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Abstract 

A major issue in Liquid Composite Molding Process (LCM) concerns the 

reduction of voids formed during the resin filling process. Reducing the void 

content increases the quality of the composite and improves its mechanical 

properties. Most of modeling efforts on process simulation of mold filling has 

been focused on the single phase Darcy’s law, with resin as the only phase, 

ignoring the formation and transport of voids. The resin flow in a partially 

saturated region can be characterized as two phase flow through a porous 

medium. The mathematical formulation of saturation in LCM takes into account 

the interaction between resin and air as it occurs in a two phase flow. This model 

leads to the introduction of relative permeabilities as a function of saturation. The 

modified saturation equation is obtained as a result, which is a non-linear 

advection-diffusion equation with viscous and capillary phenomena. In this work, 

a flux limiter technique has been used to solve a modified saturation equation for 

theLCM process. The implemented algorithm allows a numerical optimization of 

the injected flow rate which minimizes the micro/macroscopic void formation 

during mold filling.  Some preliminary numerical results are presented here in 

order to validate the proposed mathematical model and the numerical scheme. 

This formulation opens up new opportunities to improve LCM flow simulations 

and optimize injection molds.  
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Introduction 

Liquid Composites Molding (LCM) processes are based on the impregnation of 

the fibrous reinforcement by a liquid thermoset resin. Modeling and simulation 

play an important role in the development and optimization of production molds 

and in devising appropriate resin injection strategies. Minimization of mold filling 

time while improving quality of the part is an important issue. Inadequate 

injection strategies tend to create macro and microscopic voids in the part, the 

formation of which depends on the local resin flow velocity. 

For single phase flow in a homogeneous porous medium, Darcy’s law is an 

expression of momentum conservation at the macroscopic scale. When two or 

more fluid phases are present, the permeability in Darcy`s original equation is 

replaced by an effective value to accommodate the presence of other phases. This 

parameter, called relative permeability is expressed as a function of the saturation 

level in the fibrous reinforcement.  On the other hand, if capillary effects are 

neglected, the saturation equation reduces to a purely advection transport equation 

but, in general the saturation equation is an advection-diffusion equation which 

includes the capillary pressure effect. The equations that describe the RTM filling 

process with void formation are based on a two phase flow model and lead to a 

coupled system of a nonlinear advection-diffusion equation for saturation and an 

elliptic equation for pressure and velocity. The hyperbolic nature of the saturation 

equation and its strong coupling through relative permeability represent a 

challenging numerical issue. In this paper, a quite simple but very accurate 

numerical approach is proposed to solve this complex flow behaviour. 

In previous works [1,2] different experiments were carried out to investigate the 

process of void formation. These experimental works shown that macrovoids tend 

to form duringinjection at low flow rates, due to capillary dominant effects, 

whereas high injection rates lead to microvoids formation. Therefore, an optimal 

impregnation velocity exists that minimizes the formation of such macro and 

microscopic voids. This is well explained by the two types of forces that induce 
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the motion of the fluid trough the dual-scale porous media: the viscous and the 

capillary forces. These forces are included in the diffusivity coefficient in the 

saturation equation. Based on these observations, a simplified mathematical 

model has been proposed in order to model the RTM filling process with void 

formation. In this model, the diffusivity coefficient in the saturation equation has 

been replaced by a term which depends on the velocity.  

This paper proposes a numerical solution to optimize the filling stage in RTM. 

This scheme enables process engineers to determine the optimum injection flow 

rate so that void formation is minimized, thus resulting in an improved quality of 

the part. Essential to this optimum process design is the numerical simulation of 

the modified saturation equation. Many numerical methods to solve this type of 

equations suffer from serious nonphysical oscillations, excessive numerical 

dispersionor a combination of both. The technique here used is based on a flux 

limiter fixed mesh strategy for solving the transport equation which governs the 

evolution of the degree of saturation of porous media [3]. 

GOVERNING EQUATIONS 

The LCM process has been conventionally treated as a single-phase flow, with 

resin as the only phase, and then the formation and transport of voids cannot be 

modelled using this approach. The resin flow in a partially saturated region can be 

characterized as two phase flow through a porous medium. In this case, the 

permeability experienced by one phase depends on the degree of saturation of the 

reinforcement. Thus, the relative permeability depends on the saturation and 

describes how one phase flows in the presence of the second one. So, the 

saturation equation and the relative permeability are based on the two phase flow 

description. In order to explain the equations proposed in this paper to simulate 

mold filling with void formation, a description of the two phase flow through a 

porous medium is needed. 

In this case, the two phases will be referred as resin and air and designated by the 

subscript R and A respectively. Darcy’s law can then be written for each phase j, 

as follows 

     j j jv S p  
 (1) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4 

where vj is the phase velocity, S is the degree of saturation of the reinforcement by 

the liquid resin, pj is the phase pressure, j(S)= Krj(S)K/j is the phase mobility, 

with Krj(S)the relative permeability to phase j, jthe viscosity of phase j and K the 

permeability tensor, which is here taken to be diagonal. 

The equations that describe mass conservation for the resin and air phases, are 

respectively given by 

S (1 S)
    and    R Av v

t t
 
  

     
   

(2) 

where  denotes the porosity. Then, Eq. (2) leads to following assumption 

 =0   being R A R Av v v v v   
 (3) 

Combining Eqs. (1) and (2), the resulting equation for the saturation in its most 

general form gives 

   
S

 + . ( )  . ( )   cFvF S D S S
t




    
  

(4) 

where 

 ( ) ( )    withc

cF A

P
D S F S S

S







 

   
( )

R

R A

S
F S

S S



 



 (5) 

is the nonlinear diffusivity coefficient due to capillary pressure Pc, defined as 

c A RP P P  . 

For the particular case of F(S)=S, the saturation equation gives 

   
S

 + .  . ( )   cvS D S S
t




   
  

(6) 

where 

     ( ) (1 ) =S  c c

c R A

P P
D S S S S

S S
 

 
 

   
(7) 

Replacing the total velocity v by 
R Av v  and simplifying, Eq (7) can be rewritten as 

follows: 

   
S

 + .  . (1 )   R
R R

P
v S S S S

t S
 

  
     

    
(8) 
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It can be observed that the diffusivity coefficient vanishes when S=0 or S=1, but 

for the unsaturated region this term represents a diffusive flux component, which 

depends on the velocity and degree of saturation. 

Assuming that the diffusivity coefficient depends on the resin flow velocityleads 

to the following equation 

   
S

 + .  .   R Vv S D S
t




   
  

(9) 

where the diffusivity coefficient 
VD includes the velocity effect 

2 m
V M R

R

D v
v



 

  
 

 (10) 

In this model,M  and m represent the dispersive coefficients of the macro and 

microscopic voids respectively, as identified in experimentalobservations, so that 

the source term describes the hydrodynamic dispersion due to the presence of 

pores [1,4]. 

Since the main interest is to simulate the flow of the resin phase, Darcy’s law and 

conservation mass for the resin phase have been considered, i.e., Eqs Error! 

Reference source not found. and Error! Reference source not found.. 

Combining both equations for the resin phase yields 

 ( )R

sat

S
K S p

K t

  
   

   
(11) 

where the relative permeability depends on the saturation degree. In this study, the 

permeability model proposed by Breard et al.[4] has been considered. 

Permeability as a function of saturation is calculated as follows: 

  1S RR K S   

1/ 1/( ) (1 )R S SK S R S R
       

(12) 

where SR  is a fitting factor whose usual values range in the interval  0.4,0.8 . 

Finally, to obtain a closed description of the flow, we assume the modified 

saturation equation which governs the transport of the variable S: 

  2 m

M

S
vS v S

t v


 

   
        

   
 (13) 
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The saturation S takes a unit value in the saturated domain, a zero value in the 

empty region and varies between 0 and 1 in the partially saturated region. Note 

that Eq.(11)for pressure is an elliptic equation coupled to the saturation equation 

Eq.(13) through the saturation term. On the other hand, the saturation equation is a 

nonlinear advectionequation coupled to the pressure equation through Darcy 

velocity.  

The simulation of the filling process involves the following operations at each 

time step:  

1) calculate the saturation dependent permeability and the source term in 

Eq.(11); 

2) calculate the pressure distribution by applying a standard finite element 

discretization of Eq.(11); 

3) calculate the velocity field from Darcy´s law for the resin (1); 

4) update the saturation distribution by integrating Eq.(13) using a flux 

limiter technique. 

The boundary conditions are given by: 

 The pressure gradient in the normal direction to the mold walls vanishes.  

 The pressure or the flow rate is specified on the inflow boundary. 

 The pressure is zero in the empty part of mold. 

THE MODIFIED SATURATION EQUATION 

For the sake of simplicity from now on we only consider one-dimensional 

models.In the one-dimensional case Eq.(13) writes: 

21 m
M

S v S
S v

t x x v x




 

      
       

       
 (14) 

We use a flux-limiter strategy to approximate numerically the saturation equation. 

Defining the flux as 

21 m
M

v S
F S v

v x




 

  
    

  
 (15) 

Eq.(14) can be integrated by applying a second-order upwind scheme preserving 

the TVD property [5].The discrete form writes 

 1

1/ 2 1/ 2
ˆ ˆn n SW SW

i i i iS S F F

   
 

(16) 

where 
t

h



  and 
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     

      

1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1

1/ 2 1 1/ 2 1

1ˆ ˆ  
2

1ˆ    
2

SW UP

i i i i i i i

UP

i i i i i i

t
F F r sign v v F F

h

F F F sign v F F

     

   

 
    

 

   
 

(17) 

Here h represents the mesh size,  t the time step and (r) is the flux limiter 

function. The superscript UP is associated with the first-order upwind scheme and 

the superscript SW with the second-order scheme using a modified flux limiter 

technique (in our case the superbee flux limiter). It is well known that upwinding 

is an essential part of any numerical scheme for hyperbolic equations. In our 

construction of numerical fluxes, the upwind direction is determined by the sign 

of v in the element. The numerical scheme respects the balance that occurs 

between the flux gradient associated to the advective part and the source term 

related to the diffusive part whenSt is small. This choice is consistent with 

implementations employed to simulate numerically hyperbolic conservation laws 

with source terms, where the upwind contribution of the source term is necessary 

to the convergence of schemes. 

The superbee flux limiter is defined as follows [5]: 

      2, min, 1,2 min,0 max)( rrrSB   (18) 

The coefficient ri+1/2has been defined in Eq.(17) by comparing consecutive 

variations of the approximate numerical solution for the saturation with respect to 

the flow direction  

1
1/ 2

1

1/ 2

2 1
1/ 2

1

     si    0

 

   si    0

i i
i

i i

i

i i
i

i i

S S
v

S S
r

S S
v

S S








 





 

 
 

   

(19) 

Flux limiters are used in numerical schemes to solve problems in science and 

engineering, particularly in fluid dynamics, described by hyperbolic conservation 

laws. They are used in high resolution schemes to avoid the spurious oscillations 

that would otherwise occur with high order spatial discretisation schemes due to 

shocks, discontinuities or sharp changes in the solution domain. The use of flux 

limiters, together with an appropriate high resolution scheme, makes the solutions 

total variation diminishing (TVD). The limiter function is constrained to be equal 

to zero, if r≤ 0. Therefore, when the limiter is equal to zero (sharp gradient, 

opposite slopes or zero gradient), the flux is represented by a low resolution 
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scheme. Alternatively, when the limiter is equal to 1 (smooth solution), it is 

represented by a high resolution scheme. This prevents the spurious numerical 

oscillations associated with the conventional second-order methods in the 

presence of discontinuities and reduces the excessive numerical diffusion 

introduced by the first-order upwind schemes. There are various limiters with 

different switching characteristics. In this work, the superbeelimiter has been 

used, which combines the stability and accuracy corresponding to first and second 

orderschemes. 

NUMERICAL SIMULATIONS 

In order to analyze the accuracy and efficiency of the proposed numerical scheme, 

a set of numeral examples are presented.The numerical simulations were carried 

out in the same conditions and with different constant flow rates. A mold of one-

meter length is considered. A constant injection pressure is prescribed (10
-5

 Pa), 

and the saturated permeability Ksatand resin viscosity are set to 10
-8

m
2
 and 

0.1Pa.s, respectively. In the numerical simulation, we consider a time step small 

enough, and a constant value RS=0.4. The domain is assumed initially empty, 

except the first element that represents the injection nozzle that is assumed to be 

fully filled. The dispersive coefficients of the macro and microscopic voids,M 

and m are 1 and 10
-7

, respectively. The impregnation velocity is usually related 

to the void content using the dimensionless capillary number (Ca), that is 

 cos

v
Ca



 


 
(20) 

where  is the viscosity of the fluid, the surface tension at the interface air/resin, 

v is the fluid velocity and is the contact angle between the resin and the fibers. 

The proposed model employs the degree of diffusion in the saturation as a 

variable to measure the void content. The quantitative relationship between these 

two parameters is not known. However, the qualitative relationship is clear. In 

order to evaluate the void content, we define the Void Index as follows: 

Unsaturated Void
Void Index

Saturated Volume+Unsaturated Filled Volume

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where the Unsaturated Void Volume is the volume occupied by bubbles in the 

unsaturated part or the mold, and the Unsaturated Filled Volume is the volume of 

resin in the unsaturated volume, as is shown in Figure 1 

 

Figure 1. Void content definition 

As illustrated in Figure 2, due to the impregnation of a double scale porous 

medium, an optimum impregnation resin velocity (or Ca) exists, so that the 

injection velocity controls the void content and a proper optimal filling strategy 

must be developed. The left side of the curve in Figure 2 represents (negative 

slope) the formation of macroscopic voids, whereas the right side (positive slope) 

represents the microscopic void formation. For this set of experiments, we can 

conclude that the optimal velocity is about 0.005m/s. 

 

Figure 2. Void content logarithmic functions versus impregnation velocity (m/s) 

Figure 3 represents, at the same flow front position, the degree of saturation at 

three different velocities, 0.001, 0.005 and 0.1m/s using the second order scheme 

described by Eq.(17). We can observe that a velocity of 0.005m/s produces the 

minimum void content. 
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Figure 3. Saturation curve at different impregnation velocity 

To analyze the influence of the mesh size on the simulated results, two meshes 

with different nodal distributions are considered, consisting of 30 and 150 nodes 

respectively. The associated numerical solutions are depicted in Figure 4 for a 

filling time of 50 seconds, using the first-order scheme (Eqs. (16-17) with 

(r)=0)and the using the superbee flux limiter scheme (Eq.(17) with (r) defined 

by Eq.(18)). We can notice that the convergence is faster when the flux limiter 

second-order scheme is considered. 

 

Figure 4. Analysis of the saturation calculation for different mesh grids 

A comparison of numerical results for the saturation obtained using the first and 

the flux limiter second order scheme in the same conditions is illustrated in Figure 

5. Because the diffusion of saturation has important physical implications, the 

control of the numerical diffusion is critical. Obviously, two factors contribute to 

smooth the flow front: one is related to the source term, and the other is a purely 

numerical effect introduced by the dicretization scheme. The classical first order 

scheme produces spurious numerical diffusion, and then inaccurate results. It can 

be also appreciated that the numerical diffusion is lower, as expected, when the 

flux limiter technique is employed.Then the second order scheme becomes a 

useful tool to obtain accurate results.  
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Figure 5. Comparison of the first and second order schemes used to solve the saturation problem 

Figure 6 represents the saturation (left) and pressure fields (rigth) obtained with 

the flux limiter technique for different times for a constant injection rate. 

 

Figure 6. Saturation and pressure profiles for a 1D RTM filling at constant flow rate 

Finally, this strategy was introduced in commercial software [6] and the Void 

Index behaviour adjusted by the least square method as shown in Figure 7. 

Numerical results for the Void Index in Figure 7 have been obtained using the 

technique described in previous Section. The curve with the negative slope 

represents the macroscopic void distribution, and the other one the microscopic 

void distribution. The optimal impregnation velocity is 0.005m/s that yields a 

Void Index of around 20%. 
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Figure 7. Estimation of the void content by Least Square Method for different impregnation 

velocities 

The following values of physical parameters have been considered: 

 Micro Void Index function (Vi_m):  Vi_m=2.031v+0.1958 

 Macro Void Index function (Vi_M):  Vi_M=-36.65v+0.3621 

 Optimal velocity:    0.005m/s 

 Capillary coefficient:     0.02 

 Optimal capillary number:   0.025 

 Preform thickness:    0.005m 

 Permeability:     10
-8

m
2
 

 Viscosity:     0.1 Pa*s 

 Porosity:     0.4 

A complex part has been simulated as example of void optimization. This 

example is part of an ecological vehicle for the tourism industry (see Figure 8). 

The preform and the resin are, respectively, fibre glass and polyester. 

 

Figure 8. Geometry of the part 

The injection nozzle is a line located along the border of the part. The first 

simulation has been carried out at constant injection pressure of 1 bar; the 

impregnation velocity is changing during the mold filling and then the Void 

content. For the second simulation, as is represented in Figure 9, an optimized 

injection velocity has been employed in order to minimize the Void content.  
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Figure 9. Optimized injection velocity 

Figure 10 shows the pressure, and void content for a constant injection pressure 

(left) and optimized injection velocity (right). As observed in the bottom right 

image the void content in the second simulation has been reduced to a minimum.  

Constant injection pressure (1 bar) Optimized injection flow rate 

Filling Time (s)

16.4

13.1

9.8

6.5

3.2

0
 

Filling Time (s)

194

155

116

77

38

0
 

Void Percent

5

4

3

2

1

0
 

Void Percent

0.33

0.27

0.20

0.13

0.06

0
 

Figure 10. Filling times and Void Content for two simulations, one carried out at injection pressure 

(1bar) and one using the optimized injection strategy 

Conclusions 

In the present work, a new numerical procedure is proposed to predict an 

optimized injection flow rate to minimize micro/macroscopic voids in RTM 

filling. The macro/microscopic void content are given as a function of the 

impregnation velocity. The calculated distribution obtained by this new numerical 
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method reproduces experimental observations [4]. For this purpose, a modified 

advection-diffusion equation describing the evolution of saturation has been 

discretized by using a flux limiter upwind scheme, which has the ability to limit 

the extra numerical diffusion introduced by standard first-order schemes. In the 

numerical simulation of the modified saturation equation two terms contribute to 

smooth the flow front: one is related to the source term, and the other purely 

numerical term is introduced by the dicretization scheme. The last effect can be 

reduced by using higher-order numerical schemes. Numerical results confirm that 

first-order schemes exhibit an excessive and no realistic diffusion due to the 

numerical approximation of the advective term, while the flux-limiter scheme 

shows less extra-diffusive effects. Thus, the flux limiter proposed improves 

significantly the results with respect to the first-order solutions. This technique is 

able to predict the optimum injection flow rate so as to minimize the distribution 

of the micro/macroscopic void content in the finished part. 
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