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ABSTRACT 17 

Model-based accuracy, defined as the theoretical correlation between true and estimated 18 

breeding value, can be obtained for each individual as a function of its Prediction Error 19 

Variance (PEV) and inbreeding coefficient F, in BLUP, GBLUP, and SSGBLUP genetic 20 

evaluations. However, for computational convenience, inbreeding is often ignored in two 21 

places. First, in the computation of reliability=1-PEV/(1+F) . Second, in the set-up, using 22 

Henderson’s rules, of the inverse of the pedigree-based relationship matrix A. Both 23 

approximations have an effect in the computation of model based-accuracy and result in 24 

wrong values. In this work, first we present a reminder of the theory and extend it to 25 

SSGBLUP. Second, we quantify the error of ignoring inbreeding with real data in three 26 

scenarios: BLUP evaluation and SSGBLUP in Uruguayan dairy cattle, and BLUP evaluations 27 

in a line of rabbit closed for >40 generations with steady increase of inbreeding up to an 28 

average of 0.30. We show that ignoring inbreeding in the set-up of the A- inverse is 29 

equivalent to assume that non-inbred animals are actually inbred. This results in an 30 

increase of apparent PEV that is negligible for dairy cattle but considerable for rabbit. 31 

Ignoring inbreeding in reliability=1-PEV/(1+F) leads to underestimation of reliability for 32 

BLUP evaluations, and this underestimation is very large for rabbit. For SSGBLUP in dairy 33 

cattle it leads to both underestimation and overestimation of reliability, both for genotyped 34 

and non-genotyped animals. We strongly recommend to include inbreeding both in the set-35 

up of A- inverse and in the computation of reliability from PEVs. 36 

  37 



 

 

1. INTRODUCTION 38 

The purpose of genetic evaluations is to predict, with some uncertainty, the breeding value 39 

of animals.  Model-based accuracy (or its square, reliability) is used as a measure of risk in 40 

choosing parents of the next generation, and it condenses in a single number the 41 

uncertainty related to its breeding value. The measure of accuracy from BLUP theory is 42 

regularly used and reported in breeding evaluations (Misztal & Wiggans, 1988). The advent 43 

of genomic selection needs methods to ascertain individual accuracies (Edel, Pimentel, 44 

Erbe, Emmerling, & Götz, 2019), and the increasing selection for complex traits (e.g. feed 45 

efficiency or methane emissions (Pryce et al., 2015) ) needs measures of individuals 46 

accuracies in small to medium size data sets. For historical reasons of simplicity, 47 

inbreeding is often ignored in computations of accuracy from prediction error variance 48 

(PEV). Furthermore, often, pedigree inbreeding is also ignored in the computation of the 49 

inverse relationship matrix (A- inverse) using Henderson’s (1976) rules, which results in 50 

an approximated BLUP and a further level of approximation for the computation of model-51 

based individual accuracies. As a result, even for small data sets where exact computations 52 

of PEVs are feasible, reported accuracies are often approximate. 53 

The objective of this paper is to present correct ways of considering inbreeding in the 54 

computation of accuracy and compare with results from ignoring inbreeding, in a single 55 

step GBLUP and traditional pedigree‐based BLUP context, using two datasets: a dairy cattle 56 

data set with genotyped individuals (using BLUP and SSGBLUP) and a closed rabbit 57 

selection line with a large number of generations and steady increase of inbreeding (using 58 

BLUP). 59 



 

 

 60 

2. MATERIAL AND METHODS 61 

2.1 Theory 62 

Accuracy (𝑎𝑐𝑐) is a model-based, individual measure of precision of the Estimated Breeding 63 

Value (EBV). It is typically defined (e.g. VanVleck 1993a,b) as the correlation, on repeated 64 

conceptual sampling, of the true breeding value of one individual (𝑢) with its estimate (𝑢̂). 65 

For BLUP models, and assuming that the model is true, Henderson (1975, 1982, 1984) 66 

showed that 𝐶𝑜𝑣(𝑢, 𝑢̂) = 𝑉𝑎𝑟(𝑢̂). Also, 𝐶𝑜𝑣(𝑢, 𝑢̂) = 𝑉𝑎𝑟(𝑢̂) = 𝑉𝑎𝑟(𝑢) − 𝑃𝐸𝑉 where 𝑃𝐸𝑉 =67 

𝑉𝑎𝑟(𝑢̂ − 𝑢) and can be numerically obtained from the corresponding element on the 68 

inverse of the mixed model equations (either by sparse inversion or MonteCarlo methods). 69 

We will work with reliability (𝑟𝑒𝑙), the square of accuracy. According to the definition of a 70 

correlation: 71 

𝑟𝑒𝑙 = 𝑎𝑐𝑐2 =
𝐶𝑜𝑣(𝑢, 𝑢̂)2

𝑉𝑎𝑟(𝑢̂)𝑉𝑎𝑟(𝑢)
=

𝑉𝑎𝑟(𝑢) − 𝑃𝐸𝑉 

𝑉𝑎𝑟(𝑢)
= 1 −

𝑃𝐸𝑉 

𝑉𝑎𝑟(𝑢)
 72 

   73 

It is often, but wrongly, assumed, even in textbooks  (e.g. (Bijma, 2012; Misztal & Wiggans, 74 

1988; Mrode & Thompson, 2005) that 𝑉𝑎𝑟(𝑢) = 𝜎𝑢
2, the genetic variance, whereas 𝑉𝑎𝑟(𝑢) 75 

depends on each individual. An example is inbred individuals who tend to be more 76 

extreme. More precisely, for individual 𝑖, 𝑉𝑎𝑟(𝑢𝑖) = 𝐴𝑖𝑖𝜎𝑢
2 if pedigree is used (classical 77 

BLUP), 𝑉𝑎𝑟(𝑢𝑖) = 𝐺𝑖𝑖𝜎𝑢
2 (GBLUP) and 𝑉𝑎𝑟(𝑢𝑖) = 𝐻𝑖𝑖𝜎𝑢

2 (SSGBLUP), where 𝐴𝑖𝑖 , 𝐺𝑖𝑖 and  𝐻𝑖𝑖 78 

represent measures of self-relationships, i.e., they are equal to (1 + 𝐹𝑖) where 𝐹𝑖  is the 79 



 

 

inbreeding coefficient . In BLUP and SSGBLUP pedigree- or genomic- based measures of 80 

inbreeding are used. Note that, in selected populations, there is a reduction in the genetic 81 

variance due to selection and Bulmer effect (Bijma, 2012) but this is never considered in 82 

reporting model-based reliabilities and we will not do so. With this proviso, the correct 83 

expression for the computation of model-based reliability, defined as the squared 84 

correlation between 𝑢 and 𝑢̂ is  85 

𝑟𝑒𝑙𝑖 = 1 −
𝑃𝐸𝑉𝑖 

(1 + 𝐹𝑖)𝜎𝑢
2

 86 

where 𝐹𝑖  is a measure of inbreeding. This derivation is implicit in Henderson’s results but, 87 

to our knowledge, it was first explicitly published by (Van Vleck, 1993a, 1993b) although it 88 

has certainly been used before (Tier, Schneeberger, Hammond, & Fuchs, 1991) . In 89 

conventional pedigree evaluations, ignoring the term 𝐹𝑖  in the denominator results in an 90 

underestimation of reliability for inbred animals in BLUP evaluations as 𝐹𝑖  can only be 91 

positive.  92 

However, for genomic evaluations by GBLUP, there is a higher variability of inbreeding, and 93 

even “negative” inbreeding is possible (𝐺𝑖𝑖 < 1), which indicate higher heterozygosity than 94 

population average (Legarra, Lourenco, & Vitezica, 2018). As for SSGBLUP, genotyped 95 

animals have self-relationships 𝐺𝑖𝑖 , whereas non genotyped animals get an “improved” 96 

estimation of inbreeding in matrix H of the form 𝐻𝑖𝑖 − 1, where 𝐻𝑖𝑖 = 𝐴𝑖𝑖 +97 

𝒂𝑖,2𝑨22
−1(𝑮 − 𝑨22)𝑨22

−1𝒂2,𝑖 (Legarra, Aguilar, & Misztal, 2009) where 𝒂𝑖,2 = 𝒂2,𝑖
′  is the part of 98 

the i-th column of A that corresponds to the genotyped individuals. Xiang et al., (2017) 99 

used 𝑟𝑒𝑙 = 1 −
𝑃𝐸𝑉 

(1+𝐹𝑖)𝜎𝑢
2 with 𝐹𝑖 = 𝐻𝑖𝑖 − 1 obtained from H constructed for crossbreds using 100 



 

 

metafounders, and they argued that ignoring this correction in this particular model with 101 

metafounders resulted in spurious results.  102 

Although there are several reports for small data sets of model-based reliabilities using 103 

SSGBLUP, none uses the diagonal of H. The extent of the effect of ignoring the diagonal of H 104 

in the computation of model-based reliabilities is unknown, and it can (wrongly) either 105 

increase or decrease the reliabilities. 106 

A second problem in computation of reliabilities is that frequently, Henderson’s (1976) 107 

simplified rules are used for computation of 𝐀−1 (Golden, Brinks, & Bourdon, 1991; 108 

Mehrabani-Yeganeh, Gibson, & Schaeffer, 2000; Van Vleck, 1993b), resulting in the use of 109 

an approximate matrix, that we call 𝐀∗−1, instead. However, inversion of of 𝐀∗−1 to obtain a 110 

relationship matrix of 𝐀∗ does not yield the expected results. Quoting Golden et al. (1991) 111 

“Using an approximate A-inverse is not the same as assuming an individual has covariance 112 

to each of his parents of .5, and a diagonal element in A of 1”. The use of either 𝐀∗−1 113 

implicitly assumes an incorrect matrix of “true” relationships, that is (𝐀∗−1)−1 = 𝐀∗, when 114 

we know that 𝐀∗ ≠ 𝐀. This results in incoherencies in the genetic model, different MME, 115 

and therefore different PEV. 116 

Based on our experience and some studies (Mehrabani-Yeganeh et al., 2000), in BLUP, 117 

using 𝐀∗−1 instead of 𝐀−1 seems to change very little the results of genetic evaluations 118 

(EBVs) and is the default in the BLUPF90 family of programs (Misztal et al., 2002), in 119 

MixBLUP (Ten Napel et al., 2017), and in PEST (Groeneveld, Kovac, & Wang, 1990). 120 

Software that correctly computes 𝐀−1 by default includes Wombat (Meyer, 2007) and 121 

ASReml (Gilmour, Gogel, Cullis, Thompson, & Butler, 2009).  122 



 

 

Accordingly, the default in SSGBLUP computations was to compute 123 

 𝐇∗−1 = 𝐀∗−1 + (
𝟎 𝟎
𝟎 𝑮−1 − 𝑨22

−1)  124 

where 𝐀∗−1 was computed without inbreeding in Henderson’s rules but 𝐀22
−1 was computed 125 

inverting 𝐀22, that was computed with inbreeding in all cases. Again, the use of 𝐇∗−1 126 

(formed as 𝑯∗−1 = 𝑨∗−1 + (
𝟎 𝟎
𝟎 𝑮−1 − 𝑨22

−1) ) implicitly assumes an incorrect matrix of 127 

“true” relationships, that is (𝐇∗−1)−1 = 𝐇∗ ≠ 𝐇 . This resulted in strong convergence 128 

problems for large data sets which included inbred animals (Matilainen, Strandén, Aamand, 129 

& Mäntysaari, 2018; Strandén, Matilainen, Aamand, & Mäntysaari, 2017).  It is unclear how 130 

ignoring inbreeding when computing 𝐀∗−1 or 𝐇∗−1, affects the calculation of PEV 131 

(computed by inversion) and therefore accuracies.  132 

Putting all together, ignoring inbreeding affects computation of individual accuracies in 133 

two different places: first, if the wrong denominator is used (in 𝑟𝑒𝑙𝑖 = 1 −
𝑃𝐸𝑉𝑖 

(1+𝐹𝑖)𝜎𝑢
2) and 134 

second, if PEV is wrongly computed using either 𝐇∗−1 or 𝐀∗−1. VanVleck (1993b) already 135 

pointed out both problems, however, there are no published examples in livestock data 136 

sets of the consequences of ignoring 𝐹𝑖   in the reliability, and there is no description of this 137 

problem specifically in GBLUP or SSGBLUP evaluations. 138 

 139 

2.2 Datasets 140 

The dairy cattle data set involves milk yield from the Uruguayan Holstein national genetic 141 

evaluation. Dairy cattle records were provided by the Uruguayan National Dairy Herd 142 



 

 

Improvement (MU – Mejoramiento y Control Lechero Uruguayo, Montevideo Uruguay) and 143 

genealogical information was provided by the National Herdbook (ARU -Asociacion Rural del 144 

Uruguay, Montevideo, Uruguay). Data consisted of 305 DIM milk yields from 925,821 records 145 

of 377,612 cows from lactation 1 to 5 since 1990 to 2018. Pedigree file was created using 3 146 

generations of ancestors backwards from either phenotyped or genotyped animals and consisted 147 

of 511,576 animals. Figure 1 shows the average level of inbreeding for cows with phenotypes. 148 

The model used was a single trait model with repeated records for milk yield which included 149 

fixed effects of herd-year-season, lactation-age, and random effects of permanent environment 150 

and animal additive genetic effect. This is not the official evaluation which is a random 151 

regression model. Genetic groups were not used in this particular genetic evaluation, given that 152 

the purpose was to compute reliabilities (which are not well defined under a fixed genetic group 153 

model). Heritability of the trait was 0.20. 154 

Genotypes of 5,072 animals were available for analyses, including 2,246 and 2,826 155 

genotypes for bulls and cows respectively. Genotypes were obtained from the International 156 

Dairy and Beef SNP chip IDBv3 (Mullen et al., 2013) by Weatherby’s Scientific Ltd. 157 

(Johnstown, Naas, Co. Kildare, Ireland) and from the Ilumina Bovine SNP50k Beadchip 158 

(Illumina Inc. San Diego, CA). The 39,288  SNP markers in common from both panels were 159 

available for analyses. SNP with minor allele frequency greater of 0.05 from autosome 160 

chromosomes and samples with a call rate >0.90 were used. Missing SNP were imputed 161 

using FImpute (Sargolzaei et al., 2014) with the UMD 3.1 assembly. Distribution of animals 162 

with phenotypes and genotypes is presented in Table 1. Genetic evaluation was carried out 163 

using BLUPF90 (Misztal et al., 2002) , and for each scenario, prediction error variances 164 

(PEV) were obtained from the inverse of MME using FSPAK-YAMS (Masuda, Aguilar, 165 



 

 

Tsuruta, & Misztal, 2015). Therefore, different PEVs were obtained, according to each 166 

assumed relationship matrix.  167 

 168 

TABLE 1 HERE 169 

FIGURE 1 HERE 170 

The second dataset is from the meat rabbit line A from the Universitat Politècnica de 171 

València, Spain. This is a closed selected line with complete records and pedigree since its 172 

foundation. The breeding objective of this maternal line is litter size (ℎ2 = 0.10); further 173 

description can be found in Fernandez et al. (2017). The data set for this work included 174 

pedigree (40 generations totaling 5668 animals) and 15671 records (litter size) of animals 175 

born from 1980 to 2009. Inbreeding increases steadily at a rate of 0.0084 per generation, 176 

so that animals in 2009 have an average inbreeding coefficient of roughly 0.30. This data 177 

set is included to verify the effects of high accumulated inbreeding on the computations of 178 

accuracy. The linear model for genetic evaluation includes the fixed effects of inbreeding 179 

depression (with 𝐹 as covariate), parity-lactation status of the female, and random year-180 

season, additive genetic and permanent effects; see reference above for details. The high 181 

cumulated inbreeding provokes that not fitting 𝐹 as covariate in this data set yields biased 182 

estimates of genetic trend (Fernandez et al. 2017).  183 

 184 

2.3 Models 185 



 

 

For the dairy cattle data, EBVs and accuracies were calculated using BLUP (only pedigree 186 

information) and SSGBLUP (pedigree and marker information). Two scenarios for 187 

computation of the inverse of the relationship matrix for the MME were tested: 188 

• Correct A-inverse 𝐀−1 (alternatively, H-inverse: 𝐇−1) using Henderson’s rules with 189 

inbreeding (“add_an_upginb” type of random effect in BLUPF90). This results in 190 

correct 𝑃𝐸𝑉. 191 

 192 

• Incorrect A-inverse 𝐀∗−1 (alternatively, H-inverse: 𝐇∗−1) using Henderson’s rules 193 

ignoring inbreeding (“add_animal” type of random effect in BLUPF90). This results in 194 

incorrect 𝑃𝐸𝑉 that we will call 𝑃𝐸𝑉∗. 195 

Matrix G involved in H was computed as described for 𝑮𝑤 in Christensen et al. 196 

(2012)(Christensen, Madsen, Nielsen, Ostersen, & Su, 2012), i.e. using VanRaden’s (2008) 197 

method 1, adjusting for inbreeding and average relationship, and blending with 0.05 of 198 

matrix 𝑨22. 199 

 In addition, BLUPF90 was modified to calculate reliabilities. Two computations of 200 

reliabilities were done: 201 

 Correct, accounting for inbreeding in the denominator 𝑟𝑒𝑙 = 1 −
𝑃𝐸𝑉 

(1+𝐹𝑖)𝜎𝑢
2, where 𝐹𝑖  202 

may be from 𝐀 or from 𝐇. 203 

 Incorrect, not accounting for inbreeding in the denominator, 𝑟𝑒𝑙∗ = 1 −
𝑃𝐸𝑉∗ 

𝜎𝑢
2  204 

For rabbit, since there was no marker information, only  𝐀−1 or 𝐀∗−1 was computed for 205 

BLUP, with resulting 𝑃𝐸𝑉 or 𝑃𝐸𝑉∗ , and accuracies were computed using as denominator 206 



 

 

(1 + 𝐹𝑖)𝜎𝑢
2 or 𝜎𝑢

2. In particular, we computed the two reliabilities above (𝑟𝑒𝑙 and 𝑟𝑒𝑙∗) and 207 

also 𝑟𝑒𝑙# = 1 −
𝑃𝐸𝑉∗

(1+𝐹𝑖)𝜎𝑢
2 which uses incorrect PEV and correct denominator. 208 

 209 

3. RESULTS AND DISCUSSION 210 

In both data sets, ignoring inbreeding in the setup of 𝐀−1 or 𝐇−1 resulted in negligible 211 

changes in EBVs (correlations higher than 0.99). 212 

3.1 Dairy cattle: Effect of ignoring inbreeding in the relationship matrices 213 

When ignoring inbreeding in the setup of 𝐀−1, the (incorrectly built) inverses of the  214 

 215 

 216 

numerator relationships are 𝐀∗−1 and 𝐇∗−1. Use of these approximate matrices implies that 217 

the (wrongly) assumed relationship matrices are 𝐀∗ = (𝐀∗−1)−1 and 𝐇∗ = (𝐇∗−1)−1. To 218 

quantify the extent of the error of using 𝐀∗−1 and 𝐇∗−1 instead of  𝐀−1 and 𝐇−1 we plot the 219 

diagonals of 𝐀 and 𝐇 (which contain correct estimates of inbreeding) versus the diagonals 220 

of 𝐀∗ and 𝐇∗ (which contain incorrect estimates) (Figure 2). It can be seen that ignoring 221 

inbreeding in Henderson’s rules results in higher self-relationships, thus implicitly 222 

assuming animals to be inbred when they in truth are non-inbred. This is in agreement 223 

with Golden et al. (1991). Furthermore, inbred animals are considered more inbred than 224 

they truly are.  Correlations 𝑟(𝑑𝑖𝑎𝑔(𝐴), 𝑑𝑖𝑎𝑔(𝐴∗)) = 0.94 and 𝑟(𝑑𝑖𝑎𝑔(𝐻), 𝑑𝑖𝑎𝑔(𝐻∗)) =225 

0.87 indicate quite a strong modification in the assumptions of genetic composition. 226 



 

 

For SSGBLUP, ignoring inbreeding in the setup of 𝑨−1 , not only generates wrong diagonal 227 

elements for A*, but also modifies diagonal elements for genotyped individuals in 𝐇∗. In 228 

addition, the block in (𝑯∗−1)−1   corresponding to genotyped individuals is no longer 𝐆 (the 229 

genomic relationship matrix), but something different. 230 

 231 

FIGURE 2 HERE 232 

 233 

If an animal is (implicitly) assumed to be inbred by using simplified 𝐀∗−1 or 𝐇∗−1, its a 234 

priori uncertainty is higher, and this in turn results in an increase of the PEV computed 235 

from the inverse of the MME (that we called 𝑃𝐸𝑉∗).  Even though this is the case, the effect 236 

of ignoring inbreeding on the numerical values of 𝑃𝐸𝑉∗ was found to be small, i.e. 𝑃𝐸𝑉∗ −237 

𝑃𝐸𝑉 tended to be negligible. For each extra 10% “implied wrong” inbreeding (as in Figure 238 

2 for some animals with zero inbreeding) there is an extra increase of 0.5% in PEV. Figure 239 

3 shows (correct) 𝑃𝐸𝑉 vs. (incorrect) 𝑃𝐸𝑉∗. There is actually quite good agreement and 240 

little dispersion. Correlation for 𝑃𝐸𝑉 and 𝑃𝐸𝑉∗ is greater than 0.99, and there is no 241 

observable bias (i.e. 𝑃𝐸𝑉∗ is on average neither larger nor smaller than 𝑃𝐸𝑉) and the 242 

regression of 𝑃𝐸𝑉 on 𝑃𝐸𝑉∗ is very close to 1. 243 

 244 

FIGURE 3 HERE 245 

 246 



 

 

3.2 Dairy cattle: Effect of ignoring inbreeding in the computation of the reliability 247 

In Figure 4 we present the results comparing the (worse possible) expression of 248 

repeatability, 𝑟𝑒𝑙∗ = 1 −
𝑃𝐸𝑉∗

𝜎𝑢
2  with the (correct) 𝑟𝑒𝑙 = 1 −

𝑃𝐸𝑉

(1+𝐹𝑖)𝜎𝑢
2.  We choose not to 249 

present intermediate cases, e.g. with incorrect numerator but correct denominator as this 250 

makes presentation cumbersome.  In the first case, inbreeding is ignored both in the 251 

construction of 𝐀−1 and 𝐇−1  (and therefore in the MME) and in the computation of 252 

reliability from PEV, which is the default option of many software such as BLUPF90 or 253 

PEST. The second case is the theoretically sound option. It can be seen that ignoring 254 

inbreeding systematically underestimates reliability in BLUP while in SSGBLUP there is 255 

over and underestimation of reliability.  256 

Another issue with ignoring 𝐹𝑖   is that some animals will obtain a PEV* greater than 𝜎𝑢
2 257 

having thus a negative reliability. This will also mean that for highly inbred animals with 258 

little information (and therefore large PEV*), accuracy will not be computed since the 259 

square root of 𝑟𝑒𝑙∗ = 1 −
𝑃𝐸𝑉∗

𝜎𝑢
2   is not a real number for 𝑟𝑒𝑙∗ < 0. 260 

 261 

FIGURE 4 HERE 262 

 263 

3.3 Rabbit 264 

The effect of ignoring inbreeding in the relationship matrices is dramatic, and shown in 265 

Figure 5. In fact, the assumed inbreeding is much higher, which in turn leads to 266 



 

 

underestimation of 𝑃𝐸𝑉∗ as shown below. The overall correlation between 𝑃𝐸𝑉 and 𝑃𝐸𝑉∗ 267 

is 0.92. For this dataset, given strong selection, we present average computed reliabilities 268 

per generation. Figure 6 (top) shows stabilization of reliability (𝑟𝑒𝑙 = 1 −
𝑃𝐸𝑉

(1+𝐹𝑖)𝜎𝑢
2) after a 269 

few generations. As the line becomes inbred, there is an increase in both 𝑃𝐸𝑉 = 𝑉𝑎𝑟(𝑢 −270 

𝑢̂) and an increase in 𝑉𝑎𝑟(𝑢) = (1 + 𝐹)𝜎𝑢
2. However, if 𝑃𝐸𝑉∗ is computed (ignoring 271 

inbreeding coefficients in the setup of 𝐀−1) then 𝑃𝐸𝑉∗ increases too much, leading to 272 

apparently decreasing reliabilities (𝑟𝑒𝑙# = 1 −
𝑃𝐸𝑉∗

(1+𝐹𝑖)𝜎𝑢
2) with time (middle). This trend is 273 

even more marked if reliabilities are computed using the wrong denominator, (i.e. as 274 

𝑟𝑒𝑙∗ = 1 −
𝑃𝐸𝑉∗

𝜎𝑢
2 ), in which case there are negative values of reliability, which are not 275 

consistent with the theory (bottom). All in all, an analyst of this data would be puzzled 276 

because the amount of information does not change with generations, yet reliability seems 277 

to decrease if incorrect expressions are used.  278 

 279 
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 281 
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 283 

4. DISCUSSION 284 

In the dairy cattle data set, with low levels of inbreeding, there is little effect of inclusion (or 285 

not) of inbreeding in the setup of 𝐀−1 and 𝐇−1on the actual values of 𝑃𝐸𝑉. In the rabbit 286 



 

 

data set, with high levels of inbreeding, ignoring inbreeding in the setup of 𝐀−1 leads to 287 

highly inflated values of 𝑃𝐸𝑉∗ and therefore to too low figures for reliability. We therefore 288 

strongly recommend to always include inbreeding in the setup of 𝐀−1 and 𝐇−1, because not 289 

doing it may result in larger underestimation of accuracy and its cost is negligible. The cost 290 

of computing pedigree-based inbreeding (which is all that is needed for correct 𝐀−1 and 291 

𝐇−1) is negligible compared to the overall cost of the genetic evaluation.  292 

In both data sets, there are errors if the correct denominator (1 + 𝐹𝑖) is not used. These 293 

errors underestimate reliability in BLUP and under and over-estimate reliability in 294 

SSGBLUP. The overestimation is because some animals are more heterozygote than the 295 

average of the population (𝐻𝑖𝑖 < 1), and therefore less variable a priori. The fact that some 296 

animals have low apparent reliability may inhibit breeders from using them; for instance, 297 

animals with low 𝑟𝑒𝑙∗ , say 0.40 (accuracy=0.63) may have actual 𝑟𝑒𝑙 around 0.55 298 

(accuracy=0.75). The correct denominator must therefore be used. Computing 𝐹𝑖  with 299 

pedigree has negligible cost.  However, computation of inbreeding in Single Step analysis 300 

from 𝐻𝑖𝑖 mixing pedigree and genomic relationships is not obvious. For genotyped animals, 301 

𝐻𝑖𝑖 is simply 𝐺𝑖𝑖 computed from genotypes, which is straightforward as a cross-product on 302 

the animal’s genotype (VanRaden, 2008). For non-genotyped animals,   𝐻𝑖𝑖 = 𝐴𝑖𝑖 +303 

𝒂𝑖2𝑨22
−1(𝑮 − 𝑨22)𝑨22

−1𝒂2𝑖  (Legarra et al., 2009), this is a cumbersome expression to 304 

compute. Other options include sparse inversion of 𝐇−1 (as in this work and in Xiang et al. 305 

(2017)) or indirect methods such as Colleau et al. (2017).  306 



 

 

Neither of the data sets has high heritability. High heritability would result in smaller PEVs 307 

and lower error in the different approximations that ignore inbreeding – for instance, 308 

negative reliabilities would possibly not be observed. 309 

 All in all, the practical benefits of using correctly inbreeding in genetic evaluations and in 310 

computation of reliabilities are the following. It compares animals fairly while an inbred 311 

animal is penalized if inbreeding is ignored. It allows for finer selection decision (i.e., 312 

genomic “heterogeneity” is correctly accounted for). It avoids negative reliabilities, which 313 

are puzzling to report. Last, using correctly inbreeding protects from unexpected problems, 314 

such as lack of convergence due to not consideration of inbreeding in the 𝐇−1 matrix in 315 

SSGBLUP  (Matilainen et al., 2018; Strandén et al., 2017).  316 
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 336 

Category Total Genotyped Ungenotyped 

Cows 377,612 2,464 375,148 

Sires 8,223 606 7,617 

Other ancestors 124,089 350 123,739 

Candidates to selection 1652 1,652 0 

Table 1. Distribution of animals across categories in the Uruguayan Holstein data set 337 
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Figure 1. Average level of inbreeding rate for Uruguayan dairy cattle. 429 

Figure 2. True self-relationships vs. implied self-relationships (using Henderson’s rules 430 

and ignoring inbreeding) for Uruguayan dairy cattle. 431 

Figure 3. Correct PEV versus incorrect PEV* (using Henderson’s rules and ignoring 432 

inbreeding) for Uruguayan dairy cattle. 433 

Figure 4. Correct reliability fully considering inbreeding (X-axis) or not (Y-axis) for 434 

Uruguayan dairy cattle. Colors indicate candidates to selection, cows, and bulls. 435 

Figure 5. True self-relationships vs. implied self-relationships (using Henderson’s rules 436 

and ignoring inbreeding) in the “A” rabbit line. 437 

Figure 6. Exact (top), approximate using incorrect 𝑃𝐸𝑉∗ and dividing by 1 + 𝐹 (middle), 438 

and approximate using incorrect 𝑃𝐸𝑉∗ and not dividing by 1 + 𝐹 (bottom), reliabilities as a 439 

function of generation number in the “A” rabbit line. 440 
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