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Abstract— Synthetic computed tomography (CT) images 
derived from magnetic resonance images (MRI) are of interest 
for radiotherapy planning and positron emission tomography 
(PET) attenuation correction. In recent years, deep learning 
implementations have demonstrated improvement over atlas-
based and segmentation-based methods. Nevertheless, several 
open questions remain to be addressed, such as which are the 
best MRI sequence and neural network architecture. In this 
work, we compared the performance of different combinations 
of two common MRI sequences (T1- and T2-weighted), and 
three state-of-the-art neural networks designed for medical 
image processing (Vnet, HighRes3dNet and ScaleNet). The 
experiments were conducted on brain datasets from a public 
database. Our results suggest that T1 images performs better 
than T2, but the results further improve when combining both 
sequences. The lowest mean average error over the entire head 
(MAE = 95.37 ± 11.70 HU) was achieved combining T1 and T2 
scans with ScaleNet. All tested deep learning models achieved 
significantly lower MAE (p < 0.05) than a well-known atlas-
based method. 

I. INTRODUCTION 

Computed tomography (CT) images provide Hounsfield 
units (HU) as a measure of tissue attenuation, which is 
essential for dose calculation in radiotherapy planning and 
for positron emission tomography (PET) attenuation 
correction in popular hybrid PET-CT scanners [1]. Synthetic 
CT derived from magnetic resonance images (MRI) gained 
special interest in the past years due to unavailability of CT 
images as a result of the introduction of hybrid PET-MRI 
scanners [2]. The interest in MRI-only planning for 
radiotherapy treatment resides in the excellent soft tissue 
contrast and the lower exposure to imaging dose for patients 
[3]. 

Two clinical PET-MRI systems are commercially 
available: Biograph mMR (Siemens Healthcare GmbH, 
Erlangen, Germnay) and SIGNA (GE Healthcare, Waukesha 
WI, USA). The vendor-implemented CT synthesis methods 
for these scanners are segmentation- and/or atlas-based. 
Segmentation-based methods assign a predefined attenuation 
coefficient to different MRI tissues. However, the bone is 

 
This work was supported by 
the Spanish Government grants TEC2016-79884-C2 and RTC-2016-

5186-1, and by the European Union through the European Regional 
Development Fund (ERDF). 

A. Larroza (anlarro@gmail.com) and co-authors are with Instituto de 
Instrumentación para Imagen Molecular (I3M). Universitat Politècnica 

de València (UPV)-Consejo Superior de Investigaciones Científicas 
(CSIC),Camino de Vera s/n, 46022 Valencia, Spain.  

especially difficult to visualize in standard MRI sequences. 
Most segmentation methods usually require specific MRI 
acquisitions such as Dixon and ultrashort echo time (UTE) to 
enhance fat/water and bone tissues respectively. Atlas-based 
approaches do not require specific MRI sequences. They 
usually rely on a previously acquired atlas of MRI and CT 
pairs and use that information to estimate the attenuation by 
registering one or more images from the atlas to the new MRI 
[4]. 

In recent years, several studies demonstrated the potential 
of deep learning approaches for CT synthesis [5]–[8]. Deep 
learning approaches are basically a regression 
implementation where the neural network aims to find a 
mapping from the domain of MRI input images to the domain 
of CT images. Some open questions remain to be addressed: 
which MRI sequence provide the best synthetic CT, and what 
neural network architecture is more suitable? To answer the 
above questions, we compared the performance of different 
combinations of two standard MRI sequences (T1- and T2-
weighted), and three state-of-the-art neural networks 
designed for medical image processing (Vnet, Highres3dNet 
and ScaleNet). 

II. MATERIALS AND METHODS 

A. Imaging Data 

One of the major challenges in deep learning for medical 
imaging is the scarce availability of training data. This is 
usually solved using transfer learning, where models that 
were trained for different tasks are fine-tuned for the 
application of interest. In our experiments, we decided to 
train all networks from scratch, using the public dataset RIRE 
(Retrospective Image Registration Evaluation Project, 
www.insight-journal.org/rire). Whilst this dataset is very 
small (17 brain subjects), it is useful for the comparisons 
performed in this study and can be used as a benchmark for 
future research. The following imaging sequences were used 
in this study: 

 CT: The CT volumes were acquired with a Siemens 
DR-H scanner, with a voxel size of 0.45 × 0.45 × 3 
mm. 

 mrT1: T1-weighted spin-echo sequences were 
acquired with a Siemens SP 1.5 T scanner. Echo time 
(TE) of 15 ms and repetition time (TR) of 800 ms, 
with a voxel size of 0.86 × 0.86 × 3 mm. 
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 mrT2: T2-weighted spin-echo sequences acquired 
with a Siemens SP 1.5 T scanner. TE of 90 ms and 
TR of 3000 ms, with a voxel size of 0.86 × 0.86 × 3 
mm. 

For each subject, MRIs and CTs were rigidly aligned 
using the Fast Automatic Step Size Estimation for Gradient 
Descent Optimization (FASGD) method [9] in elastix [10]. 

After alignment, a head label was obtained for each 
patient by thresholding the mrT1 image, followed by a 
morphological closing operator to fill the gaps in the nasal 
cavities and ear canals. CT and MRI volumes were then 
masked with the head label to remove not overlapping areas 
and the stereotactic frame present in CT. Three other label 
masks were generated using the following thresholds: greater 
than 300 HU for bone, less than -500 HU for air, and 
otherwise soft tissue. The labels were used to evaluate the 
synthetic CT errors for these specific regions. Fig. 1 shows 
the different image modalities after applying the 
preprocessing steps described above. 

B. Neural Network Architectures 

Convolutional neural networks (CNNs) are a type of 
artificial neural network that has become dominant in various 
computer vision and medical image analysis tasks. In general, 
they consist of three types of layers: convolution, pooling, 
and fully connected layers. The convolution layers play a key 
role in CNNs as they perform convolution operations to learn 
spatial learn spatial hierarchies of features. Pooling layers are 
used to reduce the dimensionality of feature maps whereas 
fully connected layers map the extracted features into a final 
output such as classification. [11]. Fully convolutional 

networks (FCNs) replace the fully connected layers by 
convolutional layers to allow multiple pixels to be predicted 
efficiently and simultaneously. CNNs were originally 
designed for 2D applications but effort has been made in 
recent years to implement 3D CNNs concerning the nature of 
medical images. Three state-of-the-art CNNs designed for 
medical image analysis were evaluated in this study: VNet, 
HighRes3dNet, and ScaleNet. 

Vnet was one of the first neural networks architectures to 
implement volumetric convolutions instead of processing 
input volumes slice-wise. It is a FCN originally proposed to 
solve segmentation tasks. The network consists of two main 
parts to compress and decompress the signal until its original 
size is reached. Different stages operate at different 
resolutions comprising one to three convolutional layers. It 
also incorporates residual blocks that make use of special 
additive skip connections to combat vanishing gradients. 
Residual blocks allow the gradient to flow through the 
network more easily [12]. 

HighRes3dNet is a high-resolution fully 3D CNN that 
incorporates large volumetric context using dilated 
convolutions and residual connections. It is claimed to be 
conceptually simpler and more compact than other 
volumetric CNNs. It was originally designed for MRI brain 
parcellation [13].  

ScaleNet is a multimodal deep learning architecture that 
uses nested structures to explicitly leverage features across 
modalities. It was developed to cope with the poorly 
generalization of CNNs to different image modalities for 
which they have been designed. For example, HighRes3dNet 
was designed for monomodal mrT1 and ScaleNet 
appropriately translates it into a network that jointly utilizes 
several image modalities, such as mrT1 and mrT2 [14]. 

C. Implementation Details 

Our deep learning approach aims to transform the MRI 
inputs into synthetic CT outputs in a supervised regression 
learning setting, where corresponding data pairs are 
available. Therefore, the dataset was split into 70% training 
and 30% testing. Implementations of the neural network 
architectures used to perform the experiments are available in 
NiftyNet, a TensorFlow-based open-source CNNs platform 
for research in medical image analysis and image-guided 
therapy [15]. 

MRI volumes were whitened using volume level 
normalization calculated within the head foreground. All 
volumes were resampled to an isotropic voxel-size of 1.5 mm 
and were randomly sampled into patches of 48 × 48 × 48 
voxels. These patches were sampled mainly within the head 
mask and were fed to the network using a batch of size 5. 
Data augmentation was implemented on the fly by randomly 
rotating each of the three orthogonal planes by an angle 
between -10º and 10º, and randomly scaled by a factor 
between 0.9 and 1.1.  

The root mean square error (RMSE) was chosen as the 
loss function, Adam as the optimization method, Prelu as the 
activation function, and L2 regularization with weight decay 
5 × 10-8. The learning rate was set to 0.001 for 

Figure 1.  Axial slices of the different imaging modalities used to train the
neural networks for CT synthesis: mrT1 (a), mrT2 (b), CT (c) and labels (d) 
for bone (yellow), soft tissue (green), and air (blue). 



  

HighRes3dNet and ScaleNet, and 0.0001 for Vnet. All models 
were trained from scratch on a single NVIDIA 1080 Ti GPU 
until convergence that occurred at approximately 20K 
iterations. Training took about 3 hours for Vnet and 5 hours 
for the other two networks, whereas inference time was 
approximately 1 minute per patient in all cases. 

The multimodal ScaleNet network was implemented by 
feeding it with the auto-context model [16], which uses 
previous predictions as context input to the network. This 
was implemented at every 5K iterations and the head mask 
was used as the initial context input. The combinations of 
MRI inputs and networks were as follows: 

 T1-VN: mrT1 + Vnet 

 T1-HR: mrT1 + HighRes3dNet 

 T1-SN: mrT1 + ScaleNet 

 T2-VN: mrT2 + Vnet 

 T2-HR: mrT2 + HighRes3dNet 

 T2-SN: mrT2 + ScaleNet 

 T1/T2-VN: mrT1/mrT2 + Vnet 

 T1/T2-HR: mrT1/mrT2 + HighRes3dNet 

 T1/T2-SN: mrT1/mrT2 + ScaleNet 

III. RESULTS 

A.  Comparison of MRI sequences 

Fig. 2 shows comparative box plots between MRI 
sequences for each neural network. The differences between 
mrT1 and mrT2 are not very clear but according to the values 
provided in Table I, mrT1 seems to achieve lower errors.  

Even though mrT1/mrT2 achieved lower MAE than using 
only one MRI sequence, this difference was not statistically 
significant compared to mrT1 (p = 0.48, ScaleNet). 
Therefore, we can presume that by using only mrT1 
sequences is possible to achieve similar performance than 
using mrT1 and mrT2 in a multimodal scheme. The latter is 
an important benchmark to focus further research in 
developing specific neural network architectures that provide 
higher performance on the most conventional and standard 
mrT1 sequences. The latter approach would have relevant 
impact on the imaging acquisition times and availability at 
the moment of generating synthetic CT images. 

B. Comparison of neural network architectures 

Fig. 3 shows the comparative plot between networks for 
each MRI sequence. HighRes3dNet achieved lower MAE 
than Vnet in all cases. ScaleNet outperformed the others for 

mrT1 and mrT1/mrT2. It is worth mentioning that the 
learning parameters of the tested networks were not tuned, 
which, if performed could yield different results. Yet, this 
comparison supports the potential of deep learning for CT 
synthesis. Table I presents the corresponding mean absolute 
errors (MAE) on test set for different label masks. The 
background air was excluded for all calculations. The lowest 
errors were: 95.37 ± 11.7 HU for the whole head and 228.18 
± 31.0 HU for bone with model T1/T2-SN, 57.83 ± 3.8 HU 
for soft tissue using model T1/T2-HR, and 313.32 ± 48.5 
HU for air with model T1-HR. Error maps for the two 
sample slices obtained with model T1/T2-SN is shown in 
Fig. 4. As expected, the highest errors were found at the 
contour of the head and air, especially in the nasal cavity 
due to the difficulty in predicting the air/bone interfaces in 
this region. The latter would not be a problem for dedicated 
PET scanners [18], as the field of view only includes the 
brain above the nasal region. Dedicated PET systems take 
advantage of MRI-based attenuation corrections as patients 

TABLE I.  THE MEAN ABSOLUTE ERROR (MAE) BETWEEN THE GROUND TRUTH AND SYNTHETIC CT (MEAN ± STANDARD DEVIATION) 

  T1-VN T1-HR T1-SN T2-VN T2-HR T2-SN T1/T2-VN T1/T2-HR T1/T2-SN 
Head 116.12 ± 13.7 98.49 ± 15.5 100.47 ± 10.5 120.04 ± 8.5 103.90 ± 8.8 112.54 ± 12.7 111.24 ± 16.0 95.68 ± 12.5 95.37 ± 11.7 
Bone 287.50 ± 55.6 244.99 ± 40.7 262.48 ± 43.4 299.85 ± 24.5 266.46 ± 11.3 288.88 ± 75.0 267.18 ± 38.8 245.02 ± 42.5 228.18 ± 31.0
Tissue 73.25 ± 1.6 61.48 ± 7.4 59.78 ± 3.4 74.41 ± 7.3 61.71 ± 6.5 68.75 ± 10.6 70.52 ± 6.0 57.83 ± 3.8 60.97 ± 6.8 
Air 342.50 ± 58.7 313.32 ± 48.5 354.67 ± 98.7 397.78 ± 85.6 398.76 ± 83.6 325.83 ± 67.0 392.28 ± 91.0 320.44 ± 67.6 334.51 ± 62.4

Figure 2.  Box plots comparing the mean absolute error (MAE) for neural 
networks architectures and MRI sequences. 

Figure 3.  Box plots comparing the mean absolute error (MAE) for MRI 
sequences and neural networks. 



  

normally undergo routine MRI scans before the PET study. 

All models presented in this study were compared to a 
well-known atlas-based method [17], which is accessible 
through Niftyweb (http://niftyweb.cs.ucl.ac.uk/). We 
submitted the subjects in our test set using the parameter 
“Optimize for Accuracy”. The resulting MAE values within 
the head were: 175.81 ± 39.53 and 194.21 ± 44.63 HU for 
mrT1 and mrT2 respectively. These were significantly 
higher than (p < 0.05) than the deep learning 
implementations. 

IV. CONCLUSION 

This study presented a comparison of MRI inputs to 
different neural networks architectures for synthetic CT 
synthesis. We focused on the two most conventional and 
standard MRI sequences (T1- and T2- weighted) as we 
believe that specific MRI sequences such as Dixon or UTE 
are not always available, especially for radiotherapy planning 
and attenuation correction in dedicated brain PETs. Our 
results show that the three state-of-the-art neural networks 
(Vnet, HighRes3dNet, and ScaleNet) performed similarly. We 
plan to perform similar comparisons on larger datasets in a 
multicenter scheme to evaluate the generalization to MRIs 
acquired with different protocols and scanners.  
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