation’s profit. This profit is measured as the sales carried out by each agent ax
for each service sy depending on the sale price of the service price(sy) and the
transportation cost required to restock the sold amount:

P t(O) =
∑

ax∈At

∑
sy∈St

salest(ax, sy)× (price(sy)− tcost(provider(ax, sy), ax, sy)

The changes that are considered in this example are the addition and deletion of
services. Therefore, as we stated in Section 3.3, the manager must estimate the
impact of these changes.

7

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

127

4.1 Adaptation Impact Estimation

The impact estimation involves the benefits caused by the adaptation, the costs
associated to the adaptation, and how this adaptation would influence all the com-
ponents of the organization. Here we omit some details of the costs and benefits
specification [3] and only show the representation of the adaptation impact in the
market example. The addition of a new service in an agent ax implies to reduce the
maximum stock of the rest of the other services provided by this agent, from SMAX

n

to SMAX
n+1 , being n the number of services provided by the agent and SMAX a

constant defined for all the agents. We can estimate how the addition of a new
service would have affected the sales of each service sy during the previous period
between t−1 and t. These sales would have been limited to the new stock, causing
a sales opportunity cost defined as follows:

o salest(ax, sy) =

{
salest(ax, sy)− SMAX

n+1 if salest(ax, sy) >
SMAX
n+1

0 otherwise

This opportunity cost represents the sales of service sy that would not have been
carried out if another service would be added. The profit associated to this cost
P (o salestt(ax, sy)) depends on the price of the service and on whether these sales
have been restocked from a stock provider or from factory. Apart from this cost,
the addition of a new service would have affected the transferences to other agents
transf t(ax, sy). Similar to the sales opportunity cost, a transference opportunity
cost can be defined, which is also limited to the new stock:

o transf t(ax, sy) =

{
restockt(ax, sy)− SMAX

n+1 if restockt(ax, sy) >
SMAX
n+1

0 otherwise

The transference opportunity cost represents the restock to other agents of service
sy that could not be carried out if another service would be included. As we stated
previously, the restock of a service sy includes the sales of this service and the trans-
ferences to other agents. The profit associated to this cost P (o transf t(ax, sy))
depends on the difference between the transference cost from a stock provider agent
and the transference cost from factory F (sy).

In addition, if agent ax would have provided the new service sn, some esti-
mated sales estimatedt(ax, sn) would have been carried out. These sales have an
associated profit P (estimatedt(ax, sn)), which can be measured by considering the
transportation cost from factory, which represents the worse case. Furthermore,
other agents that also provide this service sn could be negatively affected if a new
agent is providing the same service. This can be represented as a sales opportunity
cost associated to these other agents o salest(az, sn)∀az , sn ∈ St(az). This cost
represents the possible sales lose in these agents. Finally, the addition of a new
service has an associated fixed cost for setting up this service, that can be repre-
sented as up(ax, sn). Aggregating all this information, the impact of adding a new
service sn to an agent ax is represented as IA(ax, sn):

P (estimatedt(ax, sn))−
∑

s∈St(ax)

(
P (o salest(ax, s))+P (o transft(ax, s)

)−
∑

az∈At

P (o salest(az, sn))−up(ax, sn)

In contrast than the addition of a service, the deletion of a service implies to increase
the maximum stock of the rest of the services, from SMAX

n to SMAX
n−1 , being n the

8

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

128

number of services provided by the agent. Thus, if the stock of a service sy during
the period between t− 1 and t have been dropped to 0, the agent manager could
estimate that a higher number of extra sales would be carried out with a bigger
stock. This value is represented as estimatedt(ax, sy), which has an specific profit
associated P (estimatedt(ax, sy)).

Furthermore, if an agent deletes a service sp already provided, the sales as-
sociated to this service salest(ax, sp) as well as the transferences to other agents
transf t(ax, sp) would have not been carried out. Therefore, the specific profit as-
sociated to these can be estimated depending on whether the service sp has been
restocked from factory or not. In addition, other agents that also provide this
service sp could be positively affected if an agent stops providing this service. This
can be represented as a negative opportunity cost associated to these other agents
o salest(az , sp)∀az, sp ∈ St(az). This represents the possible sales gain in these
agents. Finally, the deletion of a service has an associated fixed cost for turning
off this service, that can be represented as off(ax, sp). Therefore, the impact of
deleting a service sp already provided by agent ax is represented as ID(ax, sp):

∑

s∈St(ax)

P (estimatedt(ax, s))−
(
P (salest(ax, sp))+P (transft(ax, sp))

)−
∑

az∈At

P (o salest(az, sp)−off(ax, sp)

Depending on the amount of services provided by each agent, the manager considers
the possibility of adding a service if the agent provides less than δ services and any
of the services provided are restocked with more amount that the actually needed.
This would mean that it could be beneficial that the agent could add other service
and reduce the stock of the current ones. In contrast, the deletion of a service
is considered if the agent provides δ services or more, and the stock of any of
these services has dropeed to 0. This would mean that it could be beneficial to
delete some of the current services in order to increase the stock capacity of this
high demanded service. In order to deal with how all the information required to
adaptation deliberation is retrieved, in the following section we show the use of
monitoring mechanism by event tracing.

4.2 Event Tracing Specification

By using event tracing, agents can publish, request, and cancel subscriptions dy-
namically, in order to send and retrieve only the interesting information at each mo-
ment. To allow every agent to know the stock that is available in its stock providers,
each agent ax publish the stock of each service sy provided at the beginning of each
time step. This information is published by means of the STOCK AV AILABLE
event tracing. All the agents that are interested in receiving this information, i.e.
the agents that have associated ax as a provider of the service sy, request a sub-
scription to this event. Thus, each agent az only receives the specific information
that is required at each moment according to the following restriction:

TE.type = STOCK AV AILABLE ∧ TE.sender = ax, ax ∈ P t(az , sy)

In order to manage the information required for organization adaptation delib-
eration, the manager requests subscriptions to different events depending on the
services provided by each agent. On the one hand, the manager is interested in re-
ceiving information of those agents that can add a new service (those which provide

9

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

129

less than δ services) and have requested more restock than the actually required.
This is implemented by publishing the RESTOCK event tracing in the state S′.
By using this event tracing each agent publishes the information of the restock that
it is carrying out. Therefore, the manager is interested in receiving information of
those agents that can add a new service and that have requested a restock amount
that is higher than the required:

TE.type = RESTOCK ∧ TE.sender = ax, |St(ax)| < δ ∧ TE.value > τ

We define this restriction as a threshold τ , which represents the estimated stock
required for the next time step in order to satisfy the sales and restocks received in
the current time step, according to the stock that is still available: τ =

(
SMAX

n −
stock(ax, sy)

)
− stock(ax, sy). Regarding the deletion of services, the manager is

interested in receiving information about those agents that are able to delete a
service (those which provide δ services or more) and have sold all the stock of any
service. We can use the STOCK AV AILABLE event tracing published by agents
in order to obtain this information:

TE.type = STOCK AV AILABLE∧TE.sender = ax, |St(ax)| ≥ δ∧TE.value ≤ σ

Similar to the previous event tracing we define a threshold, which could be modified
at runtime, defined as σ = 0. Finally, the manager also needs to know how many
restocks are carried out from factories in order to calculate the profit depending on
the transportation costs. This is represented as events FACTORY REQUEST
that are published by agents and are sent when the agent carries out a request to
an specific factory:

TE.type = FACTORY REQUEST ∧ TE.sender = any

5 Evaluation

In this section we show different experiments to measure the performance of the
adaptation framework. For these experiments we define an organization composed
of ten agents. The distribution of services between agents is randomly generated in
which four agents provide two services s0 and s1 and six agents provide only one of
these services. The acquaintance relationships between agents are also generated
such that each agent has zero, one, or two different stock providers. The constant
SMAX used for dividing the stock between the services provided is 100, and the
initial requests received at each agent are randomly distributed between 30 and 70
requests. Then, in a period of time between two consecutive time steps, each agent
ax receives requests for each service sy according to the following formula:

requests(ax, sy)
t+1 = requests(ax, sy)

t × random(0.95, 1.05)

As can be observed, the number of requests received in two consecutive time steps
may change in an interval of ± 5%. However, in a real scenario, demand of services
may change at any time. Therefore, in order to simulate a more realistic and
dynamic execution, we varied the demand of services during the 50 time-steps.

10

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

130

Specifically, at t = 15 the service s1 becomes more demanded than s0, while at
t = 30 this demand changes again, becoming the s0 the most demanded service.

Figure 2 shows a comparison of the organization profit of an adaptive orga-
nization and a static organization. The adaptive organization represents an or-
ganization that is able to change the services provided by agents according to
the information monitored at runtime, while the static organization maintains the
initial configuration during all the iterations. The profit drawn in the figure repre-
sents the mean profit of 10 executions and the profit of a single execution with the
moments in which an adaptation is carried out.

 11000

 12000

 13000

 14000

 15000

 16000

 17000

 18000

 0 10 20 30 40 50

O
rg

an
iz

at
io

n
P

ro
fit

Time Step

Static (10 executions)
Adaptive (10 executions)

Static
Adaptive

Adaptation

Figure 2: Organization profit

We can observe that the adaptive organization tries to achieve a better distribu-
tion of services during the initial iterations, until achieving a profit round to 16000,
while the static organization profit remains at 13000. From t = 15 on, we can ob-
serve that the profit of the adaptive organization changes abruptly. This is caused
because the distribution of services was focused to well-suit the demand monitored
up to this moment. However, from this moment on, the demand of both services
changes and the profit obtained by this distribution is not the best performing. As
we can observe, the organization adapts itself in order to achieve a distribution of
services more suitable according to the demand increase of s1. These adaptations
cause that the organization achieves a distribution that provides a profit around
almost 18000. In contrast, the profit of the static organization remains similar due
to it is not able to achieve a better distribution of services. The same situation
occurs at t = 30, when the demand changes again. The former iterations from this
moment on, show a high profit decrease in the adaptive organization, but this or-
ganization quickly achieves a better distribution for improving the profit. It can be
easily observed that with different data demand, the adaptive organization should
allways try to find a better distribution of services. However, the contribution of
this paper is focused on how this information is obtained. Therefore, following we

11

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

131

evaluate we evaluate the overload caused by the information that is monitored by
using the Trace&Trigger framework.

In order to do this, the number of messages and events that are received by
the organization manager during the 50 iterations are shown in Figure 3 (a). In
this figure, a dynamic and static monitoring comparison is shown. As can be
observed, the messages received is greater without using event tracing, and the
differences between both approaches become higher according to the population
of agents increases. This proves that the information required to be monitored in
dynamic systems such as this case study, may be different along the organization’s
life span. Therefore, a dynamic monitoring in which only the required information
is retrieved, considerably reduces the traffic load in the system. Note that in the
static approach, the information required to be monitored must be specified at
design time and thus, a lot of information is transferred that finally is not used by
the manager in order to consider adaptation. Furthermore, despite in this example
we maintained the thresholds δ, σ, and τ constants, these could also be changed
at runtime in a transparent way for the agents, without requiering to inform these
agents every time the organization manager changes its monitoring requirements.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 10 20 30 40 50 60 70 80 90 100

M
es

sa
ge

s

Population

Static
Adaptive

Distributed

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 10 20 30 40 50 60 70 80 90 100

M
es

sa
ge

s

Population

Static
Adaptive

Distributed

Figure 3: Messages/events received: (a) in a single agent; (b) in the whole organization

In this example, the manager is the agent that receives the biggest amount of
information. Therefore, we also want to compare in Figure 3 (a) the performance of
a distributed approach, in which the information is not centralized in an individual
entity. This figure shows the messages received by a given agent in a distributed
approach. It can be observed that in this case, the number of messages received
is even lower. However, as there is not any entity that centralizes all the informa-
tion required for adaptation deliberation, all of the agents should receive a similar
number of messages in order to coordinate and synchronize the information. This
is important because an individual agent cannot adapt the services offered without
taking into account how this change can affect the whole organization.

In order to evaluate this, Figure 3 (b) shows the performance of the three ap-
proaches according to the messages exchanged in the whole organization. It can
be observed that the dynamic monitoring clearly outperforms the rest of the ap-
proaches. We can observe that the distributed approach presents an even higher
message traffic, which could overload the framework execution when the popula-
tion of agents increases. As it can be observed, the number of messages required

12

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

132

to coordinate the adaptation in the distributed system is more than four times
greater than the dynamic monitoring approach. In contrast, the differences shown
in Figure 3 (a) are much more lower than the differences in the traffic of the whole
organization.This could be a clear bottleneck when large systems are executed.

6 Conclusions

Monitoring an agent organization becomes essential to determine that an adap-
tation is required at an specific moment. Most monitoring techniques for agent
organizations which can be found in the literature either rely on predefined rules,
which cannot be at run time, or they assume that the information that has to
be monitorized does not change as the system executes. As a consequence, these
approaches are only appliable in small domains which involve a small number of
agents and a priory well known organizational requirements, but cannot be applied
in large-scale or complex domains.

The Trace&Trigger adaptation framework proposed in this work allows for the
specification at run time of the information that has to be retrieved from the
agent organization according to its state a each moment, so that the organization
can adapt to those changes. This monitoring is complemented by an adaptation
module, which allows to obtain the sequence of the most promising changes, as
well as the potential improvement and cost of carrying those changes out in order
to well-suit the organization to the current requirements.

Experimental results show how the performance of the agent organization im-
proves when using the proposed framework for adapting to changes in service de-
mands. The global profit obtained by the organization is higher when using the
proposed framework. In addition to that, the scalability of the system is improved
by reducing the traffic due to the monitoring process. Future lines of research
would include deeper studies on agent organizations, considering adaptation not
only to changes in services provided by each agent, but also considering changes in
the agent population or in the relationships among these agents provided by the
MTDM [4]. In addition to that, strategies for improving monitoring requirements
attending to past experiences will be studied.

Acknowledgments

This work has been partially supported by CONSOLIDER-INGENIO 2010 under
grant CSD2007-00022, and projects TIN2009-13839-C03-01 and TIN2011-27652-
C03-01. Juan M. Alberola has received a grant from Ministerio de Ciencia e Inno-
vación de España (AP2007-00289).

References

[1] H. Abdu, H. Lutfiyya, and M. A. Bauer. A model for adaptive monitoring configura-
tions. In Proceedings of the VI IFIP/IEEE IM conference on network management,
pages 37–1, 1999.

13

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

133

[2] J. M. Alberola, V. Julian, and A. Garcia-Fornes. Cost-aware reorganization service
for multiagent systems. In Proc. 2nd Int. Workshop ITMAS11, pages 60–74, 2011.

[3] J. M. Alberola, V. Julian, and A. Garcia-Fornes. A cost-based transition approach
for multiagent systems reorganization. In Proc. 10th Int. Conf. on Aut. Agents and
MAS (AAMAS11), pages 1221–1222, 2011.

[4] J. M. Alberola, V. Julian, and A. Garcia-Fornes. Multi-dimensional transition delib-
eration for organization adaptation in multiagent systems. In Proc. 11th Int. Conf.
on Aut. Agents and MAS (AAMAS12), page In Press, 2012.

[5] L. Búrdalo, A. Terrasa, V. Julián, and A. Garćıa-Fornes. TRAMMAS: A Tracing
Model for Multiagent systems. In First International Workshop on Infraestructures
and Tools for Multiagent Systems, pages 42–49, 2010.

[6] J. Campos, M. Esteva, M. Lopez-Sanchez, J. Morales, and M. Salamo. Organi-
sational adaptation of multi-agent systems in a peer-to-peer scenario. Computing,
91:169–215, 2011.

[7] J. Campos, M. López-Sánchez, and M. Esteva. Assistance layer, a step forward in
Multi-Agent Systems Coordination Support. In International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pages 1301–1302, 2009.

[8] G. Carvalho, H. Almeida, M. Gatti, G. Vinicius, R. Paes, A. Perkusich, and C. Lu-
cena. Dynamic law evolution in governance mechanisms for open multi-agent sys-
tems. In 2nd Workshop on Software Engineering for Agent-oriented Systems, 2006.

[9] S. DeLoach, W. Oyenan, and E. Matson. A capabilities-based model for adaptive
organizations. Autonomous Agents and Multi-Agent Systems, 16:13–56, 2008.

[10] V. Dignum, F. Dignum, and L. Sonenberg. Towards dynamic reorganization of agent
societies. In In Proc. of Workshop on Coordination in Emergent Agent Societies,
pages 22–27, 2004.

[11] R. L. Fogués, J. M. Alberola, J. M. Such, A. Espinosa, and A. Garcia-Fornes. To-
wards dynamic agent interaction support in open multiagent systems. In Proc. of
the 13th Int. Conf. of the Catalan Association for Artificial Intelligence, volume 220,
pages 89–98, 2010.

[12] Z. Guessoum, M. Ziane, and N. Faci. Monitoring and organizational-level adaptation
of multi-agent systems. In In Proc. of AAMAS04, pages 514–521. ACM Press, 2004.

[13] M. Hoogendoorn and J. Treur. An Adaptive Multi-agent Organization Model Based
on Dynamic Role Allocation. In Proc. of the IAT ’06, pages 474–481, 2006.

[14] J. F. Hübner, J. S. Sichman, and O. Boissier. Using the MOISE+ for a Cooperative
Framework of MAS reorganisation. In SBIA’04, volume 3171, pages 506–515.

[15] M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technology: Computing
as Interaction (A Roadmap for Agent Based Computing). University of Southamp-
ton, 2005.

[16] M. Rebollo, A. Giret, E. Argente, C. Carrascosa, J. M. Corchado, A. Fernandez, and
V. Julian. On the road to an abstract architecture for open virtual organizations. In
Proc. of the 10th Int. Work-Conf. on Art. Neural Networks, pages 642–650, 2009.

[17] P. L. Ringold, J. Alegria, R. L. Czaplewski, B. S. Mulder, T. Tolle, and K. Burnett.
Adaptive Monitoring Design for Ecosystem Management. Ecological Applications,
6(3):745–747, 1996.

[18] Z.-g. Wang and X.-h. Liang. A Graph Based Simulation of Reorganization in Multi-
agent Systems. 2006.

[19] D. Weyns, R. Haesevoets, A. Helleboogh, T. Holvoet, andW. Joosen. The MACODO
middleware for context-driven dynamic agent organizations. ACM Transaction on
Autonomous and Adaptive Systems, 5:3:1–3:28, February 2010.

14

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

134

Multi-Agent Oriented Reorganisation within the
JaCaMo infrastructure

Alexandru Sorici1,2, Gauthier Picard2, Olivier Boissier2, Andrea Santi3,
and Jomi F. Hübner4

1”Politehnica” University of Bucharest , Dpt of Computer Science and Engineering , Bucharest,
Romania, alex.sorici@cti.pub.ro

2Ecole Nationale Supérieure des Mines , FAYOL-EMSE, LSTI , F-42023 Saint-Etienne,
{picard,boissier}@emse.fr

3DEIS, Alma Mater Studiorum , Universita di Bologna , 47521 Cesena (FC), Italy,
a.santi@unibo.it

4DAS-UFSC , Federal University of Santa Catarina, CP 476, 88040-900 Florianópolis SC, Brazil,
jomi@das.ufsc.br

Abstract

Current IT applications are often meant to be used in complex and highly dynamic

environments. Multi-Agent Oriented technologies and related programming languages

offer high level abstractions that can ease the realisation of such applications. How-

ever, providing the means to handle adaptation and endogenous reorganisation, is still

a challenging issue even if multiple state-of-the art works propose reorganisation mod-

els at the agent level. Adopting a multi-agent oriented approach, in this paper we define

a dedicated artifact (tool) that agents use to design and implement transitions to new

organisations. The agents’ compliance with a specific organisation specification that

we formulate helps regulate and coordinate this reorganisation process. We show how

this proposal has been realised within the JaCaMo multi-agent oriented programming

platform and how this constitutes a step toward really adaptive systems.

Keywords: multi-agent oriented programming, reorganisation, organisation centred

multi-agent systems

1 Introduction
Current applications are more and more meant to be used in complex, distributed and

highly dynamic environments. Among others, their features stress heterogeneity, context-

awareness, anticipation of users’ desires and absence of a central control. So, given this

context, adaptation becomes the key to face the dynamics and the evolution of situations

in which these applications operate. Multi-agent technologies and abstractions, and in

particular organisation oriented ones, can provide concepts and tools that give possible

answers to this issue. However, even if multiple works in the state-of-the art propose

several reorganisation models at the agent level for dealing with system adaptation, it is

still an open issue how to put these models in practice: performing the changes at the right

time, in the right order, without disrupting the functioning of the entire organisation.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

135

In this paper we introduce a proper infrastructure for managing reorganisation us-

ing a multi-agent oriented programming approach based on the JaCaMo [3] framework.

The JaCaMo framework proposes a novel multi-agent oriented programming approach

and a related development platform for engineering and executing distributed and open

software systems by integrating three multi-agent programming dimensions, namely the

agent, environment, and organisation levels in a synergistic way. In JaCaMo the use of

organisation-centric abstractions (e.g. roles, groups, norms, missions) offers the possibility

to express and impose cooperation schemes that govern the functioning of the autonomous

agents in the environment. Currently agents have the means to inspect and reason about

the organisations in which they partake. However, for being able to support endogenous

adaptation 1 of systems by using systematic reorganisational processes, agents, besides

abilities to reason on organisational constructs, must also have the proper means to coor-

dinate and cooperatively modify the organisation as soon as they deem it to be improper

for the current objectives. In this paper, we propose to realise such a support by using the

different first class abstractions related to environment and organisation that are part of a

multi-agent programming approach. Our contribution consists in a tool, the reorganisation

artifact, and the definition of an organisational specification that regulates and guides agent

activity during reorganisation (an organisation for reorganisation). We use and extend the

JaCaMo platform with these different elements.

The remainder of the paper is organised as follows: In Section 2 we provide the

reader with the required background for the JaCaMo multi-agent oriented programming

approach upon which is realized our reorganisation proposal. Section 3 presents the ra-

tionale and general overview of the envisioned reorganisation process and Section 4 and

Section 5 introduce the JaCaMo based infrastructure used to support it. In Section 6 we

compare our approach with existing related works in literature. Finally, Section 7 con-

cludes the paper.

2 Background
This section provides the required background needed for properly introducing our reor-

ganisation infrastructure. First, we briefly present the JaCaMo framework and its pro-

gramming model (Section 2.1), and then we specifically focus on organisation program-

ming in JaCaMo (Section 2.2) for introducing the founding concepts used in the proposed

multi-agent oriented programming of reorganisation.

2.1 The JaCaMo Multi-Agent Programming Framework
JaCaMo [3] is a newborn multi-agent oriented conceptual framework and platform, which

provides high-level first-class support for engineering Multi-Agent Systems (MAS) taking

into account agent, environment, and organisation dimensions in synergy. The frame-

work integrates three existing agent-based platforms – i.e. Jason [4], CArtAgO [10], and

Moise [8] – by defining in particular a semantic link among concepts of the different

programming dimensions at the meta-model and programming levels, in order to obtain

a uniform and consistent programming model aimed at simplifying the combination of

1Endogenous adaptation refers to an adaptation process realized by the agents participating to the organisation

themselves.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

136

those dimensions when programming a MAS [3]. A JaCaMo multi-agent system (i.e., a

software system programmed in JaCaMo) is given by an agent organisation programmed

in Moise, organising autonomous agents programmed in Jason, working in shared and

distributed artifact-based environments programmed in CArtAgO.

When developing a MAS in JaCaMo environment programming is exploited to de-

fine the computational layer encapsulating functionalities and services that agents can

use/explore/share at runtime [14]. Being based on the A&A meta-model [10], in CArtAgO
and hence in JaCaMo, such software environments can be designed and programmed as a

dynamic set of computational entities called artifacts, collected into workspaces, possibly

distributed among various nodes of a network. In order to be used by the agents, each

artifact provides a usage interface composed by a set of operations and observable prop-
erties. Operations correspond to the actions that the artifact makes it available to agents to

interact with such a piece of the environment; observable properties define the observable

state of the artifact, which is represented by a set of information items whose value (and

value change) can be perceived by agents as percepts.

Agents obviously encapsulate the control and decision-making part of the application.

Based on Jason an agent in the JaCaMo framework is programmed as an entity composed

of a set of beliefs, representing agent’s current state and knowledge about the environment

in which it is situated, a set of goals (either private or bound to organisational goals), which

correspond to tasks the agent has to perform/achieve, and a set of plans which are courses

of action, either internal or external (mapped into artifacts’ operation), triggered by events,

and that agents can dynamically compose, instantiate and execute to achieve goals.

Organisation programming specifies and manages the overall governance strategy of the

system. The following section describes how it is programmed based onMoise.

2.2 Organisation Programming in JaCaMo

In JaCaMo, an organisation program based on the Moise Organisation Modeling Lan-

guage (OML) consists in an organisation specification (OS) stating the global structure,

functioning and norms to achieve the global purpose for which the organisation is de-

fined. The OS (OS = 〈S S , FS ,NS 〉) consists in two independent specifications –structu-

ral specification (S S) and functional specification (FS)– bound together by the normative

specification (NS) (see [8] for further details):

• The S S (S S = 〈R,�, rg〉) declares a set of roles R possibly connected by an in-

heritance relation � and a root group rg specification. A group specification can

define subgroups, the set of roles contained in the group and that could be con-

nected to each other by communication, authority and/or acquaintance links. Role-

compatibility relations, agent-cardinalities for role adoption or group participation

are used to constrain this setting during the life cycle of the organisation.

• The FS (FS = 〈M,G, S 〉) is focused on the definition of plan-based strategies

(or social schemes, S) for the achievement of collective inter-dependent goals G
grouped into missions2 M. The organisation state evolves according to the missions

the agents commit to and the goal achievements.

2A mission represents a consistent grouping of collective or individual goals.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

137

• The NS defines a set of norms (norm = 〈id, c, ρ, dm,m〉) that binds SS and FS

together by the way of roles and missions. When the norm conditions c holds, any

agent playing a role ρ has the deontic modality dm to commit to mission m.

Given the OS the set of agents A build what we call an organisation entity (OE) which

current state can be described as OE = 〈OS , A,GI, S I,O〉. GI is the set of running group

instances, i.e. groups of agents playing roles according to the specifications stated by the

S S . S I is the social schemes instances S I, i.e. goals under achievement by the agents

given the FS specification, following the current set of obligations O resulting from the

activations of the norms stated in the NS . In order to help the agents to manage in a

distributed way the frequent changes of the OE, a set of dedicated artifacts have been

define (GroupBoard and SchemeBoard) to provide the agents with the proper tools to

manage the OE. Such organisational artifacts are created for each GI or S I in the OE.

• Each group instance of GI is associated to a dedicated GroupBoard artifact that

manages its current state: current set of agents in the group, playing the roles that

are specified as part of that group type. This artifact provides the agents with op-

eration for adopting or leaving a role, adding or removing a social scheme within

this instance of group. Any agent that focuses on this artifact may get observable

properties or different events pertaining to the life cycle of this group (e.g. which

agent plays which role inside the group, number of roles that could be adopted, etc).

• Each social scheme instance of S I is managed by a SchemeBoard artifact. This

artifact is connected to the corresponding GroupBoard managing the group instance

in charge of its achievement. Thus all the agents participating to that group instance

may be involved in the achievement of the goals managed by that scheme instance

according to the obligations created from the activation of the norms stated in the

NS . Using the operations of that artifact, agents can commit to a mission, leave it

when finished, or can state that a given goal has been achieved. The SchemeBoard’s

observable properties provide the agents with the evolution of the coordinated goal-

solving process (achieved goals, violated obligations, etc).

The Moise-based specifications of the organisation themselves are part of the information

made observable by organisational artifacts to agents. This means that there is the potential

for agents that understand the Moise OML to reason about the organisations in which they

partake and therefore to change them at runtime. This allows for complex on-the-fly re-

structuring of computational systems to be done at very high level.

3 Organisation Specification for Reorganisation
It is reasonable to think that adaptation of an application behaviour, in response to changes

in the environment, requires a carefully selected and coordinated sequence of specific

actions like monitoring, logging, reorganisation plan design, selection and implementa-

tion [7]. Being considered as an endogenous process, each of these actions will be carried

out by one or several agents of the system 3. As it is done for the coordination of the

3Depending of the application, agents taking part to the reorganisation may be dedicated agents or domain

agents embedding particular reorganisation knowledge and skills

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

138

application, a dedicated organisation specification can be defined to coordinate and super-

vise the reorganisation process itself. Following the organisation programming proposed

in the JaCaMo framework, we program this organisation using theMoiseOML, installing

a kind of meta-level control of the reorganisation process itself. For that purpose, we have

extended the organisation for reorganisation proposed in [7]. We describe it below along

the structural, functional and normative dimensions.

����������
�	

��
����
�����

������
���

�����������
��������

�	

��

��

�������������
�	

����
����
��

�
���������
��

��������������

�� ����	

� !"����
�	

�� ��
�
�	

Figure 1: Graphical representations of the Reorganisation Organisation in terms of (i)

Reorganisation Group and (ii) Reorganisation Social Scheme

3.1 Reorganisation Group
Figure 1-Reorganisation Group depicts the structural specification of the Reorganisation

Group governing the reorganisation. We can immediately observe that, according to the

names of the roles, the structure depicts the different coordination functionalities that are

required to monitor, diagnose, design and install a new organisation from an existing one.

All the roles are part of this group.

The OrgManager role is compatible with the Historian role. The Designer is spe-

cialized in a role that can be played by agents of the application domain (compatibility

link between OrgParticipant with soc where soc is the root role of any structure of any

organisation). It is also specialized into a ReorgExpert which is not compatible with any

other role, forcing thus agents who adopt this role to have not adopted a role in another

organisation. Let’s note that the agents playing one of these roles may communicate with

each other (reflexive communication link attached to the Reorg role and communication

link between OrgManager and Reorg roles).

3.2 Reorganisation Social Scheme
The entire reorganisation process (see Figure 1 Reorganisation Social Scheme) consists in

a monitoring phase followed by design, selection and finally implementation phases. In

order to fully coordinate and implement the reorganisation process, we have extended

the initial functioning presented in [7] by decomposing the implementation goal into

OEStop, OEChange and OEStart subgoals, executed in sequence. The OEStop goal will

be achieved when the OE will be stopped, i.e. targeted agents will stop pursuing collec-

tive goals or even leave their roles completely. The OSChange goal will be achieved when

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

139

all required modifications to the structural, functional or normative specifications will be

done. Finally, the OEStart goal will be achieved when the new OE will be effectively

created, informing targeted agents of their new assignments (what role(s) to play, what

goal(s) to pursue etc).

3.3 Normative Specification for Reorganisation
The Normative Specification as depicted in Table 3.3 assigns the roles to missions with a

set of norms consisting in obligations.

Condition Deontic Role Mission
Application Specific obligation OrgManager m1
Application Specific obligation Monitor m2
Application Specific obligation ReorgExpert m3
Application Specific obligation OrgParticipant m4
Application Specific obligation Selector m5

Table 1: Normative Specification of the reorganisation process. Conditions are not speci-

fied here since they are application dependent.

As stated by the NS , the OrgManager is the role that has to instantiate the organi-

sation and supervise the whole process (in charge of mission m1). The Historian is in

charge of keeping a list of all the changes that the organisation has gone through – a kind

of useful information for the monitoring and design phases (e.g. role adoption, mission

commitments, role creation, change in the cardinalities). The Designer contains the com-

mon properties for designers. The entire reorganisation process is expected to start when

the agent(s) playing the Monitor role signal(s) a fault with the current organisation. Then,

during the design stage, both agents playing Reorganisation Experts and Organisation
Participants can come up with solutions for the identified problem. Agents playing the

Selector separate role will then have to evaluate the best proposal out of those made by

the designers. At the end, the agent in charge of the OrgManager will supervise the actual

transition from the old organisation to the new one (cf. goal implementation within m1).

In the following section, we describe how we use the Artifact programming approach

promoted by the JaCaMo platform to enrich the artifact-based organisation management

infrastructure with a specific artifact to support the agents in the achievement of the design
and implementation goals of the reorganisation social scheme.

4 Reorganisation Artifact
In the JaCaMo platform, organisation management is supported by a set of dedicated

GroupBoard and SchemeBoard artifacts. Thus, the execution of the reorganisation pro-

cess, as specified in the previous section, is de-facto managed by a GroupBoard for adopt-

ing/leaving roles defined in the Reorganisation Group and a SchemeBoard for commit-

ting to missions, achieving goals according to the specifications given in the Reorgani-
sation Social Scheme. These artifacts provide the right operations for managing the ex-

ecution of the generic and abstract reorganisation process. In order to complement this

definition with an adapted Design and Implementation plan taking into account the real

conditions in which the new organisation has to be implemented, we propose to enrich

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

140

this artifact-based organisation management infrastructure with a ReorgBoard artifact. It

will help the agents to build and execute organisation implementation plans. This will con-

stitute the base infrastructure that future applications can use in order to achieve adaptive

behaviours.

After a global description of this artifact, we describe in detail the dynamic structure to

handle the organisation implementation plan in the system and finaly give the description

of the different operations that the agents are provided with.

4.1 ReorgBoard Artifact
The management of the organisation for reorganisation as defined in the previous section

is set in practice in the JaCaMo framework with the creation of (i) a GroupBoard to

manage the created ReorgGr instance and (ii) a SchemeBoard artifact to manage the

execution of the reorganisation social scheme. The basic operations for changing the OE
(e.g. adopting a role, committing to a mission, etc) are de facto provided to any member

of a group instance (resp. scheme instance) via the corresponding operations offered by

GroupBoard (resp. SchemeBoard).

One or several of these actions changing the OS and/or OE levels of the organisation

must be coordinated: agents playing a role must leave that role at a certain time, agents

committed to a mission also, so on and so forth. The sequence in which it has to be done is

strongly dependent on the application, on the features of the current running organisation,

etc. The achievement of the design and implementation goals of the reorganisation process

(see Fig. 1) require thus a specific attention. In order to help the agents in this process, we

define a new kind of artifact, called ReorgBoard (cf. Fig. 2). This artifact is created by

the agents playing the OrgManager role, every time the monitoring is achieved, launching

the achievement of the goal design for a particular fault (cf. Fig. 1).

Achieving the design goal consists in defining a coordinated set of reorganisation

changes to be done both at the OS and/or OE levels in the organisation for each of the

subgoal of the implementation goal. This coordinated set of changes builds what we call

in the sequel an implementation plan ImplPlan. The ImplPlan is stored in the ReorgBoard
artifact and is made accessible to the agents via a set of observable properties of this ar-

tifact. This way, the agents in charge of implementing the new organisation will get the

implementation plan as a belief and will execute it. Complementary to this observable

property, the ReorgBoard usage interface proposes two distinct sets of operations to help

the agents in the achievement of those two goals (see Sec. 4.3).

In the following subsections, we will first describe the implementation plan structure

and then describe the different operations that are provided by this artifact.

4.2 Implementation Plan
The different reorganisation changes that have to be executed to install a new organisa-

tion may be numerous and interdependent, addressing different group instances or social

scheme instances. This is why we define a hierarchical structure (ImplPlan) taking into

account precedence constraints and targeted GroupBoard or SchemeBoard artifacts on

which they have to operate (changes on a group instance, on a scheme instance).

Each of the three subgoals OEStop, OSChange, OEStart of the implementation goal of

the Reorganisation Social Scheme (cf. Fig. 1), will be refined by the agents into a specific

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

141

ReorgBoard

ImplPlan = {OEStop, OEChange, OEStart}

newStep

leaveRole

playRole

startImplPlanExecution

nextStepInPlan

\\\

ReorgPlan
ReorgPlan

ImplStep

ReorgPlan
ReorgPlan

BoardPlan

ReorgPlan
ReorgPlan

ImplAct...

Figure 2: ReorgBoard Observable Properties (rectangles) and partial view of the opera-

tions (circles)

implementation plan ImplPlan according to the condition in which the new organisation

has to be deployed. An implementation plan ImplPlan is a structured set of implementation

actions ImplAct (see Fig. 2 for the implementation plan structure):

• An OEStop ImplPlan holds the coordinated set of actions to make the target agents

stop their current work in the current organisation.

• An OSChange ImplPlan contains the coordinated set of actions that modify the OS

which is governing the OE.

• An OEStart ImplPlan contains the coordinated set of actions that allow the agents

playing the corresponding roles to re-instantiate a new OE according to the modified

OS (e.g. telling target agents to play newly created roles, to commit to newly created

missions, etc.)

An implementation action ImplAct defines an expression refering to an GroupBoard
or SchemeBoard operation for changing the organisation. As mentioned, these different

ImplAct actions that have to be executed to transit to a new organisation can be interde-

pendent. To manage these dependencies, ImplPlan is decomposed in different implemen-

tation steps ImplStep which can be executed in sequence. An ImplStep can further be

decomposed into board plans BoardPlans that group together implementation actions tar-

geted at the same GroupBoard or SchemeBoard. For instance, implementation actions

that are targeted to agents that play roles in the same group instance are grouped into

the same BoardPlan corresponding to the GroupBoard that manages that group instance.

Implementation actions that refer to changes in goals/missions are grouped in different

BoardPlans according to the SchemeBoards that manage those goals/missions.

Implementation actions have different interpretations according to the organisation

level they address:

• An OS level ImplAct contains an expression refering to an operation altering the OS

(e.g. addRoleObligation, changeRoleCardinality etc), targeted to a GroupBoard or

a SchemeBoard involved in the management of the running OE.

• An OE level ImplAct consists in an expression refering to an operation of a group-

board/schemeboard that a recipient agent has to perform (e.g. leaveMission, play-
Role etc). The execution of the action sends a request to the target agent to execute

the change (cf. Sec. 5 for discussion on this notification mechanism).

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

142

OE level ImplAct actions are to be executed by autonomous agents. In order to control

the way the action it refers to has to be executed by the agent, a “strength” modality is

used to express the importance of the associated command and the delay with which it

will have to be carried out:

• regimentation: immediate execution of the operation refered by the action. The

agent it is addressed to is shunt: the action is directly executed in the corresponding

GroupBoard or SchemeBoard.

• obligation: execution of the operation refered by the action as soon as the targeted

agent has finished off any remaining goals from previous commitments.

• permission: execution of the operation refered by the action is permitted, but not

required. It is mainly used when the new organisation does not depend on the suc-

cessful completion of the operation.

• interdiction: interdiction to execute the operation refered in the action during the

current reorganisation process.

4.3 Implementation & Design Operations
In order to build and manipulate the structure of the implementation plan, the ReorgBoard
artifact provides the agents with a set of operations for the design and for the execution of

such plans.

Design Operations. The operations for the design are used to create the structure of a

ImplPlan, adding steps, boardplans. For instance, the operation newStep(p, st): cre-

ates a new ImplStep st within the ImplPlan p, where p ∈ {OEStop, OSChange, OEStart}.
This command binds the variable st with the step ID that can be used to reference the

step in future commands. The table 2 shows the set of operations used for the addition of

implementation actions. From the features of these actions, we can distinguish OS Level

and OE Level ReorgBoard operations:

• An OS Level reorganisation design operation has the following syntax:

operation(plan, step, target, type, ob ject)

It adds the implementation action “operation(type, ob ject)” in the BoardPlan target
belonging to ImplStep step of ImplPlan plan.

For instance, the operation addRole(p, st, A, G, ρ) adds an implementation

action for adding a new role ρ in the group definition G . It is included in the Board-
Plan A, member of step st, part of the ImplPlan p.

• An OE Level reorganisation design operation has a syntax similar to the OS level

design operation. The strength modality is added. Such an operation adds ImplAct
in ImplBoard addressing OE Level changes.

For instance, the operation leaveMission(p, st, A, sm, ag, mi, sch) adds

to the BoardPlan A in step st, of the ImplPlan p, an implementation action that re-

quests agent ag to stop working on the goals included in mission mi under execu-

tion in scheme instance of type sch managed by SchemeBoard instance A with the

strength modality sm .

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

143

OS Level Operations Description

addRole add a role to a group specification

removeRole remove a role from a group specification

addMission add a mission to a scheme specification

removeMission remove a mission from a scheme specification

addRoleObligation add a normative assignment of a mission to a role

removeAllRoleObligations clear a role of all its normative obligations

changeRoleCardinality change the min..max interval of agents playing this role

changeSubgroupCardinality change the min and max number for the instances of a subgroup

removeGroup remove the given group specification from the organisation

removeScheme remove the given scheme specification from the organisation

OE Level Operations Description

leaveRole target agent must leave the specified role

playRole target agent must start playing the specified role

leaveMission target agent must discontinue pursuing the goals in given mission

commitMission target agent must commit to solving goals in given mission

Table 2: OE and OS Levels Reorganisation Design Operations

Implementation Operations. During the achievement of the implementation goal the

ReorgBoard artifact acts as a coordinating entity. To this aim, it provides the following

operations to the agent committed to the achievement of the implementation goals:

• startImplPlanExecution(p): triggers the execution of the ImplPlan p, corre-

sponding to the execution in sequence of the different ImplStep defining the plan.

• nextStepInPlan(p): starts the execution of the next step within the ImplPlan
p, once all the commands in the current step have completed. This last operation

allows the OrgManager working with the ReorgBoard to start a new step once it

has perceived the notifications that all the actions dictated by the previous commands

have been performed.

Having described the internal structure of the ReorgBoard and the usage interface it

exhibits, the next section will detail the interactions that exist between the ReorgBoard,

the agents and the OrgArtifact instances to which it connects during the reorganisation

process.

5 Multi-Agent based Reorganisation
In the previous section we have presented the ReorgBoard as an instrument that agents can

use to achieve the design and implementation goals of the reorganisation process governed

by the ReorgGr reorganisation group and the reorganisation social scheme described in

Sec. 3. In this section, we bring together the pieces of the jigsaw and describe the use of

this artifact in the global context of a reorganisation. We describe the different interactions

that take place between the ReorgBoard, the agents involved in the reorganisation and

GroupBoard or SchemeBoard instances that are impacted by the reorganisation (see.

Fig. 3). We focus here on the design and implementation phases that are the core of the

paper 4.

4For page limitation reasons, we cannot describe the full implementation and application. Interested readers

may refer to http://jacamo.sourceforge.net/?page_id=87 or [12]

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

144

OrgManager Designer

+ implStep
+ BoardPlan

 leaveMission(...)
 ...
 leaveRole(...)
 ...
 newStep(plan,step)
 startImplPlanExecution(p)
 nextStepInPlan(p)

ReorgBoard

Group A GroupBoardGroup A GroupBoard

...

 leaveRole(p, st, A, sm, ag, ro, A)

ag1

ag2 Scheme Sch SchemeBoardScheme Sch SchemeBoardh

...

 leaveMission(p, st, Sch, sm, ag, mi, Sch)

manager

designer
1. newStep(p,st1)

2. newStep(p,st2)

3. startImplPlanExecution(p)

4. nextStep(p)

5. nextStep(p)

5.1. admCommand(leaveRole(p, st2,A,sm,ag1,ρ1,A))

4.1. admCommand(leaveMission(p,st1,Sch, sm, ag1,m1,sch))

4.2. admCommand(leaveMission(p,st1,Sch, sm, ag2,m2,sch))

4.2.1. change(leaveMission, obligation, ...)

5.1.1. change(leaveRole, obligation, ...)

4.3. await change(not(commitment(ag1, m1, sch), ...))

play role

use

role

le
ge

nd

observe

 operations

attributes

Artefact

agent

5.2. admCommand(leaveRole(p, st2,A,sm,ag2,ρ2,A))

1.1. leaveMission(p,st1,Sch, sm, ag1,m1,sch)

1.2. leaveMission(p,st1,Sch, sm, ag2,m2,sch)

4.1.1. change(leaveMission, obligation, ...)
5.2.1. change(leaveRole, obligation, ...)

Figure 3: Collaboration diagram of the reorganisation process.

5.1 Reorganisation Design
In order to achieve the design goal, the agents playing the OrgManager role and the other

agents playing the Designer role use the ReorgBoard’s usage interface to construct the

content of each implementation plan (steps, boardplans and implementation actions) by

using different reorganisation design operations (cf. Table 2).

As an example, let’s consider dynamic role (re)allocation in rescue teams. In such a use

case, a role shift implies a sequence of actions ranging from the leaving of current roles

(OEStop), to possible structural modifications (OSChange - e.g. change in minimum or

maximum cardinalities of agents playing a given role) and adoption of the new roles (OES-
tart). Note that the knowledge and strategy (e.g. negotiation or machine learning) used

to come up with the proposed role shift is particular to each Designer agent. The Re-
orgBoard and its reorganisation design operations act as the mechanism used by agents to

implement the required changes.

To show the exact use of the artifact in the context of reorganisation, let’s focus on the

OEStop subgoal of a hypothetical role shift, where the agent in charge of the design de-

cides that, in the current ImplPlan p, the agents (ag1 and ag2) belonging to group A have

to leave their roles (ρ1 and ρ2).

Since, before leaving their roles, the agents must first leave their missions, the agent

playing the Designer role defines two ReorgSteps (newStep(p, st1) and newStep(p,

st2)), which will be executed in sequence: the first one contains an ImplAct for the given

agents to stop their work on the goals contained within the missions they are responsible

for, whereas the second one comprises actions that tell those two agents to leave their

current role (see. 1 and 2 on Fig. 3).

The commands to leave the missions are included in the ImplStep referenced by st1.

Both actions are grouped under the BoardPlan that concerns the SchemeBoard instance

(Sch) managing those missions. To do this, the designer agent invokes the following op-

erations ((see. 1.1 and 1.2 on Fig. 3): leaveMission(p, st1, Sch, sm, ag1, m1,

sch) and leaveMission(p, st1, Sch, sm, ag2, m2, sch), which bare the same

semantics as those described in section 4.3.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

145

The commands to leave the roles are contained in the second ImplStep. The agents

ag1 and ag2 being members of the same group, the actions are put together under the

same BoardPlan that will be sent to the GroupBoard instance managing group A. The

designer agent achieves this by calling leaveRole(p, st2, A, sm, ag1, ρ1, A) and

leaveRole(p, st2, A, sm, ag2, ρ2, A) on the ReorgBoard artifact. With this, the

design process for the considered OEStop implementation subgoal is completed 5

5.2 Reorganisation Implementation
The achievement of the implementation goal consists in the direct interaction of the agent

playing the OrgManager role with the ReorgBoard artifact. Using the different imple-

mentation operations, it ensures the proper and ordered execution of the implementation

actions contained in each of the implementation plans produced during the achievement

of the design goal.

Pursuing with our previous example of the OEStop implementation plan p, the agent

OrgManager uses the startImplPlanExecution(p) operation to start the first step (st1)

of the ImplPlan. When handling the step, the ReorgBoard executes the list of BoardPlans,

in the case of st1, those directed to the SchemeBoard instance Sch managing missions m1

and m2. The ReorgBoard links itself to the receiving OrgArtifact instance in order to send

all of the implementation actions included in the BoardPlan.6

When an OrgArtifact instance receives a ImplAct, it looks at the level this action is situated

(OE Level or OS Level).

• In case of an OS level action, the changes contained within the action directly alter

the internal specifications of the organisational artifact instance.

• In case of an OE level action, such as in our example, a first notification is done

between the ReorgBoard artifact to the GroupBoard/SchemeBoard concerned by

the change. A second notification is then done by this latter artifact, informing

the targeted agent (e.g. ag1, ag2) of the pending change stated by this command.

As part of the step st1, agent ag1 would, for instance, receive an expression like:

change(leaveMission, obligation, ag1,m1, sch) (see. 4.1, 4.1.1 and 4.2, 4.2.1 and

5.1, 5.1.1 and 5.2, 5.2.1 on Fig. 3).

Meanwhile, for implementation actions with a strength attribute lower than regimenta-
tion (like in the example above), the ReorgBoard uses the same observable events mecha-

nism to inform the OrgManager of the perceived organisational statements he has to wait

for before he can move on to the next step.

In our example the agent playing the OrgManager will receive, among others, a notifi-

cation from the ReorgBoard of the form: await change(not(commitment(ag1,m1, sch), ...)),
meaning the agent will have to wait until she perceives the organisational fact that agent

ag1 actually quit handling the goals included in mission m1 from the scheme sch, before

proceeding with other actions (i.e. calling the nextStepInPlan(p) operation on the Re-
orgBoard). The agent will be noticed of that fact thanks to the observable properties of

the SchemeBoard Sch.

5For clarity reasons, we didn’t add the call to these operations on the Fig. 3).
6Both GroupBoard and SchemeBoard artifacts provide an operation which allow for the handling of internal

administration tasks. This operation, called admCommand, is exploited by the ReorgBoard to link to the required

organisational artifact when sending a ImplAction.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

146

When all steps in a plan have been executed, the agent playing the OrgManager role

is again informed via an observable event sent out by the ReorgBoard that it is possible to

proceed to the next plan. When the last plan has finished executing, the reorganisation pro-

cess is complete and the agent playing the OrgManager role can discard the ReorgBoard
artifact.

6 Related Works
There is a huge literature on reorganisation in multiagent systems. Some use an exoge-

nous reorganisation process where the user or a dedicated MAS itself reorganise the whole

system (e.g. [13, 6] or [5]). Others [9, 11], like our proposal or the one used as a starting

point, use an endogenous approach where the agent themselves modify the organisation.

However, we make clear and explicit the organisation controlling the reorganisation pro-

cess itself. This is a clear difference with the other approaches promoting an endogenous

approach where the reorganisation process is hard coded in the agents themselves.

An approach similar to ours can be found in the work by Alberola et al. [1]. The

Reorganisation Facilitator Service they propose has a functionality and purpose which

are close to those of the ReorgBoard. However, even if the approach in [1] allows for

the finding of the minimal-cost transition from an initial organisation instance to a newly

desired one (which can actually be viewed as a particular strategy), the work does not

describe an explicit coordination and supervision mechanism for the implementation of

the required transition operations.

Using the reorganisation artifact approach, we go a step further in the sense that we

have proposed a set of tools that can be used to support and engineer this process. This

is a strong added value with respect to the one proposed by Hubner et al. [7]. Thanks to

this artifacted process, we have been able to contribute to different ways of changing the

organisation as in [2] and to address the practical setting of organisation changes: when

and how to stop, when and how to implement the changes, when and how to restart the

organisation process.

7 Conclusions
This work has presented a clear mechanism that is used to engineer and support the pro-

cess of reorganisation in multi-agent organisations. Its realization was made possible by

means of the JaCaMo platform and it represents an extension of previous work on the

modeling of the reorganisation process started in [7]. Specifically, the business logic of

the developed ReorgBoard artifact helps extend the functional specification of the “organ-

isation for reorganisation” with the explicit stages of the implementation phase: stopping
the affected part of the organisation, applying changes to the organisational specifications

themselves and starting the new instance of the organisation. The ReorgBoard offers an

internal structuring and a set of operations to instrument both the design and the coordi-

nated implementation of the reorganisation process.

The benefit of this extended model for reorganisation is that each involved step (mon-
itoring, design and implementation) is clearly defined and controllable. By means of the

artifact-based infrastructure offering the required coordination, agents can be seen to em-

ploy whichever application-specific adaptation strategies or heuristics, thus achieving a

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

147

separation of concerns between the underlying reorganisation mechanism and the consid-

ered adaptation policy.

8 Acknowledgments
This work has been supported by French Rhône-Alpes Région CMIRA and ERASMUS/SO-

CRATES funds.

References
[1] J. M. Alberola. A cost-oriented reorganization reasoning for multiagent systems organization

transitions. In L. Sonenberg, P. Stone, K. Tumer, and P. Yolum, editors, AAMAS, pages 1349–

1350. IFAAMAS, 2011.

[2] H. Aldewereld, F. Dignum, V. Dignum, and L. Penserini. A formal specification for organi-

zational adaptation. In M. P. Gleizes and J. J. Gómez-Sanz, editors, AOSE, volume 6038 of

Lecture Notes in Computer Science, pages 18–31. Springer, 2009.

[3] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi. Multi-agent oriented program-

ming with jacamo. Science of Computer Programming, (0):–, 2011.

[4] R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming Multi-Agent Systems in AgentS-
peak Using Jason. Wiley Series in Agent Technology. John Wiley & Sons, 2007.

[5] E. Bou, M. López-Sánchez, J. A. Rodrı́guez-Aguilar, and J. S. Sichman. Adapting autonomic

electronic institutions to heterogeneous agent societies. In G. A. Vouros, A. Artikis, K. Stathis,

and J. V. Pitt, editors, AAMAS-OAMAS, volume 5368 of Lecture Notes in Computer Science,

pages 18–35. Springer, 2008.

[6] B. Horling, B. Benyo, and V. R. Lesser. Using self-diagnosis to adapt organizational structures.

In Agents, pages 529–536, 2001.

[7] J. Hübner, J. Sichman, and O. Boissier. Using the moise+ for a cooperative framework of mas

reorganisation. In SBIA, volume 2004, pages 506–515. Springer Verlag, 2004.

[8] J. F. Hübner, J. S. Sichman, and O. Boissier. Developing Organised Multi-Agent Systems

Using the MOISE+ Model: Programming Issues at the System and Agent Levels. Agent-
Oriented Software Engineering, 1(3/4):370–395, 2007.

[9] S. Kamboj. Analyzing the tradeoffs between breakup and cloning in the context of organi-

zational self-design. In C. Sierra, C. Castelfranchi, K. S. Decker, and J. S. Sichman, editors,

AAMAS (2), pages 829–836. IFAAMAS, 2009.

[10] A. Ricci, M. Piunti, M. Viroli, and A. Omicini. Environment programming in CArtAgO.

In R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni, editors, Multi-Agent
Programming: Languages, Platforms and Applications, Vol. 2. Springer, 2009.

[11] M. Sims, C. V. Goldman, and V. R. Lesser. Self-organization through bottom-up coalition

formation. In AAMAS, pages 867–874. ACM, 2003.

[12] A. Sorici, O. Boissier, G. Picard, and A. Santi. Exploiting the jacamo framework for re-

alising an adaptive room governance application. In Proceedings of the compilation of the
co-located workshops on DSM’11, TMC’11, AGERE!’11, AOOPES’11, NEAT’11, &
VMIL’11, SPLASH ’11 Workshops, pages 239–242, New York, NY, USA, 2011. ACM.

[13] M. Tambe, D. V. Pynadath, and N. Chauvat. Building dynamic agent organizations in cy-

berspace. IEEE Internet Computing, 4(2):65–73, 2000.

[14] D. Weyns, A. Omicini, and J. J. Odell. Environment as a first-class abstraction in multi-agent

systems. Autonomous Agents and Multi-Agent Systems, 14(1):5–30, Feb. 2007.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

148

Providing Agents With Norm Reasoning

Services

N. Criado1, J.M. Such1, and V. Botti1
1DSIC, Universitat Politècnica de Valencia (Spain),

{ncriado,jsuch,vbotti}@dsic.upv.es

Abstract

Norms are used in open Multi-Agent Systems as a formal specification of
deontic statements aimed at regulating the actions of agents and the interac-
tions among them. In this paper, we propose a set of services facilitating the
development of both non-normative and normative agents for norm-governed
MAS. Specifically, we propose to provide agents with norm reasoning services.
These services will help agent designers/developers to programme agents that
consider norm reasoning without having to implement the needed mecha-
nisms to reason about norms by themselves. Moreover, these services have
been integrated into the Magentix2 agent platform.

Keywords: norms, services, agents.

1 Introduction

The main feature of open Multi-Agent Systems (MAS) is that they are populated
by heterogeneous agents, which can enter or leave the system dynamically. These
heterogeneous agents may have been designed independently, according to different
goals, and no assumption about their behaviours can be made [1]. To ensure
social order and avoid potential conflicts, norms are used in open MAS as a formal
specification of deontic statements aimed at regulating the actions of agents and
the interactions among them [17].

A great amount of work has been done to use norms in open MAS [4]. For
example, there are works aimed at: allowing the system designers to define and
represent the norms that regulate a concrete application [15], controlling norms
inside specific agent platforms [5, 11, 12], proposing norm-autonomous agent ar-
chitectures [2] that are endowed with norm reasoning capabilities. In this paper,
we try to facilitate both non-normative and normative agents to participate inside
norm-governed MAS. Specifically, we propose to provide agents with norm reason-
ing services. These services range from a simple services that inform about the
norms that are in force at a given moment, given norm-autonomous agents the
chance to decide which norms are relevant to them and which ones they want to
obey; to more elaborated services that allow agents to known which are the the
normative goals that they must pursue, allowing non-normative agents to behave

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

149

accordingly to norms. Thereby, agent designers may refrain from programming
agents with norm reasoning capabilities. These services have been integrated into
the Magentix21 agent platform (AP). The Magentix2 AP allows the management
of open MAS in a secure and optimized way. Its main objective is to bring agent
technology to real domains: business, industry, e-commerce, among others.

This paper is structured as follows: Section 2 briefly describes Magentix2; Sec-
tion 3 describes the norm reasoning services; Section 4 contains a brief discussion
and future work.

2 The Magentix2 Agent Platform

Magentix2 is an agent platform for open MAS in which heterogeneous agents in-
teract and organize themselves into Virtual Organizations (VOs) [10]. Magentix2
provides support for VOs at three levels:

• Organization level. Magentix2 provides access to the organizational infras-
tructure through the Organization Management System (OMS) [7], which
is in charge of the management of VOs, taking control of their underlying
structure, the roles played by agents, and the norms that govern the VO.

• Interaction level. Magentix2 provides support to: agent communication, sup-
porting asynchronous reliable message exchanges and facilitating the inter-
operability between heterogeneous entities; agent conversations [9], which
are automated Interaction Protocols; tracing service support [3], which al-
lows agents in a MAS to share information in an indirect way by means of
trace events; and, finally, Magentix2 incorporates a security module [18] that
provides features regarding security, privacy, openness and interoperability.

• Agent level. Magentix2 provides native support for executing Jason agents
and conversational agents that carry out simultaneous conversations.

Norms define what is considered as permitted, forbidden or obligatory in an
abstract way. However, norm compliance must be controlled considering the ac-
tions and messages exchanged among agents at the interaction level. Magentix2
fills the gap between the organizational level, at which norms are registered by the
OMS; and the interaction level, at which actions and communications, through a
norm-enforcing architecture [5]. In this paper, we aim at filling the gap between
the organizational level, at which norms are defined; and the agent level, at which
norms must be considered before taking action. Specifically, we define Norm Rea-
soning Services (NRSs) that avoid agents from being endowed with norm reasoning
capabilities. Next, the tracing service and the storage of norms, provided by the
OMS, are described.

2.1 Tracing Service

To facilitate indirect communication (i.e., indirect ways of interaction and coor-
dination), Magentix2 provides a Tracing Service [3]. These tracing facilities are
provided by a set of components named Trace Manager (TM).

1http://magentix2.gti-ia.upv.es/

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

150

A trace event or event is a piece of data representing an action, message ex-
change or situation that has taken place during the execution of an agent or any
other component of the MAS. Generic events, which represent application inde-
pendent information, are instrumented within the code of the platform. Appli-
cation events are domain dependent information. An event is defined as a tuple
〈Type, T ime,Origin,Data〉, where: Type is a constant that represents the nature
of the information represented by the event; T ime is a numeric value that indicates
the global time at which the event is generated; Origin is a constant that identifies
the tracing entity that generates the event; and Data = ψ1 ∧ ... ∧ ψn is a conjunc-
tion of possibly negated first-order grounded atomic formulae that contains extra
attached data required for interpreting the event.

Any entity is provided with boxes for receiving or delivering events (EIn and
Eout). The tracing service is based on the publish/subscribe software pattern,
which allows subscribers to filter events attending to some attributes (content-
based filtering), so that agents only receive the information in which they are
interested and only requested information is transmitted. Entities that want to
receive certain trace events request the subscription to these events by sending to
the TM a subscription event that contains the template of those events they are
interested in. A template is a tuple 〈Type,Origin,Data〉 that contains the filtering
specified criteria for events, where: Type is a constant that represents the nature
of the information represented by the event; Origin is a constant that identifies
the entity that generates the event; and Data = ψ1 ∧ ... ∧ ψn is a conjunction of
possibly negated first-order atomic formulae that may contain free variables. Let
us consider the standard notion of substitution as a finite and possibly empty set of
pairs X/y where X is a variable and y is a term. The application of a substitution
on a template σ(〈Type,Origin,Data〉) is 〈Type,Origin, σ(Data)〉 since Type and
Origin take constant values.

According to the definitions of events and templates thematching and unifiaction
relationship between events and templates are defined as follows:

Definition 1 (Matching Function). Given an event e = 〈Type, T ime,Origin,Data〉
and a template t = 〈Type′, Origin′, Data′〉, their matching is a boolean function
defined as follows:

matching(e, t) =

⎧⎨
⎩

true if (Type = Type′) ∧ (∀ψi ∈ Data′ : ψi ∈ Data)
((Origin = Origin′) ∨ (Origin′ is undefined))

false otherwise

Definition 2 (Unification Function). Given an event e and a template t, their
unification is a boolean function defined as follows:

unification(e, t) =

⎧⎨
⎩

true if exists a substitution of variables σ such that
matching(e, σ(t)) is true

false otherwise

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

151

2.2 Organization Management System (OMS)

The Organization Management System (OMS) [7] is responsible for the manage-
ment of VOs and their constituent entities. The OMS provides a set of services:
structural services, which comprise services for adding/deleting norms (regis-
terNorm and deregisterNorm services allow entities to modify the norms that are
in force or applicable within a VO), and for adding/deleting roles and groups;
informative services, that provide information of the current state of the orga-
nization; and dynamic services, which allow agents to enact/leave roles inside
VOs (acquireRole and leaveRole services). Moreover, agents can be forced to leave
a specific role (expulse service). When the OMS provides any of these services
successfully, then it generates an event for informing about the changes produced
in the VO.

According to the normative definitions provided in [15], in Magentix2 a dis-
tinction among norms and instances is made. A norm is defined as a tuple
〈id,D, T,A,E,C, S,R〉, where: id is the norm identifier; D ∈ {F ,O} is the de-
ontic modality of the norm, F represents prohibition and O represents obligation;
T is the target of the norm, the role to which the norm is addressed; A is the norm
activation condition, it defines under which circumstances the norm is active and
must be instantiated; E is the norm expiration condition that determines when the
norm expires and no longer affects agents; C is the norm condition that represents
the action or state of affairs that is forbidden or obliged; S and R describe the
sanctions and rewards that will be carried out in case of norm violation or fulfil-
ment, respectively. As previously argued, the norm-enforcing architecture builds
on the event tracing approach to monitoring. Thus, the conditions A,E,C, S and
R are expressed in terms of event templates.

Over the course of this paper, we will use an example to illustrate and motivate
the need of the NRSs that we propose. Specifically, this example consists on an
auction house that has been implemented as a VO in Magentix2. Heterogeneous
agents can enter or leave the auction house. To control the system and avoid the
potential excesses of malicious agents, this auction house is regulated by a set of
norms that define which are the rights and responsibilities of each role in terms
of obligations, prohibitions and permissions. Let us suppose the existence of norm
n1 that forbids to bid for an item once the auction corresponding to this item has
been closed:

〈n1,F , buyer, 〈auctionEnd,−, item(I)〉, 〈auctionStart,−, item(I)〉,
〈bid,−, item(I)〉,−,−〉

According to norm n1 once the 〈auctionEnd,−, item(I)〉 event is sent, any agent
that enacts the buyer role is forbidden to bid for the item I. This prohibition expires
when the item I is auctioned again (i.e., when the 〈auctionStart,−, item(I)〉 event
is sent).

When the activation condition of a norm holds; i.e., the activation event is
detected, then it becomes active and several norm instances (or instances for
short) are created, according to the possible groundings of the activation con-
dition. Given a norm 〈id,D, T,A,E,C, S,R〉 and a perceived event e, an instance
is the tuple 〈id′, D′, T ′, E′, C ′, S′, R′〉, where: there is a substitution σ such that

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

152

matching(e, σ(A)) is true (i.e., the norm is active); C ′ = σ(C), E′ = σ(E),
S′ = σ(S), and R′ = σ(R); and id′ = id,D′ = D and T ′ = T .

In our example, let us suppose that the event 〈auctionEnd,−, item(car)〉 is
sent. Thus, norm n1 will be instantiated as follows:

〈n1,F , buyer, 〈auctionEnd,−, item(car)〉, 〈auctionStart,−, item(car)〉,
〈bid,−, item(car)〉,−,−〉

Definition 3 (Instantiation Function). Given an event e = 〈Type, T ime,Origin,Data〉
and a norm n = 〈id,D, T,A,E,C, S,R〉, instantiation is a function that instanti-
ates norm n as follows:

instantiation(e, n) = 〈id′, D′, T ′, E′, C′, S′, R′〉

where: there is a substitution σ such that matching(e, σ(A)) is true; C ′ = σ(C),
E′ = σ(E), S′ = σ(S), and R′ = σ(R); id′ = id,D′ = D and T ′ = T .

The operational semantics of norms and instances (i.e., how they are created,
deleted, fulfilled and violated) is described in [5].

3 Norm Reasoning Services

Norm Reasoning Services (NRSs) have been designed with the aim of allowing
both non-normative and normative agents to interact within norm-governed VOs.
To provide their functionality, NRSs require the existence of a Normative Monitor
(NM) that keeps track of VOs. Both the NM and the NRSs are explained below.

3.1 Normative Monitor (NM)

The NM is responsible for monitoring VOs and providing NRSs with the informa-
tion that they require. Specifically, it maintains three lists that contain the set
of norms (N), instances (I) and the roles that are enacted by agents (RE) at a
given moment. Moreover, it records information that can be used to judge past
actions. Specifically, it maintains two log files: the log named LogI contains infor-
mation about the activation and expiration of instances, and the LogRE contains
information about which roles agents are playing (or played) at a given moment
2. To maintain these lists and logs, the NM subscribes to the events sent by the
OMS that related to the creation and deletion of norms (i.e., registerNorm and
dregisterNorm events) and the enactment of roles (i.e., acquireRole, leaveRole
and expel events). Algorithm 1 illustrates the pseudocode of the control loop per-
formed by the NM. Each time the NM receives an event (e), it handles the event
according to the event type. The NM carries out a process that can be divided
into three differentiated tasks: norm management, instance management and role
enactment management.

2The lists and log files may be implemented as blackboards, a database that can be accessed
by the NRSs, or simply as files that are shared with the NRSs.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

153

Algorithm 1 Normative Monitor Control Loop
Require: Norm list N
Require: Instance list I
Require: Instance log LogI
Require: Role Enactment list RE
Require: Role Enactment log LogRE
1: Add 〈subscription,NM, 〈registerNorm,OMS,−〉〉 to EOut

//where NM stands for Norm Monitor
2: Add 〈subscription,NM, 〈deregisterNorm,OMS,−〉〉 to EOut

3: Add 〈subscription,NM, 〈acquireRole,OMS,−〉〉 to EOut

4: Add 〈subscription,NM, 〈leaveRole,OMS,−〉〉 to EOut

5: Add 〈subscription,NM, 〈expel, OMS,−〉〉 to EOut

6: while EIn is not empty do
7: Retrieve e from EIn // e = 〈Type, T ime,Origin,Data〉

//...
// Norm Management
//...
// Instance Management
//...
// Role Enactment Management

72: end while

3.1.1 Norm Management

Algorithm 2 contains the portion of pseudocode corresponding to the norm man-
agement process. Any time the NM receives an event informing about the creation
of a new norm, then it adds this norm into its norm list and subscribes to the event
that activates the norm. When a norm is deregistered, then the NM removes it
from its norm list. Moreover, it removes all instances that have been created out
of this norm. For each one of these deleted instances, the NM registers the expira-
tion of the instance in the corresponding log and unsubscribes from the expiration
event.

Algorithm 2 Norm Management
8: if Type = registerNorm then // Data = 〈id,D, T,A,E,C, S,R〉
9: Add Data to N
10: Add 〈subscription,NM,A〉 to EOut

11: end if
12: if Type = deregisterNorm and Data in N then // Data = 〈id,D, T,A,E,C, S,R〉
13: Remove Data from N
14: Add 〈unsubscription,NM,A〉 to EOut

15: for all i in I do // i = 〈id′, D′, T ′, E′, C′, S′, R′〉
16: if id′ = id then
17: Remove i from I
18: for all (i′, tIn, tOut) in LogI do
19: if i′ = i and tOut = null then
20: Remove (i′, tIn, tOut) from LogI
21: Add (i, tIn, T ime) to LogI
22: end if
23: end for
24: Add 〈unsubscription,NM,E′〉 to EOut

25: end if
26: end for
27: end if

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

154

3.1.2 Instance Management

According to Algorithm 3, when the activation event of a norm is received, then
the NM instantiates the norm and adds it to the instance list. At this moment, the
NM registers the creation of the instance in the corresponding log and subscribes to
the expiration event. Similarly, when the NM receives the expiration event of any
instance, then it removes it from the instance list, unsubscribes from the expiration
event and registers the expiration of the instance in the log file.

Algorithm 3 Instance Management
28: for all n in N do // n = 〈id,D, T,A,E,C, S,R〉
29: if unification(e,A) then // the norm is active
30: i = instantiation(e, n) // i = 〈id′, D′, T ′, E′, C′, S′, R′〉 is an instance
31: if i not in I then
32: Add i to I
33: Add (i, T ime, null) to ILog
34: Add 〈subscription,NM,E′〉 to EOut

35: end if
36: end if
37: end for
38: for all i in I do // i = 〈id′, D′, T ′, E′, C′, S′, R′〉
39: if unification(e, E′) then
40: Remove i from I
41: for all (i′, tIn, tOut) in LogI do
42: if i′ = i and tOut = null then
43: Remove (i′, tIn, tOut) from LogI
44: Add (i, tIn, T ime) to LogI
45: end if
46: end for
47: Add 〈unsubscription,NM,E′〉 to EOut

48: end if
49: end for

3.1.3 Role Enactment Management

Algorithm 4 illustrates the pseudocode corresponding to the role enactment man-
agement process. Specifically, if the OMS informs that an agent (AgentID) has
acquired a new role (RoleID), then the NM updates the role enactment list and
the log file. When the OMS informs that an agent is not longer playing a role,
then both the role enactment list and log are updated.

3.2 Norm Reasoning Services

Magentix2 allows heterogeneous agents to interact via FIPA-ACL messages. Simi-
larly, NRSs are provided with mail boxes for receiving or sending FIPA-ACL mes-
sages (MIn and MOut). For the purpose of this paper we will define a message
as a tuple 〈Type, Sender,Receiver, Content〉; where Type contains the message
performative, Sender contains the ID of the entity that has delivered the message,
Receiver contains the identifier of the entity to which the message is addressed,
and Content contains the content of the message. Agents access NRSs by sending
a request message to the corresponding service. The result of the service is sent
back to the agent through an inform message3.

3Note that this is a simplification of the FIPA Request Interaction Protocol.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

155

Algorithm 4 Role Enactment Management
50: if Type = acquireRole then // Data is a pair (AgentID,RoleID)
51: Add Data to RE
52: Add (Data, T ime, null) to LogRE
53: end if
54: if Type = leaveRole or Type = expel then // Data is a pair (AgentID,RoleID)
55: Remove Data from RE
56: for all ((agentID, roleID), tIn, tOut) in LogRE do
57: if agentID = AgentID and roleID = RoleID and tOut = null then
58: Remove ((agentID, roleID), tIn, tOut) from LogRE
59: Add ((agentID, roleID), tIn, T ime) to LogRE
60: end if
61: end for
62: end if

3.2.1 Norm Information Service (NIS)

Suppose that an auditor agent analyses the performance of the auction house and
that it aims at ascertaining the influence of the norms on the transactions that
take place in the auction house. Thus, it needs to gather evidences from both the
actions and the norms. Specifically, it needs to know not only which norms are in
force, but also the instances that are active at a given moment.

The Norm Information Service (NIS) is in charge of proving information about
the norms and the instances that have been created out of these norms. Algorithm
5 contains the pseudocode corresponding to this functionality.

Algorithm 5 Norm Information Service Control Loop
1: while MIn is not empty do
2: Retrieve m from MIn // m = 〈Type, Sender,Receiver, Content〉
3: if Type = request and Receiver = NIS and Content = norm then
4: Add 〈inform,NIS, Sender, norm(N)〉 to Mout

5: end if
6: if Type = request and Receiver = NIS and Content = instance then
7: Add 〈inform,NIS, Sender, instance(I)〉 to Mout

8: end if
9: end while

3.2.2 Relevance Information Service (RIS)

Suppose that a buyer agent (b1) enters the auction house. Agent b1 wants to
know which its expected behaviour is and which the expected behaviours of its
interaction partners are.

The Relevance Information Service (RIS) is in charge of proving information
about the instances that are relevant to a target agent, which is specified in the
service request. Algorithm 6 contains the pseudocode corresponding to this func-
tionality. When the service is requested, then the RIS obtains the set of roles that
are currently played by the target agent (RoleList). After this, the RIS searches
the instance list for the instances that are addressed to the roles currently played
by the target agent (InstanceList).

In our example, b1 asks RIS about its relevant instances by sending the following
message:

〈request, b1, RIS, relevance(b1)〉

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

156

Algorithm 6 Relevance Information Service Control Loop
1: while MIn is not empty do
2: Retrieve m from MIn // m = 〈Type, Sender,Receiver, Content〉
3: if Type = request and Receiver = RIS and Content = relevance(AgentID) then
4: InstanceList = {}
5: RoleList = {}
6: for all (agentID, roleID) in RE do
7: if AgentID = agentID then
8: Add roleID to RoleList
9: end if
10: end for
11: for all i in I do // i = 〈id′, D′, T ′, E′, C′, S′, R′〉
12: if T ′ in RoleList then
13: Add i to InstanceList
14: end if
15: end for
16: Add 〈inform,RIS, Sender, relevance(InstanceList)〉 to Mout

17: end if
18: end while

Then the RIS checks the instances that are relevant to b1. Since b1 is affected
by the instance that has been created out of n1 (as detailed in Section 2.2), this
instance is relevant to b1, so that the RIS sends the following message:

〈inform,RIS, b1, relevance({〈n1,F , buyer, 〈auctionEnd,−, item(car)〉,
〈auctionStart,−, item(car)〉, 〈bid,−, item(car)〉,−,−〉})〉

3.2.3 Norm Advice Service (NAS)

Suppose that b1 does not understand the language used for representing instances
and, as a consequence, it does not have capabilities for reasoning about them.
However, it would like to respect the norms to avoid sanctions and maintain a
good reputation.

The Norm Advice Service (NAS) determines which goals (NormativeGoals)
must be pursued according to norms. Agents that request this service provide
their intrinsic desires, which are a set of literals formed by event templates (or the
negation of event templates). This set represents the actions or states of affairs
pursued (or avoided) by the agent. With this information, the NAS calculates
which goals must be pursued according to norms and to what extent these goals
are advisable for the agent. Algorithm 7 contains the pseudocode corresponding to
the NAS. Once the service receives a request, then the NAS calculates the set of
instances that are relevant to the petitioner agent. For each relevant instance, the
NAS computes how much the instance is advisable for the agent. This advisability
degree is calculated by a function as follows:

Definition 4 (Advisability Function). Given an instance (i) and a set of goals
(Goals) the advisability of this instance is calculated as follows:

advisability(i, Goals) =
fInterest(i, Goals) + fExpectations(i, Goals)

2

The advisability function is defined as the average among the values calculated
by two functions:

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

157

• fInterest. This function considers the influence of norm compliance on the
agent’s goals:

fInterest(〈id′, D′, T ′, E′, C′, S′, R′〉, Goals) =

⎧⎪⎨
⎪⎩

1 if D′ = O and C′ ∈ Goals

1 if D′ = F and ¬C′ ∈ Goals

0 otherwise

• fExpectations. This function considers the influence of the external enforce-
ment on the agent’s goals:

fInterest(〈id′, D′, T ′, E′, C′, S′, R′〉, Goals) =

⎧⎪⎨
⎪⎩

1 if R′ ∈ Goals and ¬S′ ∈ Goals

0.5 if R′ ∈ Goals or ¬S′ ∈ Goals

0 otherwise

The value calculated by the advisability function is used to annotate the goal that
is added to the NormativeGoals set. Each normative goal is annotated with a real
number that represents to what extent the agent is interested in complying with
the instance that has inferred the normative goal. If the instance is an obligation, a
new goal to pursue the obliged condition is added. On the contrary, if the instance
is a prohibition, a new goal for avoiding the forbidden condition is added.

Algorithm 7 Norm Advice Service Control Loop
1: while MIn is not empty do
2: Retrieve m from MIn // m = 〈Type, Sender,Receiver, Content〉
3: if Type = request and Receiver = NAS and Content = compliance(Goals) then
4: NormativeGoals = {}
5: RoleList = {}
6: for all (agentID, roleID) in RE do
7: if Sender = agentID then
8: Add roleID to RoleList
9: end if
10: end for
11: for all i in I do // i = 〈id′, D′, T ′, E′, C′, S′, R′〉
12: if T ′ in RoleList then
13: if D′ = F then
14: NormativeGoals = NormativeGoals ∪ {(¬C′, advisability(i, Goals))}
15: end if
16: if D′ = O then
17: NormativeGoals = NormativeGoals ∪ {(C′, advisability(i, Goals))}
18: end if
19: end if
20: end for
21: Add 〈inform,NAS, Sender, compliance(NormativeGoals)〉 to Mout

22: end if
23: end while

Let us assume that b1 is only interested in buying cars. Therefore, its goal set
only contains one proposition 〈bid,−, item(car)〉. Since it wants to obey norms,
its asks NAS about its normative goals by sending the following message:

〈request, b1, NAS, {〈bid,−, item(car)〉}〉

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

158

The NAS checks the instances that are relevant to b1 and calculates the advisability
of complying with them. Only the instance that has been created out of n1 is
relevant to b1. The advisability of complying with this instance is 0 and the NAS
sends the following message:

〈inform,NAS, b1, compliance({(¬〈bid,−, item(car)〉, 0)})〉

Since ¬〈bid,−, item(car)〉 contradicts the main goal of agent b1 and the advisability
of complying with this norm is 0, then agent b1 decides to violate the norm and it
makes a bid.

In this paper we propose to determine the agent advisability of complying with a
given instance by simply considering the effect of this instance on the agent goals.
However, if the norm reasoning services are provided with domain information,
then a more complex decision making procedure could be used. For example, the
decision making mechanism proposed in [6] could be used if the norm reasoning
services are informed about the importance of each norm and the situations that
are predicted to occur when the norms are violated.

It should be noticed that the NAS does not ensures that the set of normative
goals is consistent: i.e., it is possible that a proposition and its negation belong to
the set of normative goals. It is the responsibility of agents to decide which of the
normative goals will be pursued, resolving conflicts between normative goals and
their intrinsic goals.

3.2.4 Norm Judgement Service (NJS)

Finally, suppose that a seller agent, identified by s1, receives the bid made by b1.
s1 may be unable to judge whether this bid is legal or not with respect to the
normative system. Specifically, it may want to know whether b1 has violated any
norm and its bid must be ignored, or whether b1 has acted legally and b1 wins the
auction.

The Norm Judgement Service (NJS) allows agents to determine if an event that
may have happened at some moment in the past is legal or not according to the
normative system. Therefore, the NJS judges the performance of this event with
respect to the context (i.e., active instances and roles, and their interplay) when
the event was performed. Algorithm 8 contains the source code corresponding to
this functionality. When the NJS receives a request then it determines: which roles
were played by the agent that performed the event (Origin), at the time the event
was performed (T ime). Then, the NJS determines which norms were relevant to
that agent at that time. Agents can play several roles simultaneously and these
roles may be affected by conflicting norms. For this reason, the NJS counts the
number of prohibitions that were violated by the event (FulfilmentCount), and
the number of obligations that were fulfilled by the event (V iolationCount). It
is up to the agents how to use this information: e.g., to select the most suitable
interaction partners, to exclude non-compliant agents, etc.

In our example, s1 asks NJS about the bid made by b1 by sending the following
message:

〈request, b1, NJS, 〈bid, time, b1, item(car)〉〉

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

159

The NJS answers with the following message:

〈inform,NJS, b1, normJudgement(1, 0)〉

Then s1 is able to know that the bid is illegal, and thus, s1 ignores.

Algorithm 8 Norm Judgement Service Control Loop
1: while MIn is not empty do
2: Retrieve m from MIn // m = 〈Type, Sender,Receiver, Content〉
3: if Type = request and Receiver = NJS and Content = judgement(e) then // e =

〈Type, T ime,Origin,Data〉
4: RoleList = {}
5: for all ((agentID, roleID), tIn, tOut) in RELog do
6: if Origin = agentID and tIn ≤ T ime and (tOut = null or tOut > Time) then
7: Add roleID to RoleList
8: end if
9: end for
10: V iolationCount = 0
11: FulfilmentCount = 0
12: for all i in ILog do // (〈id′, D′, T ′, E′, C′, S′, R′〉, tIn, tOut)
13: if T ′ in RoleList and tIn ≤ T ime and (tOut = null or tOut > Time) then
14: if unification(e, C′) then
15: if D′ = O then
16: FulfilmentCount = FulfilmentCount+ 1
17: end if
18: if D′ = F then
19: V iolationCount = V iolationCount+ 1
20: end if
21: end if
22: end if
23: end for
24: Add 〈inform,NJS, Sender, normJudgement(V iolationCount, FulfilmentCount)〉 to

Mout

25: end if
26: end while

4 Discussion

The idea of providing agents with normative information is not new. In [8],
Felićıssimo et al. propose a solution for continuously supporting agents with up-
dated norm information. In the proposal of Felićıssimo et al. the scope of norms is
defined using contexts. Therefore, agents are provided with information about the
norms that are in force in their current context. Similarly, in [13] Okuyama et al.
propose the definition of normative objects that allow agents to be informed about
the norms that regulate their context. However, these two solutions do not provide
agents with information about norm dynamics (i.e., the activation and expiration
of norms), norm compliance and norm judgement. Therefore, these functionalities
must be implemented by agent programmers at agent level.

Other solutions that provide agents with normative information are based on
the use of normative artifacts. Artifacts are resources and tools that agents can cre-
ate and use to perform their individual and social activities [14]. For example, the
ORA4MAS [11] proposal defines artifacts as first-class entities to instrument multi-
agent organisations to support agent activities within them. In the ORA4MAS the

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

160

enforcement of norms has been implemented by means of artifacts, which detect
norm violations; and by means of agents, which are informed about norm viola-
tions and carry out the evaluation and judgement of these situations. Therefore,
the agent designers are responsible for programming agents endowed with capabil-
ities for performing these tasks. In [19], Tinnemeier et al. propose a language for
programming normative artifacts that are responsible for detecting when norms are
active, detecting violations of the norms and applying sanctions and rewards. How-
ever, the language developed by Tinnemeier et al. is not suitable for programming
normative artifacts that provide agents with information about norm activations,
violations and norm enforcement. Finally, in [16] Piunti et al. propose that nor-
mative artifacts provide a series of observable properties that can be inspected by
agents to know the actual normative state of the organisation. Therefore, agents
are able to know which norms are active at a given moment. Autonomous agents
can use this information to reason about whether to follow or not the norms that
are active. Our proposal also allows agents to know the current normative state.
Moreover, our proposal provides agents with norm compliance services that help
agents to make decisions on whether or not to follow the norms that are active.
Finally, our proposal also manages information about the past normative states,
which allows agents to judge the behaviour exhibited by them and by other agents.
To our knowledge, this is the first proposal that provides this kind of normative
information.

As future work, we plan to improve the norm judgement service to deal with
norm conflicts. Currently, the norm judgement service only considers how many
norms are violated and fulfilled by an event. In the future, we plan to annotate
norms with their salience. The salience of norms determines the hierarchy of norms.
With this information the judgement process will be able to determine not only the
number of norms that are violated and fulfilled by an event, but also to determine
if an event may be considered as an offence in case of norm conflict.

5 Acknowledgments

This paper was partially funded by the FPU grant AP-2007-01256 awarded to
N. Criado and by the Spanish government under grants CONSOLIDER-INGENIO
2010 CSD2007-00022, TIN2009-13839-C03-01. This research has also been partially
funded by Valencian Prometeo project 2008/051.

References

[1] A. Artikis and J. Pitt. A formal model of open agent societies. In Proc. of the
International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pages 192–193, 2001.

[2] J. Broersen, M. Dastani, J. Hulstijn, Z. Huang, and L. van der Torre. The boid archi-
tecture: conflicts between beliefs, obligations, intentions and desires. In Proceedings
of the fifth international conference on Autonomous agents, pages 9–16. ACM, 2001.

[3] L. Burdalo, A. Garcia-Fornes, V. Julian, and A. Terrasa. TRAMMAS: A tracing
model for multiagent systems. Engineering Applications of Artificial Intelligence,
24(7):1110–1119, 2011.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

161

[4] N. Criado, E. Argente, and V. Botti. Open Issues for Normative Multi-Agent Sys-
tems. AI Communications, 24(3):233–264, 2011.

[5] N. Criado, E. Argente, P. Noriega, and V. Botti. A Distributed Architecture for
Enforcing Norms in Open MAS. In Advanced Agent Technology, volume 7068, pages
457–471. Springer, 2012.

[6] N. Criado, E. Argente, P. Noriega, and V. Botti. Determining the Willingness to
Comply With Norms (Extended Abstract). In Proc. of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), 2012.

[7] N. Criado, V. Julián, V. Botti, and E. Argente. A norm-based organization manage-
ment system. Coordination, Organizations, Institutions and Norms in Agent Systems
V, pages 19–35, 2010.

[8] C. Felićıssimo, C. Chopinaud, J. Briot, A. Seghrouchni, and C. Lucena. Contex-
tualizing normative open multi-agent systems. In Proc. of the ACM symposium on
Applied computing, pages 52–59. ACM, 2008.

[9] R. L. Fogus, J. M. Alberola, J. M. Such, A. Espinosa, and A. Garca-Fornes. To-
wards Dynamic Agent Interaction Support in Open Multiagent Systems. In Proc.
of the International Conference of the Catalan Association for Artificial Intelligence
(CCIA), volume 220, pages 89–98. IOS Press, 2010.

[10] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scal-
able virtual organizations. International Journal of High Performance Computing
Applications, 15(3):200, 2001.

[11] J. Hubner, O. Boissier, R. Kitio, and A. Ricci. Instrumenting multi-agent organisa-
tions with organisational artifacts and agents. Journal of Autonomous Agents and
Multi-Agent Systems, 20(3):369–400, 2010.

[12] S. Modgil, N. Faci, F. Meneguzzi, N. Oren, S. Miles, and M. Luck. A framework for
monitoring agent-based normative systems. In Proc. of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pages 153–160, 2009.

[13] F. Okuyama, R. Bordini, and A. da Rocha Costa. A distributed normative infrastruc-
ture for situated multi-agent organisations. In Proc. of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pages 1501–1504, 2008.

[14] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&Ameta-model for multi-agent
systems. Journal of Autonomous Agents and Multi-Agent Systems, 17(3):432–456,
2008.

[15] N. Oren, S. Panagiotidi, J. Vázquez-Salceda, S. Modgil, M. Luck, and S. Miles.
Towards a formalisation of electronic contracting environments. Coordination, Or-
ganizations, Institutions and Norms in Agent Systems IV, pages 156–171, 2009.

[16] M. Piunti, A. Ricci, O. Boissier, and J. Hubner. Embodying organisations in multi-
agent work environments. In Proc. of IEEE/WIC/ACM International Joint Confer-
ences on Web Intelligence and Intelligent Agent Technologies (WI-IAT), volume 2,
pages 511–518, 2009.

[17] R. Rubino and G. Sartor. Preface. Artificial Intelligence and Law, 16:1–5, 2008.

[18] J. M. Such, A. Espinosa, A. Garćıa-Fornes, and V. Botti. Partial Identities as a Foun-
dation for Trust and Reputation. Engineering Applications of Artificial Intelligence,
24(7):1128–1136, 2011.

[19] N. Tinnemeier, M. Dastani, J. Meyer, and L. Torre. Programming normative ar-
tifacts with declarative obligations and prohibitions. In Proc. of IEEE/WIC/ACM
International Joint Conferences on Web Intelligence and Intelligent Agent Technolo-
gies (WI-IAT), volume 2, pages 145–152, 2009.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

162

Social Multi-agent Simulation Framework

Michal Wrzeszcz1 and Jacek Kitowski1
1AGH University of Science and Technology, Faculty of Electrical Engineering,

Automatics, Computer Science and Electronics, Department of Computer Science,
Krakow, Poland, {wrzeszcz,kito}@agh.edu.pl

Abstract

Human societies appear in many types of simulations. Although, simula-
tion of people is a very complex problem, models of agents that well reproduce
behaviour of a single individual already exist, often however, neglecting so-
cial context. People behaviour, when they are alone, is different than their
behaviour when they are in group. In our work we study social networks as
the instrument that may provide social context. The main problem with use
of social networks is that relations in social networks should be changed au-
tomatically during the simulation as a result of agents’ actions (especially in
consequence of exchange of messages) what is not offered by the existing mod-
els of social networks. This fact encouraged us to extend the social network
model to allow creation of simulations of human societies. An experimental
proof of concepts is also presented.

Keywords: social networks, behaviour modelling, simulation of human
societies, multi-agent systems, social context.

1 Introduction

Simulations of human societies may be used to create virtual worlds that allow to
predict collective behaviour of crowd e.g. they can be used to check if a demon-
stration can turn into a riot. Furthermore, these virtual worlds may be used to
show people how they should behave in particular situations e.g. policemen can
take part in virtual demonstration to check which actions may cause increase of
crowd’s aggression. Simulations of human societies are also used to entertain peo-
ple. There are a lot of computer games (especially role-playing games) where
individuals controlled by artificial intelligence live in cities and villages. These in-
dividuals interact with the player. Their attitude to the player often depends on
the information about player’s actions that they poses.

In all applications, the simulations of human societies are useful only if they are
highly realistic so the main challenge is to make behaviour of simulated individuals
as similar as possible to human behaviour. In this article we present a framework
that may be used to build and simulate an artificial society on the basis of the
extended model of the social network. However, the presented framework does not
provide any complete simulation. It focuses on provision of mechanisms that may

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

163

be used to create the social context. Agents’ models are not included - to create
them the user may adapt currently known techniques (see section 2.1).

The rest of the paper is organized as follows. In Section 2, we discuss impor-
tant elements of simulations of human societies. Section 3 describes how social
networks can be applied during these simulations. Next, in section 4 we discuss
an information flow in a social network to justify the need of extension of the
social network model. Then, in section 5, the proposed model is mathematically
described. Section 6 includes description of implementation of this model and of
the whole framework. In section 7, we show a sample simulation that makes use of
the framework and proves that proposed social network model can be easily rebuilt
during the simulation. Section 8 contains discussion about relationship between
classical social network and communication channels. We conclude this paper in
section 9 and describe future work directions of our research.

2 Simulation of human societies

2.1 Virtual human

Virtual human society contains virtual humans that co-operate, negotiate, make
friends, communicate etc. Simulation of these individuals requires definitions of
four main ingredients [23]: high-level behaviour, perception, animation and graph-
ics. In this article we will focus only at first and second aspect.

To model perception of individuals we can adopt software agents interacting
with the environment [19]. The agents are independent beings, hence they can
be used to model virtual humans. Therefore, in the paper we will treat virtual
human society as multi-agent system. Several agent architectures were created
to enable behaviour modelling, e.g., FSMs (Finite State Machines), BDI (Belief,
Desire, Intention) and PECS models (Physical conditions, Emotional state, Cogni-
tive capabilities and Social status) [21]. Research showed that agents that base on
PECS models and ontology can be configured to simulate specific scenarios [12].
Besides making decisions, the agents can move. Several mobility models have been
proposed, e.g., random walk models [17], encounter based models [22], commu-
nity based models [16], time-variant models [6] and day movement model [5]. The
pattern based mobility model proposed by Nazir, Prendinger and Seneviratne [18]
well reproduces day-to-day human activities of common people. These facts show
that agents that well reproduce behaviour of a single individual can be created
using currently known techniques so we will not consider any particular behaviour
model during our research, instead we provide the social context that can be used
by many models.

2.2 Social context and social simulations

When modelling human behaviour, we have to remember that behaviour of each
human depends on social context. People behaviour when they are alone is usually
different from their behaviour when they are in a group. Although the most obvious
way of influencing agent behaviour is direct communication, there are also other
possibilities, e.g., use of nonverbal communication elements (observation of other

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

164

agents) - posture (position of the arms and legs etc.) can indicate somebody’s
feelings [23]. However, regardless the way of influencing agent behaviour, a key
issue is the decision which agents influence each other and how strong this effect is.
In the EUSAS project (European Urban Simulation for Asymmetric Scenarios) [11,
12, 13], that uses virtual worlds to predict human behaviour, the social influence
of agents is modelled according to Latan’s formula of strength, immediacy and
number of other agents [14]. It means that observation of agents that belong to
the same group can change the agent’s internal state. The strength of this effect
depends on social position of observed agent. Other model was introduced by
James March [15]. It uses an organizational code that represents the organization’s
approximation of beliefs about that reality. Each period, every individual agent
alters any given belief to conform to that of the organizational code with some
probability, reflecting the rate of socialization of individuals in the organization.
The organizational code also alters any given belief based on the dominant belief
of the set of agents - the superior group, defined as those agents whose individual
beliefs correspond better with reality than does the code’s. The model was later
extended by Kane and Prietula [7]. They let individuals learning from (being
influenced by) one another rather than the organizational code by introducing a
parameter that represented the probability that a given individual will learn from
the other individuals rather than the code in a given period. However, analysing
this type of models, we have to remember that agents in multi-agent systems easily
develop erroneous beliefs [4]. Another interesting approach is use of the tag-based
computational model [2]. An agent cooperates with another agent only if they are
similar (i.e., their tags are sufficiently similar).

The described models use global parameters or agents’ parameters to decide
which agents influence each other and to calculate the strength of this influence.
However, we believe that without the representation of the information about the
relationship between each pair of people the model is incomplete. A friendship
relation between people may strengthen the influence that one person exerts on
the other, e.g., the influence of our good friend may be higher than influence of the
leader of the group that has higher social position. It is the reason why we think
that a good model should contain a social network.

3 Social networks and agent simulations

A well-known concept connected with the multi-agent systems is the reputation
system. However, each agent needs some information about others to form opin-
ions about them. Direct interaction is the most reliable source of information
needed to form an opinion about another person. Unfortunately, this information
is not always available. In this case, the social network may be used to provide
social reputation that depends on witness reputation, neighbourhood reputation
and system reputation. This mechanism is described in [20]. The reputation can
be used to provide social context. At each step of the simulation the agent should
do the following actions:

• receive messages from agents with which it can communicate,

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

165

• use these messages to modify its plans/behavior - if it has a good opinion
about the sender, the influence of the message will be higher,

• use these messages to modify its opinions about other agents when messages
contain information about them,

• do action.

Although we know how to use the information represented by the social network
to provide social context (using reputation system), creation of a mechanism that
manages information flow in the social network is still a challenge.

4 Information flow in social networks

The previous studies of the information flow in a social network have tried to answer
the question how people select the next person to whom to forward the message
[3]. In [18] authors consider a way of searching of a person with some specific
knowledge desired by an agent. However, even if the sender and the receiver of the
message are known, it is necessary to check if direct communication between these
nodes of the social network can occur at a particular step of the simulation - i.e.,
to check if any communication channel1 exists.

Communication channels have appeared in articles about social networks before,
e.g., in [18] the authors use them to define Send and Receive Protocol. However,
they do not define a method of building and destroying them. We reckon that it is
very important issue and the model of the social network should support managing
communication channels. Communication channels appeared also in the literature
about Multi-layered Social Networks. Multi-layered Social Network is defined as
a tuple < V,E,L > where: V is a non-empty set of nodes, E is a set of edges
where each edge belongs to exactly one layer and L is a set of layers [1]. Each
layer corresponds to one type of relationship between users [9]. A network can
be built where each type of relationship (each layer) is connected with one type
of communication channel [8]. However, using Multi-layered Social Network we
cannot check if any communication channel still exists or can be recreated at a
particular step of the simulation - we can only use relation which was built when
this channel existed.

Another model that can be used to represent the ability of communication
is Multidimensional Social Network model. It allows to observe changes of the
network and contains three distinct dimensions: layer dimension that describes all
relationships between the users of a system, time-window dimension that allows
temporal analysis and group dimension which describes subsets of users [10]. From
our point of view, the time-window dimension is the most interesting one because
it allows to observe the evolution of the network. The time-window dimension
approach limits social network to those nodes and relationships that have existed in
a period defined by the time-window size. Unfortunately the time-window approach

1In this article, we define communication channel as a link between people that allows sending
of messages. Similar communication channels form a type (e.g. telephone communication channels
types).

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

166

has a serious disadvantage. If we liked to model communication channels that way,
it would bind communication channel with the relation. If a relation between
particular nodes exists, the communication channel between them also exists (in
this model). It means that if we liked to model a situation when the communication
channel between particular nodes did not exist in a particular time-window, we
would have to delete a relation between these nodes. Afterwards, when possibility
of communication was restored, we should recreate the relation. This type of
modelling causes a problem. We are not able to change the relation between nodes
when these nodes cannot communicate. In the real life we can change opinion
about someone in the situation when we are not able to contact him, e.g., we can
change our opinion about someone when we receive information about him from
our friend.

5 Proposed social network model

Analysis of information flow encouraged us to extend Multi-layered Social Networks
model. This extended model is defined as a tuple < V,E,L,C, T > where:

• V - a non-empty set of nodes;

• E - a set of relations; each relation is a tuple < x, y, l >, where x,y are
different nodes and l is a layer (x, y ∈ V, l ∈ L, x �= y);

• L - a set of layers; a layer is a set of relations of the same type (e.g. trust
layer, family ties layer); maximum two relations between particular nodes (x
to y and y to x) belong to each layer (up to |V | · (|V | − 1) relations belong to
each layer): < x, y, l >∈ E∧ < x′, y′, l′ >∈ E ∧ x = x′ ∧ y = y′ ⇒ l �= l′;

• C - a set of communication channels; each communication channel is a tuple
< x, y, t, n >, where x,y are different nodes, t is communication channel type
and n is a number of the channel (x, y ∈ V, t ∈ T, n ∈ N, x �= y);

• T - a set of types of communication channels (e.g. face to face communi-
cation channel type, telephone communication channel type, e-mail com-
munication channel type); communication channels are directed (e.g. x
can know telephone number of y, while y does not know telephone num-
ber of x); two nodes can be connected by more than one channel of each
type, e.g., one person can know two different telephone numbers to a friend:
< x, y, t, n >∈ C∧ < x′, y′, t′, n′ >∈ C ∧ x = x′ ∧ y = y′ ∧ t = t′ ⇒ n �= n′.

The most important novelty is a set of communication channels, which could
be organized in different channels types. They represent the ability to exchange
information between nodes (x can send message to y when any communication
channel from x to y exists). Using many types of communication channels is rea-
sonable because there may exist many ways of communication between nodes and
agent should be able to choose which channel it wants to use (e.g. use of e-mail
is cheaper than use of a telephone but the message will be delivered faster using
telephone).

Each step of the simulation contains the following steps:

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

167

Figure 1: Implementation of extended social network model.

• automatic rebuilding of communication network (creation of new channels if
new communication ability appears, delete of channels which are out-of-date),

• agents’ actions which may result in relations’ change (see section 3 of this
paper).

Ability of automatic managing of communication channels is very important
because it creates a base for information exchange and social context provision.
More information about automation that rebuilds the communication network can
be found in section 6.1 while section 7 contains an example of automaton use.

6 Implementation of simulation framework

The framework was implemented using the Java language, the MASON framework
and the JUNG framework. It contains templates of classes to allow the user to
create their own implementations of agents, communication channels etc.

The classes that implement the social network model, described in section 5, are
shown in Figure 1. Package ”socialNetwork” contains a representation of standard
social network model. Subclasses of class ”Person” are nodes of the network while
instances of ”Relation” class are edges. Each instance of ”Relation” belongs to a
layer described by instance of ”Identyfier” class. Package ”general” includes classes
that may be used to create attributes for nodes and edges.

Package ”communication” implements the proposed new abstraction layer. The
communication graph contains subclasses of ”CommunicationChannel” graph. The
user may create any number of ”CommunicationChannel” subclasses . However,
each class must give ability to identify the type of channel and mechanism for
propagating messages. For most of the users, it is a good idea to use the standard
communication channels which provide a mechanism of messages propagation that
calculates time and cost of sending of information on the basis of message length.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

168

Figure 2: Aggregation of social network model to one class.

The model was aggregated to one class called ”SocialAndCommunicationNet-
work” (see Figure 2). This class represents social relations and communication
channels as one multi-graph. Moreover, ”SynchronizedSocialAndCommunication-
Network” class was created. It contains three graphs - aggregated model from
”SocialAndCommunicationNetwork” class, social network graph and communica-
tion graph. It may be used instead of ”SocialAndCommunicationNetwork” class
to provide better visualization (visualization is discussed in section 6.2).

6.1 Simulation and environment model

The classes that provide simulation tools and simulation environment are shown
in Figure 3. An ”AbstractCrowd” class is a template of the simulation. It con-
tains agents and all information needed for visualization. It also allows to inject
automatons that manage simulation. Automaton is an object which provides a
function that is executed once at the beginning of each step of the simulation.
The most important role of automatons is managing of communication channels.
Each simulation should contain at least one automaton. The framework does not
contain any universal automaton because different types of communication chan-
nels require different management. The users may also implement and use custom
managers for their own purposes.

”Environment” class contains extended social network model implementation.
Although the user may add social network to simulation manually (by creating a
subclass of ”AbstractCrowd”), we propose to use ”Environment” subclasses and
define all relations within them. It allows to visualize social relations and com-
munication channels using tools provided with framework. ”StandardCrowd” class
adds to ”AbstractCrowd” an easy way of simulation creation (using crowd creators)
while ”StandardCrowdWithEnvironment” binds the simulation with the Environ-
ment.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

169

Figure 3: Implementation of simulation and environment.

6.2 Visualisation

Athough aspects connected with visualisation of individuals are not considered in
this article, it is worth to mention that visualization of social network and communi-
cation channels can help users during the analysis of results. Figure 4 shows classes
that provide this type of visualization. The framework allows to show only a simu-
lation (”CrowdVisualization” class), only graphs (”GraphsVisualization” class) or
simulation and graphs together (”CrowdAndGraphsVisualization” class).

7 Automatic rebuilding of reputation graph using
created framework

7.1 Simulation scenario

To demonstrate automatic rebuilding of the social network (to reflect changes in
mutual reputation), we created a simulation in which people live in two cities. The
social network describes agents’ reputation (each agent can have its own opinion
about another agent - an agent can be respected by one agent and not respected
by another).

In the simulation we distinguish four agents: A1.1 and A1.2 live in the first
city while A2.1 and A2.2 live is the second city. They know each other. Assume,
that agent A1.1 possesses an information that discredits agent A1.2 and agent A1.2
possesses an information that discredits agent A1.1 (each information is supported

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

170

Figure 4: Classes connected with the visualization.

by evidence so receiver of this information will change opinion about the subject of
information - reputation of the subject will be reduced to zero). We want to show
that reputation of agents A1.1 and A1.2 depends on their behaviour.

7.2 Implementation of simulation and classes that provide
automatic rebuilding of reputation graph

Figure 5 shows the classes that we implemented to create this simulation with
classes together with their class parents. To enable the information flow we cre-
ated two types of communication channels: face to face communication channels
and telephone communication channels. Moreover, we created face to face com-
munication channels manager which is injected to the simulation class and creates
channels when the ability of communication between agents appears (i.e., in the
case of face to face communication when the distance between them is short).
When the distance between agents is growing, the manager automatically deletes
channel between them. This class is very important because it provides automatic
rebuilding of the communication network. Namely, nodes which may communicate
at particular step of the simulation are known, this information may be used for
creation or changing relations between nodes.

We had also to create classes that represent agent (”Citizen” class), to cre-
ate social network that describe reputation (”demo.reputation” package) and a
class that creates simulation (”CrowdAndEnvironmentCreator”) e.g. sets initial
positions of agents. Since the classes that represent and manage communication

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

171

Figure 5: Classes that creates simulation classes with which they cooperate.

channels can be shared between many simulations, the user who wants to create
a simulation has to create agents only, simulation creator and environment. The
abstract environment contains a social network so during the environment creation
the user only has to define a relation that will be used by the network.

Therefore, to start the simulation the user has to create an instance of a ”Stan-
dardCrowdWithEnvironment” class (with the appropriate template arguments).
Instances of ”CrowdAndEnvironmentCreator” and ”Environment” classes should
be used as arguments of the constructor. Afterwards, the user can use the cre-
ated object as standard MASON simulation or use one of visualization classes (e.g.
”CrowdAndGraphsVisualization”) to start simulation with GUI.

7.3 Results of the simulation

We have created several instances of the simulation with different initial conditions
(use of the instance of ”CrowdAndEnvironmentCreator” class with different pa-
rameters). During each simulation the agents (instances of ”Citizen” class) from
the first city travelled to the second city.

• In the first simulation agent A1.1 arrived to the second city faster than agent
A1.2. A1.1 met there agents A2.1 and A2.2 and forwarded information (using
face to face channel) about agent A1.2 so reputation of A1.2 decreased. When
agent A1.2 arrived to the city, agents A2.1 and A2.2 did not want to talk
with him so reputation of agent A1.1 did not change.

• In the second simulation agent A1.2 arrived to the city before agent A1.1 so
the reputation of agent A1.1 decreased and reputation of agent A1.2 did not
change.

• In the next simulations we added a telephone communication channel between

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

172

A1.1 and A2.1. At the beginning of each simulation A1.1 used this channel
to send a message to A2.1. A2.1 and A2.2 live in the same city so A2.1
forwarded this message to A2.2 before agent A1.1 or A1.2 arrived to the city.
It allowed agent A1.1 to keep its reputation regardless of who first came to
the second city.

These results show that social network was rebuilt dynamically during the sim-
ulation on the basis of agents actions. The discussed cases show that we were able
to create social context using our framework. Moreover, the amount of work needed
to do it is not much bigger than amount of work needed to create the simulation
without social context because most of classes that provide it are included in the
framework or may be shared between many simulations.

8 Relationship between classical social network and
communication channels

Social networks may be characterized by several metrics, e.g., centrality or page
rank [24]. To better understand the extended social network model, we can check
if change of a metric of the social network influences communication channels.
During our research we have checked influence of density (a ratio of the number of
edges over the number of possible edges) represented by density ratio and number
of nodes in the network on dynamic creation of communication channels during the
simulation. The size of the environment was constant, start positions of agents were
initialized randomly. Afterwards, we iterated over all possible pairs of agents and
used the following expression to decide if the relation should be created: rand() ·
(dist ÷ maxDist)2 < densityRatio, where (for the example from the previous
section):

• rand() - random number generator,

• dist - Euclidean distance between agents,

• maxDist - maximal distance which allows agents to communicate.

A relation was created when the value of expression was true. Table 1 shows density
ratio-density correspondence (the table presents average values of densities for runs
with particular density ratios).

Density
ratio

2 4 8 16 32 64 128 256 512 1024

Density 0,02 0,05 0,07 0,11 0,21 0,34 0,53 0,71 0,86 0,99

Table 1: Relationship between density ratio and density.

We assumed that each agent may communicate only with friends (relation be-
tween agents must exist) and may have open only three communication channels
at each simulation step. The communication channels are created and deleted
dynamically by automaton. The automaton tries to create the communication

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

173

channel between particular agents when the channel between them does not exist
and the distance between them is less than or equal to maximal distance which
allows agents to communicate. The operation succeeds when each of these two
agents is connected with other agents by less than three communication channels,
otherwise it fails. When the distance between agents rises above the maximum
distance that enables communication, the automaton deletes the communication
channel between them. Tables 2 and 3 present numbers of channel creation op-
erations which succeeded and which failed. These results are averaged over 10
runs.

Nodes number
Density
ratio

2 4 8 16 32 64 128 256

2 0 0,7 7,4 15,1 62,7 211,2 789,9 3309,2
4 0,4 1,5 10,5 19,2 99,3 361,4 1340 5473
8 0 1,3 5,3 46,8 155,7 587,4 2203,1 8934,5
16 0 3,3 20,3 62,1 231,2 890,9 3656,4 13768,3
32 0,6 9,4 21,1 94,4 345,8 1440,3 5874,7 20691
64 3,7 7,7 34,4 132,5 554,7 2132 8185,2 28709,8
128 3,1 14,4 55,6 185,8 898,7 3193,9 11163,9 38092,2
256 3,7 18,6 70,6 268,3 1104,3 4041,5 14616,2 47232,7
512 4,6 18,5 86,5 357,6 1321 5016,7 17236,1 54373,1
1024 6 20,8 98,1 356,7 1415,2 5403,8 18479,2 58158,2

Table 2: Numbers of channel creation operations which succeeded.

Nodes number
Density ratio 2 4 8 16 32 64 128 256
2 0 0 0 0 0 0,4 4,4 80,9
4 0 0 0 0 0 0,7 14,2 338,7
8 0 0 0 0 0 3,9 67,9 1282,9
16 0 0 0 0,4 4,7 27,8 353,3 4497
32 0 0 0 0 0,5 104,2 1394,1 15352,6
64 0 0 0 0 16,1 270,9 3752 33426,5
128 0 0 0,4 1,1 120,2 830,3 9009,2 67064
256 0 0 0 15,1 168,4 2287,5 16590,4 121118,9
512 0 0 0 22 321,1 3244,8 25995,9 169237,7
1024 0 0 6 19,4 352,7 3512,2 30223,9 193689,7

Table 3: Numbers of channel creation operations which failed.

The number of channel creation operations which succeeded grows with growth
of nodes number and density ratio. The number of operations which failed is much
smaller than the number of operations that succeeded for small number of nodes
and small density ratios (in most cases it is equal zero). However, when the density
and number of nodes are high, the number of operations which failed starts very

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

174

fast growing. Moreover, when these numbers are very high, most operations fail.
It shows that detailed studies of relation between social network parameters and
communication channels are necessary.

9 Conclusions and future work

The tests have shown that the proposed social network model allows for dynamical
creation of a social network that may be used to provide a social context of the
simulation. Furthermore, ability of injecting automates that manage communica-
tion channels makes the framework easy to use (once created, the channel types
and managers may be reused in many simulations).

Regarding the future work, there are three possibilities. The first can focus on
studies of relation between social network parameters and communication channels
(see section 8). The second can concentrate on groups of agents added to our social
network model. This extension addresses the case when an agent hears a voice that
comes from a group of people but is not able to evaluate which agent produced
it. The information that this sound provides should be evaluated in the context
of relation between the agent and this group. The third possibility is exploration
of capability of parallelization of the social network representation. When the
network is large, it is impossible to manage it using only one thread. We believe
that analysis of dynamics of communication channels can allow us to improve
network decomposition algorithms.

Acknowledgments. This work is partially supported by the EDA project A-
0938-RT-GC EUSAS and European Union project UDA-POKL.04.01.01-00-367/08-
00.

References

[1] P. Brodka, T. Filipowski, and P. Kazienko. An introduction to community detection
in multi-layered social network. In WSKS 2011, The 4th World Summit on the
Knowledge Society, 2011.

[2] Y. Chen and M. Prietula. To deceive or not to deceive? mimicry, deception and
regimes in tag-based models. In Intra-Organizational Networks (ION) Conference,
2005.

[3] P. S. Dodds, R. Muhamad, and D. J. Watts. An experimental study of search in
global social networks. Science, 301:827–829, 2003.

[4] J. Doran. Social simulation, agents and artificial societies. In Third International
Conference on Multi-Agent Systems, pages 4–5, 1998.

[5] F. Ekman, A. Kernen, J. Karvo, and J. Ott. Working day movement model. In
M. Kim, C. Mascolo, and M. Musolesi, editors, MobilityModels, pages 33–40. ACM,
2008.

[6] W. Jen Hsu, T. Spyropoulos, K. Psounis, and A. Helmy. Modeling time-variant user
mobility in wireless mobile networks. In INFOCOM, pages 758–766. IEEE, 2007.

[7] G. Kane and M. Prietula. Influence and structure: Extending a model of orga-
nizational learning. In Twelfth Annual Organizational Winter Science Conference,
2006.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

175

[8] P. Kazienko, P. Brodka, and K. Musial. Individual neighbourhood exploration in
complex multi-layered social network. In Web Intelligence/IAT Workshops, pages
5–8. IEEE, 2010.

[9] P. Kazienko, P. Brodka, K. Musial, and J. Gaworecki. Multi-layered social network
creation based on bibliographic data. In A. K. Elmagarmid and D. Agrawal, editors,
SocialCom/PASSAT, pages 407–412. IEEE Computer Society, 2010.

[10] P. Kazienko, K. Musial, E. Kukla, T. Kajdanowicz, and P. Brodka. Multidimensional
social network: Model and analysis. In P. Jedrzejowicz, N. T. Nguyen, and K. Hoang,
editors, ICCCI (1), volume 6922 of Lecture Notes in Computer Science, pages 378–
387. Springer, 2011.

[11] B. Kryza, D. Krol, M. Wrzeszcz, L. Dutka, and J. Kitowski. Interactive cloud
data farming environment for military mission planning support. In Cracow Grid
Workshop ’11, in press.

[12] M. Kvassay, L. Hluchy, B. Kryza, J. Kitowski, M. Seleng, S. Dlugolinsky, and
M. Laclavk. Combining object-oriented and ontology-based approaches in human
behaviour modelling. In Applied Machine Intelligence and Informatics (SAMI), 2011
IEEE 9th International Symposium on, pages 177–182, 2011.

[13] M. Laclavk, S. Dlugolinsky, M. Seleng, M. Kvassay, B. Schneider, H. Bracker,
M. Wrzeszcz, J. Kitowski, and L. Hluchy. Agent-based simulation platform eval-
uation in the context of human behavior modeling. In Agent-based simulation plat-
form evaluation in the context of human behavior modeling, the second international
workshop on Infrastructures and Tools for Multiagent Systems, pages 1–15, 2011.

[14] B. Latane. Dynamic social impact. Philosophy and Methodology of the Social Sci-
ences, 23:287–310, 1996.

[15] J. G. March. Exploration and exploitation in organizational learning. Organization
Science, 2(1):71 – 87, 1991.

[16] M. Musolesi and C. Mascolo. A community based mobility model for ad hoc network
research. In REALMAN ’06 Proceedings of the 2nd international workshop on Multi-
hop ad hoc networks: from theory to reality, 2006.

[17] P. Nain, D. F. Towsley, B. Liu, and Z. Liu. Properties of random direction models.
In INFOCOM, pages 1897–1907. IEEE, 2005.

[18] F. Nazir, H. Prendinger, and A. Seneviratne. Participatory mobile social network
simulation environment. In ICC, pages 1–6. IEEE, 2010.

[19] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall,
1995.

[20] J. Sabater and C. Sierra. Reputation and social network analysis in multi-agent
systems. In AAMAS ’02: Proceedings of the first international joint conference on
Autonomous agents and multiagent systems, pages 475–482. ACM, 2002.

[21] B. Schmidt. Modelling of human behaviour: The pecs reference model. In A. Ver-
braeck and W. Krug, editors, 14th European Simulation Symposium, 2002.

[22] F. Tan, Y. Borghol, and S. Ardon. Emo: A statistical encounter-based mobility
model for simulating delay tolerant networks. In WOWMOM, pages 1–8. IEEE,
2008.

[23] D. Thalmann. Simulating a human society: The challenges. In Computer Graphics
International, CGI02, pages 25–38, 2002.

[24] I. Varlamis, M. Eirinaki, and M. D. Louta. A study on social network metrics and
their application in trust networks. In N. Memon and R. Alhajj, editors, ASONAM,
pages 168–175. IEEE Computer Society, 2010.

ITMAS 2012: Infrastructures and Tools for Multiagent Systems

176

	A Dynamic Account Payment Method for IntegratingHeterogeneous B2C Electronic Payment Systems
	A MAS-based Infrastructure forNegotiation and its Application to aWater-Right Market
	A New Platform for Developing,Management and Monitoring OpenMultiAgent Systems
	A Tool for Retrieving Meaningful PrivacyInformation from Social Networks
	Alpha Test-bed: A New Approachfor Evaluating Trust Models
	An agent platform for self-configuringagents in the Internet of Things
	An Approach for the Qualitative Analysisof Open Agent Conversations
	An Assistance Infrastructure to InformAgents for Decision Support in Open MAS
	Behaviour Driven Development forMulti-Agent Systems
	Dynamic Monitoring for Adapting AgentOrganizations
	Multi-Agent Oriented Reorganisation within theJaCaMo infrastructure
	Providing Agents With Norm ReasoningServices
	Social Multi-agent Simulation Framework

