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1. Introduction

Renewable energy sources (e.g., wind, hydropower, 
geothermic, solar and biofuels) are considered a valuable 
option to reduce the emission of polluting gases that come 
from the use of fossil fuels to generate electricity (Rehman 
et al., 2018). Nowadays, the wind and solar photovoltaic 
technologies present the greatest cost reduction due to 
their wide use (Carta González et al., 2009; International 
Energy Agency, 2019; Ritchie & Roser, 2017).

In 2018, the total generation of electricity from renewable 
energies was 450 TWh, representing an increase of 7% 
when it is compared to 2017. Respectively, 90% of this 
growth corresponds to the use of wind, hydropower and 
solar photovoltaic technologies (International Energy 
Agency, 2019).

In the last decade, Ecuador had promote an important 
impulse to the generation of electricity using renewable 
energies (Arconel, 2015), focusing on the change of the 
productive matrix. For this reason, many facilities had 
been built. As an example, one of them is located in the 
south region of the country, 14 km away from Loja city 
at 2720 msl, which is called Villonaco wind power plant 
(CEV). This wind farm has 11 aerogenerators, which 

have a nominal power of 1.5 MW each, having a mean-
year production of 59.57 GWh. Nevertheless, between 
2014 and 2018 the peak was higher, having a mean-
year production of 78.39 Gwh (Corporación Eléctrica 
del Ecuador, 2016a, 2019b). The surplus of energy 
produced with respect to the energy estimated indicates 
a deficient operating condition. To maximize the electricity 
generation is needed to develop a methodology that 
allows identifying the parameters that affect the most 
the operation of the turbines. Therefore, it is necessary 
to select the appropriate values for the local operating 
conditions.

Currently, the BEM theory has been used the most 
to evaluate the performance of wind turbines. This 
mathematical model is defined by the combination of the 
Momentum Theory and the Blade Element (Bakırcı & 
Yılmaz, 2018; Manwell et al., 2009). Manwell et al. (2009) 
and Letcher (2017) state that the application of BEM 
theory is enough in the rotor design of the wind turbine. 
El Khchine & Sriti (2018) and Biadgo & Aynekulu (2017) 
point out the wide use of this theory in the industry and 
scientific research because of its allowance of defining the 
optimal rotor geometry. Also, BEM theory can be applied 
to build the power curve of the turbine (Lanzafame & 
Messina, 2010).
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The analysis of the wind characteristics is fundamental 
to quantify the energetic resource of the site where the 
turbine will be located (Gul et al., 2019). The Weibull 
distribution of two parameters (shape and scale) is the 
most used to process wind data due to its flexibility and 
simplicity (Gul et al., 2019). As a result, the probabilistic 
density function is obtained for the wind velocities 
registered.

In order to determine the energy produced all over the 
year, the power curve of the turbine is needed, and the 
probabilistic distribution of the wind velocities must 
be considered (Mathew & Philip, 2011; Ministerio de 
Electricidad y Energía Renovable, 2013).

2. Description of mathematical model

2.1. Wind turbine

The wind turbine is a device that transforms kinetic 
energy from the wind into electricity, commonly using 
three blades (Manwell et al., 2009; Renewable Energy 
World, 2019). Figure 1 shows the energy generated in 
terms of wind velocity (International Renewable Energy 
Agency, 2019). This figure contains three important 
points: (i) Cut-in speed: is the minimum wind velocity at 
which the turbine starts delivering useful power (Manwell 
et al., 2009); (ii) Rated wind speed: is the wind velocity at 
which the rated power (maximum power of the generator) 
is achieved (Manwell et al., 2009); and (iii) Cut-out speed: 
is the maximum wind velocity at which the turbine can 
deliver power (at this condition the turbine is turned off to 
avoid any damage) (Manwell et al., 2009).

Figure 1: Power curve (International Renewable Energy Agen-
cy, 2019).

2.2. Weibull distribution

Weibull distribution is the most convenient function to de-
fine the wind regime characteristics because it represents 
the variation of the wind speed with an acceptable ac-
curacy level (Gul et al., 2019). The probabilistic density 
function and the Weibull cumulative distribution are de-
fined by Equation (1) - (2), as follows:
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Where U represents wind velocity [m/s], k is the shape 
factor (dimensionless), and c is the scale factor [m/s]. 
Based on (Gul et al., 2019; Mathew & Philip, 2011; 
Topaloǧlu & Pehlivan, 2018), these are determined by the 
following expressions:
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where σ is the standard deviation of the wind velocities 
[m/s], and x̅ is the mean wind velocity [m/s].

There are two additional Weibull indicators: The most 
probable wind velocities Ump, and the velocity which 
carries the most energy, UmáxE . Based on (Gul et al., 
2019), both are defined as follows:
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In the design of the wind turbine, the nominal velocity must 
be close to UmáxE (Oyedepo et al., 2012). Temperature, 
direction and velocity of the wind were obtained from the 
Ecuadorian Electric Corporation (CELEC EP GENSUR), 
which corresponds to measurements done in time slots of 
10 minutes along 24 hours a day in the period between 
2015 and 2019. Wind velocity was recorded at 20.8 m, 
40.8 m and 62.8 m height and the temperature was 
measured only at 62 m.

The mean wind velocity obtained between 2015 and 2019 
is used to determine the average probabilistic density 
functions and the Weibull cumulative distribution in these 
years.

2.3. BEM Theory

BEM theory equals the normal force and the torque 
equations obtained from momentum theory and Blade 
element to determine the expressions, which define axial 
(a) and tangential (a’) induction factors (Eq. 7 - 8). These 
dimensionless factors express the reduction of the wind 
velocity that goes through the rotor and the ratio between 
angular velocities of the air and rotor, respectively 
(Manwell et al., 2009).
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Where φ is the relative wind angle [°], s’ is the local solidity 
which is dimensionless, and Cl is the dimensionless lift 
coefficient.
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The theory is focus on an iterative process in which at 
the beginning is assumed that the axial and tangential 
induction factors are equal to zero. Then the absolute 
subtraction control the process until it reaches a tolerance 
lower than 0.001 (Najafian Ashrafi et al., 2015).

Figure 2 shows the cross section of the Blade and the 
relationship between angles, velocities and forces 
(Manwell et al., 2009).

Figure 2: Blade cross section (Manwell et al., 2009).

Equation (9) and Eq.(12-18) are part of the iterative 
process and they are updated until the aforementioned 
condition is met (Manwell et al., 2009). The relative wind 
angle φ an be obtained using the following expression:
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where U is wind velocity [m/s], a is the axial induction 
factor, a’ is the tangential induction factor, Ω is the angular 
velocity of the rotor [rad/s], r is the mean radius of the 
blade [m], and λr is the local specific velocity. The local 
specific velocity relates the rotor velocity of a mean radius 
of the blade and the wind velocity as follows:
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where is λ the specific tip velocity λ or TSR (tip-speed 
ratio) and R the rotor radius.

The specific tip velocity relate the tip velocity of the blade 
and the free stream wind velocity as follows:
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The setting angle θp is expressed in the following way
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where is α the angle of attack of the airfoil.

The chord distribution is computed using Eq. (13), as 
follows:
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where B is the number of blades and Cl is the lift coeffi-
cient of the airfoil.

The local solidity (s’) represents the fraction of the annular 
area occupied by the blades and is determined using the 
next equation:
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The loss factor F indicates the mechanical power 
decrease at the blade tip, and is computed by the following 
expression:
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The Glauert empirical relationship allows to compute 
the axial induction factor when the trust coefficient CT 
(Eq.  16) is greater than 0.96, using Eq. (17)
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where Cd is the drag coefficient of the airfoil.
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The power coefficient CP indicates the fraction of wind 
power extracted by the rotor. To determine the design CP 
Eq. (18) is used.
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where N is the number of elements that divide the blade 
and i is the subscript that shows which blade element is 
being evaluated.

According to the Betz limit, the maximum value of CP that 
can be obtained is 0.5926, using an axial induction factor 
of 1/3 (Manwell et al., 2009). It means that the turbine can 
extract up to 59% of the energy contained in the wind.

2.4. Power coefficient calculation

Figure 3 shows the methodology behind BEM theory that 
is applied in the calculation of the power coefficient. This 
methodology requires as inputs: Number of blades (B), 
rotor radius (R), TSR, the lift and drag coefficients (Cl, 
Cd), and the angle of attack (α) (Manwell et al., 2009).

Sections 2.4.1. and 2.4.2. show procedures to define the 
rotor geometry and to evaluate the power coefficient in 
terms of wind velocity. These results are used to build the 
power curve.
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2.4.1. �Variation of the power coefficient in terms of 
TSR

Table 1 shows the initial data required to compute the 
power coefficient in terms of TSR for different rotor radius. 
The following airfoils are used: NACA 4415, 4418, 4421, 
4424, 4430 and 4436 (Fuglsang et al., 2004; Khaled 
et al., 2017; Mamadaminov, 2013; Manwell et al., 2009). 
These are located in the blade according to defined 
considerations used by (Mohammadi et al., 2016) and 
(Adaramola, 2014). Using the XFOIL software the lift and 
drag coefficients are evaluated (Manwell et al., 2009; 
Massachusetts Institute of Technology, 2013). The value 

of each coefficient is determined when the ratio between 
Cl and Cd is a maximum (Manwell et al., 2009).

Table 1. Identified points in the case study

Parameter Value

R 35 – 60 [m]

TSR 4 – 10

N 10

Cl

NACA 4 digitsCd

α

XFOIL requires as an input the Reynolds R number. This 
dimensionless number relate inertial forces over viscous 
forces, as it appears in the Eq. (19) (Dehouck et al., 2018; 
Takeyeldein et al., 2019):
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where ρ represents the air density [kg/m3], and µ 
represents the air viscosity [kg/m*s].U  is the wind velocity 
[m/s], and c is the chord of the airfoil [m]. The air density 
is compute by using Eq. (20).
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where h is the total height corresponding to the sum 
of all the height values in meters: Site (2720 m) and 
turbine, and t is the mean temperature of the site in °C 
(Cochancela & Astudillo, 2012).

The maximum power coefficient is chosen to define the 
rotor geometry.

2.4.2. �Variation of the power coefficient in terms of 
the wind velocity

Table 2 shows the characteristics of the 1.5 MW Goldwind 
turbines that are used in the Villonaco wind power plant 
(Goldwind, 2015). The boot, nominal and stop velocities 
are used to build the power curve.

Table 2: Characteristics of the 1.5 MW Goldwind turbine.

Parameter Value

B 3

R 35 [m]

Tower height 65 [m]

Boot velocity 3 [m/s]

Nominal velocity 12 [m/s]

Stop velocity 25 [m/s]

For the sake of the study, the turbine is assumed to be a 
variable velocity type (Manwell et al., 2009). In this kind 
of technology the rotation velocity increases and the TSR 
remains constant and equal to the optimal value between 

Figure 3: Flowchart of BEM theory. 
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the boot and rated velocities indicated in the power curve. 
While for the case of wind velocity greater than the rated, 
the TSR decreases and the rotation velocity remains 
constant and equal to the value determined for the case 
of the rated velocity to avoid damage (Jamieson, 2018; 
Lanzafame & Messina, 2010).

Using Eq. (11) the rotation velocity and the TSR are 
computed according to the wind velocity.
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The power coefficient is evaluated between boot and stop 
velocities that are shown in Table 2.

2.5. Electric Power

The power curve of the turbine is determined by using the 
Eq. (21) (Letcher, 2017):
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It is assumed that both, the mechanical and electrical 
efficiencies (ηmec, ηeléc) are 0.9 (Hansen, 2008).

By using the power curve the real electric power can be 
computed along a period of one year following the process 
showed in the Figure 4 (Mathew & Philip, 2011). For this, 
the power P(U) of the power curve and the probability 
f(U), divided into intervals of 1.0 m/s, obtained from the 
probabilistic density function are multiplied (Ministerio de 
Electricidad y Energía Renovable, 2013).

Figure 4: Integration of the power curves (a) and probability (b) 
to determine the energy produced (Mathew & Philip, 2011).

2.6. �Relationship between rated power, height 
and diameter of the turbine

Expression (Manwell et al., 2009) indicated the rated 
power, which is defined by the nominal velocity increases 
as the height and the rotor diameter increases as well. 
Further, it is known that the tower height and the rotor 
diameter are two fundamental factors in the wind turbine 
design because they both have an impact on the cost of 
energy production (Lee et al., 2019). Thus, the influence 
on the energy production of the following variables are 
evaluated: tower height, nominal velocity and rotor radius. 
Table 3 shows the parameters considered in this analysis, 
the values are used commonly in modern turbines.

Table 3: Parameter variation.

Parameters

Variation Height [m] Nominal velocity [m/s] Radius [m]

1 65 – 140 15 35

2 65 10 – 15 35

3 140 15 35 – 60

2.7. Energy generated

The capacity factor FC is an indicator of the energy 
extraction efficiency, and it relates the energy generated 
Eactual and the maximum energy Eideal that can be produced 
in ideal conditions. A period of time T is considered and 
computed using Eq. (22), according to (Letcher, 2017; 
Ministerio de Electricidad y Energía Renovable, 2013; 
Topaloǧlu & Pehlivan, 2018).
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where P is the power generated and PR is the rated power 
of the turbine [W].

The annual energy generation is obtained by the 
multiplication of the rated power PR, the number of hours 
during the year and the capacity factor FC as it is shown 
in the Eq. (23) (Letcher, 2017; Ministerio de Electricidad y 
Energía Renovable, 2013).
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3. Results and Discussion

Due to the lack of a significant variation of the wind velocity 
in terms of height, the data of the wind velocity from the 
62.8 m was used in the statistical analysis because this 
value is close enough to the height of the CEV turbines.

The shape and scale Weibull factors, the most probable 
velocity and the velocity that produce more energy are 
shown in Table 4. The most probable velocity has a value 
equal to 10.50 m/s and the velocity that produce more 
energy is equal to 12.46 m/s. This last value is close to 
the nominal velocity considered in this study, whereby 
the most suitable velocity in the design process must 
be closer to 12.46 m/s based on the criteria defined by 
(Oyedepo et al., 2012).

Table 4: Shape and scale Weibull factors.

Factor Value

k 4.02 [-]

c 11.27 [m/s]

Ump 10.50 [m/s]

UmáxE 12.46 [m/s]
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The shape and scale factors from Table 4 are similar to 
the ones obtained in the study called “Analysis of the 
behavior of the wind power plant in extreme conditions”, 
which was done in the year 2014 by the Ecuadorian 
National Institute of Energy Efficiency and Renewable 
Energies (INER). In this study the Weibull shape and scale 
factors are equal to 2.07 and 11.58 m/s, respectively for 
the measurements of the wind velocities in Villonaco wind 
power plant, between 2012 and 2014 at a height equal 
to 60 m (Instituto Nacional de Eficiencia Energética y 
Energías Renovables, 2014).

Figure 5a shows the average probability of the wind 
velocity divided into 1.0 m/s intervals.

In the analysis of the temperature measurements in the 
CEV, the monthly mean temperature in the site is 11°C.

Figure 5b shows the Reynolds number in terms of a 
dimensionless radius according to the size of the rotor. 
The dimensionless radius relates the position of each one 
of the N elements (measured from the rotation axis of the 
turbine) with the rotor radius. To obtain this dimensionless 
parameter it is assumed a viscosity of the air equal to 
1.81×10-5 (Viscosidad Del Aire, 2012). This parameter 
has a maximum value when the radius is equal to 60 m, 
while it is minimum when the radius is equal to 35 m. 
These results are among the established range between 
1×106 and 9×106 for the case of wind turbines (Ge et al., 
2015).

Figures 5c and 5d show the distribution of the lift and drag 
coefficients along the Blade. The angle of attack, when 
the ratio stays between Cl and Cd, takes a maximum value 
equal to 7° for all the airfoils selected. The results agreed 

with previous studies carried on by Burton et al. (Burton 
et al., 2001), where it shows that for a wind turbine with a 
TSR equal to 8, the angle of attack remains approximately 
constant.

Figure 5c shows a maximum value of the lift coefficient for 
the specific radius equal to 60, while a minimum value is 
found when the radius equal to 35 m is used. It is evident 
an increase tendency along the Blade for this coefficient 
as its shown by (Mamadaminov, 2013).

Figure 5d shows a maximum value of the drag coefficient 
for the case where the radius is equal to 35 m, and a 
minimum value for the case where the radius is equal 
to 60 m. In addition, it is observed that this coefficient 
is maximum at the root and decreases until it remains 
approximately constant from 30% of the length of the 
blade. These results agree with the values used in 
(Mamadaminov, 2013).

The chord distribution along the Blade for each rotor 
radius (Figure 6a) shows that the chord values are 
minimum when the radius is equal to 35 m and maximum 
when the radius is equal to 60 m. These results have a 
similar tendency with respect to the results obtained for 
a turbine which runs at a TSR condition equal to 7, as 
exposed by (Manwell et al., 2009).

The power coefficient in terms of TSR and the rotor 
radius is shown in Figure 6b. The maximum value of the 
coefficient is in between 0.467 and 0.473 when the TSR 
value is equal to 8.

Figure 5: (a) Probabilistic distribution; (b) Reynolds number; (c) Lift coefficients; (d) Drag coefficients.
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These results are within the established range for modern 
wind turbines as expressed in studies carried out by 
(Letcher, 2017) and (Ge et al., 2015).

Since the variation of the power coefficient is not 
significant, the radius of 35 m and a TSR equal to 8 are 
selected to define the geometry of the turbine rotor.

Figure 6c shows the variation of the relative wind angle 
and the setting angle in terms of the dimensionless radius. 
Both angles show a decrease tendency, having greater 
values when they are closer to the center of rotation.

In Figure 6d it is pointed out the value of the chord that 
is equal to 5.8 m at the root and 0.85 m at the tip. These 

Figure 6: (a) Chord distribution in terms of rotor radius; (b) Power coefficient in terms of TSR; (c) Relative wind angle and setting angle; 
(d) Chord distribution.

Figure 7: (a) Local solidity; (b) Thrust coefficient; (c) Blade tip loss factor; (d) Axial and tangential induction factors.
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results have a similar tendency to that obtained for a tur-
bine that operates at TSR equal to 7 as stated by Manwell 
et al. (Manwell et al., 2009).

Figure 7a shows the variation of the solidity in terms of 
the dimensionless radius, where it is evident a decreasing 
tendency of this factor having values of 0.79 at the root 
and 0.012 at the tip. In the study by Dereje et al. (Dereje 
& Sirahbizu, 2019), the solidity takes a value of 0.018 at 
the tip of the blade of a 36 m radius rotor.

Thrust coefficient along the blade (Figure 7b) takes a value 
equal to 0.86 at the root and 0.88 for the tip and middle 
zones. These values show that the turbine is working as a 
windmill as it is stated by (Manwell et al., 2009).

The F factor in terms of the dimensionless radius 
(Figure 7c) is equal to 1 until the blade length is equivalent 
to 70%, while in the last 30% it takes values of 0.99, 
0.91 and 0. These results are in correspondence with the 
findings in the study carried out by Burton et al. (Burton 
et al., 2001).

Figure 7d shows the axial and tangential induction factors 
variation in terms of the dimensionless radius. The first 
factor is equal to 0.33 in 90% of the blade and in the final 
10% it is equal to 0; while the second factor is equal to 
0.27 at the root and 0 at the tip. The values of the axial 
and tangential induction factors, which have a similar 
tendency with the results obtained for a turbine with a 
TSR of 7.5 as described by (Manwell et al., 2009).

Figure 8a shows when the wind velocity is between 3 and 
12 m/s, the rotation velocity increases from 0.68 rad/s to 
2.74 rad/s, and the power coefficient remains constant 
with a value equal to 0.11. In addition, there is a region 
delimited by the most probable wind velocity, and the 
velocity which carries the most energy. Both velocities 
obtained by the statistical analysis.

The rotation velocity and the calculated power coefficient 
correspond to that obtained for a variable velocity turbine 
according to the studies carried out by Lanzafame & 
Messina (2010) and Saint-Drenan et al. (2019).

The power curve calculated for a turbine with the same 
dimensions (rotor radius and height) as those of the 
turbines used in the CEV is indicated in Figure 8b. The 
rated power obtained is 1.25 MW.

Using the power curve illustrated in Figure 8b and the 
probability density function in Figure 5a, it is determined 
that the energy produced, and the capacity factor are 
equal to 6.80 GWh and 0.62, respectively.

The data of energy produced and the average capacity 
factor for the CEV turbine (Table 5), were obtained from 
the Accountability reports that CELEC EP GENSUR 
carried out annually (Corporación Eléctrica del Ecuador, 
2015, 2016b, 2017, 2018, 2019a).

The comparison between the real and calculated energy 
and capacity factor values are shown in Table 6. The 
calculated results are greater than the real ones, having 
an error of 0.44% in the energy and 14.09% for the energy 
factor capacity.

The margin of error is within the allowed limit, taking into 
consideration the criteria developed by Hidalgo et al. 
(2015), where it was stated that an acceptable prediction 
can have a relative error less than 20%.

The variation of air density according to the height of the 
turbine is shown in Figure 9a. The density decreases as 
the height increases, at 2785 m is equal to 0.893 kg/m3 

Figure 8: (a) Rotation velocity and power coefficient in terms of wind velocity; (b) Power curve calculated.

Table 5: Real energy produced and Real capacity factor.
Year Energy [GWh] Capacity Factor [-]

2014 6.79 0.52

2015 8.40 0.63

2016 6.97 0.53

2017 6.10 0.46

2018 5.59 0.50

Average 6.77 0.53

Table 6: Comparison between real values and calculated 
values of energy and capacity factor.

Parameter Real Calculated Relative error [%]

Energy [GWh] 6.77 6.80 0.44

Capacity Factor [-] 0.53 0.62 14.09
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while at 2860 m it takes a value of 0.885 kg/m3, having a 
difference of 0.89%.

The effect of the variation of the height in the electric 
power is shown in Figure 9b. It is evident that the change 
is not significant, therefore it is assumed that within this 
range of height the density remains constant.

The capacity factor is equal to 0.62 and remains unchanged 
with the change in height. Figure 9c indicates the energy 
produced as a function of the height of the turbine, 
and it is observed that for a height of 65 m, 6.80 GWh 
is generated, while for a height of 140 m, 6.74 GWh is 
produced, representing a decrease in energy produced 
by 0.88%. These results agree with those obtained when 

Figure 9: (a) Air density in terms of height; (b) Electric Power against height; (c) Energy produced in terms of height; (d) Power in terms 
of nominal velocity. 

Figure 10: (a) Capacity factor variation; (b) Energy produced in terms of nominal velocity; (c) Power in terms of rotor radius; (d) Energy 
produced according to the rotor radius.
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comparing the energy produced by turbines with a height 
difference of 25 m according to the study carried out by 
(Gul et al., 2019).

The effect of the variation of the nominal velocity on the 
electrical power is illustrated in Figure 9d. The rated pow-
er is equal to 0.71 MW at a nominal velocity of 10 m/s and 
reaches a value of 2.44 MW at 15 m/s. This expresses an 
increase of 243.66%.

The variation of the capacity factor as a function of the 
nominal velocity is shown in Figure 10a. It shows that this 
factor decreases with the increase in the nominal velocity, 
being equal to 0.78 at 10 m/s and 0.38 at 15 m/s, which 
represents a reduction of 51.49%.

Figure 10b shows the energy production as a function 
of the nominal velocity, it is observed that at a velocity 
of 10 m/s 4.93 GWh is generated and for a velocity of 
15 m/s 8.13 GWh is produced, this shows an increase of 
64.90%. This tendency is similar to that evidenced when 
the energy generated by turbines that differ by 0.5 m/s in 
their nominal velocity was compared in the study carried 
out by (Mahmood et al., 2019).

The effect of the variation of the rotor radius on the electric 
power generated is indicated in Figure 10c. The variation 
of the power coefficient as a function of the wind velocity 
is the same for each evaluated rotor radius because this 
coefficient does not present a substantial change as 
described in Figure 6b. The nominal power for the radius 
equal to 35 m is 1.24 MW and the corresponding one for 
60 m is 3.65 MW, which corresponds to an increase of 
194.35%.

The capacity factor is equal to 0.62 and remains constant 
with respect to the radius variation. Energy production 
as a function of the rotor radius (Figure 10d), shows that 
6.76 GWh is generated for the radius equal to 35 m, while 
for the 60 m radius, 19.87 GWh is produced, expressing 
an increase of 193.93%. This tendency is similar to that 
obtained when the energy generated by turbines with 
different rotor sizes was compared in the study of (Gul 
et al., 2019).

4. Conclusions

In the present study, a programming code was developed 
using Python, in which Numpy and Matplotlib libraries are 
used to analyze the parameters that maximize the annual 
energy production of a wind turbine.

A methodology was developed to define the geometric 
characteristics of a wind turbine and compute the annual 
energy generated using the wind velocity measurements 
recorded during the years 2015 and 2019 in the CEV. By 
means of the statistical analysis of the wind velocities, it 
is determined that the mean factors of the Weibull shape, 
scale and the velocities: most probable and the one that 
carries the greatest energy are equal to 4.02, 11.07 m/s, 
10, 50 m/s and 12.46 m/s, respectively. It was determined 
that the power coefficient as a function of TSR does not 
represent a significant change when varying the rotor 
radius, obtaining an average value of 0.47, which is within 
the range established in current technology according to 
Letcher.

The reliability of the programming code was verified by 
obtaining a relative error less tan 20% for the difference 
between real and calculated values of energy produced 
and capacity factor as it is defined by (Hidalgo et al., 2015). 
It was observed that the increase in the nominal velocity 
from 10 m/s to 15 m/s produces a reduction of 51.49% of 
the capacity factor, while for the variations in height and 
rotor radius, the value of this factor is maintained in 0.62

Finally, the increase in the rotor radius and the nominal 
velocity produce an increase of 193.93% and 64.90% 
of the energy generated, respectively; and on the other 
hand, increasing the height of the turbine causes a 
reduction of 0.88% in the energy produced.
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