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Universitat Politècnica de València
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1. Introduction

It is well-known that classical Orlicz spaces allow a double metric descrip-
tion: the so-called Orlicz and Luxemburg norms give equivalent formulas for
norming the space. This provides some fundamental tools for the analysis of
these spaces, and is one of the reasons why the theory of Orlicz spaces is so
fruitful ([13, 15, 18–20]). The same construction that produces this class of
spaces allows also to create a well characterized class of lattices of (classes
of) measurable functions. Indeed, if X is a quasi-Banach function space over
a measure µ and Φ is a Young function, we can define the Luxemburg space

as XΦ
L :=

{
f ∈ L0(µ) : ∃ c > 0 : Φ

(
|f |
c

)
∈ X

}
(see for example [13,18]). If

f ∈ XΦ
L , the Luxemburg (lattice) quasi-norm is given by

‖f‖XΦ
L

:= inf

{
c > 0 : Φ

(
|f |
c

)
∈ X with

∥∥∥∥Φ

(
|f |
c

)∥∥∥∥
X

≤ 1

}
.

If Φ is an N-function and Φ̂ is the complementary function of Φ, the Orlicz

space is defined asXΦ
O :=

{
f ∈ L0(µ) : ‖f‖XΦ

O
<∞

}
, where the Orlicz quasi-

norm is defined by

‖f‖XΦ
O

:= sup
{
‖fg‖X : Φ̂(|g|) ∈ X,

∥∥∥Φ̂ (|g|)
∥∥∥
X
≤ 1
}
.

In the case of the classical Orlicz spaces —when the space X is L1(µ)—, the
inequalities

‖f‖L1(µ)Φ
L
≤ ‖f‖L1(µ)Φ

O
≤ 2‖f‖L1(µ)Φ

L
, f ∈ LΦ(µ) (1)

provide the double way of describing the classical space LΦ(µ). That is,
L1(µ)Φ

L = L1(µ)Φ
O =: LΦ(µ) with equivalent norms.

The aim of this paper is to analyze up to which point the same can be
said for the general case. That is, to what extent it can be said that the
quasi-norms ‖ ·‖XΦ

L
and ‖ ·‖XΦ

O
are equivalent and in which space this occurs.

The main problem that arises when facing this issue is to know in which
spaces these quasi-norms can be compared. One of our main results states
that the spaces XΦ

O and XΦ
L are in general different (Example 4.1), and so the

quasi-norms can only be compared in the smallest one. Under some natural
assumptions on the function Φ, coincidence of these spaces and equivalence
of the quasi-norms is assured with the hypotheses of the σ-Fatou property for
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the space X and the existence of a suitable strictly monotone renorming for it
(Theorem 5.12). If the σ-Fatou property is not assumed, again the existence
of a strictly monotone renorming gives the equivalence of both quasi-norms
in the smallest space XΦ

L (Theorem 5.13). It must be said that the issue
that we face in the present paper was previously studied in [11], in which
the σ-Fatou property is assumed in the definition of quasi-Banach function
space. In [11, Theorem 5.1] the authors prove that the norms are in general
equivalent, but it is implicitly assumed that the spaces XΦ

L and XΦ
O (in our

notation) coincide, what is not in general true, as we show in the present
paper.

Our results are presented in six sections. After two introductory parts,
we present in Section 3 the basics on the Luxemburg and Orlicz (quasi-)
Banach function spaces associated to a quasi-Banach function space X. In
particular, the continuous inclusion XΦ

L ⊆ XΦ
O is proved for general X and

Φ. We will use the general representation of (quasi-) Banach function spaces
provided by the vector measure integration as a central technical tool. Essen-
tially, this integration theory allows to write any order continuous Banach
function space with a weak order unit as a space of integrable functions
L1(m) with respect to a countably additive vector measure m (see for ex-
ample [17, Ch. 3]). These spaces will be explained in Section 4. Besides,
Orlicz spaces of integrable functions with respect to a vector measure are
introduced also as an auxiliary tool in Subsection 4.3. The counterexample
that shows that in general XΦ

L and XΦ
O are not equal is presented there. In

Section 5 we introduce the notion of strictly monotone (quasi-) norm, and
using it we prove broad sufficient conditions for the equality XΦ

L = XΦ
O and

the equivalence of the corresponding quasi-norms. Finally, we present in Sec-
tion 6 some positive results in which the condition of having an equivalent
strictly monotone renorming for the space X is fulfilled. Concretely, we prove
that every L-convex quasi-Banach function space X —that is, spaces with
some r-convexity— with the σ-Fatou property satisfies that the associated
Orlicz and Luxemburg spaces coincide. This covers all the usual cases of
quasi-Banach function spaces. However, some additional information is also
provided: for any quasi-Banach function space X with the σ-Fatou prop-
erty and some (r, 1)-concavity, equality XΦ

L = XΦ
O is also satisfied for every

N-function Φ.
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2. Preliminaries and notation

Throughout this paper, we shall always assume that Ω is a nonempty set,
Σ is a σ-algebra of subsets of Ω, µ is a finite positive measure defined on Σ
and L0(µ) is the space of (µ-a.e. equivalence classes of) measurable functions
f : Ω −→ R equipped with the topology of convergence in measure.

Recall that a quasi-normed space is any vector space X equipped with
a quasi-norm, that is, a function ‖ · ‖X : X −→ [0,∞) which satisfies the
following axioms:

(Q1) ‖f‖X = 0 if and only if f = 0.

(Q2) ‖αf‖X = |α| ‖f‖X , for α ∈ R and f ∈ X.

(Q3) There exists K ≥ 1 such that ‖f + g‖X ≤ K (‖f‖X + ‖g‖X) , for all
f, g ∈ X.

The constant K in (Q3) is called a quasi-triangle constant of X. Of course
if we can take K = 1, then ‖ · ‖X is a norm and X is a normed space. A
quasi-normed function space over µ is any quasi-normed space X satisfying
the following properties:

(a) X is an ideal in L0(µ) and a quasi-normed lattice with respect to the
µ-a.e. order, that is, if f ∈ L0(µ), g ∈ X and |f | ≤ |g| µ-a.e., then
f ∈ X and ‖f‖X ≤ ‖g‖X .

(b) The characteristic function of Ω, χΩ, belongs to X.

If, in addition, the quasi-norm ‖ · ‖X happens to be a norm, then X is called
a normed function space. Note that, with this definition, any quasi-normed
function space over µ is continuously embedded into L0(µ), as it is proved in
[17, Proposition 2.2].

We say that a quasi-normed function space X has the σ-Fatou property if
for any positive increasing sequence (fn)n in X with sup

n
‖fn‖X <∞ and con-

verging µ-a.e. to a function f , we have that f ∈ X and ‖f‖X = sup
n
‖fn‖X .

A quasi-normed function space X is said to be σ-order continuous if for
any positive increasing sequence (fn)n in X converging µ-a.e. to a function
f ∈ X, we have that ‖f − fn‖X → 0.

A complete quasi-normed function space is called a quasi-Banach function
space. If, in addition, the quasi-norm happens to be a norm, then X is
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called a Banach function space. It is known that if a quasi-normed function
space has the σ-Fatou property, then it is complete and hence a quasi-Banach
function space (see [17, Proposition 2.35]) and that inclusions between quasi-
Banach function spaces are automatically continuous (see [17, Lemma 2.7]).
However, in this work we will also consider function spaces without the σ-
Fatou property.

3. Luxemburg and Orlicz (quasi-) Banach function spaces

Recall that a Young function is any function Φ : [0,∞) −→ [0,∞) which
is strictly increasing, convex (hence continuous), Φ(0) = 0 and lim

x→∞
Φ(x) =

∞. A Young function Φ satisfies the following useful inequalities (which we
will use later) for all x ≥ 0:

Φ(αx) ≤ αΦ(x) if 0 ≤ α ≤ 1, (2)

Φ(αx) ≥ αΦ(x) if α ≥ 1. (3)

A Young function Φ is called an N-function if Φ satisfies the limit condi-

tions lim
x→0

Φ(x)

x
= 0 and lim

x→∞

Φ(x)

x
=∞. N-functions are a useful nice class of

Young functions for which its complementary functions are also N-functions
(see [18, p. 13]).

A Young function Φ has the ∆2-property , written Φ ∈ ∆2, if there exists
a constant C > 1 such that Φ(2x) ≤ CΦ(x) for all x ≥ 0.

Next we introduce the Luxemburg and Orlicz quasi-Banach function spaces
whose relations will be the aim of our work. See [4] for detailed study about
these spaces that have also been considered in [11] in the setting of Banach
function spaces with the σ-Fatou property.

Let Φ be a Young function. Given a quasi-normed function space (re-
spectively, normed function space) X over µ, the corresponding (generalized)

Orlicz class X̃Φ is defined as the following set:

X̃Φ :=
{
f ∈ L0(µ) : Φ(|f |) ∈ X

}
.

The Orlicz class X̃Φ is a solid convex set in L0(µ). Moreover, X̃Φ ⊆ X.
The (generalized) Luxemburg space XΦ

L is defined as the following set:

XΦ
L :=

{
f ∈ L0(µ) : ∃ c > 0 :

|f |
c
∈ X̃Φ

}
.
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The Luxemburg space XΦ
L is a linear space, an ideal in L0(µ) and X̃Φ ⊆

XΦ
L ⊆ X (see [4, Proposition 4.4]).

Given f ∈ XΦ
L , we define the Luxemburg lattice quasi-norm (respectively,

norm) of f by

‖f‖XΦ
L

:= inf

{
c > 0 :

|f |
c
∈ X̃Φ with

∥∥∥∥Φ

(
|f |
c

)∥∥∥∥
X

≤ 1

}
. (4)

The Luxemburg space XΦ
L equipped with the Luxemburg quasi-norm, is re-

ally a quasi-normed (respectively, normed) function space over µ with the
same quasi-triangle constant as the one of the quasi-norm of X. Moreover,
properties as completeness, σ-Fatou, and σ-order continuity (in that case the
Young function Φ must have additionally the ∆2-property) are transferred
from X to XΦ

L . See [4] for details.
Consider the complementary function of the Young function Φ, defined

as
Φ̂(y) := sup

x≥0
{xy − Φ(x)},

for all y ≥ 0. From the definition of Φ̂ it is clear that Φ and Φ̂ satisfy the
Young inequality

x y ≤ Φ(x) + Φ̂(y), x, y ≥ 0. (5)

It is well known (see [13, Theorem 1.1] or [18, Theorem 1.3.1]) that for
a Young function Φ there exists a non-decreasing, right continuous function

ϕ : [0,∞) −→ [0,∞), with ϕ(0) = 0, such that Φ(x) =

∫ x

0

ϕ(t)dt for all

x ∈ [0,∞). Such function ϕ is called the right derivative of the function
Φ. This function ϕ satisfies the following equality (see [13, (2.7)] or [18,
Theorem 1.3.3]) that we will use later

xϕ(x) = Φ(x) + Φ̂ (ϕ(x)) , x ≥ 0. (6)

Let Φ be an N-function. Given a quasi-normed function space (respec-
tively, normed function space) X over µ, the corresponding (generalized)
Orlicz space XΦ

O is defined as the following set:

XΦ
O :=

{
f ∈ L0(µ) : ‖f‖XΦ

O
<∞

}
,

where ‖·‖XΦ
O

is the Orlicz quasi-norm (respectively, norm) defined by

‖f‖XΦ
O

:= sup
{
‖fg‖X : g ∈ X̃ Φ̂,

∥∥∥Φ̂ (|g|)
∥∥∥
X
≤ 1
}
. (7)
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The Orlicz space XΦ
O is a linear space, an ideal in L0(µ) and X̃Φ ⊆ XΦ

O ⊆ X.
In fact, the following inequalities hold

‖f‖XΦ
O
≤ K (‖Φ (|f |)‖X + 1) , f ∈ X̃Φ

‖f‖X ≤ 1

Φ̂−1
(

1
‖χΩ‖X

) ‖f‖XΦ
O
, f ∈ XΦ

O , (8)

where K is the quasi-triangle constant of X. Moreover, XΦ
O equipped with the

Orlicz quasi-norm, is really a quasi-normed (respectively, normed) function
space over µ with the same quasi-triangle constant as the one of the quasi-
norm of X. Moreover, as we will see next, properties as completeness or
σ-Fatou are transferred from X to XΦ

O . However, the Orlicz space XΦ
O does

not have to be σ-order continuous even if the space X has that property and
Φ ∈ ∆2 (see the next Example 4.1).

Proposition 3.1. Let Φ be an N-function and X be a quasi-Banach function
space over µ. Then XΦ

O is a quasi-Banach function space over µ.

Proof. We are going to prove only the completeness of XΦ
O . To do this we will

use the Amemiya’s theorem for quasi-normed lattices (see [4, Theorem 3.2]).
It is enough to prove that for every positive increasing Cauchy sequence (fn)n
in XΦ

O there exists sup
n
fn ∈ XΦ

O . By applying (8) it easy to see that (fn)n is

Cauchy in X, and so there exists f ∈ X such that ‖f − fn‖X → 0 as n→∞.
Consequently f = sup

n
fn. Now take g ∈ X̃ Φ̂ with

∥∥∥Φ̂ (|g|)
∥∥∥
X
≤ 1. Then

0 ≤ fn|g| ↑ f |g| µ-a.e. On the other hand, (fng)n is Cauchy in X because
‖fmg − fng‖X ≤ ‖fm − fn‖XΦ

O
for all m,n = 1, 2, . . . Then there exists a

function hg ∈ X such that ‖fng − hg‖X → 0 as n → ∞. Convergence on X
implies convergence for subsequences µ-a.e. Consequently hg = f |g| µ-a.e.
and ‖fng − f |g|‖X → 0 as n→∞. Take n ≥ 1 such that ‖fng − f |g|‖X ≤ 1,
and denote by K the quasi-triangle constant of X. Then

‖fg‖X = ‖f |g|‖X ≤ K ‖f |g| − fng‖X +K ‖fng‖X ≤ K +K ‖fn‖XΦ
O

≤ K

(
1 + sup

n
‖fn‖XΦ

O

)
<∞

because (fn)n is bounded in XΦ
O . Thus f ∈ XΦ

O as we wanted to see.
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Proposition 3.2. Let Φ be an N-function and X be a quasi-normed function
space over µ with the σ-Fatou property. Then XΦ

O has the σ-Fatou property.

Proof. Take an increasing positive sequence (fn)n ⊆ XΦ
O converging µ-a.e.

to a function f such that M := sup
n
‖fn‖Xφ

O
< ∞. By applying (8) we get

sup
n
‖fn‖X ≤

M

Φ̂−1
(

1
‖χΩ‖X

) , and having in mind that X has the σ-Fatou

property, it follows that f ∈ X. Now take g ∈ X̃ Φ̂ with
∥∥∥Φ̂ (|g|)

∥∥∥
X
≤ 1.

Then we have 0 ≤ fn|g| ↑ f |g| µ-a.e. and also that ‖fg‖X ≤ ‖fn‖XΦ
O
≤ M.

Consequently f |g| ∈ X and moreover ‖fg‖X = sup
n
‖fng‖X ≤ M by the

σ-Fatou property of X. Taking suprema on g it follows that f ∈ XΦ
O and

‖f‖XΦ
O
≤M = sup

n
‖fn‖XΦ

O
. The converse inequality is obvious.

Proposition 3.3. Let Φ be an N-function and X be a quasi-normed function
space over µ with quasi-triangle constant K ≥ 1. Then XΦ

L ⊆ XΦ
O holds and

‖f‖XΦ
O
≤ 2K ‖f‖XΦ

L
, f ∈ XΦ

L . (9)

Proof. Take a function f ∈ XΦ
L and let c > 0 be such that

f

c
∈ X̃Φ with∥∥∥∥Φ

(
|f |
c

)∥∥∥∥
X

≤ 1. By the Young inequality (5) we have

|f |
c
|g| ≤ Φ

(
|f |
c

)
+ Φ̂(|g|)

for all g ∈ X̃ Φ̂ with
∥∥∥Φ̂ (|g|)

∥∥∥
X
≤ 1, and taking quasi-norm

1

c
‖fg‖X =

∥∥∥∥fc g
∥∥∥∥
X

≤ K

(∥∥∥∥Φ

(
|f |
c

)∥∥∥∥
X

+
∥∥∥Φ̂(|g|)

∥∥∥
X

)
≤ 2K.

Thus ‖f‖XΦ
O
≤ 2Kc, and finally taking infimum in c we obtain

‖f‖XΦ
O
≤ 2K ‖f‖XΦ

L

as we wanted to prove.
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4. Integrable function spaces and Orlicz spaces respect to a vector
measure

In this section we will describe a class of Banach function spaces X for
which the corresponding Orlicz and Luxemburg spaces do not match, that
is, XΦ

L & XΦ
O .

4.1. Lebesgue spaces with respect to a vector measure

Given a countably additive vector measure m : Σ → Y with values in a
real Banach space Y, there are several ways of constructing (quasi-) Banach
function spaces of integrable functions. Let us recall them briefly. The
semivariation of m is the finite subadditive set function defined on Σ by

‖m‖(A) := sup {|〈m, y∗〉|(A) : y∗ ∈ BY ∗} ,

where |〈m, y∗〉| denotes the variation of the scalar measure 〈m, y∗〉 : Σ → R
given by 〈m, y∗〉(A) := 〈m(A), y∗〉 for all A ∈ Σ, and BY ∗ is the unit ball
of Y ∗, the dual space of Y. A set A ∈ Σ is called m-null if ‖m‖(A) = 0.
A measure µ := |〈m, y∗〉|, where y∗ ∈ BY ∗ , that is equivalent to m (in the
sense that ‖m‖(A)→ 0 if and only if µ(A)→ 0) is called a Rybakov control
measure for m. Such a measure always exists (see [8, Theorem 2, p. 268]). Let
L0(m) be the space of (m-a.e. equivalence classes of) measurable functions
f : Ω −→ R. Thus, L0(m) and L0(µ) are just the same whenever µ is a
Rybakov control measure for m, and allows to define equivalence classes of
m-a.e. functions as the ones that are equal µ-a.e.

A measurable function f : Ω −→ R is called weakly integrable (with
respect to m) if f is integrable with respect to |〈m, y∗〉| for all y∗ ∈ Y ∗. A
weakly integrable function f is said to be integrable (with respect to m) if,

for each A ∈ Σ there exists an element (necessarily unique)

∫
A

f dm ∈ Y,

satisfying 〈∫
A

f dm, y∗
〉

=

∫
A

f d〈m, y∗〉, y∗ ∈ Y ∗.

Let L1
w(m) be the space of all (m-a.e. equivalence classes of) weakly inte-

grable functions, and let L1(m) the space of all (m-a.e equivalence classes of)
integrable functions. Letting µ be any Rybakov control measure for m, we
have that L1

w(m) becomes a Banach function space over µ with the σ-Fatou
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property when endowed with the norm

‖f‖L1
w(m) := sup

{∫
Ω

|f | d|〈m, y∗〉| : y∗ ∈ BY ∗

}
.

Moreover, L1(m) is a closed σ-order continuous ideal of L1
w(m). In fact, it

is the closure of S(Σ), the space of simple functions supported on Σ. Thus,
L1(m) is a σ-order continuous Banach function space over µ endowed with
the same norm (see [17, Theorem 3.7] and [17, p. 138])).

We will denote by L∞(m) the Banach function space of all (m-a.e. equiv-
alence classes of) essentially bounded functions equipped with the essential
sup-norm.

4.2. Choquet spaces with respect to the semivariation.

Given a measurable function f : Ω −→ R, we will also consider its dis-
tribution function (with respect to the semivariation of the vector measure
m)

‖m‖f : t ∈ [0,∞) −→ ‖m‖f (t) := ‖m‖([|f | > t]) ∈ [0,∞),

where [|f | > t] := {w ∈ Ω : |f(w)| > t} . This distribution function is bounded,
non-increasing and right-continuous.

Let L1(‖m‖) be the space of all (m-a.e. equivalence classes of) measurable
functions f such that its distribution function ‖m‖f is Lebesgue integrable
in (0,∞). It is known that L1(‖m‖) equipped with the quasi-norm

‖f‖L1(‖m‖) :=

∫ ∞
0

‖m‖f (t) dt

is a quasi-Banach function space over µ with the σ-Fatou property (see [2,
Proposition 3.1]) and it is also σ-order continuous (see [2, Proposition 3.6]).

Finally note that the following inclusions

L∞(m) ⊆ L1 (‖m‖) ⊆ L1(m) ⊆ L1
w(m) ⊆ L0 (m) (10)

are all continuous. See for instance [9, Proposition 3.4], particularly for
the second inclusion. In general, all these inclusions are strict inclusions.
Sufficient conditions for the equality L1(m) = L1

w(m) were given in [14].
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4.3. Orlicz spaces with respect to a vector measure.

First of all observe that classical Orlicz spaces LΦ(µ) with respect to a
positive finite measure µ and an N-function Φ are obtained applying the
constructions XΦ

L and XΦ
O of Section 3 to the Banach function space X =

L1(µ), that is, L1(µ)Φ
L = L1(µ)Φ

O = LΦ(µ) equipped with the norm ‖·‖LΦ(µ) :=
‖ · ‖L1(µ)Φ

L
which results to be equivalent to ‖ · ‖L1(µ)Φ

O
as it is well known.

Using these classical spaces LΦ(µ), new Orlicz spaces LΦ
w(m) and LΦ(m)

with respect to a vector measure m : Σ → Y were introduced in [7] in the
following way:

LΦ
w(m) :=

{
f ∈ L0(m) : f ∈ LΦ(|〈m, y∗〉|), ∀ y∗ ∈ Y ∗

}
,

equipped with the norm

‖f‖LΦ
w(m) := sup

{
‖f‖LΦ(|〈m,y∗〉|) : y∗ ∈ BY ∗

}
,

and LΦ(m) is the closure of simple functions S(Σ) in LΦ
w(m). These Orlicz

spaces LΦ
w(m) and LΦ(m) can be obtained as generalized Orlicz spaces XΦ

L by
taking X to be L1

w(m) and L1(m), respectively. In fact, if Φ is an N-function,
then LΦ

w(m) = L1
w(m)Φ

L and ‖f‖LΦ
w(m) = ‖f‖L1

w(m)Φ
L
, for all f ∈ LΦ

w(m). In

general the inclusion LΦ(m) ⊆ L1(m)Φ
L holds, but if we also assume Φ ∈ ∆2,

then LΦ(m) = L1(m)Φ
L = L̃1(m)

Φ

. See [4, Proposition 5.1] and [4, Theorem
4.13].

Example 4.1. Let Y be a real Banach space and let m : Σ→ Y a countably
additive vector measure such that the spaces L1(m) and L1

w(m) are different.
It is worth noting that there are many vector measures m for which L1(m) &
L1
w(m). See [14] for details on the equality L1(m) = L1

w(m). Let’s choose such
a measure m with L1(m) 6= L1

w(m). Then, for every N-function Φ ∈ ∆2 such
that Φ̂ ∈ ∆2 we have

L1
w(m)Φ

L = LΦ
w(m) = L1

w(m)Φ
O, (11)

L1(m)Φ
L = LΦ(m) & LΦ

w(m) = L1(m)Φ
O. (12)

First let us note that LΦ(m) & LΦ
w(m) since the function Φ has the ∆2

property and we have chosen the measure m so that L1(m) & L1
w(m). As

we have said before, the equality L1
w(m)Φ

L = LΦ
w(m) has been proved in

[4, Proposition 5.1]). The other equality, that is LΦ
w(m) = L1

w(m)Φ
O, will be

11



obtained as a consequence of the next Theorem 5.12 (see also Example 6.1)
since the space L1

w(m) has the σ-Fatou property.
It is also clear the equality L1(m)Φ

L = LΦ(m) because the function Φ
has the ∆2 property. It only remains to establish the equality LΦ

w(m) =

L1(m)Φ
O. Let us suppose f ∈ LΦ

w(m) and take g ∈ L̃1(m)
Φ̂

= LΦ̂(m) (for this

equality we have used that Φ̂ ∈ ∆2) such that
∥∥∥Φ̂ (|g|)

∥∥∥
L1(m)

≤ 1. In this

case ‖g‖LΦ̂
w(m) ≤ 1 (see [10, Lemma 2.4]). By applying [10, Proposition 4.5]

we know that fg ∈ L1(m), and moreover

‖fg‖L1(m) ≤ 2‖f‖LΦ
w(m)‖g‖LΦ̂

w(m) ≤ 2‖f‖LΦ
w(m) <∞.

Thus f ∈ L1(m)Φ
O. For the opposite inclusion let us take now f ∈ L1(m)Φ

O,

that is, sup

{
‖fg‖L1(m) : g ∈ LΦ̂(m),

∥∥∥Φ̂(|g|)
∥∥∥
L1(m)

≤ 1

}
<∞. This means in

the terminology of [10] that the function f belongs to the multipliers space

M
(
LΦ̂(m), L1(m)

)
. In the same paper (see [10, Theorem 4.8]) it is proved

the equality M
(
LΦ̂(m), L1(m)

)
= LΦ

w(m). Thus f ∈ LΦ
w(m) as we wanted to

see.
A simpler special case of this general situation appears when we take

the N-function Φ(x) :=
xp

p
, with p > 1. Then we have Φ̂(x) =

xq

q
, where

1

p
+

1

q
= 1. In [1] it is proved that M (Lp(m), L1(m)) = Lqw(m). Thus

L1(m)Φ
L = Lp(m) & Lpw(m) = L1(m)Φ

O

that shows again (12).

The Orlicz spaces LΦ(m) have been recently employed in [3] to locate the
compact subsets of L1(m). Motivated by the idea of studying compactness in
L1(‖m‖) in a forthcoming paper [5], we introduced the Orlicz spaces LΦ(‖m‖)
as the Orlicz spaces XΦ

L associated to the quasi-Banach function space X =
L1(‖m‖). For further reference, we collect together some information of [4]
about LΦ(‖m‖).

Proposition 4.2. Let Φ be a Young function, m : Σ→ Y a vector measure
and µ any Rybakov control measure for m. Then,

12



(i) LΦ(‖m‖) is a quasi-Banach function space over µ with the σ-Fatou
property.

(ii) LΦ(‖m‖) ⊆ L1(‖m‖) with continuous inclusion.

Moreover, if Φ ∈ ∆2, then

(iii) LΦ(‖m‖) is σ-order continuous, and

(iv) LΦ(‖m‖) = {f ∈ L0(m) : Φ(|f |) ∈ L1(‖m‖)} .

5. Sufficient conditions for the equality XΦ
L = XΦ

O

In this section we will show sufficient conditions for the equality of the
spaces XΦ

L and XΦ
O . Since we already know that the inclusion XΦ

L ⊆ XΦ
O

is always true for every N-function Φ, we look for sufficient conditions that
guarantee the inequality ‖ · ‖XΦ

L
≤ ‖ · ‖XΦ

O
of the Luxemburg and Orlicz

quasi-norms. For this we need a couple of technical results (Proposition
5.3 and Proposition 5.4) which are the analogues to [13, Lemma 9.1] and
[13, Lemma 9.2] for our context.

Lemma 5.1. Let X be a quasi-Banach function space over µ. If f ∈ XΦ
O and

g ∈ X̃ Φ̂, then

‖fg‖X ≤ ‖f‖XΦ
O
·max

{
1,
∥∥∥Φ̂ (|g|)

∥∥∥
X

}
. (13)

Proof. If
∥∥∥Φ̂ (|g|)

∥∥∥
X
≤ 1, from the definition of the Orlicz quasi-norm (7) it

follows that ‖fg‖X ≤ ‖f‖XΦ
O

= ‖f‖XΦ
O
·max

{
1,
∥∥∥Φ̂ (|g|)

∥∥∥
X

}
.

If
∥∥∥Φ̂ (|g|)

∥∥∥
X
> 1, it follows from inequality (2) that

Φ̂

 |g|∥∥∥Φ̂ (|g|)
∥∥∥
X

 ≤ Φ̂ (|g|)∥∥∥Φ̂ (|g|)
∥∥∥
X

.

Then, by the ideal property of the quasi-norm we obtain that∥∥∥∥∥∥Φ̂

 |g|∥∥∥Φ̂ (|g|)
∥∥∥
X

∥∥∥∥∥∥
X

≤

∥∥∥Φ̂ (|g|)
∥∥∥
X∥∥∥Φ̂ (|g|)
∥∥∥
X

= 1.

13



Now, from the definition of the Orlicz quasi-norm (7) it follows that

‖fg‖X∥∥∥Φ̂ (|g|)
∥∥∥
X

=

∥∥∥∥∥∥f g∥∥∥Φ̂ (|g|)
∥∥∥
X

∥∥∥∥∥∥
X

≤ ‖f‖XΦ
O
,

and from this last inequality we get that

‖fg‖X ≤ ‖f‖XΦ
O
·
∥∥∥Φ̂ (|g|)

∥∥∥
X

= ‖f‖XΦ
O
·max

{
1,
∥∥∥Φ̂ (|g|)

∥∥∥
X

}
.

Definition 5.2. Let X be a quasi-normed function space over the measure µ.
We say that the quasi-norm ‖ · ‖X of X is strictly monotone if ‖f‖X < ‖g‖X
for all 0 ≤ f < g ∈ X. As it is usual f < g means that f ≤ g and f 6= g in
X. In particular, if f < g, then µ ([f 6= g]) > 0.

Proposition 5.3. Let X be a quasi-Banach function space over µ with the
σ-Fatou property and strictly monotone quasi-norm, and let ϕ be the right
derivative of the N-function Φ. If ‖f‖XΦ

O
≤ 1, then g := ϕ (|f |) ∈ X̃ Φ̂ and

satisfies that
∥∥∥Φ̂ (|g|)

∥∥∥
X
≤ 1.

Proof. Suppose that ‖f‖XΦ
O
≤ 1 and denote by fn := fχ[|f |≤n] for all n =

1, 2, . . . Since fn ∈ L∞(µ) it follows that ϕ(|fn|) ∈ L∞(µ) ⊆ X̃ Φ̂, and so
Φ̂ (ϕ (|fn|)) ∈ X for all n = 1, 2, . . . Moreover Φ̂ (ϕ (|fn|)) ↑ Φ̂ (ϕ (|f |)) µ-a.e.
since |fn| ↑ |f | µ-a.e.

Suppose on the contrary that the conclusion of the statement is not sat-
isfied. Then two possibilities appear:

a) g := ϕ (|f |) 6∈ X̃ Φ̂, or

b) g := ϕ (|f |) ∈ X̃ Φ̂ but
∥∥∥Φ̂ (|g|)

∥∥∥
X
> 1.

In both cases a) or b), the σ-Fatou property of X ensures that there exists

n0 ≥ 1 such that
∥∥∥Φ̂ (ϕ (|fn0|))

∥∥∥
X
> 1. In particular, |fn0| > 0. In view of (6)

we have Φ̂ (ϕ (|fn0|)) < Φ (|fn0|)+Φ̂ (ϕ (|fn0|)) = |fn0 |ϕ (|fn0|) . Taking quasi-
norm and having in mind the strict monotonicity property of X together with
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the inequality (13), we conclude that∥∥∥Φ̂ (ϕ (|fn0|))
∥∥∥
X

< ‖|fn0|ϕ (|fn0|)‖X ≤ ‖fn0‖XΦ
O

∥∥∥Φ̂ (ϕ (|fn0 |))
∥∥∥
X

≤ ‖f‖XΦ
O

∥∥∥Φ̂ (ϕ (|fn0|))
∥∥∥
X
≤
∥∥∥Φ̂ (ϕ (|fn0|))

∥∥∥
X
.

This contradiction proves the result.

Proposition 5.4. Let X be a quasi-Banach function space over µ with the
σ-Fatou property and strictly monotone quasi-norm, and let Φ an N-function.

1) If ‖f‖XΦ
O
≤ 1, then ‖Φ (|f |)‖X ≤ ‖f‖XΦ

O
.

2) If 0 6= f ∈ XΦ
O , then ∥∥∥∥∥Φ

(
|f |
‖f‖XΦ

O

)∥∥∥∥∥
X

≤ 1. (14)

In particular f ∈ XΦ
L .

Proof. 1) Consider the function g := ϕ (|f |) ≥ 0, where ϕ is the right
derivative of the N-function Φ. The above Proposition 5.3 tells us that∥∥∥Φ̂ (|g|)

∥∥∥
X
≤ 1. Now, from (6) we have

|f |g = |f |ϕ (|f |) = Φ (|f |) + Φ̂ (ϕ (|f |)) = Φ (|f |) + Φ̂ (|g|) . (15)

Noting that Φ (|f |) ≤ Φ (|f |) + Φ̂ (|g|) , taking quasi-norm and using the
equality (15) we conclude that

‖Φ (|f |)‖X ≤
∥∥∥Φ (|f |) + Φ̂ (|g|)

∥∥∥
X

= ‖fg‖X ≤ ‖f‖XΦ
O
,

as we wanted to see.

2) If f 6= 0, then

∥∥∥∥∥ |f |
‖f‖XΦ

O

∥∥∥∥∥
XΦ
O

= 1. From item 1) it follows that

∥∥∥∥∥Φ

(
|f |
‖f‖XΦ

O

)∥∥∥∥∥
X

≤

∥∥∥∥∥ |f |
‖f‖XΦ

O

∥∥∥∥∥
XΦ
O

= 1.
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Theorem 5.5. Let X be a quasi-Banach function space over µ, with quasi-
triangle constant K ≥ 1, with the σ-Fatou property and strictly monotone
quasi-norm, and let Φ an N-function. Then XΦ

L = XΦ
O and the Orlicz quasi-

norm is equivalent to the Luxemburg quasi-norm. In fact,

‖f‖XΦ
L
≤ ‖f‖XΦ

O
≤ 2K‖f‖XΦ

L
, f ∈ XΦ

L = XΦ
O . (16)

Proof. From the definition of the Luxemburg quasi-norm (4) together with
the inequality (14) we obtain the following important first inequality

‖f‖XΦ
L
≤ ‖f‖XΦ

O
, f ∈ XΦ

O .

The second inequality has been established in (9) of Proposition 3.3.

Remark 5.6. Let µ be a finite positive measure. Then the Lebesgue space
X := L1(µ) is a Banach function space over µ with the σ-Fatou property
and its norm ‖ · ‖L1(µ) is clearly strictly monotone. Thus, the inequalities in
(16) give a generalization of the well known equivalence between the Orlicz
and Luxemburg norms in classical context (1). Moreover, the proof we have
presented of the Theorem 5.5 is essentially the only known proof in the
literature, as far as we know, of the inequalities (16) and (1).

The σ-Fatou assumption for the (quasi-) Banach function space X is
essential for the equality XΦ

L = XΦ
O as the strict inclusion (12) of the Exam-

ple 4.1 points out. Without the σ-Fatou property we only have the inclusion
XΦ
L ⊆ XΦ

O . In this case, with an strictly monotone quasi-norm on X, we will
see that the Orlicz and Luxemburg quasi-norms are still equivalent in the
smallest space XΦ

L if we add the hypothesis ∆2 to the N-function Φ.
The following results are variants of Propositions 5.3, 5.4 and Theo-

rem 5.9, respectively, under these new hypothesis.

Proposition 5.7. Let X be a quasi-Banach function space over µ with
strictly monotone quasi-norm, let Φ an N-function with the ∆2-property
and let ϕ be the right derivative of the function Φ. Suppose that f ∈ XΦ

L ,

with ‖f‖XΦ
O
≤ 1. Then the function g := ϕ (|f |) ∈ X̃ Φ̂ and satisfies that∥∥∥Φ̂ (|g|)

∥∥∥
X
≤ 1.

Proof. First of all let us check that the product fg ∈ X. Since Φ ∈ ∆2

there exist c > 1 and x0 ≥ 0 such that xϕ(x) ≤ cΦ(x) for all x ≥ x0 (see
[13, Theorem 4.1] or [18, Theorem 2.2.3]). Then

|fg| = |f |ϕ(|f |) ≤ cΦ(|f |) + |f(x0)|Φ(|f(x0|)χΩ ∈ X
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because Φ(|f |) ∈ X and |f(x0)|Φ(|f(x0|)χΩ ∈ L∞(µ) ⊆ X. Thus fg ∈ X.
Now, from (6) we have |f |ϕ(|f |) = Φ(|f |) + Φ̂(ϕ(|f |)), that is,

|fg| = Φ(|f |) + Φ̂(|g|). (17)

Then Φ̂(|g|) ≤ |fg| ∈ X, and so Φ̂(|g|) ∈ X, that is, g ∈ X̃ Φ̂. Suppose on the
contrary that the second conclusion of the statement is not satisfied, that is,

suppose that
∥∥∥Φ̂ (|g|)

∥∥∥
X
> 1. Since f 6= 0, from (17) we have

Φ̂(|g|) < Φ(|f |) + Φ̂(|g|) = |fg|.

Taking into account that the quasi-norm is strictly monotone and the in-
equality (13) of Lemma 5.1 we conclude that∥∥∥Φ̂(|g|)

∥∥∥
X

< ‖fg‖X ≤ ‖f‖XΦ
O
·max

{
1,
∥∥∥Φ̂ (|g|)

∥∥∥
X

}
= ‖f‖XΦ

O
·
∥∥∥Φ̂ (|g|)

∥∥∥
X
≤
∥∥∥Φ̂ (|g|)

∥∥∥
X
.

This contradiction proves the result.

Proposition 5.8. Let X be a quasi-Banach function space over µ with
strictly monotone quasi-norm and let Φ an N-function with the ∆2-property.

1) If f ∈ XΦ
L , with ‖f‖XΦ

O
≤ 1, then ‖Φ (|f |)‖X ≤ ‖f‖XΦ

O
.

2) If 0 6= f ∈ XΦ
L , then ∥∥∥∥∥Φ

(
|f |
‖f‖XΦ

O

)∥∥∥∥∥
X

≤ 1. (18)

Proof. The same proof of Proposition 5.4 works by applying now Proposi-
tion 5.7 instead of Proposition 5.3.

Theorem 5.9. Let X be a quasi-Banach function space over µ with strictly
monotone quasi-norm and let Φ an N-function with the ∆2-property. Then
the Orlicz quasi-norm is equivalent to the Luxemburg quasi-norm on XΦ

L . In
fact,

‖f‖XΦ
L
≤ ‖f‖XΦ

O
≤ 2K‖f‖XΦ

L
, f ∈ XΦ

L . (19)
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Proof. From the definition of the Luxemburg quasi-norm (4) together with
the inequality (18) we obtain the following inequality

‖f‖XΦ
L
≤ ‖f‖XΦ

O
, f ∈ XΦ

L .

The second inequality has been established in (9) of Proposition 3.3.

Next we will see that the hypothesis of strict monotonicity for the quasi-
norm can be strongly relaxed. Recall that the norm of the spaces L1(m) and
L1
w(m) will not be in general a strictly monotone norm.

Proposition 5.10. Let Φ be an N-function and let X an ideal of L0(µ).
Consider two equivalent quasi-norms ‖·‖1 and ‖·‖2 on X, and denote by
X1 := (X, ‖·‖1) and X2 := (X, ‖·‖2) the corresponding quasi-normed function
spaces. Then

1) the Luxemburg quasi-norms ‖·‖XΦ
1L

and ‖·‖XΦ
2L

are also equivalent, and

2) the Orlicz quasi-norms ‖·‖XΦ
1O

and ‖·‖XΦ
2O

are equivalent too.

Proof. Let M ≥ 1 be such that
1

M
‖·‖1 ≤ ‖·‖2 ≤ M ‖·‖1 . Note that X̃1

Φ
=

X̃2

Φ
= X̃Φ and also that XΦ

1L = XΦ
2L = XΦ

L .

1) Given f ∈ XΦ
L , let c > 0 be such that

∥∥∥∥Φ

(
|f |
c

)∥∥∥∥
X2

≤ 1. Then, since

1

M
≤ 1, accordingly to (2), we have∥∥∥∥Φ

(
1

M

|f |
c

)∥∥∥∥
X1

≤
∥∥∥∥ 1

M
Φ

(
|f |
c

)∥∥∥∥
X1

=
1

M

∥∥∥∥Φ

(
|f |
c

)∥∥∥∥
X1

≤
∥∥∥∥Φ

(
|f |
c

)∥∥∥∥
X2

≤ 1.

By the definition of the Luxemburg quasi-norm (4) it follows that ‖f‖XΦ
1L
≤

Mc. Using again the definition of the Luxemburg quasi-norm (4) we also get
‖f‖XΦ

1L
≤ M ‖f‖XΦ

2L
. To obtain this last inequality we have only used the

inequality ‖·‖1 ≤M ‖·‖2 . Now, by using this other inequality ‖·‖2 ≤M ‖·‖1 ,
we also deduce that ‖f‖XΦ

2L
≤ M ‖f‖XΦ

1L
. From both inequalities together

we conclude that

1

M
‖f‖XΦ

1L
≤ ‖f‖XΦ

2L
≤M ‖f‖XΦ

1L
, f ∈ XΦ.
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2) Given f ∈ XΦ
O , let g ∈ X̃1

Φ̂
be such that

∥∥∥Φ̂ (|g|)
∥∥∥
X1

≤ 1. Then, since

1

M
≤ 1, accordingly to (2), we have∥∥∥∥Φ̂

(
|g|
M

)∥∥∥∥
X2

≤
∥∥∥∥ 1

M
Φ̂ (|g|)

∥∥∥∥
X2

=
1

M

∥∥∥Φ̂ (|g|)
∥∥∥
X2

≤
∥∥∥Φ̂ (|g|)

∥∥∥
X1

≤ 1.

By the definition of the Orlicz quasi-norm (7) and taking into account the
above inequality we obtain that

‖fg‖X1
≤M ‖fg‖X2

= M2
∥∥∥f g

M

∥∥∥
X2

≤M2 ‖f‖XΦ
2O

and taking suprema we deduce that ‖f‖XΦ
1O
≤M2 ‖f‖XΦ

2O
. To obtain this last

inequality we have only used the inequality ‖·‖2 ≤M ‖·‖1 . Now, by using this
other inequality ‖·‖1 ≤ M ‖·‖2 , we also deduce that ‖f‖XΦ

2O
≤ M2 ‖f‖XΦ

1O
.

From both inequalities together we conclude that

1

M2
‖f‖XΦ

1O
≤ ‖f‖XΦ

2O
≤M2 ‖f‖XΦ

1O
, f ∈ XΦ.

Motivated by the Theorem 5.5 and the above Proposition 5.10 we intro-
duce the following definition.

Definition 5.11. We say that a quasi-normed function space X, with quasi-
norm ‖·‖X , has a strictly monotone q-renorming if there exist another strictly
monotone quasi-norm ‖| · |‖X which makes X a quasi-normed function space
and two positive constants C1 and C2 such that C1‖f‖X ≤ ‖|f |‖X ≤ C2‖f‖X ,
for all f ∈ X.

Theorem 5.12. Let X be a quasi-Banach function space over µ with the
σ-Fatou property which has a strictly monotone q-renorming, and let Φ an
N-function. Then XΦ

L = XΦ
O and the Orlicz quasi-norm is equivalent to the

Luxemburg quasi-norm.

Proof. Apply Theorem 5.5 and Proposition 5.10.
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Theorem 5.13. Let X be a quasi-Banach function space over µ which has a
strictly monotone q-renorming, and let Φ an N-function with the ∆2-property.
Then the Orlicz quasi-norm and the Luxemburg quasi-norm are equivalent on
the smallest space XΦ

L .

Proof. Apply now Theorem 5.9 and Proposition 5.10 again.

6. Quasi-Banach functions spaces with a strictly monotone renorm-
ing

In this section we will show sufficient conditions for a quasi-Banach func-
tion space to have a strictly monotone q-renorming. We will also present
concrete examples of Banach and quasi-Banach space that possess such a
q-renorming. Let’s start by the latter one.

Example 6.1. Let m : Σ→ Y a vector measure with values into a Banach
space Y and let µ := |〈m, y∗〉| a Rybakov control measure for m. We can
consider a new norm on L1

w(m) defined by

‖|f |‖L1
w(m) := ‖f‖L1

w(m) + ‖f‖L1(µ) , f ∈ L1
w(m).

Note that ‖f‖L1
w(m) ≤ ‖|f |‖L1

w(m) ≤ 2 ‖f‖L1
w(m) for all f ∈ L1

w(m) and, more-

over, ‖| · |‖L1
w(m) is a strictly monotone norm (because ‖·‖L1(µ) is) on L1

w(m).

Recall that L1
w(m) has the σ-Fatou property. Thus we have the equality

L1
w(m)Φ

L = L1
w(m)Φ

O, and consequently the second equality of (11).

Example 6.2. Let m : Σ→ Y a vector measure with values into a Banach
space Y. In general the quasi-norm of L1(‖m‖) is not strictly monotone.
Nevertheless, it can be proved that the following conditions are equivalent:

1) The quasi-norm ‖ · ‖L1(‖m‖) is strictly monotone.

2) If A ⊆ B ∈ Σ and ‖m‖(B r A) 6= 0, then ‖m‖(A) < ‖m‖(B).

In any case, following the same way of the above example, we can consider
a new quasi-norm on L1(‖m‖) defined by

‖|f |‖L1(‖m‖) := ‖f‖L1(‖m‖) + ‖f‖L1(µ) , f ∈ L1(‖m‖)

which turns out to be equivalent to the quasi-norm ‖·‖L1(‖m‖) and, moreover,
‖| · |‖L1(‖m‖) is a strictly monotone quasi-norm. Then we have the equality

L1(‖m‖)Φ
L = L1(‖m‖)Φ

O and the quasi-norms ‖ · ‖L1(‖m‖)Φ
L

and ‖ · ‖L1(‖m‖)Φ
O

are
equivalent for every vector measure m.
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Necessary conditions and sufficient conditions that for a given Riesz (=
lattice) norm there is an equivalent strictly monotone Riesz norm are in-
vestigated in [16]. We translate the general result [16, Theorem 1] into our
context as follows. If a quasi-Banach function space X over the measure µ
with quasi-norm ‖ · ‖X possesses a bounded strictly positive linear functional
(hence continuous) T : f ∈ X −→ T (f) ∈ R, then

‖|f |‖X := ‖f‖X + T (|f |), f ∈ X

defines a strictly monotone quasi-norm ‖| · |‖X on X that is equivalent to
‖ · ‖X . This is exactly the case of the previous Example 6.1 and Example 6.2,

where T (f) :=

∫
Ω

fdµ define a strictly positive linear functional on L1
w(m)

and therefore also in L1(‖m‖).
On the other hand if X is a countably generated Banach function space

with a strictly monotone norm, then it must possess a bounded strictly pos-
itive linear functional. The proof of this last statement depends strongly on
the Hahn-Banach theorem. Unfortunately this essential tool is not available
in the quasi-Banach context. Moreover, this is not the case in the setting of
quasi-Banach function spaces as the spaces Lp(µ), with 0 < p < 1, point out.
All these spaces have a strictly monotone quasi-norm (as they have all Lp-
spaces with p < ∞) but, as it is well kwon, they have no non-zero bounded
linear functionals.

Although we do not know to what extend it is possible to find a strictly
monotone equivalent quasi-norm for a quasi-Banach function space, we can
show some sufficient conditions that allow to prove that such an equivalent
quasi-norm exists in a broad class of quasi-Banach function spaces (including
all Banach function spaces). According to this, in the rest of the section we
present several sufficient conditions for a quasi-Banach function space to have
an equivalent strictly monotone quasi-norm.

Given 0 < r <∞ and a quasi-Banach function space X over µ, consider

its r-th power X[r] :=
{
h ∈ L0(µ) : |h| 1r ∈ X

}
with the quasi-norm

‖h‖X[r]
:=
∥∥∥|h| 1r∥∥∥r

X
, h ∈ X[r].

For details on r-th powers of quasi-Banach function spaces see [17, Sec-
tion 2.2]. In particular note that X[r] is again a quasi-Banach function space
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over µ, and what is most important to us (see [17, Proposition 2.23]): If X
is r-convex, then X[r] admits a lattice norm, namely,

‖|h|‖X[r]
:= inf

{
n∑
k=1

‖hk‖X[r]
: |h| ≤

n∑
k=1

|hk|, hk ∈ X[r], k = 1, . . . , n, n ≥ 1

}
wich is equivalent to ‖ · ‖X[r]

. Accordingly, if X is r-convex, then X[r] is a
Banach function space over µ. We recall that X is called r-convex if there
exists C ≥ 1 such that∥∥∥∥∥∥

(
n∑
k=1

|fk|r
) 1

r

∥∥∥∥∥∥
X

≤ C

(
n∑
k=1

‖fk‖rX

) 1
r

, f1, . . . , fn ∈ X.

Moreover, as we always assume that the characteristic function χΩ ∈ X, the
Banach function space X[r] is saturated in the sense of [21]. Recall that a
quasi-Banach function space X is saturated if and only if there is a positive
measurable function f, that is, f ≥ 0 and µ ([f = 0]) = 0, that belongs to X.
Clearly, if X is saturated then X[r] is too for any r > 0.

Proposition 6.3. Let X be a quasi-Banach function space over µ which
is r-convex for some 0 < r < ∞. Then X possesses a strictly monotone
q-renorming.

Proof. Consider the saturated Banach function space X[r] with the lattice
norm ‖| · |‖X[r]

, and denote by E := X[r] and F := L∞(µ). Since, as we
have explained before, the product E · F = X[r] · L∞(µ) = X[r] is normable,
we can apply the implication (i) ⇒ (ii) of [21, Proposition 1.1] to get a
function 0 ≤ g ∈ L0(µ), with µ ([g = 0]) = 0, such that g · L∞(µ) ⊆ X ′[r].
Definitely we found a positive function g ∈ X ′[r], the Köthe dual of X[r], which

means that

∣∣∣∣∫
Ω

hgdµ

∣∣∣∣ ≤ ∫
Ω

|h|gdµ ≤ ‖|h|‖X[r]
‖g‖X′

[r]
≤ ‖h‖X[r]

‖g‖X′
[r]
, for all

h ∈ X[r]. Then it is not difficult to see that

[∫
Ω

|f |rgdµ
] 1
r

≤ ‖f‖X‖g‖
1
r

X′
[r]
, for

all f ∈ X, and consequently, the formula

‖|f |‖X := ‖f‖X +

[∫
Ω

|f |rgdµ
] 1
r

, f ∈ X

defines a strictly monotone quasi-norm on X that is equivalent to ‖ · ‖X .
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Remark 6.4. If X is a Banach function space over µ then it is certainly
1-convex. Trivially X[1] = X and ‖| · |‖X[1]

= ‖·‖X on X. This means that
every Banach function space satisfies the conclusion of Proposition 6.3. Thus
every Banach function space possesses a strictly monotone renorming.

Quasi-Banach function spaces not satisfying the r-convexity condition for
any r > 0 are not the most naturally arising quasi-Banach function spaces; in
fact, to find examples of such spaces is rather difficult even in the setting of
quasi-Banach lattices. However, this class has been studied, because of their
importance from the theoretical point of view. In [12], Kalton described the
class of quasi-Banach lattices that are r-convex for some r > 0, and provided
an example ([12, Example 2.4]) of a quasi-Banach lattice not satisfying this
property. It is worth noting that this example fall outside the context of
quasi-Banach functions spaces in which we are working on. It is shown in this
paper ([12, Theorem 2.2]) that being r-convex for some r > 0 is equivalent
to being L-convex. It is said that quasi-Banach lattice X is L-convex if there
exists 0 < ε < 1 so that if 0 ≤ g ∈ X with ‖g‖X = 1 and 0 ≤ fk ≤ g

(1 ≤ k ≤ n) satisfy
1

n
(f1 + · · ·+ fn) > (1− ε)g, then max

1≤k≤n
‖fk‖X > ε.

Thus, because of the quoted counterexample, our feeling is that we cannot
use the argument we have shown in Proposition 6.3 for the whole class of
quasi-Banach function spaces without any assumption of convexity.

On the other hand, it is possible to find easy examples of spaces that
cannot be renormed with an strictly monotone norm (see [16, Example 4]).
However, it remains open the question about if there is a non-L-convex quasi-
Banach function space over a finite measure which cannot be renormed with
a strictly monotone quasi-norm. As far as we know, the answer is not known,
or at least we have not been able to find it in the literature. This justifies the
following result, which shows that r-convexity can be substituted by (r, 1)-
concavity as a sufficient condition for having an equivalent strictly monotone
norm.

Let r > 0. A quasi-Banach function space X is called (r, 1)-concave

if there exists C ≥ 1 such that

(
n∑
k=1

‖fk‖rX

) 1
r

≤ C

∥∥∥∥∥
n∑
k=1

|fk|

∥∥∥∥∥
X

, for all

f1, . . . , fn ∈ X. The (r, 1)-concavity constant is the infimum of all such con-
stants C. Note that r-concave function spaces (see [17, Definition 2.46]) are
(r, 1)-concave for r ≥ 1.
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Proposition 6.5. Let X be a (r, 1)-concave quasi-Banach function space
over µ. Then X possesses a strictly monotone q-renorming.

Proof. Suppose that the quasi-norm ‖ · ‖X has quasi-triangle constant K.
If X is (r, 1)-concave, the following formula gives an equivalent quasi-norm
with quasi-triangle constant C K, where C is the (r, 1)-concavity constant
for X. Indeed, if f ∈ X,

‖|f |‖X := sup


(

n∑
k=1

‖fk‖rX

) 1
r

:
n∑
k=1

|fk| = |f |, f1, . . . , fn ∈ X

 ,

clearly satisfies that

‖f‖X ≤ ‖|f |‖X = sup

(
n∑
k=1

‖fk‖rX

) 1
r

≤ C sup

∥∥∥∥∥
n∑
k=1

|fk|

∥∥∥∥∥
X

= C‖f‖X ,

where the supremum is computed for all representations
n∑
k=1

|fk| = |f |, with

f1, . . . , fn ∈ X, and so ‖ · ‖X and ‖| · |‖X are equivalent on X.
Note also that, if f, g ∈ X, using the inequality above we have that

‖|f + g|‖X ≤ C‖f + g‖X ≤ C K (‖f‖X + ‖g‖X) ≤ C K (‖|f |‖X + ‖|g|‖X) .

Let us now check that ‖| · |‖X is strictly monotone. Indeed, if there are
two functions 0 ≤ f < g ∈ X we have that there is a non-negative non-
zero function h = g − f ∈ X, that is, ‖h‖rX > ε > 0 for some ε. Take a

decomposition of |f | as |f | =
n∑
k=1

|fk| such that ‖|f |‖rX <
n∑
k=1

‖fk‖rX+ε. Then,

taking into account that |g| = g = f + h = |f |+ |g − f | =
n∑
k=1

|fk|+ |g − f |,

we get

‖|f |‖rX <

n∑
k=1

‖fk‖rX + ε <

n∑
k=1

‖fk‖rX + ‖h‖rX ≤ ‖|g|‖rX .

Then we obtain that ‖|f |‖X < ‖|g|‖X .

To have equivalence between the Orlicz and Luxemburg quasi-norms the
hypothesis that the quasi-Banach function space X has a strictly monotone
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q-renorming seems to be necessary. As we have pointed out with the different
types of results of this section, this hypothesis is certainly very general. In
fact, to be honest, we have not been able to build a quasi-Banach function
space without this property. Certainly there exist Banach lattices (see [16,
Example 4]) without a strictly monotone renorming but these examples fall
outside the context in which we are working on.

We conclude this section by gathering the three positive results where
we can ensure that the spaces XΦ

O and XΦ
L coincide and/or the correspond-

ing Orlicz and Luxemburg quasi-norms are equivalent. They follow from
Theorem 5.12 and Theorem 5.13 respectively.

Corollary 6.6. Let X be a quasi-Banach function space over µ with the σ-
Fatou property and let Φ an N-function. If at least one of the following two
conditions:

a) X is r-convex for some 0 < r <∞, or

b) X (r, 1)-concave for some 0 < r <∞

is satisfied, then XΦ
O = XΦ

L and the corresponding Orlicz and Luxemburg
quasi-norms are equivalent.

Corollary 6.7. Let X be a quasi-Banach function space over µ and let Φ
an N-function with the ∆2-property. If at least one of the following two
conditions:

a) X is r-convex for some 0 < r <∞, or

b) X (r, 1)-concave for some 0 < r <∞

is satisfied, then the Orlicz quasi-norm and the Luxemburg quasi-norm are
equivalent on the smallest space XΦ

L .

Remark 6.8. An special case of item a) in the above Corollaries 6.6 and 6.7
appear if the space X is a Banach function space over µ. In that case:

i) If X has the σ-Fatou property and Φ is an N-function, then XΦ
O = XΦ

L

and the corresponding Orlicz and Luxemburg quasi-norms are equiva-
lent.

ii) If Φ is an N-function with the ∆2-property, then the Orlicz quasi-norm
and the Luxemburg quasi-norm are equivalent on the smallest space
XΦ
L .
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