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ABSTRACT

Abstract

This master’s thesis is focused on the study of the flow over the wing equipped with

passive high-lift devices. It starts with a 2D study and continues with a 3D study. The

2D study has been done by means of numerical CFD (Computational Fluid Dynamics)

simulations using CONVERGE CFD. The 3D study was carried out using FlightStream

software. The objective of the work is to improve the configuration of an airfoil with

passive high-lift leading and trailing edge devices for take-off and finally to equip these

devices to a wing.
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1. INTRODUCTION

1 Introduction

A high-lift device is an aeronautical device designed to increase lift in certain phases of

an aircraft’s flight. The high-lift devices are divided into active and passive.

The additional wing lift contributed by high-lift devices is obtained through:

• Boundary layer control resulting from improved pressure distributions, reenergizing

or removing low energy boundary layers (active high-lift devices).

• Increased airfoil camber (passive high-lift devices).

• An increment of the effective wing area in the case of flaps extending the chord

when deflected (passive high-lift devices). [1]

On the one hand, the active high-lift devices increase lift with suction or blowing of

the boundary layer. This process increases the amount of flow movement in the near

zones of the airfoil surface, and thus the adverse pressure gradient that the boundary

layer can withstand without sloughing is greater. By controlling the boundary layer, the

maximum value of the lift coefficient, Cl max, is increased, since the value of the angle of

attack of the entry stall can be increased without detachment of the boundary layer. [2]

Also, the active high-lift devices can blow from the trailing edge. A separate blowing

element or air from the motors is used. Bleed air from the engines is used for injection

into the flap slots to increase the airspeed. The deflection of the flow over the trailing

edge in the direction opposite to gravity produces an increase in lift. [2]

On the other hand, the passive high-lift devices are essentially movable elements that

permit the pilot to change the geometry and aerodynamic characteristics of the wing

sections to control the motion of the airplane or to improve the performance in some

desired manner. [3]

The passive high-lift devices can be leading edge or trailing edge. When the high-

lift trailing edge devices are deflected clockwise, the lift coefficient, drag coefficient and

moment coefficient for the aerodynamic centre increase, with the increase of the mo-

ment coefficient in the dive direction. When deflected counterclockwise, the lift and dive

1



1. INTRODUCTION

moment coefficients decrease but also generate an increase in the aerodynamic drag coeffi-

cient. As the mechanical complexity of the high-lift elements increases, the increase in the

lift coefficient is achieved with a smaller increase in the aerodynamic drag coefficient. [2]

The high-lift trailing edge devices do not increase the angle of stall. They tend to

reduce the stall angle by increasing the pressure drop over the top of the airfoil, which

promotes flow separation. To increase the stall angle, some form of leading edge device

is required. In addition, the use of the leading edge devices generates an aerodynamic

pitching moment, compensating for the diving moment generated by the trailing edge

devices. [4]

Trailing edge devices include plain flaps, split flaps, slotted flaps, Fowler flaps... On

the other hand, leading edge devices include leading-edge flaps, slots, slats, Krueger

flaps... These devices are shown in Figure 1.

Figure 1: a) Passive high-lift trailing edge devices. b) Passive high-lift leading edge
devices. Adapted image. [4]

Figure 2a shows the lift contribution of different high-lift trailing devices. It can be

seen that the zero lift angle is reduced with the use of the plain flap. Besides, it can be

seen that the use of the plain flap produces an increase in lift. However, when the airfoil

has the plain flap deflected it stalls at a lower angle of attack. It should also be noted

that the slope of the curve is maintained. Moreover, it can be seen that with the use of

2
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a slotted flap the stall angle increases.

On the other hand, Figure 2b shows the lift contribution of different high-lift leading

devices. A leading-edge flap or slat delays the stall, but also has the effect of reducing

the lift at a given angle of attack. This is because the droop in the leading edge acts

as a reduction in the effective angle of attack as measured from the leading edge to the

trailing edge. Leading-edge devices alone do little to improve lift for take-off and landing

because they are effective only at fairly high angles of attack. Nevertheless, they are very

useful when used in combination with trailing-edge flaps because they prevent premature

airflow separation caused by the flaps.

Figure 2: a) Contribution of the high-lift trailing edge devices. b) Contribution of the
high-lift leading edge devices. [4]

The very beginning of high-lift can be traced back to the years 1917-1920, but even

after 30 years, most of the design data were compiled in just four publications, but

there was little understanding of the underlying aerodynamic principles at work. It

was not until 1972 that the theoretical treatise of A.M.O. Smith provided a clear and

comprehensive insight into the fundamentals of a multi-element foil. [5]

The majority of today’s aircraft require the use of high-lift devices during take-off,

approach and landing manoeuvres, as these are performed at low speeds, making it

necessary to increase the lift coefficients of the airfoil. Figure 3 shows a Bombardier

CRJ-900 NG aircraft approaching the runway.

3
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Figure 3: Bombardier CRJ-900 NG (CL-600-2D24) approaching runway. [6]

This thesis focuses on the analysis of a wing with passive high-lift devices in the

take-off configuration.

4



2. OBJECTIVES

2 Objectives

The objective of this work is to perform an analysis of the flow around a wing equipped

with passive high-lift devices in the take-off configuration.

First, a 2D CFD analysis to improve an airfoil configuration with high-lift leading

and trailing edge devices for take-off is performed. CONVERGE CFD software is used

for this purpose. [7]

In second place, a 3D CFD analysis of a wing with the airfoil equipped with the chosen

high-lift devices is performed. FlightStream software is used for this purpose. [8]

5
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3 Previous work

In my previous work, an analysis of the effect on the lift and drag produced by the use

of passive high-lift trailing edge (flaps) on an airfoil was carried out. [9]

Passive high-lift trailing edge devices can be classified into devices that do not increase

the chord when deflected and those that do. With the deflection of all high-lift trailing

edge devices, the curvature is varied.

The study of an airfoil with different high-lift trailing edge devices was done using

CFD (Computational Fluid Dynamics) numerical simulations with OpenFOAM (Open

Field Operation and Manipulation).

Figure 4 shows the flaps that were analysed, three flaps that do not increase the

chord on deflection (plain flap, split flap and slotted flap) and three flaps that increase

the chord of the airfoil on deflection (Fowler flap, double slotted Fowler flap and triple

slotted Fowler flap). A flap deflection angle δ of 20◦ was used with a length of 25% of

the airfoil chord, this is a take-off configuration.

Figure 4: Study flaps. [4]

Flaps that do not extend like the plain, split or slotted flap, act by increasing the

camber, which causes the zero lift angle to shift to the left on the lift graph and increases

the maximum lift. The slope of the lift curve remains unchanged, and the stall angle is

reduced somewhat. This is depicted in Figure 5.

7



3. PREVIOUS WORK

Figure 5: a) Contribution of flaps that do not extend. b) Contribution of flaps that
extend. [4]

An extending flap such as the Fowler type acts similarly to the other flaps in terms

of zero lift angle and stall angle. However, the chord of the airfoil increases as the flap

deflects and more lift is generated for a given angle of attack compared to flaps that do

not extend. As the reference chord is maintained, this increase occurs because the new Cl

is equal to Cl multiplied by the new chord divided by the original chord. Figure 5b shows

the increase in the slope of the lift curve with the use of the Fowler flap. The double

slotted and triple slotted Fowler flaps act similarly to the Fowler flap but the maximum

lift increases.

The study airfoil was the NACA 0012 airfoil, chosen because it is standardised, sym-

metrical and of reduced thickness. It is shown in Figure 6.

Figure 6: NACA 0012 airfoil. [10]

It was decided to use a RANS model since RANS turbulence models require less

computational cost compared to LES, DES and DNS models. Within the RANS models,

the k−ε and k−ω SST models have been analysed as they are widely used (two-equation

models).

8
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After performing a convergence process with the two turbulent models, Figure 7,

Figure 8 and Figure 9 show the values obtained for Cl, Cd and Cm varying the angle of

attack. The results were compared with other simple software and experimental results.

[11]

Figure 7: Cl comparison with turbulent models (Re = 500000). [9]

In Figure 7, Cl, it can be seen that the results for small angles of attack are similar

and for larger angles of attack they differ. It can be seen that the results of the k − ω

SST model are close to the experimental results.

Figure 8: Cd comparison with turbulent models (Re = 500000). [9]

9
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In Figure 8, it can be seen that the Cd values for the k − ε model are much higher,

while better results are obtained with k − ω SST. As for the Cm results, Figure 9, it can

be seen that they are similar.

Figure 9: Cm comparison with turbulent models (Re = 500000). [9]

The results were more reliable and better fitted to the experimental data with the k−ω

SST model. With the k − ε model the stall input shape differed from the experimental

case and was overestimating the Cd values. Thus, it was decided to use the k − ω SST

model. ParaView software was used to represent the behaviour obtained, an example is

shown in Figure 10.

Figure 10: Velocity representation (m/s), NACA0012 airfoil (α = 6◦). [9]
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Finally, the results of all the case studies, the main objective of the work, were com-

pared. Figure 11 shows the Cl values with positive angles of attack of all the case studies.

Figure 11: Comparative graph Cl - α of the NACA 0012 airfoil with all study flaps. [9]

It can be seen that with the use of all flaps the lift of the airfoil increases, and the

stall angle decreases. It can be seen how the slope of the normal flap curve is maintained

with that of the airfoil without flap and how the incorporation of the slot in the plain

flap generates an increase in lift.

As for the group of flaps that increase the chord of the airfoil when deflected, it can be

seen that they are the ones that generate a higher maximum lift coefficient and that their

slopes increase. With the configurations designed for the double and triple slotted Fowler

flap, no increase in lift is achieved compared to the simple Fowler for this configuration

(take-off). Nevertheless, for the landing configuration, these flaps can be more useful by

generating higher Cl with higher deflection. The design of these types of flaps has a great

complexity since many parameters influence, such as the angles and positions that the

different sections of the flap have. A detailed study of these parameters was not carried

out as the work was too extensive. Despite this, it was achieved that they stall for a

higher angle of attack compared to the simple Fowler. In addition, they generate higher

lift compared to flaps that do not extend.
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In Figure 12, Cl is represented with Cd of all the case studies. It can be seen how all

flaps generate an increase in the lift without increasing drag too much, being the Fowler

type flaps the ones that generate the highest lift.

Figure 12: Comparative graph Cl - Cd of the NACA 0012 airfoil with all study flaps. [9]

As already mentioned, for each point of each polar, the slope of the straight line

passing through that point and the origin is the aerodynamic efficiency of the airfoil. It

is seen that the simple Fowler flap is the best according to the graph obtained in that

sense.
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4 Method

This chapter shows the method used to obtain the results of the work. The chapter is

divided into 2D analysis and 3D analysis and all the characteristics of the methods are

shown.

4.1 2-D analysis

4.1.1 Numerical simulation

The 2D CFD analysis is performed using CONVERGE CFD software. This software

is a Convergent Science software that features truly autonomous meshing, state-of-the-

art physical models, a robust chemistry solver, and the ability to easily accommodate

complex moving geometries, so you can take on the hard CFD problems. [7]

Annex A shows how to use the CONVERGE CFD software to obtain the results of

the work.

CONVERGE offers several iterative algorithms for the solution of mass, momentum,

energy, species, and scalar transport. CONVERGE offers pressure-velocity coupling using

a modified Pressure Implicit with Splitting of Operator (PISO) method of Issa (1986).

The PISO algorithm as implemented in CONVERGE starts with a predictor step where

the momentum equation is solved. After the predictor, a pressure equation is derived

and solved, which leads to a correction, which is applied to the momentum equation.

This process of correcting the momentum equation and re-solving can be repeated as

many times as necessary to achieve the desired accuracy. After the momentum predictor

and first corrector step have been completed, the other transport equations are solved in

series. [12]

Furthermore, CONVERGE offers pressure-velocity coupling using a modified Semi-

Implicit Method for Pressure-Linked Equations (SIMPLE) method of Patankar (1980).

The modified SIMPLE algorithm differs from the PISO algorithm described above in

that the momentum equation is solved within the iterative algorithm, rather than as

a predictor step. At each iteration, SIMPLE solves the momentum equation, then a
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derived pressure equation. As with PISO, after the pressure solution is used to update

the velocity, the other transport equations are solved in series. The solution is more

"expensive" with SIMPLE and in this work it has been decided to use the PISO solver

since correct results are obtained.

4.1.2 RANS model used

In Reynolds-Averaged Navier-Stokes (RANS) turbulence models, the flow variables (e.g.,

velocity) are decomposed into an ensemble mean and a fluctuating term. [12]

Thus, the velocity and pressure components are replaced by:

ui = ui + u′i

p = p+ p′
(1)

Substituting the decompositions of Equation 1 into the Navier-Stokes equation for

incompressible flow and averaging, yields the RANS equations:

∂ui
∂xi

= 0

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

1

ρ

∂

∂xj
(τ ′ij − ρu′iu′j)

(2)

with:

τ ′ij = 2µSij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(3)

− ρu′iu′j = τ ′ij t = 2µtSij (4)

The following RANS turbulence models are available in CONVERGE: Standard k−ε,

RNG (Renormalization Group) k−ε, Rapid Distortion RNG k−ε (Han and Reitz, 1995),

Realizable k − ε, Standard k − ω 1998 (Wilcox, 1998), Standard k − ω 2006 (Wilcox,

2006), k − ω SST and Spalart-Allmaras (1994). [12]

Following my previous work, it was concluded that the results from the k − ω SST

are closer to the experimental results than those of k − ε. In this work, the k − ω SST

model is used.
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The RANS k − ω shear stress transport (SST) model combines the advantages of a

standard k − ω model and a standard k − ε model. In general, the k − ω SST model

performs well when simulating external flows. [12]

The k − ω SST model in CONVERGE expresses the turbulent viscosity as:

µt =
ρa1k

max[a1ω, SF2]′
(5)

where:

S =
√

2SijSij (6)

The transport equation for k and for ω are shown in Equation 7 and Equation 8:

∂ρk

∂t
+
∂ρujk

∂xj
= P − β∗ρωk +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
(7)

∂ρω

∂t
+
∂ρujω

∂xj
=
α

νt
P − βρω2 +

∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
+ 2(1− F1)

ρσω2
ω

∂k

∂xj

∂ω

∂xj
(8)

The expression for the mean strain rate tensor Sij is as shown in Equation 9 and the

expression for the production term P is Equation 10.

Sij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(9)

P = min
[
τij
∂ui
∂xj

, 10β∗ρωk

]
(10)

Each constant in the transport equations for k and ω (such as σk) is a blend of

inner and outer constants. For some constant φ, Equation 11 below defines the blending

function:

φ = F1φ1 + (1− F1)φ2 (11)

CONVERGE calculates F1 and F2 using the expressions below:

F1 = tanh

min

[
max

[ √
k

β∗ωd
,
500ν

d2ω

]
,

4ρσω2k

CDkωd2

]4 (12)
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F2 = tanh

max

[
2

√
k

β∗ωd
,
500ν

d2ω

]2 , (13)

where:

CDkω = max
[
2ρσω2

1

ω

∂k

∂xj

∂ω

∂xj
, 10−10

]
(14)

Finally, Equation 15 and Equation 16 below defines the inner and outer model con-

stants and parameters used in the k − ω SST model:

α1 =
5

9
α2 = 0.44 σk1 = 0.85 σω1 = 0.500 β1 = 0.075 (15)

σk2 = 1.00 σω2 = 0.856 β2 = 0.0828 β∗ = 0.09 κ = 0.41 α1 = 0.31 (16)

4.1.3 Characteristics of the airfoil and passive high-lift devices

Airfoil

The airfoil under study is the NACA 0012 airfoil, chosen because it is standardized,

symmetrical and of reduced thickness. The airfoil is represented in Figure 6. In the

4-digit NACA airfoils: [13]

• The first digit describes the maximum camber as a percentage of the chord.

• The second digit describes the position of the maximum camber in tenths of the

chord.

• The last two digits describe the maximum thickness as a percentage of the chord.

High-lift devices

The high-lift trailing edge device analysed is the plain flap. The effect of the plain

flap with different lengths and deflection angles is compared. Table 1 shows the plain

flap configurations analysed.

Length (%c) Deflection angle (◦)
20 20
30 15
40 10

Table 1: Plain flap configurations.
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NACA 0012 airfoil with the different study plain flaps is shown below. Figure 13 shows

the NACA 0012 airfoil with a plain flap with a length of 20%c and with a deflection angle

of 20◦ drawn in CatiaV5. The coordinate system is located at 1/4 chord.

Figure 13: NACA 0012 airfoil with a plain flap (20%c 20◦).

Figure 14 shows the NACA 0012 airfoil with a plain flap with a length of 30%c and

with a deflection angle of 15◦ drawn in CatiaV5.

Figure 14: NACA 0012 airfoil with a plain flap (30%c 15◦).

Finally, Figure 15 shows the NACA 0012 airfoil with a plain flap with a length of

40%c and with a deflection angle of 10◦ drawn in CatiaV5.

Figure 15: NACA 0012 airfoil with a plain flap (40%c 10◦).
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Once the plain flap configuration is chosen, different leading edge flaps are compared

with the plain flap equipped, Table 2. The coordinates of all case studies are shown in

Annex B.

Length (%c) Deflection angle (◦)
15 20
20 15
25 10

Table 2: Leading edge flap configurations.

NACA 0012 airfoil with the different study leading edge flaps is shown below. Figure

16 shows the NACA 0012 airfoil with a leading edge flap with a length of 15%c and with

a deflection angle of 20◦ and a plain flap with a length of 20%c and with a deflection

angle of 20◦ drawn in CatiaV5.

Figure 16: NACA 0012 airfoil with a leading edge flap (15%c 20◦) and a plain flap (20%c
20◦).

Figure 17 shows the NACA 0012 airfoil with a leading edge flap with a length of 20%c

and with a deflection angle of 15◦ and a plain flap with a length of 20%c and with a

deflection angle of 20◦ drawn in CatiaV5.

Figure 17: NACA 0012 airfoil with a leading edge flap (20%c 15◦) and a plain flap (20%c
20◦).
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Finally, Figure 18 shows the NACA 0012 airfoil with a leading edge flap with a length

of 25%c and with a deflection angle of 10◦ and a plain flap with a length of 20%c and

with a deflection angle of 20◦ drawn in CatiaV5.

Figure 18: NACA 0012 airfoil with a leading edge flap (25%c 10◦) and a plain flap (20%c
20◦).

Some values of variables characteristic of the problem are shown in Table 3. The value

of the Reynolds number has been chosen to compare the results with studies that have

that value.

Variable Value
U 40 m

s

ρ 1.225 kg
m3

µ 1.7894 · 10−5 kg
m s

L 2.1911 m
Re 6000000

Table 3: Some values of characteristic variables of the problem.

4.1.4 Description of the mesh

It has been decided to use a C-mesh with a quadtree grid. It has been decided to use the

mesh of the CONVERGE example called NACA 0012 airfoil 10 deg AOA inlaid transient

RANS to start realizing the mesh.

4.1.4.1 Initial conditions

Region 0 is created to define the initial conditions of the case. The initial conditions

values are shown in Table 4.
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Variable Value
U [40, 0, 0]
T 288.15 K
P 101325 Pa

Viscosity ratio 1
Lenght scale 0.0003 m

Table 4: Values that are imposed in Region 0 created.

A velocity of 40 m/s has been chosen as it is a suitable velocity for the take-off of an

aircraft such as the Cessna 172 aircraft. The maximum velocity with deflected flaps is 86

knots (44.242 m/s) for the Cessna 172 aircraft. [14]

The flow velocity in the x-direction is imposed and to change the angle of attack the

airfoil is rotated.

Air species such as O2 and N2 with their corresponding mass fractions (O2=0.233 and

N2=0.767) are created.

4.1.4.2 Boundary conditions

In a CFD analysis it is very important to keep in mind the boundary conditions. The

problem consists of five distinct zones:

• Airfoil: wall type boundary condition is imposed on it. The region created Region

0 is selected.

• Front: two D type boundary condition is imposed on it. This condition is imposed

on the lateral faces to impose that the work is done in 2D. The region created

Region 0 is selected.

• Back: two D type boundary condition is imposed on it too.

• Inflow: the inflow boundary condition is imposed on it. The region created Region

0 is selected.

• Outflow: the outflow boundary condition is imposed on it. The region created

Region 0 is selected.
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Figure 19 shows the five problem zones.

Figure 19: Five problem zones.

The boundary conditions can be Dirichlet or Neumann type. The Dirichlet type

boundary condition specifies the value, it is given by: [12]

φ = f (17)

While the Neumann type boundary condition specifies the value of the first derivative:

[12]

∂φ

∂x
= f (18)

Table 5, Table 6 and Table 7 show the types of boundary conditions for the variables

on the airfoil, inflow and outflow boundaries respectively.

Variable Condition type Value
Velocity Law of wall [0, 0, 0]
Pressure Neumann -

Temperature Neumann 0
Species Neumann -
Passive Neumann -

Turbulence (k) Neumann 0
Turbulence (ω) Law of wall -

Table 5: Boundary conditions for the airfoil in CONVERGE CFD.
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Variable Condition type Value
Velocity Dirichlet [40, 0, 0]
Pressure Neumann 0

Temperature Dirichlet 288.15
Species Dirichlet Air=1
Passive Dirichlet -

Turbulence (k) Intensity 0.01
Turbulence (ω) Length scale 0.0003

Table 6: Boundary conditions for the inflow in CONVERGE CFD.

Variable Condition type Value
Velocity Neumann [0, 0, 0]
Pressure Dirichlet 101325

Temperature Neumann 0
Species Neumann -
Passive Neumann -

Turbulence (k) Neumann 0
Turbulence (ω) Neumann 0

Table 7: Boundary conditions for the outflow in CONVERGE CFD.

4.1.4.3 Grid control

Several important parameters are defined in the grid to be used. First, a value for the Base

grid is chosen. The base grid size is the largest grid size available in the simulation. [15]

Moreover, fixed embedding is used to refine the portion of the grid near the airfoil.

The base mesh and the embedding near the airfoil are decided based on the y+ value. Y +

is the non-dimensionalised wall distance that tells where the first cell is in the boundary

layer. Y + can be defined in the following way:

y+ =
u∗y

ν
(19)

where u is the friction velocity and y is the distance on the y-axis of the first cell. [16]

The boundary layer consists of different layers and the y+ can distinguish them for

the study. Figure 20 represents these layers.
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Figure 20: Boundary layer. [17]

First, the outer layer is the layer furthest from the wall and any model usually cal-

culates this area. The inner layer is the layer next to the wall. This layer consists of

three sublayers: the logarithmic layer, the buffer layer and the viscous sublayer. In the

logarithmic layer both viscous and turbulent stresses are relevant.

Depending on the turbulence model used, it will be necessary to calculate the bound-

ary layer more or less accurately by using a larger or smaller value of the distance from

the first cell to the wall in units of y+. In the k−ω SST model, it is recommended to use

y+ values between 30 and 300 (logarithmic layer) when using wall functions, or values of

y+ < 5 to solve the viscous sublayer.

The Pointwise calculator is used to compute the height of the first mesh cell (∆s) of

the wall required to achieve the desired y+. [18]

With the ∆s value, the embedding scale near to the airfoil is obtained. The embedding

cell sizes are governed by: [15]

∆s =
dxBase grid

2Embedding scale
(20)

Also, an adaptive mesh refinement (AMR) is used for velocity. AMR is an automatic

mesh refinement based on local flow conditions.
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4.1.4.4 Convergence process

A convergence process has been carried out to decide the characteristics of the mesh. The

dimensions of the example domain in the CONVERGE CFD software have been used and

the angle of attack of the airfoil in the study is 10◦.

CONVERGE always ensures that at each time step the solution is converged to the

prescribed tolerances by increasing the number of iterations and/or reducing further the

time step. The residual is one of the most fundamental measures of an iterative solution’s

convergence, as it directly quantifies the error in the solution of the system of equations.

The residuals for each of the equations during the simulation process can be seen in the

file converge.log.

Table 8 shows the values of the tolerances used taking into account computational

limitations and Marius-Gabriel Cojocaru’s recommendations.

Equation Convergence tolerance
Momentum 10−5

Pressure 10−8

Density 10−4

Energy 10−4

Species 10−4

Passive 10−5

Turbulent Kinetic Energy 20−3

Specific dissipation rate 20−3

Velocity variance scale 10−3

Elliptic relaxation function 10−3

Velocity Scale Ratio 10−3

Radiation 10−8

Wall dist 10−3

Table 8: Convergence tolerances for the equations.

To obtain the forces and moments on the airfoil, the values obtained between second

1 and second 1.5 are averaged. An example of the pressure forces obtained is shown in

Figure 21 and Figure 22.
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Figure 21: Pressure Forces X (NACA 0012. Base Grid=9m, Embed Scale=13).

Figure 22: Pressure Forces Y (NACA 0012. Base Grid=9m, Embed Scale=13).

After adding the average values of pressure and viscous forces to obtain lift and

drag and doing the same for momentum, the following equations are used to obtain the

coefficients:

Cl =
2L

ρcU2
(21)

Cd =
2D

ρcU2
(22)

Cm =
2M

ρc2U2
(23)
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First, three meshes with three grid base values (10m, 9m and 8m) were compared.

An embed scale of 12 has been used. The values of y+, computation time and the lift

coefficient Cl, drag coefficient Cd and moment coefficient Cm are shown in Table 9.

Base y+
∆s (m) Time (h) Cl Cd CmGrid (m) average

10 147.21 0.00144 4.816 0.997 (1.276 %) 0.039 (8.728 %) -0.011 (16.268 %)
9 132.22 0.00129 5.200 0.999 (1.107 %) 0.037 (3.789 %) -0.010 (11.779 %)
8 115.86 0.00113 6.366 1.010 0.036 -0.009

Table 9: Convergence process of the base grid (α = 10◦, Embed Scale = 12).

It is important to take into account computational limitations. A personal computer

is used with an Intel(R) Core(TM) i7-6500U CPU 2.50GHz, 2592 MHz with two main

cores.

The results obtained from the coefficients have been compared with those obtained

with the 8m base grid and the error percentages have been calculated. After analyzing

these errors and the computation time, it was decided to choose a value of 9m for the

base grid.

Next, a comparison of three grids with three values of embed scale (12, 13 and 14)

has been made. The base grid used is the 9m grid. Table 10 shows the results obtained.

Embed y+
∆s (m) Time (h) Cl Cd CmScale average

12 132.22 0.00129 5.20 0.999 (3.617 %) 0.037 (7.184 %) -0.010 (7.473 %)
13 60.41 0.00059 6.48 1.027 (0.895 %) 0.036 (3.034 %) -0.004 (3.290 %)
14 31.15 0.00030 10.21 1.036 0.035 0.002

Table 10: Convergence process of the embed scale (α = 10◦, Base grid = 9m).

After analyzing the results, it was decided to use an embed scale of 13. Thus, the

mesh used has the following characteristics:

y+ average 60.41
∆s (m) 0.000589

Base Grid (m) 9
Embed Scale 13
Embed layers 2

Table 11: Characteristics of the mesh used.
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As for the number of embed layers, 2 is a good choice. Besides, another box-type fixed

embedding with scale 9 is used around the airfoil. The AMR has a maximum embedding

level of 10 and a subgrid criterion of 0.15 m/s. [15]

Figure 23 shows the mesh used in this work. It can be observed the box-type fixed

embedding used around the airfoil and how the mesh cells are of smaller dimensions in

the vicinity of the airfoil and in the area where the trail appears.

Figure 23: Mesh used.

4.1.4.5 Validation of results

An important part of the work is the validation of the results. To confirm that a correct

mesh is used and that the parameters used in the case are correct, a validation of the

results is performed by comparing them with experimental results. In addition, the results

are compared with another software called XFLR5. XFLR5 is an analysis tool for airfoils,

wings and planes operating at low Reynolds Numbers. [19]

XFLR5 cannot be used for complex airfoil geometries, has some shortcomings and

uses the panel method, with results for large deflection angles being unreliable. However,

it allows for time-saving calculations and information on aerodynamic behaviour.
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Again, it is reminded that there are computational limitations but it can be seen

below that the results can be considered correct for this university work.

Figure 24 shows the Cl values obtained with the mesh used along with results obtained

with XFLR5 and with experimental results. [3]

Figure 24: Comparison of Cl values.

Figure 24 shows that the obtained Cl values can be considered correct. With the

CONVERGE CFD software, the airfoil stalls with the same angle of attack as in the

experimental results, which are the reference results. There is some difference in values

with high angles of attack, however, with the computational limitations that we have,

these results are considered valid. Moreover, it can be seen that the CONVERGE results

are more realistic than the results obtained with the XFLR5 software.
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Figure 25 shows the comparison of Cd values. The Cd values differ somewhat at large

angles of attack but the results obtained are considered valid.

Figure 25: Comparison of Cd values.

Figure 26 shows the comparison of Cm values. It can be seen that the results obtained

for Cm are similar to the experimental results.

Figure 26: Comparison of Cm values.

It is concluded that the configuration and the mesh used to perform the simulations

are valid.
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Tecplot for CONVERGE software is used to visualize the simulations. Tecplot for

CONVERGE is included with the CONVERGE license. Figure 27 shows representations

of different variables of the airfoil simulation for an angle of attack of 10◦.

Figure 27: NACA0012 airfoil (α = 10◦). a) Velocity representation (m/s). b) Pressure
representation (Pa). c) Turbulent viscosity representation (m2/s).

Figure 27a represents the velocity. For an angle of attack of 10◦, the increase in

velocity can be seen on the upper surface of the airfoil at the leading edge. Also, you can

see a zone of reduced velocity at the trailing edge and on the lower surface at the leading

edge. Nevertheless, in Figure 27b you can see that the pressure is higher on the lower

surface at the leading edge than on the upper surface.

On the other hand, Figure 27c shows the turbulent viscosity and it can be seen that

it is higher at the trailing edge of the airfoil.
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4.2 3-D analysis

4.2.1 Numerical simulation

It is important to perform a 3D analysis with the aircraft wing because it is closer to

reality. FlightStream has been used for this analysis.

FlightStream is a DAR Corporation software and it is a high fidelity aerodynamics

tool perfectly suited for aircraft designers. The unique vorticity based flow solver, which

uses only a surface mesh, produces accurate solutions in a fraction of the time required by

full volume mesh CFD solvers. The solver is capable of modelling and analyzing aircraft,

propellers, high-lift devices and jet engine effects. [8]

High-Lift devices such as flaps, slats, spoilers, etc can be modelled in FlightStream to

analyze how the flow over the wing interacts with these complex geometries. Annex A

shows how to use the FlightStream software to obtain the results of the work.

4.2.2 Wing characteristics

The study wing has the NACA 0012 airfoil equipped with the leading flap with a length

of 15%c and with a deflection angle of 20◦ and with the plain flap with a length of 20%c

and with a deflection angle of 20◦. It has been decided that the wing should have an 11m

span, which is the span of the Cessna 172 aircraft wing. The wing is shown in Figure 28.

Figure 28: Wing measurements in CatiaV5.
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4.2.3 Description of the mesh

FlightStream can automatically generate an unstructured surface mesh based on the

imported CAD model. [8]

A convergence process has been performed to choose the mesh. An angle of attack of

10◦ has been used. First, for a wing edge tessellation edge size value of 0.05, the influence

of the tessellation edge size value on the upper and lower wing surfaces of the wing has

been studied. The case values of 0.058 are used as a reference to calculate the error

percentages. This can be seen in Table 12.

Tessellation edge size CL (% error) CDi (% error) CDo (% error) CD (% error)
0.062 0.748 (1.267%) 0.0315 (1.254%) 0.01 (0%) 0.0415 (0.955%)
0.060 0.753 (0.594%) 0.0317 (0.627%) 0.01 (0%) 0.0417 (0.477%)
0.058 0.758 0.0319 0.01 0.0419

Table 12: Tessellation edge size analysis on the upper and lower surfaces (α = 10◦).

It was decided to use a tessellation edge size on the upper and lower surface of 0.06

since correct values were obtained. Subsequently, the influence of the tessellation edge

size on the wing edge, Table 13, was studied. The case values of 0.03 are used as a

reference to calculate the error percentages.

Tessellation edge size CL (% error) CDi (% error) CDo (% error) CD (% error)
0.05 0.753 (0.293%) 0.0317 (2.160%) 0.01 (0%) 0.0417 (1.651%)
0.04 0.752 (0.200%) 0.0317 (2.160%) 0.01 (0%) 0.0417 (1.651%)
0.03 0.751 0.0324 0.01 0.0424

Table 13: Tessellation edge size analysis on the wing edge (α = 10◦).

A tessellation edge size value of 0.04 has been chosen for the wing edge. Table 14

shows the values of the wing tessellation edge sizes used in FlightStream.

Wing area Tessellation edge size
Upper surface 0.06
Lower surface 0.06
Wing edge 0.04

Table 14: Wing tessellation edge sizes in FlightStream.
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It is important to equip the wing with the wake termination nodes and the trailing

edge. Figure 29 shows the mesh used. The reference system is located at 1/4%c of the

airfoil in the centre of the wing.

Figure 29: Wing mesh in FlightStream.
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5 Results

This chapter describes the results, both numerical and graphical, obtained in the different

study cases.

5.1 2-D analysis

The results obtained from the airfoil with the different high-lift devices under study are

shown below.

5.1.1 High-lift trailing edge devices

First, the results obtained with the three high-lift trailing edge devices are compared.

Figure 30 shows the Cl value for each angle of attack of the airfoil without flap and with

the flaps.

Figure 30: Comparison of the Cl values. Analysis of the different high-lift trailing edge
devices.
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Figure 30 shows that with the three high-lift trailing edge devices an increase in the

Cl value for an angle of attack is obtained. Nevertheless, in all three cases the airfoil stalls

earlier than in the case of the airfoil without flap. This can be solved by incorporating a

high-lift leading edge device.

The high-lift trailing edge device with a length of 20%c and deflected 20◦ is the one

with which the greatest increase in Cl is obtained.

Figure 31 shows the obtained values of Cd. It can be seen that with the incorporation

of the flaps the value of Cd increases compared to that of the airfoil without flap for an

angle of attack, however, this is not a large increase. The Cd values with each flap are

similar.

Figure 31: Comparison of the Cd values. Analysis of the different high-lift trailing edge
devices.

Finally, Figure 32 shows the obtained values of Cm. It can be seen that with the

incorporation of any of the flaps the value of Cm increases. Besides, it can be seen that

with the increase of the angle of attack the value of Cm is reduced.

The increase in the Cm value with the incorporation of the high-lift devices makes it

necessary to use the horizontal stabiliser to generate a moment in the opposite direction.
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Figure 32: Comparison of the Cm values. Analysis of the different high-lift trailing edge
devices.

It was decided to choose the high-lift trailing edge device with a length of 20%c and

deflected 20◦ since it is the one with which a greater increase of Cl is obtained and the

values of Cd are similar with the three flaps. The incorporation of a high-lift leading edge

device is intended to increase the stall angle.

Figure 33 on the following page shows representations of different variables of the

airfoil simulation with the high-lift trailing edge device chosen for an angle of attack of

10◦.

In Figure 33a it can be seen that, for this angle of attack, the incorporation of the

high-lift trailing edge device generates an increase in the velocity on the upper surface at

the leading edge but there is also a further decrease in the velocity on the upper surface

of the flap. The airfoil is in a state close to stall if we look at Figure 30. In Figure 33b

it can be seen that with the incorporation of the device there is a greater difference in

pressures.

On the other hand, in Figure 33c it can be seen that the turbulent viscosity is higher

compared to the case of the airfoil without flap for this angle of attack.
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Figure 33: NACA0012 airfoil with a plain flap 20%c 20◦ (α = 10◦). a) Velocity repre-
sentation (m/s). b) Pressure representation (Pa). c) Turbulent viscosity representation
(m2/s).

5.1.2 High-lift leading edge devices

The results obtained with the three high-lift leading edge devices are compared. Figure

34 shows the Cl value for each angle of attack of the airfoil without the leading edge flap

and with it. In all cases, the previously selected high-lift trailing edge is deflected.
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Figure 34: Comparison of the Cl values. Analysis of the different high-lift leading edge
devices.

Figure 34 shows that with the three high-lift leading edge devices the Clmax value

increases and the airfoil stalls later than in the case of the airfoil without a leading flap.

This solves the problem of having a low stall angle when only one high-lift trailing edge

device is deflected.

With the high-lift leading edge device with a length of 15%c and with a deflection

angle of 20◦, the highest Clmax and largest stall angle is achieved.

Figure 35 on the following page shows the obtained values of Cd. It can be seen that

with the incorporation of the high-lift leading edge flap it is possible to reduce the Cd

values. The results of the three cases are similar but with large angles of attack the Cd

values with the leading edge flap with a length of 15%c and with a deflection angle of 20◦

being slightly lower.
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Figure 35: Comparison of the Cd values. Analysis of the different high-lift leading edge
devices.

Finally, Figure 36 shows the obtained values of Cm. It can be seen that the Cm

values increase and again the use of the horizontal stabiliser to generate a moment in the

opposite direction should be analysed.

Figure 36: Comparison of the Cm values. Analysis of the different high-lift leading edge
devices.

Thus, it was decided to choose the high-lift leading edge device with a length of 15%c

and deflected 20◦ since it is the one with the highest Clmax obtained, it stalls with a

higher angle of attack and the Cd values are slightly lower.
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Figure 37 shows representations of different variables of the airfoil simulation with the

high-lift trailing edge and leading edge devices chosen for an angle of attack of 10◦

Figure 37: NACA0012 airfoil with a leading edge flap 15%c 20◦ and with a plain flap
20%c 20◦ (α = 10◦). a) Velocity representation (m/s). b) Pressure representation (Pa).
c) Turbulent viscosity representation (m2/s).

In Figure 37a it can be seen that with the use of the leading edge flap there is an

increase in velocity on the upper surface at the leading edge and a reduction in velocity

on the upper surface of the flap.

In Figure 37b it can be seen that with the incorporation of the leading edge flap there

is an increase in the pressure difference.

Finally, if Figure 33c is compared with Figure 37c, a reduction in turbulent viscosity

can be seen on the upper surface of the airfoil.
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5.2 3-D analysis

An aircraft’s wing is the lifting surface with the chosen airfoil section, which can vary

spanwise. The lift generated by the wing sustains the weight of the aircraft to make flight

possible. [20]

Figure 38 shows the CL and CD values obtained with the wing with the undeflected

devices using FlightStream software. Also, Figure 38 shows a zoom of the values with

zero angle of attack.

Figure 38: Wing results with undeflected high-lift devices.

An important issue is to analyze the simulation residuals to ensure that converged

values are obtained. As mentioned above, the residual is one of the most fundamental

measures of an iterative solution’s convergence, as it directly quantifies the error in the

solution of the system of equations. For CFD, residual levels of 10−4 are considered to be

loosely converged, levels of 10−5 are considered to be well converged, and levels of 10−6

are considered to be tightly converged. [21]
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Figure 39 shows the residuals obtained and how low values are obtained, concluding

that the results are correct.

Figure 39: Residuals of the wing with undeflected high-lift devices case.

After obtaining the results for the wing with the undeflected high-lift devices, the

wing with the deflected devices is simulated. Figure 40 shows the CL and CD values

obtained. Again a zoom of the values is shown.

Figure 40: Wing results with deflected high-lift devices.
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Figure 41 shows the residuals obtained for this case and again concludes that the

results are correct.

Figure 41: Residuals of the wing with deflected high-lift devices case.

The results obtained in both cases are compared below. In Figure 42 it can be seen

that with deflected high-lift devices the CL values are increased without increasing the

CD values too much.

Figure 42: Comparative CL - CD graph of the wing with deflected and undeflected high-
lift devices.
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For each point of each polar, the slope of the straight line passing through that point

and the origin is the aerodynamic efficiency of the airfoil. It is observed that with deflected

high-lift devices, higher aerodynamic efficiency is obtained.

After analyzing the results obtained, representations of the wing simulation are shown.

Figure 43 shows the simulation of the wing with undeflected high-lift devices.

Figure 43: Wing with undeflected high-lift devices in FlightStream. Velocity representa-
tion (m/s). (α = 10◦).

Figure 43 shows that vortices are generated at the wing tips. A 3D finite wing produces

vortex flow as a result of tip effects. The high pressure from the lower surface rolls up at

the free end of the finite wing, creating the tip vortex. [20] Figure 44 shows the simulation

of the wing with the deflected high-lift devices.

Figure 44: Wing with deflected high-lift devices in FlightStream. Velocity representation
(m/s). (α = 10◦).
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In Figure 44 it can be seen that the vortices are larger with the addition of the high-

lift devices. The difference in the vortices can best be seen in Figure 45. The vortices

generated are related to the values of the induced drag coefficient, which is higher with

deflected high-lift devices.

(a) Undeflected high-lift devices. (b) Deflected high-lift devices.

Figure 45: Velocity representation (m/s).

In both cases, the wing has a cut-off tip and it offers less drag than a rounded-off tip.

A smoothly-rounded tip easily permits the air to flow around the tip. A tip with a sharp

edge makes it more difficult, thus reducing the induced drag. [4]

Most of the new low-drag wing tips use some form of sharp edge. A widely used device

is the winglet which is a curved and twisted device so that the rotating vortex flow in the

wingtip creates a lift force on the winglet that has a forward component. This forward

lift component acts as a "negative" drag, reducing the overall drag of the wing, Figure

46. [4]

Figure 46: Reduction of vortex size with the use of winglets. [22]
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6 Conclusions

CFD analysis has great potential and offers many advantages. Simulation provides low

cost compared to full-scale or reduced-scale model tests. There is also the freedom to

impose boundary conditions and information is obtained for different variables at any

point in space, which is more complicated in experiments. Even so, the results must be

accompanied by real experiments such as those performed in wind tunnels to be validated.

First of all, CONVERGE CFD software allows to perform CFD simulations quite

accurately. It has also been proven that Tecplot for CONVERGE allows to visualize the

simulations performed by obtaining graphical results of different parameters.

With the 2D CFD analysis performed in this work, it has been possible to study the

influence of the passive high-lift trailing edge and leading edge devices on the lift, drag

and moment of an airfoil. It has been demonstrated that CONVERGE can be used quite

reliably to study how the different parameters of these devices affect numerically in real

cases.

In the 2D CFD analysis, the PISO solver has been used since it gives correct results

and is less "expensive" than the SIMPLE solver. As for the turbulent model, k− ω SST

has been used since it gives results closer to the experimental results compared to the

k − ε. This was one of the analyses performed in my previous work.

The high-lift devices are used in take-off, approach and landing manoeuvres. Several

conclusions have been obtained with the use of high-lift devices from the work which is

detailed below.

With the incorporation of high-lift trailing edge devices, the value of Cl for a given

angle of attack increases. Nevertheless, the airfoil stalls earlier than in the case of the

airfoil without flap. The addition of the study flaps increases the Cd values but not by

much. Moreover, the Cm value increases with the addition of any of the flaps but with

the increase of the angle of attack the value of Cm decreases. The increase in the value

of Cm with the incorporation of the high-lift trailing edge devices makes it necessary to

use the horizontal stabiliser to generate a moment in the opposite direction.
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It has been decided to choose the high-lift trailing edge device with a length of 20%c

and deflected 20◦ as it gives the highest Cl increase and the Cd values are similar for all

three flaps.

As for the leading edge devices, with all three study devices the Clmax value increases

and the airfoil stalls later than in the case of the airfoil without a leading edge flap.

This solves the problem of having a low stall angle when only one high-lift trailing edge

device is deflected. Furthermore, it has been shown that with the addition of the high-lift

leading edge flap it is possible to reduce the Cd values. Again the use of the horizontal

stabiliser to generate a moment in the opposite direction should be analysed.

Thus, it has been decided to choose the high-lift leading edge device with a length of

15%c and deflected 20◦ as it has the highest Clmax, stalls at a higher angle of attack and

the Cd values are slightly lower.

After the choice of the passive high-lift leading and trailing edge devices, a 3D analysis

was performed with FlightStream software. FlightStream allows to perform 3D CFD

simulations that simulate situations quickly and easily.

The residuals of the simulations performed have been analysed. The residual is a

fundamental measure of convergence of an iterative solution and it has been used to

confirm that the results are correct.

With deflected high-lift devices on the wing, the CL values are increased without

increasing the CD values too much. It is observed that with deflected high-lift devices on

the wing a higher aerodynamic efficiency is obtained for take-off performance.

Finally, it has been shown that vortices are generated at the wing tips. The vortices

generated are related to the values of the induced drag coefficient, which are higher with

deflected high-lift devices.

As for future work, slotted high-lift devices could be incorporated into the airfoil to

improve aerodynamic efficiency. In addition, the wing could be improved by incorporating

aileron sections, having flaps with a certain wing length and having the mechanical devices

that allow the flaps to deflect. Also, wings with variable chord, wing sweep, wing dihedral
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or with wing tips could be analysed and compared.

It should be noted that studies and experiments are being carried out with deformable

wings that modify their curvature and allow the configuration of the aircraft to be opti-

mised at each phase of the flight.
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ANNEX A: USE OF THE SOFTWARE

A Annex A: Use of the software

This Annex explains how to use the software used in the work.

CONVERGE CFD

Firstly, the CAD file previously created is imported. Catia V5 has been used to obtain

the CAD. In Catia V5 the coordinates of the airfoil are imported. Then, the points are

joined with splines, the airfoil is projected a distance equal to 1 meter, and finally, the

upper and lower surfaces of the airfoil are filled. It is necessary that the airfoil has a

length in the Z-direction as the software works in 3D, Figure 47.

Figure 47: CAD created in CatiaV5.

After importing the CAD file into CONVERGE Studio, Figure 48, the geometry of

the domain is created.

Figure 48: Airfoil imported into CONVERGE Studio.
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The Geometry Dock section is used to create the geometry. After creating the geom-

etry, the boundary conditions are created, Figure 49.

Figure 49: Geometry with the boundary conditions created in CONVERGE Studio.

The Case Setup is then started. Click on the list of categories and for each category,

select the relevant models or options for this case, Figure 50.

Figure 50: Case setup creation in CONVERGE Studio.
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First of all, the Materials options are completed. Figure 51 shows the parameters

chosen in this section.

Figure 51: Materials options in CONVERGE Studio.

The Simulation Parameters are then configured. A transient solver, the Navier Stokes

solver PISO, is used. Figure 52 shows different parameters of the simulation.

Figure 52: Simulation parameters in CONVERGE Studio.
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The characteristics of the previously created boundary conditions continue to be com-

pleted in the section Boundary Conditions, Figure 53.

Figure 53: Boundary conditions in CONVERGE Studio.

The region is also created with the initial conditions of the case, Initial Conditions

and Events section, Figure 54.

Figure 54: Initial conditions in CONVERGE Studio.
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As mentioned above, the turbulent model used is the k − ω SST model. Figure 55

shows the parameters used with this model.

Figure 55: k − ω SST model parameters in CONVERGE Studio.

The grid is configured in the Grid Control section. Figure 56 shows the configuration

of the Base grid, Fix Embedding and Grid scaling.

Figure 56: Grid control (base grid, fixed embedding and grid scaling) in CONVERGE
Studio.
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The adaptative mesh refinement used is shown in Figure 57:

Figure 57: Grid control (adaptative mesh refinement) in CONVERGE Studio.

Finally, the post variables and outputs of the problem are chosen, Figure 58.

Figure 58: Post variables and outputs in CONVERGE Studio.
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After creating the Case Setup, it is important to perform the final validation that

everything is correct, Figure 59. The export of the input files is carried out.

Figure 59: Final validation in CONVERGE Studio.

In case there are problems with the triangles of the geometry, this can be visualised

using the Diagnosis Dock. Figure 60 is an example where it can be seen that there are

no problems with the geometry triangles.

Figure 60: Use of the Diagnosis dock.
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To simulate the case, the command window is used. First, run mpivars.bat found in

the installation folder to run the Intel MPI setup script. Then enter mpiexec -n <number

of processes> converge.exe, Figure 61.

Figure 61: Use of the command window.

After simulating the case you have a series of .out files in the working folder. At

the bottom of CONVERGE Studio, select the button Line Plotting. In this part of the

programme, the results obtained can be represented (.out files). An example is shown in

Figure 62.

Figure 62: Pressure Forces Y, NACA 0012.
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Finally, the post-processing representation of the case is obtained with Tecplot for

CONVERGE software. In CONVERGE Studio, choose the button in the bottom window

called Post-Processing 3D. The folder called Output is selected and the files obtained are

converted, Figure 63. You get .plt files.

Figure 63: Obtaining the .plt files.

Tecplot for CONVERGE software is used and the previously obtained .plt files are

plotted. An example is shown in Figure 64.

Figure 64: Tecplot software.
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FlightStream

Firstly, the CAD file previously created is imported. Catia V5 has been used to obtain

the CAD. In Catia V5 the coordinates of the airfoil are imported. Then, the points are

joined with splines, the airfoil is projected to 11 meters, which is the wing’s span, and

finally, the spaces are filled with surfaces. Figure 65 shows the CAD used.

Figure 65: Wing obtained in CatiaV5.

After importing the CAD file into FlightStream, Figure 66a, each part of the wing

is selected (with the Select faces button selected), right-click and select: Retesellate-

>Trimmed mesher and a value is typed in Tessellation edge size. Figure 66b shows the

wing with the modified mesh.

(a) Wing imported. (b) Wing with the modified mesh.

Figure 66: CAD of the wing in FlightStream.
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The Select edges button is selected and then the edge on the trailing edge of the wing

edge too, right-click and select: Trailing edges->Apply, Figure 67.

Figure 67: Configuring the trailing edge in FlightStream.

Next, the CAD is converted to geometry by right-clicking on the CAD file name and

selecting Convert to geometry. The Select vertices button is selected and then the point

on the trailing edge of the wing edge too, right-click and select: Wake termination nodes

-> Apply, Figure 68. The same is done with the another edge of the wing.

Figure 68: Configuring wake termination nodes in FlightStream.
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The Solver button is selected and the case is configured as shown in Figure 69.

Figure 69: Case configuration in FlightStream.

A coordinate origin is created in the centre of the wing at 1/4%c of the leading edge.

It is also important to ensure that there are not degenerate or overlapping faces or free

edges. In Analysis->Loads the way to obtain the loads is chosen. Figure 70 shows the

way to obtain the loads in this work.

Figure 70: Obtaining loads in FlightStream.

To solve the case, the Initialize solver button is selected, the body and the Initialize

button are selected after, Figure 71. Subsequently, the play button is clicked.

Figure 71: Solver initialization in FlightStream.
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In Figure 72, the velocity field around the wing for the angle of attack 10◦ is shown.

Figure 72: Velocity field around the wing for the angle of attack 10◦ in FlightStream.

Finally, to solve the case for different angles of attack, after having the case initialised,

instead of selecting the play it is selected: Toolbox -> Solver sweeper, Figure 73. Finally,

select Run the sweep.

Figure 73: Solving the case for different angles of attack in FlightStream.
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B Annex B: Coordinates of the airfoil and the high-lift

devices

Coordinates of the NACA 0012 airfoil:

x y x y x y
1.643325 0 -0.3569521 0.09750395 0.43931555 -0.12221956
1.62754908 0.0049738 -0.38878878 0.0908211 0.50165235 -0.11880144
1.59926198 0.00887396 -0.41797424 0.08363429 0.56473411 -0.1149232
1.56339367 0.0137382 -0.44442081 0.07596544 0.62840748 -0.11058482
1.52182851 0.01923786 -0.46804087 0.06783646 0.69254098 -0.10587395
1.47570585 0.02521956 -0.48874677 0.05926926 0.75695932 -0.1007906
1.42585833 0.03150802 -0.50647277 0.05030766 0.82148721 -0.09540049
1.37289944 0.03801559 -0.52115314 0.04095166 0.88594937 -0.08968172
1.31735505 0.04465462 -0.53270023 0.03122318 0.95017052 -0.08372193
1.25964148 0.05133747 -0.54102641 0.02114412 1.01393153 -0.07754303
1.20015311 0.05802033 -0.54606594 0.01073639 1.07701329 -0.07116693
1.1391748 0.06463745 -0.547775 0 1.1391748 -0.06463745
1.07701329 0.07116693 -0.54606594 -0.01073639 1.20015311 -0.05802033
1.01393153 0.07754303 -0.54102641 -0.02114412 1.25964148 -0.05133747
0.95017052 0.08372193 -0.53270023 -0.03122318 1.31735505 -0.04465462
0.88594937 0.08968172 -0.52115314 -0.04095166 1.37289944 -0.03801559
0.82148721 0.09540049 -0.50647277 -0.05030766 1.42585833 -0.03150802
0.75695932 0.1007906 -0.48874677 -0.05926926 1.47570585 -0.02521956
0.69254098 0.10587395 -0.46804087 -0.06783646 1.52182851 -0.01923786
0.62840748 0.11058482 -0.44442081 -0.07596544 1.56339367 -0.0137382
0.56473411 0.1149232 -0.41797424 -0.08363429 1.59926198 -0.00887396
0.50165235 0.11880144 -0.38878878 -0.0908211 1.62754908 -0.0049738
0.43931555 0.12221956 -0.3569521 -0.09750395
0.37787711 0.12515563 -0.32252992 -0.10361712
0.31744657 0.12756584 -0.28560989 -0.10918251
0.2581554 0.12940637 -0.24627964 -0.11417822
0.20015699 0.13069912 -0.20464874 -0.11853851
0.14353896 0.13137836 -0.16080483 -0.12228529
0.08841089 0.131466 -0.11481364 -0.12539665
0.03492613 0.13089631 -0.06680664 -0.1278726
-0.01684956 0.12971312 -0.01684956 -0.12971312
-0.06680664 0.1278726 0.03492613 -0.13089631
-0.11481364 0.12539665 0.08841089 -0.131466
-0.16080483 0.12228529 0.14353896 -0.13137836
-0.20464874 0.11853851 0.20015699 -0.13069912
-0.24627964 0.11417822 0.2581554 -0.12940637
-0.28560989 0.10918251 0.31744657 -0.12756584
-0.32252992 0.10361712 0.37787711 -0.12515563

Table 15: Coordinates of the NACA 0012 airfoil.
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ANNEX B: COORDINATES

Coordinates of the NACA 0012 airfoil with a plain flap (20%c 20◦):

x y x y x y
1.61690033 -0.1498822 -0.41797424 0.08363429 0.88594937 -0.08968172
1.60377565 -0.13981409 -0.44442081 0.07596544 0.95017052 -0.08372193
1.57853417 -0.12647029 -0.46804087 0.06783646 1.01393153 -0.07754303
1.54647838 -0.10964264 -0.48874677 0.05926926 1.07701329 -0.07116693
1.50929541 -0.0902295 -0.50647277 0.05030766 1.1391748 -0.06463745
1.46801509 -0.06884436 -0.52115314 0.04095166 1.20015311 -0.05802033
1.42331665 -0.04588163 -0.53270023 0.03122318 1.20146777 -0.05786695
1.37579169 -0.02166998 -0.54102641 0.02114412 1.23880412 -0.06689428
1.32585652 0.00357149 -0.54606594 0.01073639 1.29531259 -0.08034764
1.27392745 0.02957985 -0.547775 0 1.34978333 -0.09312175
1.24323014 0.04423831 -0.54606594 -0.01073639 1.40175623 -0.10510707
1.22028932 0.05352857 -0.54102641 -0.02114412 1.45074922 -0.11625977
1.205105 0.05747255 -0.53270023 -0.03122318 1.49614881 -0.12640456

1.20015311 0.05802033 -0.52115314 -0.04095166 1.53707856 -0.13543189
1.1391748 0.06463745 -0.50647277 -0.05030766 1.57246483 -0.14314456
1.07701329 0.07116693 -0.48874677 -0.05926926 1.60037944 -0.14914818
1.01393153 0.07754303 -0.46804087 -0.06783646
0.95017052 0.08372193 -0.44442081 -0.07596544
0.88594937 0.08968172 -0.41797424 -0.08363429
0.82148721 0.09540049 -0.38878878 -0.0908211
0.75695932 0.1007906 -0.3569521 -0.09750395
0.69254098 0.10587395 -0.32252992 -0.10361712
0.62840748 0.11058482 -0.28560989 -0.10918251
0.56473411 0.1149232 -0.24627964 -0.11417822
0.50165235 0.11880144 -0.20464874 -0.11853851
0.43931555 0.12221956 -0.16080483 -0.12228529
0.37787711 0.12515563 -0.11481364 -0.12539665
0.31744657 0.12756584 -0.06680664 -0.1278726
0.2581554 0.12940637 -0.01684956 -0.12971312
0.20015699 0.13069912 0.03492613 -0.13089631
0.14353896 0.13137836 0.08841089 -0.131466
0.08841089 0.131466 0.14353896 -0.13137836
0.03492613 0.13089631 0.20015699 -0.13069912
-0.01684956 0.12971312 0.2581554 -0.12940637
-0.06680664 0.1278726 0.31744657 -0.12756584
-0.11481364 0.12539665 0.37787711 -0.12515563
-0.16080483 0.12228529 0.43931555 -0.12221956
-0.20464874 0.11853851 0.50165235 -0.11880144
-0.24627964 0.11417822 0.56473411 -0.1149232
-0.28560989 0.10918251 0.62840748 -0.11058482
-0.32252992 0.10361712 0.69254098 -0.10587395
-0.3569521 0.09750395 0.75695932 -0.1007906
-0.38878878 0.0908211 0.82148721 -0.09540049

Table 16: Coordinates of the NACA 0012 airfoil with a plain flap (20%c 20◦).
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ANNEX B: COORDINATES

Coordinates of the NACA 0012 airfoil with a plain flap (30%c 15◦):

x y x y x y
1.620921 -0.1675096 -0.41797424 0.08363429 0.88594937 -0.08968172
1.60697465 -0.16124305 -0.44442081 0.07596544 0.95017052 -0.08372193
1.58065954 -0.15015608 -0.46804087 0.06783646 0.98323421 -0.08052293
1.54726718 -0.13617687 -0.48874677 0.05926926 0.99291888 -0.08212243
1.50855044 -0.12009419 -0.50647277 0.05030766 1.05549669 -0.09228913
1.46553915 -0.1023901 -0.52115314 0.04095166 1.11721998 -0.10208335
1.41902209 -0.08339327 -0.53270023 0.03122318 1.17782581 -0.11148317
1.36956897 -0.06341043 -0.54102641 0.02114412 1.23702933 -0.12042286
1.31761799 -0.04263881 -0.54606594 0.01073639 1.29450188 -0.12890241
1.26360737 -0.02123176 -0.547775 0 1.34987098 -0.13687802
1.20786579 0.00061351 -0.54606594 -0.01073639 1.40272031 -0.14428394
1.15067808 0.02280935 -0.54102641 -0.02114412 1.4525021 -0.15109826
1.09232908 0.04518048 -0.53270023 -0.03122318 1.49858093 -0.15727716
1.03303792 0.06766117 -0.52115314 -0.04095166 1.54016801 -0.16271109
1.01518045 0.07386198 -0.50647277 -0.05030766 1.57608014 -0.16729049
0.99951409 0.07804698 -0.48874677 -0.05926926 1.60441106 -0.17084007
0.985995 0.08023808 -0.46804087 -0.06783646
0.95017052 0.08372193 -0.44442081 -0.07596544
0.88594937 0.08968172 -0.41797424 -0.08363429
0.82148721 0.09540049 -0.38878878 -0.0908211
0.75695932 0.1007906 -0.3569521 -0.09750395
0.69254098 0.10587395 -0.32252992 -0.10361712
0.62840748 0.11058482 -0.28560989 -0.10918251
0.56473411 0.1149232 -0.24627964 -0.11417822
0.50165235 0.11880144 -0.20464874 -0.11853851
0.43931555 0.12221956 -0.16080483 -0.12228529
0.37787711 0.12515563 -0.11481364 -0.12539665
0.31744657 0.12756584 -0.06680664 -0.1278726
0.2581554 0.12940637 -0.01684956 -0.12971312
0.20015699 0.13069912 0.03492613 -0.13089631
0.14353896 0.13137836 0.08841089 -0.131466
0.08841089 0.131466 0.14353896 -0.13137836
0.03492613 0.13089631 0.20015699 -0.13069912
-0.01684956 0.12971312 0.2581554 -0.12940637
-0.06680664 0.1278726 0.31744657 -0.12756584
-0.11481364 0.12539665 0.37787711 -0.12515563
-0.16080483 0.12228529 0.43931555 -0.12221956
-0.20464874 0.11853851 0.50165235 -0.11880144
-0.24627964 0.11417822 0.56473411 -0.1149232
-0.28560989 0.10918251 0.62840748 -0.11058482
-0.32252992 0.10361712 0.69254098 -0.10587395
-0.3569521 0.09750395 0.75695932 -0.1007906
-0.38878878 0.0908211 0.82148721 -0.09540049

Table 17: Coordinates of the NACA 0012 airfoil with a plain flap (30%c 15◦).
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ANNEX B: COORDINATES

Coordinates of the NACA 0012 airfoil with a plain flap (40%c 10◦):

x y x y x y
1.63000311 -0.15219381 -0.41797424 0.08363429 0.80408988 -0.10341992
1.61534465 -0.14456878 -0.44442081 0.07596544 0.86857395 -0.10900723
1.5881531 -0.13580438 -0.46804087 0.06783646 0.93283891 -0.11428778
1.55366519 -0.12478315 -0.48874677 0.05926926 0.99670948 -0.11926157
1.51369952 -0.1121405 -0.50647277 0.05030766 1.05994463 -0.12392862
1.46930784 -0.09824892 -0.52115314 0.04095166 1.12228142 -0.12831082
1.42132275 -0.08339327 -0.53270023 0.03122318 1.18347884 -0.13238626
1.37029203 -0.06779263 -0.54102641 0.02114412 1.24325205 -0.13613304
1.31676346 -0.05162232 -0.54606594 0.01073639 1.30125047 -0.13957307
1.26108761 -0.03501378 -0.547775 0 1.35710161 -0.14268443
1.20363696 -0.01809849 -0.54606594 -0.01073639 1.41036725 -0.14546713
1.1447402 -0.000986 -0.54102641 -0.02114412 1.46056535 -0.14792116
1.08466023 0.01623605 -0.53270023 -0.03122318 1.50701667 -0.15004653
1.0236381 0.0334581 -0.52115314 -0.04095166 1.5489105 -0.15184323
0.96191481 0.05061441 -0.50647277 -0.05030766 1.58508556 -0.15326745
0.89970948 0.06763926 -0.48874677 -0.05926926 1.61361368 -0.15434108
0.83721931 0.08446691 -0.46804087 -0.06783646
0.8063248 0.09239869 -0.44442081 -0.07596544
0.78290194 0.09754777 -0.41797424 -0.08363429
0.766885 0.09995798 -0.38878878 -0.0908211
0.75695932 0.1007906 -0.3569521 -0.09750395
0.69254098 0.10587395 -0.32252992 -0.10361712
0.62840748 0.11058482 -0.28560989 -0.10918251
0.56473411 0.1149232 -0.24627964 -0.11417822
0.50165235 0.11880144 -0.20464874 -0.11853851
0.43931555 0.12221956 -0.16080483 -0.12228529
0.37787711 0.12515563 -0.11481364 -0.12539665
0.31744657 0.12756584 -0.06680664 -0.1278726
0.2581554 0.12940637 -0.01684956 -0.12971312
0.20015699 0.13069912 0.03492613 -0.13089631
0.14353896 0.13137836 0.08841089 -0.131466
0.08841089 0.131466 0.14353896 -0.13137836
0.03492613 0.13089631 0.20015699 -0.13069912
-0.01684956 0.12971312 0.2581554 -0.12940637
-0.06680664 0.1278726 0.31744657 -0.12756584
-0.11481364 0.12539665 0.37787711 -0.12515563
-0.16080483 0.12228529 0.43931555 -0.12221956
-0.20464874 0.11853851 0.50165235 -0.11880144
-0.24627964 0.11417822 0.56473411 -0.1149232
-0.28560989 0.10918251 0.62840748 -0.11058482
-0.32252992 0.10361712 0.69254098 -0.10587395
-0.3569521 0.09750395 0.75695932 -0.1007906
-0.38878878 0.0908211 0.76651251 -0.1000018

Table 18: Coordinates of the NACA 0012 airfoil with a plain flap (40%c 10◦).
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ANNEX B: COORDINATES

Coordinates of the NACA 0012 airfoil with a leading edge flap (15%c 20◦)

and a plain flap (20%c 20◦):

x y x y x y
1.6169 -0.149882 -0.26321684 0.10694759 0.31744657 -0.12756584

1.60377565 -0.13981409 -0.28370363 0.09798599 0.37787711 -0.12515563
1.57853417 -0.12647029 -0.31893652 0.0798656 0.43931555 -0.12221956
1.54647838 -0.10964264 -0.35173728 0.06200813 0.50165235 -0.11880144
1.50929541 -0.0902295 -0.38197446 0.04447933 0.56473411 -0.1149232
1.46801509 -0.06884436 -0.40962615 0.02732302 0.62840748 -0.11058482
1.42331665 -0.04588163 -0.43458277 0.01058301 0.69254098 -0.10587395
1.37579169 -0.02166998 -0.45682244 -0.00567495 0.75695932 -0.1007906
1.32585652 0.00357149 -0.47623559 -0.02138514 0.82148721 -0.09540049
1.27392745 0.02957985 -0.49275648 -0.03652564 0.88594937 -0.08968172
1.24323014 0.04423831 -0.50636321 -0.05103072 0.95017052 -0.08372193
1.22028932 0.05352857 -0.51694622 -0.06483465 1.01393153 -0.07754303
1.205105 0.05747255 -0.5244617 -0.07791552 1.07701329 -0.07116693
1.20015311 0.05802033 -0.5288439 -0.0902295 1.1391748 -0.06463745
1.1391748 0.06463745 -0.53002709 -0.10173277 1.20015311 -0.05802033
1.07701329 0.07116693 -0.52794555 -0.11240343 1.20146777 -0.05786695
1.01393153 0.07754303 -0.52268691 -0.1219128 1.23880412 -0.06689428
0.95017052 0.08372193 -0.51438264 -0.12997605 1.29531259 -0.08034764
0.88594937 0.08968172 -0.50309847 -0.13659317 1.34978333 -0.09312175
0.82148721 0.09540049 -0.48894397 -0.14178608 1.40175623 -0.10510707
0.75695932 0.1007906 -0.47194103 -0.14555477 1.45074922 -0.11625977
0.69254098 0.10587395 -0.45222113 -0.14792116 1.49614881 -0.12640456
0.62840748 0.11058482 -0.42982809 -0.14888525 1.53707856 -0.13543189
0.56473411 0.1149232 -0.40484955 -0.14844703 1.57246483 -0.14314456
0.50165235 0.11880144 -0.37737315 -0.1466065 1.60037944 -0.14914818
0.43931555 0.12221956 -0.34748655 -0.14338558
0.37787711 0.12515563 -0.31527738 -0.13876236
0.31744657 0.12756584 -0.28083329 -0.13273684
0.2581554 0.12940637 -0.24424192 -0.12535283
0.20015699 0.13069912 -0.21120013 -0.11785927
0.14353896 0.13137836 -0.20464874 -0.11853851
0.08841089 0.131466 -0.16080483 -0.12228529
0.03492613 0.13089631 -0.11481364 -0.12539665
-0.01684956 0.12971312 -0.06680664 -0.1278726
-0.06680664 0.1278726 -0.01684956 -0.12971312
-0.11481364 0.12539665 0.03492613 -0.13089631
-0.16080483 0.12228529 0.08841089 -0.131466
-0.20464874 0.11853851 0.14353896 -0.13137836
-0.21911 0.11702665 0.20015699 -0.13069912

-0.24167833 0.11327987 0.2581554 -0.12940637

Table 19: Coordinates of the NACA 0012 airfoil with a leading edge flap (15%c 20◦) and
a plain flap (20%c 20◦).
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ANNEX B: COORDINATES

Coordinates of the NACA 0012 airfoil with a leading edge flap (20%c 15◦)

and a plain flap (20%c 20◦):

x y x y x y
1.6169 -0.149882 -0.23208131 0.08987892 0.31744657 -0.12756584

1.60377565 -0.13981409 -0.27117054 0.0748918 0.37787711 -0.12515563
1.57853417 -0.12647029 -0.30787146 0.05990467 0.43931555 -0.12221956
1.54647838 -0.10964264 -0.34207453 0.04498328 0.50165235 -0.11880144
1.50929541 -0.0902295 -0.37375784 0.03014954 0.56473411 -0.1149232
1.46801509 -0.06884436 -0.40278991 0.01546917 0.62840748 -0.11058482
1.42331665 -0.04588163 -0.42912694 0.00096408 0.69254098 -0.10587395
1.37579169 -0.02166998 -0.45268126 -0.01327807 0.75695932 -0.1007906
1.32585652 0.00357149 -0.47338716 -0.02725728 0.82148721 -0.09540049
1.27392745 0.02957985 -0.49117889 -0.04088593 0.88594937 -0.08968172
1.24323014 0.04423831 -0.50596881 -0.05414208 0.95017052 -0.08372193
1.22028932 0.05352857 -0.51773502 -0.06698193 1.01393153 -0.07754303
1.205105 0.05747255 -0.52634604 -0.07936164 1.07701329 -0.07116693
1.20015311 0.05802033 -0.53180188 -0.0912374 1.1391748 -0.06463745
1.1391748 0.06463745 -0.53397107 -0.10260921 1.20015311 -0.05802033
1.07701329 0.07116693 -0.53285361 -0.11341134 1.20146777 -0.05786695
1.01393153 0.07754303 -0.52842759 -0.12335893 1.23880412 -0.06689428
0.95017052 0.08372193 -0.52084638 -0.13210142 1.29531259 -0.08034764
0.88594937 0.08968172 -0.51019764 -0.13968263 1.34978333 -0.09312175
0.82148721 0.09540049 -0.49652517 -0.14608064 1.40175623 -0.10510707
0.75695932 0.1007906 -0.47993854 -0.15131737 1.45074922 -0.11625977
0.69254098 0.10587395 -0.46048158 -0.15539281 1.49614881 -0.12640456
0.62840748 0.11058482 -0.43826382 -0.15830698 1.53707856 -0.13543189
0.56473411 0.1149232 -0.41335102 -0.16005986 1.57246483 -0.14314456
0.50165235 0.11880144 -0.3858308 -0.16060763 1.60037944 -0.14914818
0.43931555 0.12221956 -0.35576891 -0.15999412
0.37787711 0.12515563 -0.32327489 -0.15819742
0.31744657 0.12756584 -0.2884364 -0.15521752
0.2581554 0.12940637 -0.25134108 -0.15103252
0.20015699 0.13069912 -0.21207657 -0.14566433
0.14353896 0.13137836 -0.17073051 -0.13911294
0.08841089 0.131466 -0.12739055 -0.13137836
0.03492613 0.13089631 -0.10070296 -0.12614163
-0.01684956 0.12971312 -0.06680664 -0.1278726
-0.06680664 0.1278726 -0.01684956 -0.12971312
-0.109555 0.1256815 0.03492613 -0.13089631
-0.12432301 0.12447639 0.08841089 -0.131466
-0.13685611 0.1225044 0.14353896 -0.13137836
-0.14708854 0.11976553 0.20015699 -0.13069912
-0.19069143 0.10486605 0.2581554 -0.12940637

Table 20: Coordinates of the NACA 0012 airfoil with a leading edge flap (20%c 15◦) and
a plain flap (20%c 20◦).
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ANNEX B: COORDINATES

Coordinates of the NACA 0012 airfoil with a leading edge flap (25%c 10◦)

and a plain flap (20%c 20◦):

x y x y x y
1.6169 -0.149882 -0.22213372 0.08120217 0.2581554 -0.12940637

1.60377565 -0.13981409 -0.26236231 0.06967698 0.31744657 -0.12756584
1.57853417 -0.12647029 -0.30022452 0.05793268 0.37787711 -0.12515563
1.54647838 -0.10964264 -0.33561079 0.04605692 0.43931555 -0.12221956
1.50929541 -0.0902295 -0.36845538 0.03402778 0.50165235 -0.11880144
1.46801509 -0.06884436 -0.39864873 0.02193291 0.56473411 -0.1149232
1.42331665 -0.04588163 -0.42614704 0.00979422 0.62840748 -0.11058482
1.37579169 -0.02166998 -0.45086265 -0.00236639 0.69254098 -0.10587395
1.32585652 0.00357149 -0.47270791 -0.01446126 0.75695932 -0.1007906
1.27392745 0.02957985 -0.49161711 -0.0264904 0.82148721 -0.09540049
1.24323014 0.04423831 -0.50752449 -0.03840998 0.88594937 -0.08968172
1.22028932 0.05352857 -0.52034243 -0.05017619 0.95017052 -0.08372193
1.205105 0.05747255 -0.53002709 -0.0617452 1.01393153 -0.07754303
1.20015311 0.05802033 -0.53646892 -0.07311701 1.07701329 -0.07116693
1.1391748 0.06463745 -0.53964602 -0.0842478 1.1391748 -0.06463745
1.07701329 0.07116693 -0.53944882 -0.09511565 1.20015311 -0.05802033
1.01393153 0.07754303 -0.53592115 -0.10541382 1.20146777 -0.05786695
0.95017052 0.08372193 -0.52912874 -0.11476982 1.23880412 -0.06689428
0.88594937 0.08968172 -0.51918115 -0.12324938 1.29531259 -0.08034764
0.82148721 0.09540049 -0.50612219 -0.13080867 1.34978333 -0.09312175
0.75695932 0.1007906 -0.49006143 -0.13749153 1.40175623 -0.10510707
0.69254098 0.10587395 -0.47104268 -0.14323221 1.45074922 -0.11625977
0.62840748 0.11058482 -0.44915359 -0.14807454 1.49614881 -0.12640456
0.56473411 0.1149232 -0.4244818 -0.15199661 1.53707856 -0.13543189
0.50165235 0.11880144 -0.39711496 -0.15495459 1.57246483 -0.14314456
0.43931555 0.12221956 -0.36711881 -0.1569704 1.60037944 -0.14914818
0.37787711 0.12515563 -0.33460288 -0.15800022
0.31744657 0.12756584 -0.29963293 -0.15806595
0.2581554 0.12940637 -0.26229658 -0.15712378
0.20015699 0.13069912 -0.22272532 -0.15519561
0.14353896 0.13137836 -0.18096295 -0.15228145
0.08841089 0.131466 -0.13711904 -0.14835938
0.03492613 0.13089631 -0.09130314 -0.14342941

0 0.13010752 -0.04358098 -0.13753535
-0.0115471 0.12934063 0.00591597 -0.1306772
-0.02458414 0.12758775 0.00839191 -0.13030472
-0.03913305 0.12482697 0.03492613 -0.13089631
-0.08799458 0.1143316 0.08841089 -0.131466
-0.13484029 0.1035733 0.14353896 -0.13137836
-0.17958256 0.09250824 0.20015699 -0.13069912

Table 21: Coordinates of the NACA 0012 airfoil with a leading edge flap (25%c 10◦) and
a plain flap (20%c 20◦).
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