

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/169643

Lucas Alba, S. (2020). Using Well-Founded Relations for Proving Operational Termination.
Journal of Automated Reasoning. 64(2):167-195. https://doi.org/10.1007/s10817-019-09514-
2

https://doi.org/10.1007/s10817-019-09514-2

Springer-Verlag

jar manuscript No.
(will be inserted by the editor)

Using Well-Founded Relations for Proving
Operational Termination

Salvador Lucas

Abstract In this paper, we study operational termination, a proof theoretical notion
for capturing the termination behavior of computational systems. We prove that
operational termination can be characterized at different levels by means of well-
founded relations on specific formulas which can be obtained from the considered
system. We show how to obtain such well-founded relations from logical models which
can be automatically generated using existing tools.

Keywords Declarative languages · Logical models · Operational termination ·
Program analysis · Well-foundedness.

1 Introduction

Computations are often defined as provability of goals in an appropriate inference
system. Following a Natural Deduction approach à la Gentzen [34], provability of
goals is naturally understood as the construction of a proof tree for each considered
goal. The proof tree is built up using the inference rules to expand goals in nodes.
Each rule introduces a new (possibly empty) list of goals to be proved in the next
level of the tree. In an implementation, we usually assume some fixed criterion to
prove such new goals in any well-formed proof tree. For instance, by considering them
from left to right. Systems whose computations are defined in this way are called
operationally terminating if no goal originates an infinite (well-formed) proof tree [26,
8]. Some researchers have used operational termination as a basis for the definition
and implementation of techniques and tools for analyzing the termination behavior of
(declarative) programs in various formalisms, including Conditional Term Rewriting
Systems (CTRSs) [27,37,38], Membership Equational Theories [8], and Generalized
Rewriting Theories [7], among others (see also [2,9,35]).

In order to illustrate the need of operational termination in termination analysis
we consider a simple Maude program below. Maude [6] is a sophisticated language
whose termination behavior is determined by the interaction of several features.

Partially supported by the EU (FEDER), projects TIN2015-69175-C4-1-R, and GV PROME-
TEOII/2015/013

DSIC, Universitat Politècnica de València, Spain

fmod INF is
sorts S T .
subsorts S < T .
ops a b : -> T .
ceq a = b if a : S .

endfm

Fig. 1 Example of Maude program

(SR) x→ y y : S
x : S (M1)S<T

x :: S
x :: T (M1)a a :: T (M1)b b :: T

(M2)S
x :: S
x : S (M2)T

x :: T
x : T (Rl) a : S

a→ b (Rf)
x→∗ x

(T) x→ y y →∗ z
x→∗ z

Fig. 2 The inference system I(INF)

Some of them are considered here to illustrate our techniques. No previous knowledge
about Maude is required, though. Furthermore, the results in this paper are largely
independent from Maude, as they actually rely on the abstract notion of a general
logic [31].

Consider the Maude program INF in Figure 1. The program declares sorts S and
T. Sort S is a subsort of T, i.e., terms of sort S also have sort T (symbol < plays
the role of set inclusion ⊆). Operation symbols are declared by using the keyword
op (or ops for several operators). Two constants a and b (of sort T) are declared in
the program. The conditional equation ceq a = b if a : S specifies the reduction
of constant a into b provided that the membership of constant a to sort S (written
a : S) can be proved. After loading INF in the Maude interpreter1 the attempt to
reduce constant a by using Maude’s command red, leads to an error:

Maude> red a .
reduce in INF : a .
Segmentation fault: 11

Typically, the last message reveals an unbounded consumption of memory due to a
nonterminating computation. How do we explain this? The following question arises:

How to define the termination behavior of program INF?

Operational termination provides an appropriate answer. The inference system I(INF)
in Figure 2 describes the execution of program INF in Figure 1. The inference rules
are obtained from the generic inference system in [8, Figure 4].2 Rule (SR) formalizes
the idea that, in Maude, terms can be given a sort S if they can be reduced (with
→) into a term which is proved to be of sort S. For this reason, for a given sort s, we
use _:s for such memberships in contrast to _::s, which specifies the sort of a con-
stant or variable symbol which is directly obtained from the specification (by using
an operation or variable declaration). Rule (M1)S<T describes the subsort relation
between sorts S and T. Rules (M1)a and (M1)b associate a sort to constants a and b.
Rules (M2)S and (M2)T connect the two previous memberships for sorts S and T in

1 see http://maude.cs.illinois.edu/
2 The labels of the rules refer to such a system: SR stands for subject reduction, M1 and

M2 for membership-1/-2, Rf for reflexivity, Rl for replacement, and T for transitivity.

2

...
a→ b

(Rl)
b : S

a : S
(SR)

a→ b
(Rl)

Fig. 3 Infinite proof tree for program INF

the obvious way. Rule (Rl) encodes the conditional equation in the program. Finally,
rules (Rf) and (T) define the behavior of the many-step reduction relation →∗ in
the usual way. By using these inference rules, we build the infinite well-formed proof
tree in Figure 3 witnessing that INF is not operationally terminating.

In termination analysis (back to an early 1949 paper by Turing [39] and also
in Floyd [10]), well-founded relations have been paramount in modeling, analyzing,
and (automatically) proving termination. The following questions arise: (i) Is there
a characterization of operational termination in terms of well-founded relations? (ii)
Can we use well-founded relations in mechanized proofs of operational termination?
In this paper we give positive answers to these questions. After some preliminaries
in Section 2, the contributions of the paper are presented as follows:

– In Section 3, operational termination of (the specification of) a theory S is charac-
terized as the well-foundedness of a binary relation on formulas which we call the
proof progress relation (Theorem 1, which gives a positive answer to (i) above).
Such a relation is defined by considering all well-formed proof trees associated to
S. There usually are infinitely many well-formed proof trees. Then,

– Section 4 shows how to use proof jumps [28] instead. For a finite inference system
I(S) for S, proof jumps provide a finite description of how (infinite) well-formed
proof trees are built. Proof jumps are obtained from the inference rules to keep
track of where proof trees are expanded and which are the provable assumptions
for such an expansion. In this way, we obtain a second characterization of op-
erational termination by using well-founded relations that are used to compare
specific components of the proof jumps (Theorem 3).

– Section 5 explains how to synthesize well-founded relations that can be used to
implement the desired comparisons between components of proof jumps to prove
operational termination (Theorem 4, which gives a positive answer to (ii)).

– Section 6 shows the practical use of our methods within the OT Framework for
proving operational termination developed in [28].

Section 7 concludes. The material in Sections 5 and 6 extends and generalizes pre-
vious results in [22, Sections 5.1 and 5.2]. Sections 3 and 4 are completely new.

2 Preliminaries

As in [28], we rely on the notion of a general logic [31] which is made more expressive
by supporting inference systems that are parametric on theories. The central notion
of a general logic L is that of a (specification of a) theory S. A theory S is given
(i) a set of formulas Form(S) that can be used with the theory, (ii) a set of sub-
stitutions Sub(S) which are viewed as mappings (or transformations) of formulas in
Form(S), and (iii) an inference system I(S) which is a set of sequences of formulas

3

(Rf)
x→∗ x

(C)f,i xi → yi
f(x1, . . . , xi, . . . , xk)→ f(x1, . . . , yi, . . . , xk)

for all k-ary f ∈ F and i ∈ {1, . . . , k}

(T) x→ y y →∗ z
x→∗ z

(Rl)α s1 →∗ t1 · · · sn →∗ tn
`→ r

for α : `→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn ∈ R

Fig. 4 Schemes of inference rules for (oriented) CTRSs

A,B1, . . . , Bn that are interpreted as inference rules B1···Bn
A . Then, we consider (iv)

a notion of deduction which uses the inference rules in I(S) to build proof trees
for goals G which are formulas in Form(S). We first illustrate our approach with
some examples. Then, Sections 2.2 and 2.3 provide full definitions for (i)-(iv) above.
Finally, Section 2.4 provides a brief introduction to Order-Sorted First-Order Logic.

2.1 Running Examples

Our first example concerns oriented CTRSs [33, Chapter 7] which extend Term
Rewriting Systems (TRSs [5]). In a conditional rewrite rule ` → r ⇐ c, ` and r
are terms of a signature of symbols F ; the conditional part c is a (possibly empty)
sequence s1 ≈ t1, . . . , sn ≈ tn of conditions. These conditions must be satisfied before
being allowed to apply a rewriting step with ` and r in the usual way. Dealing with
oriented CTRSs, conditions si ≈ ti are treated as reachability conditions σ(si) →∗
σ(ti), after applying an appropriate (matching) substitution σ [33, Definition 7.1.3].
The generic inference system for oriented CTRSs is in Figure 4.

Example 1 Consider the CTRS R = {a → b, f(a) → b, g(x) → g(a) ⇐ f(x) ≈ x} in
[11, page 46]. When the inference system in Figure 4 is specialized to R, we obtain
an inference system I(R) as follows:

(Rf)
x→∗ x

(T) x→ y y →∗ z
x→∗ z

(C)f
x→ y

f(x)→ f(y) (C)g
x→ y

g(x)→ g(y)

(Rl)1 a→ b (Rl)2 f(a)→ b (Rl)3
f(x)→∗ x

g(x)→ g(a)

Now, s →R t (resp. s →∗R t), read “term s rewrites to t in R” (resp. “in 0 or more
steps”), if s→ t (resp. s→∗ t) is proved in I(R).

Let us consider an additional example, now written in Maude, where rewriting is not
used, but sorts, subsorts, and memberships are essential.

Example 2 The Maude program in Figure 5 exemplifies memberships in Maude [6,
Sect. 4.2]. The program uses a sort Zero to hold a constant zero only; sort Nat is
intended to represent natural numbers in Peano’s notation, where zero represents 0,
term s(zero) represents 1, term s(s(zero)) represents 2, etc.; finally, sort 3*Nat is
intended to collect natural numbers which are multiples of 3. The natural inclusion
relationship between these three sorts is made explicit by appropriately defining
them as subsorts. Operation symbols are declared by using keyword op and giving
the symbol a rank s1 · · · sk → s where s1, . . . , sk are the sorts of the input arguments

4

fmod 3*NAT is
sorts Zero Nat 3*Nat .
subsorts Zero < 3*Nat < Nat .
op zero : -> Zero .
op s : Nat -> Nat .
var M3 : 3*Nat .
mb s(s(s(M3))) : 3*Nat . *** membership axiom

endfm

Fig. 5 Use of memberships in Maude

(SR)Z
x→ y y : Zero

x : Zero (SR)3N
x→ y y : 3 ∗ Nat

x : 3 ∗ Nat (SR)N
x→ y y : Nat

x : Nat

(M1)Z<3N
x :: Zero
x :: 3 ∗ Nat (M1)3N<N

x :: 3 ∗ Nat
x :: Nat (M1)zero zero :: Zero

(M1)s
x :: Nat

s(x) :: Nat (M1)mb
M3 :: 3 ∗ Nat

s(s(s(M3))) :: 3 ∗ Nat

(M2)Z
x :: Zero
x : Zero (M2)3N

x :: 3 ∗ Nat
x : 3 ∗ Nat (M2)N

x :: Nat
x : Nat

(C)s,1
x→ y

s(x)→ s(y) (Rf)N x→∗ x
(T)N

x→ y y →∗ z
x→∗ z

Fig. 6 Inference rules for 3 ∗ NAT program

of the operator and s is the output sort. The program consists of a membership
axiom mb s(s(s(M3))) : 3*Nat, establishing that prefixing an expression M3 of
sort 3*Nat (hence intended to hold a multiple of 3) with three applications of s
yields a multiple of 3. The computations intended for this program are membership
queries of the form e ::3*Nat for some expression e. After loading the program in
the Maude interpreter, we check this by using Maude’s command red that evaluates
the expression (e ::3*Nat in this case) which is given as argument. For instance,
Maude> red s(s(s(s(s(s(zero)))))) :: 3*Nat .
reduce in 3*NAT : s(s(s(s(s(s(zero)))))) :: 3*Nat .
rewrites: 3 in 0ms cpu (0ms real) (3000000 rewrites/second)
result Bool: true

shows that, as expected, s(s(s(s(s(s(zero)))))), i.e., 6, is a multiple of 3. The
inference system I(3 ∗ NAT) in Figure 6 describes the operational semantics of 3*NAT
in Figure 5. It is also obtained from the generic inference system in [8, Figure 4].3

2.2 General Logics

A logic is a quadruple L = (Th(L),Form,Sub, I), where: (i) Th(L) is the class of
theories of L, (ii) Form is a mapping sending each theory S ∈ Th(L) to a set Form(S)
of formulas of S, (iii) Sub is a mapping sending each S ∈ Th(L) to its set Sub(S) of
substitutions, with the containment Sub(S) ⊆ (Form(S) → Form(S)), and (iv) I is
a mapping sending each S ∈ Th(L) to a subset I(S) ⊆ Form(S)×Form(S)∗, where
each (A,B1 . . . Bn) ∈ I(S) is called an inference rule for S and denoted B1...Bn

A . In
the following, sequences B1 . . . Bn of formulas are often written Bn for short.

3 Some new labels referring to such a system are used now: M1 for membership-1 and C
for congruence.

5

Example 3 For L = CTRS , (i) Th(CTRS) is the class of CTRSs R = (F , R) with F
a signature and R a set of conditional rules (over F); (ii) Form(R) = {s→ t, s→∗ t |
s, t ∈ T (F ,X)}, where T (F ,X) is the set of terms over F with variables from X ;
(iii) Sub(R) is the set of substitutions defined as usual with the following extension
to formulas: σ(s→ t) = σ(s)→ σ(t), and σ(s→∗ t) = σ(s)→∗ σ(t); and (iv) I(R)
is the instantiation of the generic inference system of Figure 4.

Example 4 For L = MRT (the logic of Membership Rewrite Theories, cf. [8, Sec-
tion 3]), (i) Th(MRT) is the class of membership rewrite theories R over a sig-
nature (K,Σ, S ∪ S′) where K is a set of kinds, Σ is an indexed family of sets
Σ = {Σw,k}(w,k)∈K∗,K of function symbols, and S = {Sk}k∈K is a disjoint fam-
ily of unary predicates; each s ∈ Sk is called a sort, and is understood as a unary
(membership) predicate on k, written : s; similarly, S′ = {S′k}k∈K is a disjoint
family of membership predicates :: s, each of them understood as a subrelation
of the corresponding : s. The theory R consists of a set of rules of the form
(t → t′ if A1, . . . , An) or (t : s if A1, . . . , An), where t and t′ are terms over the sig-
nature Σ and possibly including variables from a set X = {Xk}k∈K , s is a sort, and
for all 1 ≤ i ≤ n, Ai is either a rewrite condition ui →∗ vi for terms ui and vi, or a
membership ti : si or ti :: si for a term ti and sort si. (ii) Form(R) consists of formu-
las u→ v, u→∗ v, u : s, and u :: s for terms u, v of a given kind k and s ∈ Sk. (iii)
Sub(R) is the set of (kind-preserving) substitutions defined as usual with the follow-
ing extension to formulas: for all terms t, u, v and sorts s, σ(u→ v) = σ(u)→ σ(v),
σ(u →∗ v) = σ(u) →∗ σ(v), σ(t : s) = σ(t) : s, and σ(t :: s) = σ(t) :: s; finally, (iv)
I(R) is the instantiation of the generic inference system in [8, Figure 4]. Note that,
according to the previous presentation of the MRT logic, variables x, y, z, and M3
occurring in I(3*NAT) in Figure 6 all have the single kind [Nat].

We assume some standard properties about substitutions σ ∈ Sub(S) [28, Section
2]. Given F, F ′ ∈ Form(S), mguS(F, F ′) ⊆ Sub(S) denotes a set such that: (i)
∀σ ∈ mguS(F, F ′), σ(F) = σ(F ′); and (ii) ∀τ ∈ Sub(S) such that τ(F) = τ(F ′),
there is σ ∈ mguS(F, F ′), θ ∈ Sub(S) such that τ = θ ◦ σ, i.e., for all formulas F ,
τ(F) = θ(σ(F)).

2.3 Proof Trees and Operational Termination

Given a logic L, a theory S ∈ Th(L), and a formula G ∈ Form(S), a finite proof
tree T with root G (denoted root(T) = G) is either: (i) an open goal, simply denoted
as G; or (ii) a derivation tree denoted as T1 ··· Tn

G (ρ), where T1,. . . ,Tn are finite
proof trees (for n ≥ 0), and ρ : B1···Bn

A is an inference rule such that G = σ(A), and
root(T1) = σ(B1), . . . , root(Tn) = σ(Bn) for some substitution σ. A finite proof tree
T is closed if it contains no open goals. We write S ` F for a formula F if there
is a closed proof tree T with root(T) = F using I(S). The theorems of S are the
formulas F ∈ Form(S) for which we can derive a closed proof tree.

A finite proof tree T is a proper prefix of a finite proof tree T ′ (written T ⊂ T ′)
if there are one or more open goals G1, . . . , Gn in T such that T ′ is obtained from
T by replacing each Gi by a finite derivation tree Ti with root Gi. An infinite proof
tree T is an infinite increasing chain of finite proof trees, i.e., a sequence (Ti)i∈N
such that for all i, Ti ⊂ Ti+1. Since for all i ∈ N, root(Ti) = root(Ti+1), we write

6

root(T) = root(T0). There can be different (equivalent) ways to represent an infinite
proof tree T [27].

A finite proof tree T is well-formed if it is either an open goal, or a closed
proof tree, or a derivation tree T1 ··· Tn

G (ρ), where T1, . . . , Ti−1 are closed for some
1 ≤ i ≤ n, Ti is a well-formed but not closed finite proof tree, and Ti+1, . . . , Tn are
open goals. Note the left-to-right construction of the proof tree. An infinite proof
tree is well-formed if it is an increasing chain of well-formed finite proof trees.

Definition 1 (Operational termination [26]) A theory S in a logic L is called
operationally terminating if no infinite well-formed proof tree for I(S) exists.

2.3.1 The Spine of an Infinite Well-Formed Proof Tree

Infinite well-formed proof trees have the following form, see [28] and [27, Sect. 2.4]:

T1

Tn−1

...
Gn

(ρn)
On−1

...
G2

(ρ2)
O1

G1
(ρ1)

(1)

with a single infinite branch where there is a substitution σ such that, for all i ≥ 1,
a (possibly renamed) rule ρi of the form Bi1···B

i
ni

Ai for some ni > 0 has been applied,
Gi = σ(Ai), Ti are sequences of mi−1 closed proof trees for some 0 < mi ≤ ni, and
Oi are sequences of ni −mi open goals. Note that we also have Gi+1 = σ(Ai+1) =
σ(Bimi) for all i ≥ 1. The inference rules ρi which are used to build such an infinite
branch together with the indices mi of the formulas Bimi matching the goals Gi+1
are collected in a sequence of pairs (〈ρi,mi〉)i≥1 which we call the spine4 of (1).

Definition 2 (Spine) Let T be an infinite well-formed proof tree of the form (1).
We call the infinite sequence (〈ρi,mi〉)i≥1 the spine of T , denoted spine(T).

2.4 Order-Sorted First-Order Logic

This section provides a brief introduction to Order-Sorted First-Order Logic (OSFOL
for short). Missing details can be found in [15,16]. Given a set of sorts S, a many-
sorted signature is an S∗×S-indexed family of sets Σ = {Σw,s}(w,s)∈S∗×S containing
function symbols with a given string of argument sorts and a result sort. If f ∈
Σs1···sn,s, then we display f as f : s1 · · · sn → s. This is called a rank declaration
for symbol f . Constant symbols c (taking no argument) have rank declaration c :
λ → s for some sort s (where λ denotes the empty sequence). An order-sorted
signature (S,≤, Σ) consists of a poset of sorts (S,≤) together with a many-sorted
signature (S,Σ). The connected components of (S,≤) are the equivalence classes
[s] corresponding to the least equivalence relation ≡≤ containing ≤. We extend the

4 Since the drawing of the tree in (1) suggests the back of a skeleton, we use ‘spine’ for the
central part, or backbone, of the tree.

7

order ≤ on S to strings of equal length in S∗ by s1 · · · sn ≤ s′1 · · · s′n iff5 si ≤ s′i for
all i, 1 ≤ i ≤ n. Symbols f can be subsort-overloaded, i.e., they can have several
rank declarations related in the ≤ ordering [16]. Constant symbols, however, have
only one rank declaration. Given an S-sorted set X = {Xs | s ∈ S} of mutually
disjoint sets of variables (which are also disjoint from the signature Σ), the set
TΣ(X)s of terms of sort s is the least set such that (i) Xs ⊆ TΣ(X)s, (ii) if s′ ≤ s,
then TΣ(X)s′ ⊆ TΣ(X)s; and (iii) for each f : s1 · · · sn → s and ti ∈ TΣ(X)si ,
1 ≤ i ≤ n, f(t1, . . . , tn) ∈ TΣ(X)s. The set TΣ(X) of order-sorted terms is TΣ(X) =
∪s∈STΣ(X)s. If X = ∅, we write TΣ rather than TΣ(∅) for the set of ground terms.
Substitutions σ are S-sorted mappings (σs)s∈S , where each σs maps variables in Xs
into terms in TΣ(X)s and are extended to terms in the usual way.

An order-sorted first-order signature with predicates (OSFO-signature for short)
is a quadruple Ω = (S,≤, Σ,Π) such that (S,≤, Σ) is an order-sorted signature, and
Π = (Πw)w∈S+ is a family of predicate symbols P ,Q, We write P : w for P ∈ Πw.
Overloading is also allowed on predicates. The formulas F ∈ FormΩ of an OSFO-
signature Ω are built up from atoms P (t1, . . . , tn) with P ∈ Πw and t1, . . . , tn ∈
TΣ(X)w, logic connectives (e.g., ∧, ¬) and quantifiers (∀) as follows: (i) if P ∈ Πw,
w = s1 · · · sn, and ti ∈ TΣ(X)si for all i, 1 ≤ i ≤ n, then P (t1, . . . , tn) ∈ FormΩ . (ii)
if F ∈ FormΩ , then ¬F ∈ FormΩ ; (iii) if F, F ′ ∈ FormΩ , then F ∧ F ′ ∈ FormΩ ;
(iv) if s ∈ S, x ∈ Xs, and F ∈ FormΩ , then (∀x : s) F ∈ FormΩ . As usual, we can
consider formulas involving other logic connectives and quantifiers (e.g., ∨, ⇒, ⇔,
∃,...) by using their standard definitions in terms of ∧, ¬, ∀. A closed formula, i.e.,
whose variables are all universally or existentially quantified, is called a sentence.
Substitutions σ apply to formulas F in the usual way, i.e., by replacing free variables
x occurring in F by terms σ(x) (note that x and σ(x) have the same sort), perhaps
after renaming bound variables to avoid clashes.

Given a many-sorted signature (S,Σ), an (S,Σ)-algebra A (or just a Σ-algebra,
if S is clear from the context) is a family {As | s ∈ S} of sets called the carriers or
domains6 of A together with a function fAw,s ∈ Aw → As for each f ∈ Σw,s where
Aw = As1×· · ·×Ask if w = s1 · · · sk, and Aw is a singleton when w = λ (in this case,
disregarding the ‘dummy’ element inAw, the set of mappingsAw → As is isomorphic
to As, as expected). Given an order-sorted signature (S,≤, Σ), an (S,≤, Σ)-algebra
(or Σ-algebra if (S,≤) is clear from the context) is an (S,Σ)-algebra such that

1. If s, s′ ∈ S are such that s ≤ s′, then As ⊆ As′ , and
2. If f ∈ Σw1,s1 ∩ Σw2,s2 and w1 ≤ w2, then fAw1,s1

∈ Aw1 → As1 equals fAw2,s2
∈

Aw2 → As2 on Aw1 .

Let Ω = (S,≤, Σ,Π) be an OSFO-signature. An Ω-structure7 is an order-sorted
(S,≤, Σ)-algebra A together with an assignment to each P ∈ Πw of a subset PAw ⊆
Aw such that [15]: (i) for P the identity predicate = : ss, the assignment is the
identity relation, i.e., (=)As s = {(a, a) | a ∈ As}; and (ii) whenever P : w1 and P : w2
and w1 ≤ w2, then PAw1

= Aw1 ∩ PAw2
.

Given an S-sorted valuation mapping α : X → A we obtain the evaluation
mapping [_]Aα : TΣ(X) → A in the usual way. For ground terms t, since their

5 In the following, iff means if and only if.
6 Following [18, Section 1.1], these sets can be empty.
7 As in [18], we use ‘structure’ and reserve the word ‘model’ to refer to those structures

satisfying a given set of sentences (theory).

8

interpretation do not depend on any valuation α, we often write [t]A or just tA to
denote their semantic value. Finally, [_]Aα : FormΩ → Bool is given by:

1. [P (t1, . . . , tn)]Aα = true (with P ∈ Πw) if and only if ([t1]Aα , . . . , [tn]Aα) ∈ PAw ;
2. [¬F]Aα = true if and only if [F]Aα = false;
3. [F ∧ F ′]Aα = true if and only if [F]Aα = true and [F ′]Aα = true; and
4. [(∀x : s) F]Aα = true if and only if for all a ∈ As, [F]Aα[x 7→a] = true.

The truth value [F]Aα of a sentence F does not depend on the valuation mapping α.
Thus, we often write [F]A or just FA instead. A valuation α satisfies F in A (written
A |= F [α]) if [F]Aα = true. We then say that F is satisfiable. If A |= F [α] for all
valuations α, we write A |= F and say that A is a model of F or that F is true in A.
We say that A is a model of a set of sentences S (written A |= S) if for all F ∈ S,
A |= F . Given a sentence F , we write S |= F iff A |= F holds for all models A of S.

3 Well-Founded Relations Characterize Operational Termination

In this section we characterize operational termination of a theory S as the well-
foundedness of a binary relation �S on formulas which we call the proof progress
relation. This relation is defined by considering all possible well-formed proof trees
associated to S. Essentially, two formulas F and F ′ are related by �S (written
F �S F ′) if F ′ is introduced by an inference rule which has been used in an attempt
to prove F by means of a well-formed proof tree.

Definition 3 (Proof Progress Relation) Let S be a theory. The binary proof
progress relation �S on Form(S) is given as follows: for all F, F ′ ∈ Form(S), we
write F �S F ′ if there is a well-formed proof tree TF of the form

T1 · · · Ti−1 Ti Oi+1 · · · On
F

(ρ)
(2)

for some (renamed variant of an) inference rule ρ : B1···Bn
A and substitution σ, where

(i) F = σ(A), (ii) root(Ti) = F ′ = σ(Bi) for some 1 ≤ i ≤ n (Ti could be just
an open goal), (iii) T1, . . . , Ti−1 are closed proof trees rooted by σ(B1), . . . , σ(Bi−1)
respectively, and (iv) Oi+1, . . . , On are open goals σ(Bi+1), . . . , σ(Bn) respectively.

Example 5 For program INF in Figure 1 and the well-formed proof tree sketched in
Figure 3 we have a→ b � a : S and (considering the leftmost infinite subtree, which
is also well-formed) we also have a : S � a→ b.

Given a set A, a binary relation R ⊆ A × A on A is called well-founded if there is
no infinite sequence (ai)i≥1 of elements ai ∈ A such that ai R ai+1 for all i ≥ 1. We
have the following characterization of operational termination of a theory.

Theorem 1 A theory S is operationally terminating iff �S is well-founded.

Proof We proceed by contradiction. For the if part, assume that �S is well-founded
but S is not operationally terminating. Then, there is an infinite well-formed proof
tree with spine (〈ρi,mi〉)i≥1 where for all i ≥ 1 and rules ρi : Bi1 ··· B

i
ni

Ai , we have
closed proof trees T ij with root(T ij) = σ(Bij) for all 1 ≤ j < mi. Thus, we obtain an

9

infinite sequence (σ(Bimi))i≥1 where σ(Bimi) �S σ(Bi+1
mi+1

) holds for all i ≥ 1. This
contradicts well-foundedness of �S .

For the only if part, if �S is not well-founded, then there is an infinite sequence
(F j)j≥1 such that F j �S F j+1 for all j ≥ 1. Then, for all i ≥ 1, each comparison
F j �S F j+1 implies the existence of trees Si of the form

T i1 · · · T imi−1 T imi Oimi+1 · · · Oini
F i

(ρi)

with the correspondences between components of the segment and components of
the inference rule as in Definition 3. Note that, accordingly, for all i ≥ 1, root(T imi) =
σ(Bimi) = σ(Ai+1) and F i = σ(Ai). Thus, we obtain an infinite well-formed proof
tree T∞ as a sequence (Ui)i≥0 of finite well-formed proof trees Ui, where U0 is G and
for all i ≥ 0, Ui+1 is obtained from Ui by replacing T imi by S

i+1 (for the special case
i = 0, assume that T 0

m0
is G) using the fact that root(T imi) = F i+1. This contradicts

operational termination of S. �

Example 6 (Continuing Example 5) Since a → b � a : S and a : S � a → b, we
conclude that � is not well-founded. By Theorem 1, program INF in Figure 1 is not
operationally terminating.

Theorem 1 proves operational termination of a theory S equivalent to the well-
foundedness of �S . The relation �S is obtained by examining all well-formed proof
trees for S. Since this is not affordable in practice, in Section 4 we use the notion of
proof jump from [28] to obtain a better approach. The next section, though, briefly
discusses the use of well-formed proof trees (that impose a specific order to prove the
goals introduced by the inference rules) in the analysis of operational termination of
computational systems which do not fit such an evaluation scheme.

3.1 About the Left-to-Right Development of Well-Formed Proof Trees

The notion of a well-formed proof tree implies that whenever an inference rule ρ :
B1···Bn

A is used to prove a goal G such that G = σ(A), the proof obligations σ(Bi)
for 1 ≤ i ≤ n are tried from left to right, i.e., starting from σ(B1), then σ(B2), and
so on, until reaching σ(Bn). This is a reasonable order that most implementations
of programming languages or computational systems would naturally follow [26].
Other proof schemes could be used though. However, for the purpose of operational
termination analysis, our techniques would also apply, possibly after an appropriate
transformation of the inference system to cope with the considered proof strategy. We
justify this claim with some examples. A proof strategy which nondeterministically
selects one of the goals σ(Bi) to continue a proof after using rule ρ could be simulated
by using well-formed proof trees with an extended inference system where all variants
of ρ defined by ρπ : Bπ(1)···Bπ(n)

A for π a permutation of (1, . . . , n) are considered. More
restricted cases, like a right-to-left strategy would be faithfully simulated by using
simpler transformations like, e.g., using a rule ρ′ : Bn···B1

A for each rule ρ as above.
The extended inference system for the nondeterministic case sketched above

would also cover the use of parallel strategies (simultaneously exploiting several
goals σ(Bj)j∈J for some J ⊆ {1, . . . , n} with more than one index), provided that
the notion of operational termination still requires that all proof trees are finite.

10

g(a)→ c(b)
(Rl)

b→ f(a)
(Rp)

c(b)→ c(f(a))
(C)

...
f(a)→ a

c(f(a))→ c(a)
(C)

c(a)→∗ c(b)
c(f(a))→∗ c(b)

(T)

c(b)→∗ c(b)
(T)

g(a)→∗ c(b)
(T)

f(a)→ a
(Rl)

Fig. 7 Infinite well-formed proof tree (see [27, Example 2])

More sophisticated proof strategies could lead to a terminating behavior even for
operationally nonterminating systems. For instance, the following CTRS R:

g(a) → c(b) (3)
b → f(a) (4)

f(x) → x⇐ g(x)→ c(y) (5)

is not operationally terminating due to the infinite well-formed proof tree in Figure
7. However a proof strategy that prioritizes the use of rule (Rf) over (T) would prove
c(b) →∗ c(b) in the second proof obligation after the first application of (T), thus
avoiding the infinite development above:

g(a)→ c(b)
(Rl)

c(b)→∗ c(b)
(Rf)

g(a)→∗ c(b)
(T)

f(a)→ a
(Rl)

Under such a strategy, the CTRS would be operationally terminating (modulo the
strategy). This is not surprising, as it is well-known that, in term rewriting, and
in particular when TRSs are considered, the use of a particular rewriting strategy
(e.g., innermost [3], leftmost-outermost [32], context-sensitive [21], etc.) often leads to
improve the termination behavior of TRSs with respect to the unrestricted rewriting
computations. We expect a similar situation in our setting. Investigating these issues,
though, is beyond the scope of this paper.

4 Comparing Proof Jumps with Well-Founded Relations

In [28] we have introduced the OT Framework for proving operational termination.
The central notion is that of a proof jump. Given a theory S, a proof jump ψ for
I(S) (or just S) is a pair (A ⇑ Bm), where m ≥ 1 and A,B1, . . . , Bm are formulas.
Here, A is called the head of the proof jump; Bm is the hook; and B1, . . . , Bm−1 is
called the conditional part of the proof jump. This terminology is motivated below.
Given an inference rule ρ : B1 ··· Bn

A (or Bn

A for short) with label ρ and 1 ≤ m ≤ n,
[ρ]m denotes the m-th proof jump A ⇑ B1, . . . , Bm which is obtained from ρ. The
set of proof jumps of I(S) is JS = {[ρ]m | ρ : Bn

A ∈ I(S), 1 ≤ m ≤ n}.

11

Example 7 The proof jumps for I(INF) in Figure 2 are

[SR]1 x : S ⇑ x→ y [SR]2 x : S ⇑ x→ y, y : S [M1 S<T]1 x :: T ⇑ x :: S

[M2 S]1 x : S ⇑ x :: S [M2 T]1 x : T ⇑ x :: T [Rl]1 a→ b ⇑ a : S

[T]1 x→∗ z ⇑ x→ y [T]2 x→∗ z ⇑ x→ y, y →∗ z

Example 8 The proof jumps for rules (SR)Z and (M1)mb in Figure 6 are:

[(SR)Z]1 x : Zero ⇑ x→ y [(SR)Z]2 x : Zero ⇑ x→ y, y : Zero

[(M1)mb]1 s(s(s(M3))) :: 3 ∗ Nat ⇑ M3 :: 3 ∗ Nat

Proof jumps keep track of the spine (〈ρi,mi〉)i≥1 of infinite well-formed proof trees.
Assume that ρ : B1 ··· Bn

A is such that ρ = ρi for some i ∈ N and let m = mi. Then,
[ρ]m indicates (i) where the progress of the infinite behavior is made (by means of A
and Bm, establishing the links with the previous and next inference rules in the spine)
and (ii) the provability context which is assumed for such a progress (we can assume
B1, . . . , Bm−1 in the conditional part provable, after instantiation). Accordingly, A
and Bm are called the head and the hook8 of [ρ]m, respectively.

An infinite (S,J)-chain is a sequence of (renamed versions of) proof jumps
(Ai ⇑ Bi

mi) ∈ J for i ≥ 1 together with a substitution σ such that, for all i ≥ 1,
σ(Bimi) = σ(Ai+1) and for all j, 1 ≤ j < mi, S ` σ(Bij). A theory S is operationally
terminating iff there is no infinite (S,JS)-chain [28, Theorem 1].

4.1 Feasible Rules and Proof Jumps

The use of a proof jump in an (S,J)-chain requires proofs of the goals in the con-
ditional part of the proof jump. In this setting, the following definition is relevant:

Definition 4 (Feasibility) A formula F is S-feasible (or just feasible if no confusion
arises) if there is a substitution σ such that S ` σ(F); otherwise, we call it infeasible.
An inference rule ρ : B1···Bn

A is feasible if there is a substitution σ that makes each of
the σ(B1), . . . , σ(Bn) provable, thus enabling the use of ρ in a proof of σ(A); we call
ρ infeasible otherwise. A proof jump A ⇑ Bm is feasible if there is a substitution σ
that makes each of the σ(B1), . . . , σ(Bm−1) provable (we call it infeasible otherwise).

Infeasibility of a proof jump [ρ]m implies infeasibility of ρ (but not vice versa). Feasi-
bility is, in general, undecidable. In the following, we introduce a sufficient criterion
for proving infeasibility of OSFO-formulas. This can be used to prove infeasibility of
inference rules and proof jumps. If such a checking succeeds, then the rule or proof
jump is discarded. Otherwise, we consider them feasible.

4.1.1 Proving Infeasibility as First-Order Satisfiability

In proofs of infeasibility we have to deal with provability with respect to I(S) for
a theory S. In our method, we use the correspondence between provability and

8 We use ‘hook’ because this formula is intended to ‘catch’ the head of the next inference
rule in the spine.

12

satisfiability which is provided by the notion of correctness of a proof calculus with
respect to the semantic interpretation of the logic. We did not provide semantic
notions for general logics, but Section 2.4 provides the standard semantic notions for
OSFOL. In this section we restrict the attention to OSFOL.

When dealing with inference rules B1 ··· Bn
A where A,B1, . . . , Bn are OSFO-

formulas, we treat them as sentences (∀x : s) B1∧· · ·∧Bn ⇒ A, where x = x1, . . . , xm
consists of the free variables occurring in A,B1, . . . , Bn. The OSFO-theory which is
obtained from I(S) when the inference rules are treated in this way is denoted as S.

Example 9 For I(INF) in Figure 2, the theory INF is as follows (we use sort KT to
represent the kind [T]):

a :: T (∀x, y : KT) x→ y ∧ y : S⇒ x : S (∀x : KT) x :: S⇒ x :: T
b :: T (∀x : KT) x :: S⇒ x : S (∀x : KT) x :: T⇒ x : T
a : S⇒ a→ b (∀x, y, z : KT) x→ y ∧ y →∗ z ⇒ x→∗ z (∀x : KT) x→∗ x

Example 10 For I(3 ∗ NAT) in Figure 6, 3 ∗ NAT is as follows (KN is the kind [Nat]):

(∀x, y : KN) x→ y ∧ y : Zero⇒ x : Zero (∀x, y : KN) x→ y ∧ y : 3 ∗ Nat⇒ x : 3 ∗ Nat
(∀x, y : KN) x→ y ∧ y : Nat⇒ x : Nat (∀x : KN) x :: Zero⇒ x :: 3 ∗ Nat

(∀x : KN) x :: 3 ∗ Nat⇒ x :: Nat zero :: Zero
(∀x : KN) x :: Nat⇒ s(x) :: Nat (∀M3 : KN) M3 :: 3 ∗ Nat⇒ s(s(s(M3))) :: 3 ∗ Nat
(∀x : KN) x :: Zero⇒ x : Zero (∀x : KN) x :: 3 ∗ Nat⇒ x : 3 ∗ Nat
(∀x : KN) x :: Nat⇒ x : Nat (∀x, y : KN) x→ y ⇒ s(x)→ s(y)
(∀x : KN) x→∗ x (∀x, y, z : KN) x→ y ∧ y →∗ z ⇒ x→∗ z

Deductions with S proceed in the usual predicate calculus à la Hilbert by using
modus ponens and generalization as inference rules, the usual set of logical axioms,
and S as the set of proper axioms [30, Section 2.3]. In this way, formulas F that
can be proved with I(S) by using proof trees (which we denote S ` F) can also be
proved with S using Hilbert’s style (which we write S `H F). By correctness of the
first-order predicate calculus, for all models A of a theory S, whenever S `H F holds
for a sentence F , we have A |= F . We use these facts in the following result.

Theorem 2 Let S be an OSFO theory with inference system I(S), F (x : s) be a
first-order formula, with free variables x1, . . . , xn of sorts s1, . . . , sn, respectively, and
A be a structure where As is non-empty for all sorts s. If A |= S ∪ {¬(∃x : s)F (x :
s)}, then F is S-infeasible.

Proof By contradiction. If F is S-feasible, then there is a substitution σ such that
S ` σ(F (x : s)) holds. Thus, S `H σ(F (x : s)) holds as well. Since A is a model of
S, by correctness of the predicate calculus we have A |= (∀y : s′) σ(F (x : s)). Here,
y1, . . . , ym are the variables of sorts s′1, . . . , s′m (written y : s′ for short) occurring in
σ(F (x : s)). Hence, for all valuations ν of the variables y, the interpretation in A of
the universally quantified formula above, i.e., [σ(F)]Aν , is true. Since for all sorts s,
As is not empty, for each valuation ν of the variables y there is a valuation ν′ of the
variables x given by ν′(x) = [σ(x)]Aν for all variables x in x, such that [F (x : s)]Aν′ is
true. This contradicts the assumption A |= ¬(∃x : s) F (x : s). �

In the following, we use Theorem 2 together with existing tools for the (semi)automatic
generation of models (e.g., AGES [17] or Mace4 [29]) in proofs of infeasibility.

13

Remark 1 Dealing with OSFOL, an inference rule B1···Bn
A is feasible iff B1 ∧ · · · ∧Bn

is feasible (and similarly for proof jumps). Thus, we can use Theorem 2 to prove
infeasibility at once by seeking a model of S ∪ {¬(∃x : s) B1 ∧ · · · ∧ Bn}, where x
consists of the free variables occurring in B1, . . . , Bn (with the corresponding sorts).

Example 11 We prove rule (Rl) in Figure 2 for program INF, i.e.,

a : S
a→ b

infeasible by using Theorem 2. For INF in Example 9, we obtain a model A of
INF∪ {¬ a : S} with AGES (see Appendix A for details). The domain is AKT = {1};
function and predicate symbols are interpreted as follows:

aA = 1 bA = 1 : SA(x) ⇔ false :: SA(x) ⇔ false
: TA(x) ⇔ true :: TA(x) ⇔ true x→A y ⇔ x+ y ≥ 1 x(→∗)Ay ⇔ true

Note that [Rl]1 in Example 7 is not infeasible! However, infeasibility of (Rl) makes
[T]2 infeasible too. This is proved by using Theorem 2. We obtain a model A of
INF ∪ {¬(∃x : T)(∃y : T) x→ y} with AGES. Now, AKT = Z− N and

aA = −1 bA = −1 : SA(x) ⇔ false :: SA(x) ⇔ false
: TA(x) ⇔ true :: TA(x) ⇔ true x→A y ⇔ false x(→∗)Ay ⇔ true

Example 12 With regard to the program 3*NAT, Theorem 2 can be used to prove
proof jumps [(SR)Z]2, [(SR)3N]2, [(SR)N]2, and [(T)N]2 infeasible. Since they share
the same conditional part x → y, infeasibility follows if we obtain a model A of
3 ∗ NAT ∪ {¬(∃x : KN)(∃y : KN) x → y}, for 3 ∗ NAT in Example 10. We obtain
such a model with Mace4 (see Appendix B for details). The domain is AKN =
{0, 1}. Function symbols are interpreted as zeroA = sA(x) = 0. Predicates are
all interpreted as true except →, which is interpreted as false. Therefore, the rules
(SR)Z , (SR)3N , (SR)N , and (T)L are infeasible too. Moreover, infeasibility of x→ y
implies infeasibility of (C)s,1 as well.

Definition 5 (OT problem/Initial OT problem) A pair τ = (S,J) consisting
of a theory S and a set of proof jumps for S is called an OT problem. The OT
problem τI = (S,JS) is called the initial OT problem.

Remark 2 (Use of feasible rules and proof jumps) According to the definition of
an (S,J)-chain, we can restrict the attention to the subsets S+ and J + of S-
feasible inference rules and proof jumps. The sets of (S,J)-chains and (S+,J +)-
chains coincide. In particular, the initial problem τI = (S,JS) can be taken as
τI = (S+,J +

S). Note, however, that using the set JS+ of proof jumps of the S-
feasible inference rules S+ in the initial problem could lead to an incorrect approach,
as the sets of (S,JS)-chains and (S,JS+)-chains may differ. For instance, rule (Rl)
in I(INF) was proved infeasible in Example 11. If we remove it from I(INF) before
computing JINF, then [Rl]1 would not be obtained and the (spine of the) infinite well-
formed proof tree in Figure 3 would not be captured by any (INF+,JINF+)-chain.

14

Example 13 The initial OT problem for program 3 ∗ NAT is (3 ∗ NAT+,J +
3∗NAT), where,

according to Example 12, we take:

3 ∗ NAT+ = {(M1)Z<3N, (M1)3N<N, (M1)zero, (M1)s, (M1)mb, (M2)Z , (M2)3N , (M2)N ,
(Rf)N}

J +
3∗NAT = {[(SR)Z]1, [(SR)3N]1, [(SR)N]1, [(M1)Z<3N]1, [(M1)3N<N]1, [(M1)s]1,

[(M1)mb]1, [(M2)Z]1, [(M2)3N]1, [(M2)N]1[(C)s,1]1, [(T)L]1}

Note that rule (C)s,1 is not included in 3 ∗ NAT+ (due to its infeasibility), but the
proof jump [(C)s,1]1 is included in J +

3∗NAT as it is not infeasible and we compute the
proof jumps with respect to the whole set of inference rules for 3*NAT.

In the following, we often assume the use of S+ and J +
S in the initial OT problem

τI without making the +-superscript explicit.

4.2 Use of Well-Founded Relations with Proof Jumps

Our next result characterizes operational termination of a theory by comparing (the
head and the hook of) proof jumps using a well-founded relation.

Theorem 3 A theory S is operationally terminating iff there is a well-founded re-
lation A on Form(S) such that, for all A ⇑ Bm ∈ JS ,

for all substitutions σ, if S ` σ(Bi) for all i, 1 ≤ i < m, then σ(A) A σ(Bm) (†)

Proof For the if part, assume that S is not operationally terminating. Then, by [28,
Theorem 1] there is an infinite (S,JS)-chain (Ai ⇑ Bi

mi)i≥1 for some substitution σ
such that, for all i ≥ 1, if S ` σ(Bij) holds for all 1 ≤ j < mi, then σ(Bimi) = σ(Ai+1).
By (†), we have σ(Ai) A σ(Bimi) for all i ≥ 1 and, since σ(Bimi) = σ(Ai+1) for all i ≥
1, we obtain an infinite sequence (σ(Ai))i≥1 of formulas satisfying σ(Ai) A σ(Ai+1)
which contradicts well-foundedness of A.

For the only if part, just consider �S in Definition 3. By Theorem 1, it is well-
founded. Now consider a proof jump ψ : A ⇑ Bm ∈ JS and a substitution σ such
that, for all 1 ≤ i < m, S ` σ(Bi), i.e., there are closed proof trees Ti with root(Ti) =
σ(Bi). By definition of proof jump, there is an inference rule Bn

A ∈ I(S) for some
n ≥ m. There is a well-formed proof tree

T1 · · · Tm−1 σ(Bm) σ(Bm+1) · · · σ(Bn)
σ(A)

(ρ)

By definition of �S , we have σ(A) �S σ(Bm) as required. �

In order to use Theorem 3, we need to check that, for all proof jumps A ⇑ Bm ∈
JS , statement (†) holds. The provability statements S ` σ(Bi), the presence of
symbol A, and the use of infinitely many substitutions σ prevent (†) from being a
formal sentence of the language of S. In the following section, we investigate how
to transform (†) into a formal sentence. Then, we provide a new characterization of
operational termination as the satisfiability of such transformed sentences.

15

5 Well-Founded Models and Operational Termination

In the following, we consider OSFO-theories S over a signature Ω = (S,≤, Σ,Π).

5.1 A Signature Transformation

We define a transformation of OSFO-signatures which is parametric in OT problems
τ = (S,J). The main goal is implementing the comparisons of (instances of) the
head A and hook Bm which are specified in (†) for some proof jump A ⇑ Bm ∈ J .
For this purpose, the relation A is represented as a new binary predicate πA on terms
of the target signature Ωτ . In this way, we can recast (†) as a logical formula:

(∀x : s)B1 ∧ · · · ∧Bm−1 ⇒ A↓ πA B
↓
m (6)

where x : s denotes the sequence x1 : s1, . . . , xp : sp of sorted variables referring to
all free variables xi (of sort si), for 1 ≤ i ≤ p, occurring in B1, . . . , Bm and A, and ↓

transforms formulas in FormΩ into Ωτ -terms. Here we just define a requirement for
↓ to ensure the main result in Section 5.4 (Theorem 4). A particular transformation
↓ is defined in Section 5.2. Let us first define the target OSFO-signature Ωτ .

Definition 6 Let Ω = (S,≤, Σ,Π) be an OSFO-signature and τ be an OT problem.
The OSFO-signature Ωτ = (Sτ ,≤τ , Στ , Πτ) is defined as follows:

– Sτ = S ∪ {ςτ} where ςτ is a fresh sort symbol.
– ≤τ is ≤ viewed as a relation on Sτ , i.e., no new subsort relation is assumed.
– Πτ = Π ∪Πςτ ςτ where Πςτ ςτ is a set of new predicate symbols (e.g., πA).

We let the composition of Στ depend on the specific transformation ↓ in use.

Note that (†) only requires the comparison of instances of the head and hook of proof
jumps by means of the well-founded relation A. Given an OT problem τ = (S,J),
we let Hτ = {A,Bm | A ⇑ Bm ∈ J } be the set of heads and hooks of the proof
jumps in τ . The only requirement we impose to a transformation ↓ is the following:

Definition 7 (Stable transformation) Let Ω be an OSFO-signature, τ be an OT
problem, and Ωτ as above. A transformation ↓ : Form(Ω)→ (TΣτ (X))ςτ is stable if
for all substitutions σ and formulas A ∈ Hτ ,

σ(A)↓ = σ(A↓) (7)

5.2 A Stable Transformation

We complement Definition 6 with Στ defined as follows:

Στ = Σ ∪
⋃
s∈S

ΣK
λ,s ∪Σλ,ςτ ∪Σςτ ,ςτ ∪Σςτ ςτ ,ςτ ∪

⋃
w∈S+

Σw,ςτ

where

– ΣK
λ,s is a set of new constant symbols of sort s, i.e., for all s ∈ S, Σλ,s∩ΣK

λ,s = ∅.

16

– Σλ,ςτ = {cx | x ∈ X} is a set of constants of sort ςτ associated to the variables
in X (disregarding the sort of such variables).

– Σςτ ,ςτ = {f¬}, i.e., we add a new function symbol associated to the negation.
– Σςτ ςτ ,ςτ = {f∧, f∨}, i.e., we add new function symbols associated to each binary

connective (and, or).
– Σw,ςτ = {fP : w → ςτ | P ∈ Πw}, i.e., each (overloaded version of a) predicate

symbol P with input sorts w is given a new function symbol fP : w → ςτ with
input sorts w and output sort ςτ .

The amount of symbols in ΣK
λ,s and Σλ,ςτ depends on the quantification of the

formulas in Hτ , see item 3 in the following.
Definition 8 Let Ω be an OSFO-signature, τ be an OT problem, and Ωτ be as in
Definition 6 with Στ as above. The transformation ↓ : Form(Ω) → (TΣτ (X))ςτ is
defined by induction on the structure of F :
1. P (t1, . . . , tk)↓ = fP (t1, . . . , tk) if P ∈ Πw for some w ∈ S+.
2. (¬F)↓ = f¬(F ↓); (F1 ∧ F2)↓ = f∧(F ↓1 , F

↓
2); and (F1 ∨ F2)↓ = f∨(F ↓1 , F

↓
2).

3. ((∀x : s) F)↓ = cx for cx ∈ Σλ,ςτ and ((∃x : s) F)↓ = θx,k(F ↓), where θx,k =
{x 7→ k} is a substitution for some k ∈ ΣK

λ,s which does not occur in F .
In the first two items of Definition 8, variables in logic formulas are kept to determine
the final value of the expression. Also, the syntactical structure of boolean combina-
tions of atoms is essentially preserved. Item (3) deserves some further explanation.
Universally quantified formulas (∀x : s) F are supposed to have a fixed truth value
(either true or false), which does not depend on the valuation of variables in F . For
this reason, we transform it into a constant cx.9 Regarding existentially quantified
formulas (∃x : s) F we give a skolemization-like treatment where the occurrences
of the quantified variable x are replaced by a new constant of the same sort. Of
course, the usual connection between universal and existential quantification (i.e.,
(∀x)F is equivalent to ¬(∃x) ¬F) is not preserved by this transformation: we have
((∀x)F)↓ = cx and (¬(∃x) ¬F)↓ = f¬(f¬(σk(F ↓))). This is not important for our
purpose. Note that, if Hτ consists of unquantified formulas only (as it is the case in
most examples of this paper), then both ΣK

λ,s and Σλ,ςτ can be empty.

Proposition 1 (Stability) Transformation ↓ in Definition 8 is stable.
Proof For the first two items above (atoms and connectives), it is clear. Regarding
quantified formulas, we note that the application of a substitution σ to a quantified
formula (Q x : s) F , for Q ∈ {∃,∀} is naturally defined as σ((Q x : s) F) = (Q x :
s) σx(F), where for all variables y 6= x, σx(y) = σ(y), but σx(x) = x, i.e., no
instantiation is allowed on the bound variable x. Then, we have the following:
– With regard to universal quantification, we have:

σ(((∀x : s) F))↓ = ((∀x : s) σx(F))↓

= cx

= σ(cx)
= σ(((∀x : s) F)↓)

9 This transformation keeps no information about the matrix formula F in the universally
quantified formula (∀x : s) F . This could compromise the success of its use with Theorem 4
below. More precise transformations could be obtained by considering constants cx,F indexed
not only by variables x but also by formulas F and envisaging appropriate conditions on such
constants so that stability holds.

17

– With regard to existential quantification, we have:

σ(((∃x : s) F))↓ = ((∃x : s) σx(F))↓

= θx,k(σx(F)↓)
= σx(θx,k(F ↓)) (8)
= σx(((∃x : s) F)↓)
= σ(((∃x : s) F)↓) (9)

where σx and θx,k are as above. Note that, since x is not instantiated by σx and
θx,k only instantiates x to a constant symbol k, both substitutions commute, i.e.,
the order of application of these substitutions does not matter. This has been
used in the induction step (8). Also note in (9) that the application of σx and σ
on the existentially quantified formula coincide by definition of σx. �

Example 14 The sentences (6) that correspond to proof jumps [(SR)Z]1 and [(M1)mb]1
for the inference rules (SR)Z and (M1)mb in Figure 6 (see Example 8) are as follows:

(∀x, y : KN) f :Zero(x) πA f→(x, y)
(∀ M3 : KN) f ::3∗Nat(s(s(s(M3)))) πA f ::3∗Nat(M3)

where f :Zero : KN → ςτ and f→ : KN KN → ςτ are the new function symbols
associated to predicates : Zero ∈ ΠKN and → ∈ ΠKN KN , respectively. Finally,
πA : ςτ ςτ is a new predicate symbol.

The following example illustrates the use of the transformation with quantified for-
mulas.

Example 15 Consider the following instances of the (schemata of) the elimination
inference rules (∀E) and (⇒E) of the natural deduction system in [34, page 20] for
a well-known example of reasoning:

(∀x) H (x)⇒ R(x)
H (aristotle)⇒ R(aristotle)

H (aristotle) H (aristotle)⇒ R(aristotle)
R(aristotle)

If the following axioms are added

H(aristotle) and (∀x) H (x)⇒ R(x)

we can prove R(aristotle) as expected. The proof jumps for the inference rules are:

H (aristotle)⇒ R(aristotle) ⇑ (∀x) H (x)⇒ R(x)
R(aristotle) ⇑ H (aristotle)

R(aristotle) ⇑ H (aristotle), H (aristotle)⇒ R(aristotle)

The sentences (6) for these proof jumps (using ¬A ∨B instead of A⇒ B) are:

f∨(f¬(fH (aristotle)), fR(aristotle)) πA cx
fR(aristotle) πA fH (aristotle)

H (aristotle)⇒ fR(aristotle) πA f∨(f¬(fH (aristotle)), fR(aristotle))

18

5.3 Interpretations for OSFOL and the Generation of Well-Founded Relations

Since Ωτ is an extension of Ω, every Ωτ -structure A is an Ω-structure. We use Ωτ -
structures A to define binary relations ./ on Ω-formulas by associating a predicate
symbol π./ to ./.

Definition 9 Let Ω be an OSFO-signature, τ be an OT-problem, and A be an
Ωτ -structure. Given π./ ∈ Πςτ ςτ , we define a relation ./ on Ω-formulas as follows:
for all Ω-formulas A and B, we write A ./ B iff A |= A↓ π./ B

↓ (equivalenty,
A |= (∀x : s) A↓ π./ B↓ where x consists of all free variables in A and B, of sorts s).

The well-foundedness of A in (†) cannot be characterized at once in first-order logic
[36, Section 5.1.4]. When using Definition 9 to define A, we can guarantee its well-
foundedness if πAA is a well-founded relation.

Proposition 2 Let Ω be an OSFO-signature, τ = (S,J) be an OT problem, Tτ be
the set of sorts of the free variables occurring in J , and A be an Ωτ -structure such
that for all s ∈ Tτ , As 6= ∅. If πAA is a well-founded relation on Aςτ , then A as in
Definition 9 is a well-founded relation on Form(S).

Proof By contradiction. If there is an infinite sequence (Ai)i≥1 of Ω-formulas such
that for all i ≥ 1 Ai A Ai+1, then, by Definition 9, we have A |= (∀x)A↓i πA A

↓
i+1 for

all i ≥ 1, i.e., for all valuations α, ([A↓i]Aα , [A
↓
i+1]Aα) ∈ πAA . Since the set of valuations

α is not empty (because As 6= ∅ for all sorts s ∈ Tτ of the variables occurring in
τ), there is an infinite sequence ([A↓i]Aα)i≥1 for some valuation α that contradicts
well-foundedness of πAA . �

5.4 A Characterization of Operational Termination Using Interpretations

Now we are ready to provide a characterization of operational termination by inter-
pretation with well-founded models, i.e., structures A where some binary predicates
π ∈ Πs s are required to be interpreted as well-founded relations πA on As. In the
following result, S is the theory obtained from I(S) as explained in Section 4.1.1.
Also note that τI is the initial OT problem (S,JS) (Definition 5).

Theorem 4 Let Ω = (S,≤, Σ,Π) be an OSFO-signature such that for all s ∈ S,
TΣs 6= ∅. A theory S is operationally terminating if and only if there is an ΩτI -
structure A with no empty domain and a stable transformation ↓ such that (i)
A |= S, (ii) for all ψ : A ⇑ Bm ∈ JS , A |= (∀x : s) B1 ∧ · · · ∧ Bm−1 ⇒ A↓ πA B↓m
and (iii) πAA is a well-founded relation.

Proof For the if part, we use Theorem 3 to prove S operationally terminating.
Consider an arbitrary proof jump A ⇑ Bm ∈ JS and a substitution σ such that
S ` σ(Bi) holds for all 1 ≤ i < n. By (i) and by correctness of the first-order calculus,
we have A |= σ(Bi) for all 1 ≤ i < n. By (ii), we have A |= σ(A↓) πA σ(B↓m). By
stability of ↓, we have A |= σ(A)↓ πA σ(Bm)↓. Thus, for A given as in Definition
9, we have σ(A) A σ(Bm). Since the domains of the interpretation are not empty
and due to (iii), by Proposition 2, A is well-founded. Thus, by Theorem 3, S is
operationally terminating.

For the only if part, assume S operationally terminating and consider the stable
transformation ↓ in Section 5.2. Consider the ΩτI -structure A defined as follows:

19

1. For each sort s ∈ SτI , As is the (nonempty) set TΣs of ground terms of sort s;
for all w ∈ S∗τI and s ∈ SτI , each function symbol f : w → s is interpreted as
the function fA mapping t ∈ TΣw into f(t) ∈ TΣs (note that this also includes
the interpretations of the new symbols fP , f∧, . . ., introduced in Στ), and each
predicate symbol P : w with w ∈ S+ (i.e., taking arguments from the ‘old’ sorts
only) is interpreted as the relation PA = {t | t ∈ TΣw,S ` P (t)} containing the
tuples t of ground terms in TΣw such that P (t) can be proved in S.

2. Now we define the interpretation of πA, the only predicate symbol which does
not take arguments from the old sorts. By Theorem 3, operational termination
of S implies the existence of a well-founded relation A among formulas such that
(†) holds. Then, πA : sτI sτI is interpreted by using A and ↓ as follows:

πAA = {(σ(A)↓, σ(Bm)↓) | A ⇑ Bm ∈ JS∧ σ(A) A σ(Bm) for the substitution σ}

Since A is well-founded, πAA is also well-founded on AsτI , i.e., (iii) holds.

Now, (i) holds by construction of A. With regard to (ii), consider a proof jump
ψ : A ⇑ Bm ∈ JS and a valuation in the structure A (i.e., a ground (S-sorted)
substitution σ of the variables in ψ). If A |= σ(Bi) for all 1 ≤ i < n, then, by
definition of A, we have S ` σ(Bi). Therefore, by (†) and by definition of A we have
σ(A) A σ(Bni). Hence, by definition of πAA , we have (σ(A)↓, σ(Bn)↓) ∈ πAA and, by
stability of ↓, (σ(A↓), σ(B↓m)) ∈ πAA . Thus, we have (ii), as required. �

5.5 Automatic Generation of Well-Founded Models

In practice, when using Theorem 4 to prove operational termination of S, we will
equivalently seek a structure A with no empty domain which is a model of

S ∪ {(∀x : s)B1 ∧ · · · ∧Bm−1 ⇒ A↓ πA B
↓
m | A ⇑ Bm ∈ JS} (10)

and such that πAA is a well-founded relation. Such models can be obtained from
model generators like AGES or Mace4. AGES interprets the sort, function, and pred-
icate symbols of an OSFO-theory as parametric domains, functions and predicates.
Some binary predicates can be required to be interpreted by a well-founded relation.
Sentences in the theory are transformed into constraints over the parameters which
are then solved by using standard constraint solving methods and tools [24].

Example 16 Consider the program 3*NAT in Figure 5. Operational termination of
3*NAT can be proved using AGES to find a model of the corresponding set of sentences
(10). A model A is automatically obtained with domains AKN = N ∪ {−1} and
Aςτ = N, function symbols are interpreted as follows:

zeroA = −1 sA(x) = x+ 1
fA:Zero(x) = 4x+ 5 fA:3∗Nat(x) = 4x+ 6 fA:Nat(x) = 4x+ 7
fA::Zero(x) = x+ 1 fA::3∗Nat(x) = 2x+ 3 fA::Nat(x) = 3x+ 5
fA→(x, y) = 3x+ 3 fA→∗(x, y) = 4x+ y + 6

with variables ranging on the domains interpreting the corresponding sorts. Note the
new functions f :Zero f :3∗Nat, f :Nat, f ::Zero, f ::3∗Nat, f ::Nat, f→, and f→∗ introduced

20

by the transformation in Section 5.2. Finally, predicates are interpreted as follows:

: ZeroA(x) ⇔ true : PalA(x) ⇔ true : ListA(x) ⇔ true
:: ZeroA(x) ⇔ true :: PalA(x) ⇔ true :: ListA(x) ⇔ true

x→A y ⇔ true x(→∗)Ay ⇔ true x πAA y ⇔ x > y

In order to illustrate the proof technique, consider the proof jumps [(SR)Z]1 and
[(M1)mb]1 in Example 8 (note that [(SR)Z]2 in Example 8 was discarded from τI by
infeasibility, see Example 12). Their transformed versions, obtained in Example 14,
are, respectively, as follows:

(∀x, y : KN) f :Zero(x) πA f→(x, y) (11)
(∀ M3 : KN) f ::3∗Nat(s(s(s(M3)))) πA f ::3∗Nat(M3) (12)

We have the following:

– For [(SR)Z]1, transformed into (11), we have

[f :Zero(x)]A = 4x+ 5 and [f→(x, y)]A = 3x+ 3

By using the interpretation of πA, [(∀x, y : KN) f :Zero(x) πA f→(x, y)]A is

(∀x, y ∈ N ∪ {−1}) 4x+ 5 > 3x+ 3

which is obviously true.
– For [(M1)mb]1, transformed into (12), we have

[f ::3∗Nat(s(s(s(M3))))]A = 2(M3 + 3) + 3 and [f ::3∗Nat(M3)]A = 2 M3 + 3

Therefore, [(∀ M3 : KN) f ::3∗Nat(s(s(s(M3)))) πA f ::3∗Nat(M3)]A is

(∀M3 ∈ N ∪ {−1}) 2 M3 + 9 > 2 M3 + 3

which, again, is true.

5.5.1 Use of Finite Domains

Mace4 computes (one-sorted) finite models only, but is very fast. There is no support
for well-foundedness, though. However, we can use the fact that a finite relation R
on a set A is well-founded iff R is not cyclic, i.e., there is no a ∈ A such that aR+ a.
We instruct Mace4 to obtain a well-founded interpretation for πA by adding the
following sentences to (10):

(∀x : ςτ)(∀y : ςτ) x πA y ⇒ x π+
A y (13)

(∀x : ςτ)(∀y : ςτ)(∀z : ςτ) x πA y ∧ y π+
A z ⇒ x π+

A z (14)
¬(∃x : ςτ) x π+

A x (15)

where π+
A : ςτ ςτ is a new predicate symbol.

21

Example 17 Consider the inference rules in Example 15. Operational termination can
be proved using Mace4 to find a model of the corresponding set of sentences (10) plus
(13)-(15). A model A is automatically obtained with domains As = Aςτ = {0, 1, 2}
(for a dummy sort s) and function symbols interpreted as follows:

aristotleA = 0 cAx = 0 fAH (x) = 0

fAR (x) =
{

1 if x = 0
0 otherwise fA∨ (x, y) =

{
2 if x = 0 and y = 1
0 otherwise fA¬ (x) = 0

with variables ranging on the domains interpreting the corresponding sorts. Finally,
predicates are interpreted as follows:

HA(x)⇔ RA(x) ⇔ x = 0 x πAA y ⇔ ((x = 1 ∨ x = 2) ∧ y = 0) ∨ (x = 1 ∧ y = 2)

Note that πAA is well-founded. Consider the last proof jump in Example 15, i.e.,

R(aristotle) ⇑ H (aristotle), H (aristotle)⇒ R(aristotle)

Let us show that A actually satisfies the corresponding (non-atomic) formula

H (aristotle)⇒ fR(aristotle) πA f∨(f¬(fH (aristotle)), fR(aristotle))

Since [H(aristotle)]A is true, we need to prove that

[fR(aristotle) πA f∨(f¬(fH (aristotle)), fR(aristotle))]A

is true. Since [fR(aristotle)]A = 1 and [f∨(f¬(fH (aristotle)), fR(aristotle))]A = 2, and
(1, 2) ∈ πAA , we obtain the desired conclusion.

6 The OT Framework and the Removal Pair Processor

As in the DP Framework for TRSs [12], proofs of operational termination in the
OT Framework for general logics [28] are successively decomposed or simplified into
smaller or simpler problems until (hopefully) reaching trivial problems to stop the
process. In the DP Framework for TRSs, the notion of Dependency Pair [4] is the
most crucial. Dependency pairs are just rewrite rules u → v that are associated to
the rules `→ r of a TRS R. Each infinite rewrite sequence in R can be mapped into
an infinite sequence (ui → vi)i≥1 (called a DP chain) of dependency pairs. Since
dependency pairs focus on those parts of the rules `→ r of R which may contribute
to the nontermination behavior, the use of dependency pairs in termination analysis
of TRSs usually leads to more efficient proofs. This is reflected in the fact that most
termination tools for proving termination of TRSs (e.g., AProVE [14], mu-term [1],
TTT2 [19], etc.) use dependency pairs. In this automation process, the use of the
DP Framework [13,12] is also essential. In the DP Framework for TRSs, proofs of
termination proceed by transforming DP problems τ = (P,R) where P and R are
TRSs. A proof of termination starts with an initial DP Problem (DP(R),R) whose
first component DP(R) consists of all the dependency pairs of R. Then, a divide-
and-conquer approach is applied by means of processors P mapping a DP problem
τ into a (possibly empty) set P(τ) of DP problems {τ1, . . . , τn} (alternatively, they
can return “no”). DP problems τi returned by P can now be treated independently
by using other processors. In this way, a DP proof tree is built.

22

In the OT Framework [28], an OT problem τ = (S,J) is called finite if there is
no infinite (S,J)-chain. A theory S is operationally terminating iff the initial OT
problem τI is finite. An OT processor P maps an OT problem into either a set of
OT problems or the answer “no”. A processor P is sound if for all OT problems τ ,
if P(τ) 6= no and all OT problems in P(τ) are finite, then τ is finite. By repeatedly
applying processors, we can construct a tree (called OT tree) for an OT problem
τ whose nodes are labeled with OT problems or “yes” or “no”, and whose root is
labeled with τ . For every inner node with label τ ′, there is a processor P satisfying
one of the following: (i) P(τ ′) = no and τ ′ has just one child that is labeled with
“no” ; (ii) P(τ ′) = ∅ and τ ′ has just one child that is labeled with “yes” ; or (iii)
P(τ ′) 6= no, P(τ ′) 6= ∅, and the children of τ ′ are labeled with the OT problems in
P(τ ′). If all leaves of an OT tree for τ are labeled with “yes” and all used processors
are sound, then τ is finite [28, Theorem 3].

Remark 3 (OT Framework and DP Framework) The OT and DP Frameworks are
similar in how proofs are organized (use of processors, construction of a proof tree,
etc.). However, there is no notion of dependency pair for general logics (yet). In
[23, Section 4.3] we show how proof jumps can be used to ‘simulate’ dependency
pairs for TRSs by using a theory transformation. In this way, the improvements that
dependency pairs usually bring are also available in the OT Framework. It is unclear,
though, how to generalize such a transformational approach to arbitrary logics.

6.1 The Removal Pair Processor Revisited

In [28], six processors were proposed for their use in the OT Framework. One of
them is the removal pair processor [28, Section 5.4]. A removal pair (&,A), consists
of binary relations & and A on formulas such that A is well-founded and & ◦ A⊆A
or A ◦ & ⊆ A. We can remove a proof jump A ⇑ Bm ∈ J from an OT problem
(S,J) provided that the hook Bm is ‘smaller’ (w.r.t. A) than the head A.

Definition 10 [28] Let (S,J) be an OT problem, ψ : A ⇑ Bm ∈ J , and (&,A)
be a removal pair. Then, PRP(S,J) = {(S,J − {ψ})} if and only if (i) for all
C ⇑ Dm ∈ J − {ψ} and substitutions σ, if S ` σ(Di) for all 1 ≤ i < m, then (i.1)
σ(C) & σ(Dm) or (i.2) σ(C) A σ(Dm), and (ii) for all substitutions σ, if S ` σ(Bi)
for all 1 ≤ i < n, then σ(A) A σ(Bm).

The practical use of PRP poses the same problems discussed for Theorem 3. As done
in Section 5, we transform the application of PRP into a satisfiability problem.

Definition 11 (A semantic version of PRP) Let (S,J) be an OT problem, A
be an interpretation with no empty domain, and JA ⊆ J . Then, PRP(S,J) =
{(S,J − JA)} if A |= S, and the following conditions hold:
1. if J − JA 6= ∅, then A is a model of(

(∀xyz : ςτ)(x π& y ∧ y πA z ⇒ x πA z)
)
∨
(
(∀xyz : ςτ)(x πA y ∧ y π& z ⇒ x πA z)

)
2. for each C ⇑ Dm ∈ J − JA, there is π./ ∈ {π&, πA} such that

A |= (∀x : s)
m−1∧
i=1

Di ⇒ C↓ π./ D
↓
m

23

3. πAA is well-founded and for all A ⇑ Bp ∈ JA,

A |= (∀x : s)
p−1∧
i=1

Bi ⇒ A↓ πA B
↓
p .

Example 18 Consider the CTRSR and associated inference system I(R) in Example
1. The theory R is as follows (where s is a ‘dummy’ sort):

(∀x : s) x→∗ x (∀x, y, z : s) x→ y ∧ y →∗ z ⇒ x→∗ z
(∀x, y : s) x→ y ⇒ f(x)→ f(y) (∀x, y : s) x→ y ⇒ g(x)→ g(y)

a→ b f(a)→ b
(∀x : s) f(x)→∗ x⇒ g(x)→ g(a)

The initial OT problem is τI = (R,JR) = (R, {[T]1, [T]2, [Cf]1, [Cg]1, [Rl3]1}) for
the proof jumps [T]1, [T]2, [Cf]1, [Cg]1, and [Rl3]1 obtained from the inference rules
in Example 1. We use Definition 11 to remove [T]2, i.e.,

x→∗ z ⇑ x→ y, y →∗ z

from τI with Mace4 (we were unable to find a model to remove [T]2 with AGES).
Accordingly, we let JA = {[T]2} in Definition 11 and thus we need to find a model
of R plus (i) the sentence in item 1 of Definition 11, together with (ii) the sen-
tences for the proof jumps in J −JA = {[T]1, [Cf]1, [Cg]1, [Rl3]1} after applying the
transformation in Section 5, i.e.,

(∀x, y, z : s) f→∗(x, z) π& f→(x, y) (∀x, y : s) f→(f(x), f(y)) π& f→(x, y)
(∀x, y : s) f→(g(x), g(y)) π& f→(x, y) (∀x : s) f→(g(x), g(a)) π& f→∗(f(x), x)

and, finally, (iii) the sentence corresponding to [T]2:

(∀x, y, z : s) x→ y ⇒ f→∗(x, z) πA f→∗(y, z)

In order to guarantee that πAA is well-founded (so that we can actually remove [T]2),
we add the sentences (13)-(15) as explained in Section 5.5.1. We found a model A
with domains As = AςτI = {0, 1, 2, 3}. Function symbols are interpreted as follows:

aA = 0 bA = 1 fA(x) = (x+ 2) mod 4
gA(x) = x mod 2 fA→(x, y) = x mod 2 fA→∗(x, y) = x mod 2

Predicate symbols are interpreted as follows:

→A = {(0, 1), (0, 3), (2, 1), (2, 3)} (→∗)A = {(x, x) | x ∈ A} ∪ →A
πAA = {(0, 1)} (π&)A = {(0, 0), (1, 1)}

Thus, PRP(τI) = {τ1} where τ1 = (R, {[T]1, [Cf]1, [Cg]1, [Rl3]1}). Successive appli-
cations of PRP (using Definition 11 with AGES), remove [T1], then [Rl3]1, followed
by [Cf]1, and finally [Cg]1 to finish the proof of operational termination of R.

24

7 Conclusions

We have characterized operational termination of a theory S by the existence of
a well-founded relation �S on formulas which are obtained from all possible well-
formed proof trees associated to a theory S (Theorem 1). This fundamental result is
difficult to use in practice due to the need of considering infinitely many proof trees.
Then, we have characterized operational termination of a theory S by the existence of
a well-founded relation A on formulas which introduces a decrease from (any instance
of) the head to the hook of the proof jumps associated to S (Theorem 3). Restricting
the attention to feasible inference rules and proof jumps leads to a simpler treatment,
as we deal with fewer inference rules and proof jumps. Feasibility is undecidable,
but we provide a sufficient criterion for infeasibility of inference rules and proof
jumps for first-order theories (Theorem 2). Rules and proof jumps that cannot be
proved infeasible are safely considered feasible in proofs of operational termination.
When dealing with first-order (specifications of) theories S, we have shown how
to use Theorem 3 by means of models of the first-order theory S associated to the
inference rules in I(S) which satisfy some additional conditions. This leads to a third
characterization of operational termination of first-order theories S based on finding
well-founded models, of a transformed theory extending S (Theorem 4). Such well-
founded models are just logical models where some binary predicates are required to
be well-founded. The use of tools for the automatic generation of such models like
AGES and Mace4 permits the automation of the proofs. Interestingly, both finite and
infinite models were useful for this purpose.

The results in this paper are completely new (Theorem 2 generalizes a technique
introduced in [25] for CTRSs). In [22, Section 5.2] the semantic version of PRP was
already proposed but the transformation ↓ used there was limited to atomic formulas
(see [22, Section 5.1]). Furthermore, such a notion of transformation was not used
to characterize operational termination as done in Theorem 4. In this paper we have
introduced a completely general and abstract notion of transformation which suffices
to guarantee its practical use provided that the new property of stability (Definition
7) is fulfilled. Then, we have extended the transformation introduced in [22] to cope
with arbitrary first-order formulas and prove it stable (Proposition 1). Finally, the
examples in this paper, and their management with AGES and Mace4 are also new.

The results in this paper can also be used to develop a fully automatic tool
for proving operational termination of computational systems that can be described
by means of first-order theories (e.g., Maude programs) based on the OT Frame-
work. The implementation of such a system is an important subject for future work.
However, more research is necessary to obtain a more precise description of the ter-
mination behavior of sophisticated programming languages. For instance, rewriting
modulo equational theories E is possible in Maude. The analysis of the termination
behavior is challenging when modeling such kind of computations by means of an
inference system because it may potentially include an inference system IEL(E) for
equational logic, cf. [20, Table 6.1]:

(E=)s,t
s = t

(Rf =)
x = x

(S=) y = x

x = y

(T=) x = y y = z

x = z
(C=)f

x1 = y1 · · · xk = yk
f(x1, . . . , xk) = f(y1, . . . , yk)

25

with rules (E=)s,t for each (s, t) ∈ E and rules (C=)f for each f ∈ Σ. Unfortunately,
IEL(E) is operationally nonterminating: by a repeated use of (T=) we easily obtain
an infinite well-formed proof tree. Possible solutions to this problem could be ob-
tained by restricting the attention to specific classes of well-formed proof trees as
suggested in [23] (directed operational termination).

Acknowledgements. I thank the anonymous referees for their comments and sug-
gestions, leading to many improvements in the paper.

References

1. B. Alarcón, R. Gutiérrez, S. Lucas, R. Navarro-Marset. Proving Termination Properties
with MU-TERM. In Proc. of AMAST’10, LNCS 6486:201-208, Springer-Verlag, 2011.

2. L. Aguirre, N. Martí-Oliet, M. Palomino, and I. Pita. Sentence-Normalized Conditional
Narrowing Modulo in Rewriting Logic and Maude. Journal of Automated Reasoning,
60(4):421-463, 2018.

3. T. Arts and J. Giesl. Proving Innermost Normalisation Automatically. In Proc. of RTA’97,
LNCS 1232:157-171, Springer-Verlag, Berlin, 1997.

4. T. Arts and J. Giesl. Termination of Term Rewriting Using Dependency Pairs. Theoretical
Computer Science 236(1–2):133–178, 2000.

5. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

6. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Talcott. All
About Maude – A High-Performance Logical Framework. LNCS 4350, Springer-Verlag,
2007.

7. F. Durán, S. Lucas, J. Meseguer. Methods for Proving Termination of Rewriting-based
Programming Languages by Transformation. Electronic Notes in Theoretical Computer
Science, 248:93-113, 2009.

8. F. Durán, S. Lucas, C. Marché, J. Meseguer, X. Urbain, Proving Operational Termination
of Membership Equational Programs, Higher-Order and Symbolic Computation 21(1-
2):59–88, 2008.

9. S. Falke and D. Kapur Operational Termination of Conditional Rewriting with Built-
in Numbers and Semantic Data Structures. Electronic Notes in Theoretical Computer
Science, 237:75–90, 2009.

10. R.W. Floyd. Assigning meanings to programs. Mathematical aspects of computer science
19:19-32, 1967.

11. J. Giesl and T. Arts. Verification of Erlang Processes by Dependency Pairs. Applicable
Algebra in Engineering, Communication and Computing 12:39–72, 2001.

12. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and Improving
Dependency Pairs. Journal of Automatic Reasoning 37(3):155–203, 2006.

13. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The Dependency Pair Framework:
Combining Techniques for Automated Termination Proofs. In Proc. of LPAR’04, LNAI
3452:301–331, 2004.

14. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic Termination
Proofs in the Dependency Pair Framework. In Proc. of IJCAR’06, LNAI 4130:281–286,
2006.

15. J. Goguen and J. Meseguer. Models and Equality for Logical Programming. In Proc. of
TAPSOFT’87, LNCS 250:1–22, 1987.

16. J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for multiple
inheritance, overloading, exceptions and partial operations. Theoretical Computer Science,
105:217–273, 1992.

17. R. Gutiérrez, S. Lucas, and P. Reinoso. A tool for the automatic generation of logical
models of order-sorted first-order theories. In Proc. of PROLE’16, pages 215–230, 2016.

18. W. Hodges. Model Theory. Cambridge University Press, 1993.
19. M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool 2. In

Proc. of RTA 2009, LNCS 5595:295-304, 2009.
20. R. Lalement. Computation as Logic. Masson-Prentice Hall International, 1993.

26

21. S. Lucas. Context-sensitive rewriting strategies. Information and Computation,
178(1):294–343, 2002.

22. S. Lucas. Use Of Logical Models For Proving Operational Termination In General Logics.
In Selected papers from WRLA’16, LNCS 9942:1–21, 2016.

23. S. Lucas. Directions of Operational Termination. In Proc. of PROLE’18, http://hdl.
handle.net/11705/PROLE/2018/009, 2018.

24. S. Lucas and R. Gutiérrez. Automatic Synthesis of Logical Models for Order-Sorted First-
Order Theories. Journal of Automated Reasoning 60(4):465–501, 2018.

25. S. Lucas and R. Gutiérrez. Use of logical models for proving infeasibility in term rewriting.
Information Processing Letters, 136:90-95, 2018.

26. S. Lucas, C. Marché, and J. Meseguer. Operational termination of conditional term rewrit-
ing systems. Information Processing Letters 95:446–453, 2005.

27. S. Lucas and J. Meseguer. Dependency pairs for proving termination properties of condi-
tional term rewriting systems. Journal of Logical and Algebraic Methods in Programming,
86:236-268, 2017.

28. S. Lucas and J. Meseguer. Proving Operational Termination Of Declarative Programs In
General Logics. In Proc. of PPDP’14, pages 111–122, ACM Digital Library, 2014.

29. W. McCune Prover9 & Mace4. http://www.cs.unm.edu/~mccune/prover9/, 2005–2010.
30. E. Mendelson. Introduction to Mathematical Logic. Fourth edition. Chapman & Hall,

1997.
31. J. Meseguer. General Logics. In Logic Colloquium’87, pages 275-329, 1989.
32. M.J. O’Donnell. Equational Logic as a Programming Language. The MIT Press, Cam-

bridge, Massachusetts, 1985.
33. E. Ohlebusch. Advanced Topics in Term Rewriting. Springer-Verlag, 2002.
34. D. Prawitz. Natural Deduction. A Proof Theoretical Study. Almqvist & Wiksell, 1965.

Reprinted by Dover Publications (2006).
35. G. Rosu, A. Stefanescu, S. Ciobaca, and B.M. Moore. One-Path Reachability Logic. In

Proc. of LICS 2013, pages 358-367, IEEE Press, 2013.
36. S. Shapiro. Foundations without Foundationalism: A Case for Second-Order Logic. Claren-

don Press, 1991.
37. F. Schernhammer and B. Gramlich. Characterizing and proving operational termination

of deterministic conditional term rewriting systems. Journal of Logic and Algebraic Pro-
gramming 79:659-688, 2010.

38. T. Serbanuta and G. Rosu. Computationally Equivalent Elimination of Conditions. In
Proc. of RTA’06, LNCS 4098:19-34, Springer-Verlag, Berlin, 2006.

39. A.M. Turing, Checking a Large Routine. In Report of a Conference on High Speed
Automatic Calculating Machines, Univ. Math. Lab., Cambridge, pp. 67-69, 1949.

27

A Infeasibility of Proof Jumps for INF Proved with AGES (Example 11)

Example 11 claims for infeasibility of rule (Rl) in Figure 2, i.e., of

a : S
a→ b

We use AGES to find a model of INF ∪ {¬ a : S}.

AGES specification.

mod INF is
sort KT .
ops a b : -> KT .

op isT : KT -> Bool . *** Predicate _:T
op mbT : KT -> Bool . *** Predicate _::T
op isS : KT -> Bool . *** Predicate _:S
op mbS : KT -> Bool . *** Predicate _::S
op redKT : KT KT -> Bool . *** ->[T]
op redsKT : KT KT -> Bool . *** ->*[T]

endm

AGES goal. Note: universal quantification is implicit in AGES.

*** Inference rules

*** SR
redKT(x:KT,y:KT) /\ isS(y:KT) => isS(x:KT)

*** M1_S<T
mbS(x:KT) => mbT(x:KT)

*** M1_a

mbT(a)

*** M1_b

mbT(b)

*** M2_S
mbS(x:KT) => isS(x:KT)

*** M2_T
mbT(x:KT) => isT(x:KT)

*** Rf

28

redsKT(x:KT,x:KT)

*** T
redKT(x:KT,y:KT) /\ redsKT(y:KT,z:KT) => redsKT(x:KT,z:KT)

*** Rl
isS(a) => redKT(a,b)

*** GOAL:

~isS(a)

AGES output.

KT: {1}

Function Interpretations:
|[a]| = 1
|[b]| = 1

Predicate Interpretations:
isS(x_1_1:KT) <=> (0 >= x_1_1:KT)
isT(x_1_1:KT) <=> (0 >= 0)
mbS(x_1_1:KT) <=> (0 >= 1 + x_1_1:KT)
mbT(x_1_1:KT) <=> (1 + x_1_1:KT >= 0)
redKT(x_1_1:KT,x_2_1:KT) <=> (x_1_1:KT + x_2_1:KT >= 1)
redsKT(x_1_1:KT,x_2_1:KT) <=> (1 + x_1_1:KT + x_2_1:KT >= 0)

Example 11 also claims infeasibility of [T]2, i.e., of

x→∗ z ⇑ x→ y, y →∗ z

We use AGES to find a model of INF ∪ {¬ (∃x)(∃y) x→ y}. The specification is the
same as for the previous example. The goal is also the same except for

*** GOAL: We equivalently use (\forall x, y) ~(x -> y)

~(redKT(x:KT,y:KT))

AGES output.

Domains:
KT: -|N \ {0}

Function Interpretations:
|[a]| = - 1
|[b]| = - 1

Predicate Interpretations:
isS(x_1_1:KT) <=> (x_1_1:KT >= 1)
isT(x_1_1:KT) <=> (0 >= 2+2.x_1_1:KT)

29

mbS(x_1_1:KT) <=> (x_1_1:KT >= 1)
mbT(x_1_1:KT) <=> (0 >= 0)
redKT(x_1_1:KT,x_2_1:KT) <=> (1 + x_1_1:KT + x_2_1:KT >= 0)
redsKT(x_1_1:KT,x_2_1:KT) <=> (1+2.x_2_1:KT >= 4.x_1_1:KT)

B Infeasibility of Proof Jumps of 3 ∗ NAT Proved with Mace4 (Example 12)

Example 12 claims for infeasibility of the proof jump [(SR)Z]2, i.e., of

x : Zero ⇑ x→ y, y : Zero

We use Mace4 to find a model of 3 ∗ NAT ∪ {¬ (∃x, y) x → y}. We use the following
symbols:

% isZ as predicate ’_:Zero’
% isN3 as predicate ’_:KNat3’
% isN as predicate ’_:KNat’
% mbZ as predicate ’_::Zero’
% mbN3 as predicate ’_::KNat3’
% mbN as predicate ’_::KNat’
% redN as ->KNat
% redsN as ->*KNat

Mace4 assumptions

% Inference rules

% SRZ
redN(x,y) & isZ(y) -> isZ(x).
% SRN3
redN(x,y) & isN3(y) -> isN3(x).
% SRN
redN(x,y) & isN(y) -> isN(x).

% M1ZN3
mbZ(x) -> mbN3(x).
% M1N3N
mbN3(x) -> mbN(x).

% M1zero
mbZ(zero).

% M1s
mbN(x) -> mbN(s(x)).

% M1mb
mbN3(x) -> mbN3(s(s(s(x)))).

30

% M2Zero
mbZ(x) -> isZ(x).
% M2Nat3
mbN3(x) -> isN3(x).
% M2L
mbN(x) -> isN(x).

% Cs
redN(x,y) -> redN(s(x),s(y)).

% RL*
redsN(x,y).
% TL
redN(x,y) & redsN(y,z) -> redsN(x,z).

Mace4 goal

%
% Refutation goal (negated by default when written in the goal part)
%
exists x exists y redN(x,y).

Mace4 output

s(0) = 0.
s(1) = 0.

isN(0).
isN(1).

isN3(0).
isN3(1).

isZ(0).
isZ(1).

mbN(0).
mbN(1).

mbN3(0).
mbN3(1).

mbZ(0).
mbZ(1).

- redN(0,0).
- redN(0,1).
- redN(1,0).
- redN(1,1).

redsN(0,0).
redsN(0,1).
redsN(1,0).
redsN(1,1).

31

