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Chapter 1

Introduction

Todays genomic domain evolves around insecurity: too many imprecise con-
cepts, too much information to be properly managed. Considering that con-
ceptualization is the most exclusive human characteristic, it makes full sense to
try to conceptualize the principles that guide the essence of why humans are as
we are. This question can of course be generalized to any species, but in this
work we are especially interested in showing how conceptual modeling is strictly
required to understand the ”execution model” that human beings ”implement”.
The main issue is to defend the idea that only by having an in-depth knowledge
of the Conceptual Model that is associated to the Human Genome, can this
Human Genome properly be understood. This kind of Model-Driven perspec-
tive of the Human Genome opens challenging possibilities, by looking at the
individuals as implementation of that Conceptual Model, where different values
associated to different modeling primitives will explain the diversity among in-
dividuals and the potential, unexpected variations together with their unwanted
effects in terms of illnesses and susceptibilities to certain types of drugs.

Genomics, from an Information Systems point of view, is largely situated
in the first phase of systems design, the analysis. Due to the youth of the
genomics domain, many aspects of what is driving the mechanisms of life are
still unknown. This work presents an inter-disciplinary approach, in which ex-
perience in Information Systems development is put to practice in genomics.
Concretely speaking, by applying a conceptual modeling approach, fixing the
present day knowledge about the human genome in a visual form. The genomic
domain can be characterized by three distinct properties: large data quantities,
high complexity and rapid evolution. The first property poses certain challenges
on resources, like processing time and storage space. Processing the large link-
age disequilibrium data files provided by the HapMap [1] resource (around ∼40
Gb compressed, ∼224 Gb uncompressed) for instance certainly counts as chal-
lenging, but is by no means impossible due to the regular structure. It is the
high complexity, rapid evolution and the ambiguity that often results from those
aspects that pose the real problems on the long run as they call for a stable and
homogeneous structure, while at the same time allowing for efficient and easy
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8 CHAPTER 1. INTRODUCTION

evolution of this same structure. No amount of processing power can com-
pensate for a lack of structure, if what one is looking for simply has not been
stored.

It is true that genomics is often not an exact science due to the immense
complexity of nature and its processes. It is true that basic concepts like genes,
alleles and mutations are frequently variable in their definition. Their exact
denotation often depends on both context and position in time. A gene for
instance can be defined as a locatable region of genomic sequence, corresponding
to a unit of inheritance, which is associated with regulatory regions, transcribed
regions, and or other functional sequence regions. However, the existence of
splicing, in which gene expression changes at runtime, complicates this view as
is very well described by [2]: ”in eukaryotes, the gene is, in most cases, not yet
present at DNA-level. Rather, it is assembled by RNA processing”. Pearson
[3] and Gerstein et al. [2] provide recent insights on the evolution of the gene
concept.

But it is the central point of this work that for efficient research to take place,
clear definitions of concepts and a common vocabulary are crucial. This is es-
pecially the case in research where worldwide various separate research groups
are collaborating and exchanging information on a regular basis. Formally de-
scribing concepts, ruling out ambiguity and relating concepts to each other and
their context is the main objective of model driven software development. Sim-
ply put, a conceptual model is a simplified representation of reality, devised for
a certain purpose and seen from a certain point of view. The objective of a
conceptual model is simulation of reality, it therefore needs to react to input in
the same way as reality would. It is in this context, where a precise connection
between the genomics domain and the Conceptual Modeling approach makes
full sense.

Describing a system by means of conceptual models means viewing the world
as consisting of objects that belong to different classes, have distinct properties,
and are related to each other in various ways. This way of viewing a system
provides a powerful representation and reasoning tool. Modeling a domain in
term of concepts thus roughly has either one of two applications, or both. Either
the models serve by use as a reasoning tool to gain a deeper understanding of
the domain at hand, usually as part of the design of an Information System, or
they guide the creation of a system which is ultimately directed at controlling
or modifying that same domain. In the first application, the conceptual model
serves as a visual representation of the domain, linking concepts and their re-
spective behaviors while the latter resembles the blue print used in traditional
building.

Not surprisingly, conceptual models and ontologies are closely intertwined.
There is still a large debate about the use of ontologies in the bioinformatics
domain. Section 2.3 will dig deeper into this subject, further refining the def-
initions of both conceptual models and ontologies and how they interconnect
in the context of this work. In general, current efforts doing exactly what this
work pretends to do, capturing the semantics of the Human genome in a formal
manner, are almost all ontology based. The Gene Ontology [4] is considered
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to be the de-facto standard here. It is however the contribution of this work
to show how conceptual modeling techniques can improve on these efforts by
providing a solid, well researched base which -due largely to its visual and com-
prehensive character- enables the engineer to capture these earlier mentioned
semantics in close collaboration with domain experts. All this without losing
the clear advantages and many promises that ontologies, as conceived by the
bioinformatics domain, present while at the same time adding a few more.

By allowing for a minor paradigm-shift, the human genome (or any genome)
can be considered an Information System, a natural and highly complex form
maybe but an Information System nonetheless. Stated in a very simplified
manner, data that is stored in DNA, undergoes recombination, processing and
ultimately translation to proteins. It is the combination of these proteins and
the influence from external factors (the environment) that define the way an
individual looks and behaves. These characteristics map neatly to the generic
characteristics usually associated to Information Systems, only replacing man-
made hardware in the form of chips and circuits, by biological molecules and
physics. As Chikofsky and Cross [5] state, reverse engineering is defined as the
process of analyzing a subject system to (i) identify the systems components and
their inter-relationships and (ii) create representations of the system in another
form or at a higher level of abstraction. Following this philosophy, just like
software can be reverse-engineered in order to apply after-market changes or
facilitate maintenance [6], it might very well be possible to reverse engineer life
itself and create a higher level of abstraction representation in the form of a
conceptual model. In this case, after-market changes and maintenance include
treatments and/or prevention of previously untreatable disorders and disease.
Basically, said in Information Systems jargon, debug life itself.

The value of a conceptual model of the human genome is thus two-fold: first,
it allows for a visual, and formal representation of the domain. By doing so,
fixing a vocabulary and conceptual gamut from which scientists can draw in
order to ensure communication takes place based on the same dictionary, using
the same concepts. It deserves mentioning here, that the conceptual model as
proposed in this work is thus expected to evolve along with the advancing un-
derstanding of the domain in time. This evolution capacity is an extra value in
itself for a domain where knowledge is continuously being generated, and thus
continuously subject to change. Only by having a well-defined, precise concep-
tual background the Conceptual Model- can this new knowledge be properly
incorporated, be understood and be adequately managed.

Second, the conceptual model can be used to (semi-)automatically generate
software. When seen as a Platform Independent Model (PIM) the Conceptual
Schema of the Human Genome can be considered as the base from which various
Platform Specific Models (PSM) can be deduced. Each of these PSMs can then
be transformed into a functional implementation. The degree of functionality,
and interference of the engineer depends on the level of expressiveness of the
model. Current efforts, like OO-method [7], suggest that it is possible to gen-
erate fully functional Information Systems from nothing but models, in which
low-level programming becomes redundant. It is well known that programming
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languages have been subject to a constant evolution towards higher levels of
abstraction. Model Driven Engineering might very well be the next step in this
process, where an engineer is no longer expected to manually program the In-
formation System, but rather model it adequately and then through a series of
automated steps this model is then transformed (or compiled) into the final IS.
Seen from this perspective it makes full sense to create an adequate PIM for
the genomic domain, where rapid evolution makes it hard to keep up with the
state of affairs. Indeed, ad-hoc programming solutions tend to not cope very
well with change as they are hardly reusable, if at all. The documentation issue
is also quite present; ad-hoc solutions, often poorly documented, are difficult
to grasp for other engineers than the original creator. Model based solutions
are expected to greatly reduce the problems associated to these issues by incor-
porating the body of knowledge as accumulated over the past decades in the
Information Systems domain.

This document can be separated into three parts: the first being the the-
oretical introduction to the work, including problem statement, contribution,
state of the art and the conceptual schema description. In this first part the
more theoretical contribution of the work will be presented. The second part
will report about how the practical application of the schema has worked out,
detailing various data loading efforts. This latter effort has been done by taking
a practical approach. Loading the database that came to be as a result of the
conceptual schema with real data has uncovered flaws in the original schema
which lead to modifications as will be discussed. The real data presented in
this work deal with genetic mutations. Current genomic research is very much
clinically focussed, attempting to uncover relations between genotype and phe-
notypic traits like disease and individual response to medical drugs. It therefore
makes full sense to start validating the conceptual schema by applying it to the
domain of genetic variation. The third part then describes in a summarized
manner how these results have been interpreted and related to the context of
the work.

This chapter will proceed to explain the domain, providing a short introduc-
tion to cell biology and genetics/genomics in section 1.1. The domain descrip-
tion will be separated in various subdomains: genome structure, the genotype
to phenotype process, metabolic pathways and genetic variation. The problems
issued by this work will be stated in section 1.2 as decomposed into the two
subsections, data chaos and conceptual chaos. In section 1.3 the requirements
of a possible solution to the earlier stated problem will be stated, while point-
ing out how this work contributes to it. In the following chapter 2 a detailed
overview on current solutions that already exist in the domain will be given,
as well as detailing how the contribution of this work significantly differs from
those. Section 2.1 will proceed to provide context to conceptual modeling in
general, as used as a tool in the creation of Information Systems. Section 2.2
then further specifies to the use of conceptual modeling in the domain of bioin-
formatics. Ontology based solutions, their shortcomings and major strongpoints
will be discussing in section 2.3. Details on how the Conceptual Schema of the
Human Genome is set up will be explained in chapter 3, in which all views of
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the schema will be discussed in a separate section.
The first chapter of part two, 4, will describe the effort of loading the Human

Gene Mutation Database (HGMD) database. The various sections describe
HGMD as a data source (section 4.1), the problems that were encountered
(section 4.2 and the solutions to them (section 4.3). In section 4.4 the lessons
from loading HGMD are then summarized. Chapter 5 then proceeds to explain
the process of loading dbSNP, in which the various sections describe how the
conceptual schema was improved with the introduction of the Single Nucleotide
Concept (section 5.1 and section 5.2), describe dbSNP (section 5.3), and detail
the encountered problems (section 5.4). In section 5.5 the outcomes of loading
dbSNP are summarized. In a very similar manner as the two previous cases, the
BIC database is discussed in chapter 6. Section 6.1 describes the BIC database
in general terms. In section 6.2 the problems encountered in the data loading
process are listed. In section 6.3 we summarize the lessons learned from loading
the BIC database. These lessons learned from these data sources combined have
lead to the creation of a data loading application, the ”Genoma Data Loader”,
which will be covered in depth by chapter 7, where its structure will be discussed
in section 7.1, what is being loaded and to what extend by section 7.2.

Part three consists of a chapter 8 that covers conclusion and suggests further
research in chapter 9.

1.1 Domain description

Considering the particularities of the problem domain, before introducing and
explaining the basic components of the intended Conceptual Model of the Hu-
man Genome, we provide next a short but necessary summary of the main
properties of the studied genomic domain, as these properties need to be under-
stood for adequately representing them in the target Conceptual Model. Alberts
et al. [8] provide a very complete guide to cell biology, and for a good under-
standing of this article some basic knowledge about genetics is recommended.
This section serves in no case as an exhaustive guide to genetics, it however
aims to provide a minimum of knowledge required to understand the rest of this
article.

1.1.1 Genetics 101

The chemical structure holding this hereditary information is called deoxyri-
bonucleic acid, or DNA. The syntax in which the genetic code is written, con-
sists of 4 elements; A, C, T and G denoting particular chemicals, referred to as
nucleotides, or bases. Each of these nucleotides comprises of 3 components; a
phosphate group, a five-carbon sugar and a nucleobase. The phosphate group
and the sugar form a backbone structure while the nucleobase defines the nu-
cleotide denotation, or meaning. 4 different nucleobases exist; Adenine, Cy-
tosine, Thymine and Guanine, hence the nucleotide identifiers. In DNA the
phosphate groups of each nucleotide bond with the sugar of the next nucleotide
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forming a sequence of nucleotides in that process. At the same time, nucleobases
adhere to each other in a specific way: A only bonds to T and C only bonds to
G. See figure 1.1 for details on the chemical structure of DNA.

Figure 1.1: DNA chemical structure.

DNA as formed by these bonds consists of two deoxyribose phosphate back-
bones with pairs of nucleobases in between. The 3D structure of the molecule is
what is known as the famous helix shape. The deoxyribose phosphate backbones
are often referred to as strands and since the nucleotides adhere to each other in
only one manner, the strand sequences are complementary to each other. This
phenomenon is often referred to as one strand sequence being sense and the
other anti-sense. The sequence on the strand that is transcribed to mRNA is
called the ’sense’ sequence, while the sequence on the opposite strand is called
the ’anti-sense’ sequence. The sense strand then is denoted with a ’-’ symbol,
while the ’+’ symbol indicates a non-sense strand. Both sense and anti-sense
sequences can exist on different parts of the same strand of DNA.

Since the nucleotides bond in an asymmetrical way, sugar to phosphate,
DNA has a direction. In the helix, the direction of one strand is opposite to the
direction of the other. The strand ends are referred to as the 5’ and 3’ ends,
where the 5’ corresponds to the end with a terminal phosphate group and the
3’ to the end with a terminal sugar group. Nevertheless, genomes rarely exist
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as one uninterrupted DNA string, in human beings for example the hereditary
information is divided over 23 pairs of DNA strings, commonly referred to as
chromosomes. Contrary to what would be expected however, only a small part
of the total genome sequence codes for genes. About 95% of the human genome
has been designated ’junk’ and percentages representing coding parts of the
genome range from 1.1% [9] to less then 5% [10]. The non-coding parts of the
genome were considered for a long time to be evolutionary artifacts, serving no
present day function. However, recent research shows the non-coding parts of
the genome might actually be fulfilling functions, not yet well understood [11],
[12] and [13].

Every individual of our species shares approximately 99% of DNA with all
other individuals, meaning that the differences observed among individuals can
be traced back to around 1% of our genetic sequence. Some of these individual
differences, which we will call variations, can be retraced to relatively neutral
aspects like hair and eye color, while others have more serious effects like sus-
ceptibility to disease. A clear example of the omnipresence of ambiguity in the
domain is the lack of a clear distinction in concepts that distinguishes between
these different manifestations of genetic variations. A large amount of recent
genetic research has been focused on discovering the relationship that exists
between genotype and phenotype. Genotype being the chemical ordering of the
earlier mentioned bases and represented by a letter sequence ”ATGGGCCT”.
When people speak of ”sequencing” a genome, it is the process of determining
the nucleotide sequence of one set of chromosomes of a given organism. Pheno-
type relates to the manifestation of all observable characteristics of an organism.
Clearly for this research to take place successfully, data about genotype needs
to be stored, exchanged and analyzed in large amounts.

1.1.2 Genome structure

The concept of genome refers to the collection of an organisms’ hereditary in-
formation. In most organisms it is encoded in DNA while in others, mostly
viruses, in RNA. Some common explanations for the origin of the term include
the blending of the words gene and chromosome, or roots in the ancient Greek
word for γινoµαι; ”I become, I am born, to come into being”. The terms
”genetic” and ”genomic” are often used as synonyms. Semantically speaking,
however, they are not exactly equal: the first usually refers to a gene-centered
science, while the latter considers the genome as a whole. In the context of this
work, they are often used interchangeably.

Genome size varies greatly per organism, from about 3600 base pairs in the
Bacteriophage MS2 virus, to around 3.2 billion base pairs in Homo Sapiens. It
deserves mentioning here that size of genome does not appear to be directly
related to the perceived complexity of the organism as there exists a fish, Pro-
topterus aethiopicus, for which the genome contains a staggering 130 billion
base pairs. If for a single human cell, all DNA would be connected end-to-end
and straightened, it would stretch out to a length of approximately 2 meters.
In order for this quit large molecule to fit in the nucleus of said cell, it is clear
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Figure 1.2: Genome structure.

some kind of ordering needs to take place.

Figure 1.2 depicts the various levels of organization that a genome undergoes.
We will follow the image bottom-up seen from a biological point of view, starting
at the top of the image with the parts of DNA being marked as genes. Stretches
of DNA that code for a type of protein, or for an RNA chain that has a function
in the organism are said to be genes. Genes hold the information that is required
to build and maintain and organism’s cells and pass genetic traits to offspring.
Currently it is expected that the human genome contains ∼20.000 genes, these
protein-coding sequences make up 1-2% of the human genome. Some, or all,
of these genes are able to encode various different proteins depending on the
way their genetic message is interpreted by the transcription and translation
processes that will be discussed in section 1.1.3. It deserves mentioning here
that, although not depicted in figure 1.2, genes can be further decomposed into
parts of nucleotide sequences. This decomposition is based on whether these
sequences are said to be coding, in which case we refer to them as exons, or
non-coding, in which case they are said to be introns. The semantics of this
particular difference will also be clarified in section 1.1.3.
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Said genes are contained within a DNA sequence, the next level of organi-
zation, of which the helical shape already makes it quite space efficient. The
DNA then folds around special proteins, the so-called histones, that make it’s
organization even more efficient and predictable. It is important for the DNA to
be organized in an efficient manner as space is a limited resource within the cell
nucleus. Predictable folding however is just as, if not more important. Many
processes in which the DNA is involved require specific parts of it to be ’read’ by
specific proteins, the exact folding of the DNA might enable, or inhibit this exact
process. Moving on to the last layer of organization considered in this example.
Chromatin is the complex of tightly wound DNA and protein that packages
chromosomes. The composition of chromatin varies through the various phases
of the cell cycle, depending on which parts of the DNA need to be expressed.
Chromosomes come in two varieties: autosomes and sex chromosomes. The
autosomes exist in equal number of copies in both males and females, while this
is not the case for sex chromosomes. In diploid organisms, like humans, cells
have two homologous copies of each chromosome, one from the mother and one
from the father. The number of chromosomes varies per organism. Humans for
instance have 23 chromosome pairs, 22 autosomes and 1 sex chromosome, while
the goldfish accounts for 100 to 104 chromosomes. Again, complexity can not
be related directly to sheer quantity.

1.1.3 Genotype to phenotype

The process of transferring the information contained on the genome -the genotype-
to a set of observable traits -the phenotype- is a complex intercommunication
of organic, ánd inorganic compounds. The exact functioning of this mechanism
is still under research, and many parts remain unknown. What is known can
be decomposed into three major processes, namely transcription, translation
and the interaction of the resulting compounds in what is known as metabolic
pathways. Each of these processes will shortly be discussed separately in more
detail, but we start by introducing how these relate to each other. For genetic
information to leave the cell nucleus, and ultimately lead to observable changes
in an organisms traits, the first step is to transfer the message from DNA to
Ribonucleic Acid, or RNA. This RNA is then able to leave the cell nucleus,
and enter the cell’s cytoplasm where it connects to a ribosome. The ribosome
is an internal component of a biological cell which function is to assemble pro-
teins from RNA. The resulting proteins then interact with each other and other
chemicals, or metabolites, in series of chemical reactions that ultimately lead to
a specific trait.

Transcription

This is the process that transfers genetic information from the relatively stable
DNA molecule, to a complementary RNA copy. DNA itself is unable to leave
the cell nucleus, where it is protected from potentially dangerous factors. RNA
however, due to its slightly different chemical make up, cn leave the nucleus.
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During transcription, a DNA sequence is read by RNA polymerase, which results
in a complementary RNA copy in which all instances of thymine have been
replaced with uracil. Various types of RNA exist, the most aberrant one being
messenger RNA, or mRNA, in which the enclosed message potentially encodes
for a protein. Other examples include ribosomal RNA, transfer RNA and micro
RNA.

Splicing is the process of modifying an RNA after the initial transcription
process in which introns are removed and exons joined. Splicing rarely involves
RNA that is not of the mRNA type, thus in the context of this work only
this case will be considered. As explained earlier, in section 1.1.2, genes can be
decomposed in coding sections, exons, and non-coding sections, introns. In order
for the messenger RNA to produce a correct protein through translation, these
sections need to be either eliminated or joined. Depending on various factors like
in which tissue the particular cell is situated and cell age, the splicing process
might also exclude specific exons, resulting in different mRNAs. The process
of splicing allows for a ’run-time’ reordering of genetic information that enables
for one gene to produce a variety of products. The earlier mentioned organism
complexity issues can largely be explained by exactly this; organisms considered
to be complex, like eukaryotes, splice many protein-coding mRNAs and some
non-coding RNAs. Prokaryotes, on the other hand, splice rarely and mostly
non-coding RNAs.

Figure 1.3: The translation of mRNA and the synthesis of proteins by a ribo-
some.
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Translation

Once the genetic message has been transcribed from DNA onto an RNA molecule,
it is able to leave the cell nucleus and enter the cell’s cytoplasm. It is here that
the ribosomes are located. These ribosomes act like ’protein-factories’ in which
mRNA is translated, or synthesized, to proteins. The mRNA sequence binds to
the ribosome and is interpreted in codons, which means nucleotide triplets. As
the former holds true, the way of breaking the sequence in three letter codons
-the reading frame- defines how the sequence is read. There are three possible
reading frames in an mRNA strand: each reading frame corresponding to start-
ing at a different alignment. The reading frame that has a start codon, and a
subsequent region usually containing a multiple of 3 nucleotides, but excluding
the stop codons is called the open reading frame (ORF). Each possible combina-
tion of the mRNA bases -uracil (U), adenine (A), cytosine (C) and guanine (G)-
represents a particular semantic value, as shown in figure 1.4, either relating the
triplet to a specific amino acid or providing syntactical clues. The latter refers
to start (AUG) and stop codons (UAA, UAG and UGA).

Figure 1.4: Semantics of the triplet codes for each amino acid.

Once the ribosome encounters a start codon, the translation is initiated
and for each following codon the corresponding amino acid is connected to a
growing chain of amino acids. This chain is what ultimately will lead to the
finished protein product. Once the ribosome encounters one of the stop codons
it initiates a process that induces the binding of a release factor protein which
will release the created protein from the mRNA-ribosome assembly. As can be
seen from the table, there exist more distinct codons (27) then amino acids (20).
This allows for natural redundancy in which evolutionary speaking important



18 CHAPTER 1. INTRODUCTION

amino acids appear multiple times.

Metabolic pathways

The resulting products from transcription and then translation then interact in
a series of chemical reactions known a metabolic pathways. In each pathway,
a principal chemical is modified by these series of chemical reactions. These
reactions are catalyzed by specific proteins, also known as enzymes, and often
require additional chemicals like minerals, vitamins and other cofactors. The
involved compounds are referred to as metabolites. Pathways may include other
pathways, and thus create an intricate network known as the metabolic network,
see figure 1.5 for an overview of how the major metabolic pathways interact with
each other.

Figure 1.5: The major metabolic pathways.

Metabolic pathways describe the process in which an initial molecule, the
substrate, is transformed through a series of chemical reactions to form another
product. Pathways that break down compounds are said to be catabolic, while
anabolic pathways often create new biomolecules as final end-products. Al-
though technically speaking all chemical reactions are reversible, the conditions
in the cell are often such that it is thermodynamically more favorable to flow in
only one direction of a reaction.
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1.1.4 Genetic variation

It is clear that the biological mechanism of life is very complicated, and knows
many failure points. A common cause for both evolutionary advantages and
disadvantages is genetic variation. Genetic variations occurs through mutation,
a change in the nucleotide sequence of a gene. A variation will result in pheno-
typic variation if the change in DNA sequence affects the order of amino acids
resulting from translation, and the resulting difference in amino acid sequence
influences the shape, and thus function of the protein. This phenotypic change
can then have either one of three distinct effects on the capability of the individ-
ual to reproduce; (i) positive, when for instance the change makes the individual
resistant to certain disease, (ii) negative, when the change increases suscepti-
bility of the individual to disease and (iii) neutral, in which case the individual
perceives no altered effect. It deserves mentioning here that geographic varia-
tions largely influences the effect of genetic variation on the individual. One can
imagine the case of a genetic variation that impedes the proper expression of the
EPAS1 gene, resulting in the translation of a less functional Endothelial PAS
domain-containing protein 1 transcription factor. The function of this protein
is to switch on genes that produce proteins associated to oxygen binding. Some-
one living at high altitude in the Himalayas will perceive this particular genetic
variation as having a negative effect, clearly posing an evolutionary disadvan-
tage over ’healthy’ individuals. But someone living at sea level, a situation in
which this particular mutated EPAS1 gene is probably never expressed, will
classify the variation as being neutral.

Common ways to classify variations include (i) by effect on structure, (ii) by
effect on function, (iii) by effect on fitness, (iv) by impact on protein sequence
and (v) by inheritance ability. For the scope of this work we will confine the
description to the first three classifications, namely (i) by effect on structure,
(ii) by effect on function and (iii) by effect on fitness. Each of these will now be
discussed in the following sections.

By effect on structure

When classifying genetic variation in terms of the effect on structure one em-
phasizes the alterations that occur in the genetic sequence of a given gene.
Depending on where these variations occur, and whether they alter the function
of the protein product will define the effects on health.

• Small-scale mutations

Point mutations, these variations substitute one nucleotide for an-
other, thereby slightly changing the sequence of the gene, and therefore
the resulting gene product. Common subclassifications for this type of
variations include (i) silent mutations, (ii) missense mutations and (iii)
nonsense mutations.

Insertions, variations that insert one or more nucleotides at a given
position in the genetic sequence are considered insertions. Insertions, like
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deletions, might trigger a frame-shift which is very likely to significantly
alter the gene product.

Deletions, remove one or more nucleotides from the genetic sequence.
Very much like insertions these variations might affect the reading frame
in such a way that the gene product is significantly altered.

• Large-scale mutations

Amplifications, duplicates certain areas of the chromosomal regions,
altering the gene products significantly.

Deletions, large-scale deletions differ from small-scale deletions such
that in the former a small amount of nucleotides is involved while in the
latter case multiple genes might simply disappear.

Complex reorganizations, reorders pieces of DNA in such a way that
gene products significantly change. Common subclassifications for this
type of variations include (i) chromosomal translocations, (ii) interstitial
deletions and (iii) chromosomal inversions.

Loss of heterozygosity, in which case an entire allele is lost

By effect on function

Another way of looking at genetic variation, is classifying it according to how
function is affected by the change. We distinguish five different types of varia-
tions in this particular case.

• Loss-of-function variations, cause the gene product to have less or no func-
tion. In case of complete loss of function this type of variation is often
referred to as an amorphic mutation.

• Gain-of-function variations, modify the gene product in such a manner
that the product acquires a functionality previously not present.

• Dominant negative variations, the result of this type of variations is that
the gene product acts in an exact opposite manner to the ’healthy’, or
wild-type, variant.

• Lethal variations, cause the death of the individuals that carry the varia-
tion

• Back variation or reversion, this type of point variation cancels out varia-
tions restoring the original sequence and thereby the original phenotype.

By effect on fitness

Viewing genetic variations in terms of how they affect the fitness of the individ-
ual to cope with environmental factors and reproduce determines this classifica-
tion. Seemingly, a variation has either one of two effects: harmful, or beneficial.
In which case the former means a decrease in fitness of the individual, while the
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latter refers to an increase of fitness of the individual. In reality these discrete
categories turn out to be an oversimplification. The earlier mentioned case of
EPAS1 already illustrates this. Simply put, determining whether a variation has
a harmful or beneficial effect is determined to large extend by the environment
in which the particular individual resides.

1.2 Problem statement

The sequencing of the Human Genome in the year 2000 by Craig Venter and
Francis Collins [9] came with tremendous promises. These effects are most
probably not yet apparent and science still struggles to process the huge ac-
complishment into usable artifacts. Scientists now broadly agree that reading
the sequence of DNA is the easy part of genome analysis; figuring out what
the sequence actually means is the real challenge. So following these insights a
new scientific line of research was opened as the marriage of Information Tech-
nology (IT) and biology: bioinformatics. It is here that bioinformaticians try
to combine rigorous yet computationally powerful IT with the ambiguous and
fuzzy biology. And as Venter and Collins efforts started to bear fruits, more
and more sequencing experiments have been performed world-wide generating
large amounts of data. These data are stored in countless locations, according
to countless formats and structures, leading to the following problem statement:
how do we manage the data chaos?

As technology advances the amount of data generated by sequencing experi-
ments increases at an equally rapid pace. The task of biologists has traditionally
been to analyze and interpret these data, effectively turning them into useful
knowledge that eventually can be used in various applications. However, as
data creation starts to greatly surpass the processing capability of a single hu-
man being, this analysis and interpretation activity becomes a daunting task.
A possible solution to this data-overload would be the use of powerful comput-
ers, effectively pre-processing the data and separating the junk from useful data
thereby allowing the expert to efficiently dedicate time to data worth looking
at. For this to happen, the data needs both structuring into formats that allow
for computational reasoning while at the same time computer programs that
perform this act of reasoning need to be created.

We thus identify the problem in current genomics as being two fold: on the
one hand we have large amount of data. These data are stored globally in a
very fragmented manner, by countless institutes each of whom often uses its
own, ad-hoc, standards [14]. The data are considered to be highly complex and
often inconsistent with each other due to the rapidly progressing comprehension
of the domain. We have come to refer to this particular phenomenon as the
’data chaos’. On the other hand, apart from this obvious issue there is also
a more hidden case, where conceptually speaking the domain is very much
ambiguous and fuzzy. This ’conceptual chaos’ poses many barriers on promising
reasoning technologies, that would otherwise enable exciting possibilities. These
two pillars that define the main motivation behind this work will be discussed
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separately in the following sections.

1.2.1 Data chaos

Genomic data is stored globally in a very fragmented manner. The lack of a
consensus about these data, how to store and validate them, often results in
inconsistencies and sometimes invalid information, as has been identified and
confirmed by [15] and [16]. As an added problem, the fragmentation requires a
high level of expertise for these data to be interpreted, which is the main task
of a biologist. All in all, the core tasks of biologists become tedious, error prone
and costly in terms of both time and money due to this lack of unity. In the
context of this work we will now introduce some of the common repositories of
genomic data, please notice that we follow a similar structure as above in section
1.1, starting with genomic structure subdomain, moving through the genotype
to phenotype process and pathways towards genetic variation.

The National Center for Biotechnology Information1 (NCBI), established
in 1988 as a national resource for molecular biology information, NCBI creates
public databases, conducts research in computational biology, develops software
tools for analyzing genome data. Since then they have continued to strike a com-
promise between the convenience and simplicity required for the everyday use
of human gene nomenclature and the need for adequate definition of the con-
cepts involved. In short, NCBI is a U.S. government-funded national resource
for molecular biology information, providing access to a variety of data includ-
ing genetic variations [17] and genetic sequences [18]. See [19] for a detailed
overview of all services and tools provided by the NCBI. A data repository sim-
ilar in mission to NCBI, is Ensembl2 [20]. Ensembl is a joint project between
EMBL-EBI and the Sanger Centre to develop a software system which pro-
duces and maintains automatic annotation on genomes. The goal of Ensembl
was initially to automatically annotate the genome, integrate this annotation
with other available biological data and make all this publicly available via the
web. Since the website’s launch in July 2000, many more genomes have been
added to Ensembl and the range of available data has also expanded to include
comparative genomics, variation and regulatory data.

The Online Mendelian Inheritance in Man3 (OMIM) [21] [22] project, also
a project under the NCBI umbrella, consist of a semi-structured collection of
diseases and genetic mutations linked to these diseases. The full-text, referenced
overviews in OMIM contain information on all known mendelian disorders and
over 12,000 genes. OMIM focuses on the relationship between phenotype and
genotype. It is updated daily, and the entries contain copious links to other
genetics resources. It is available as a single file download but due to it’s low
degree of structure very difficult to process automatically. It is for this latter
reason that OMIM is not considered in this work.

1http://www.ncbi.nlm.nih.gov/
2http://www.ensembl.org/
3http://www.ncbi.nlm.nih.gov/omim

http://www.ncbi.nlm.nih.gov/
http://www.ensembl.org/
http://www.ncbi.nlm.nih.gov/omim
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Bioinformatics resources that provide information on pathway data include
the REACTOME4 [23] [24] and KEGG5 [25] [26] [27] databases. REACTOME
is an open-source, open access, manually curated and peer-reviewed pathway
database. Pathway annotations are authored by expert biologists, in collabora-
tion with Reactome editorial staff and cross-referenced to many bioinformatics
databases. These include NCBI Entrez Gene, Ensembl and UniProt databases,
the UCSC and HapMap Genome Browsers, the KEGG Compound, PubMed,
and Gene Ontology. KEGG (Kyoto Encyclopedia of Genes and Genomes) is a
collection of online databases dealing with genomes, enzymatic pathways, and
biological chemicals. The PATHWAY6 database records networks of molecular
interactions in the cells, and variants of them specific to particular organisms.

Apart from datasources that strive to provide structural information like
genetic sequences of genes, chromosomes and entire genomes, there are also
data repositories with the sole purpose of storing genetic variational data. The
Human Gene Mutation Database7 (HGMD) [28] provides a per-gene repository
of mutations, or base changes that research has uncovered to be associated to
disease. The full data set of HGMD can be acquired for a fee, while a less
complete version is available for free in case of academic use. Given that it is
curated by experts, reading scientific papers and extracting the mutational data
from them, the source is considered to be highly reliable. At present day the
HGMD is considered to be the primary source for obtaining genetic mutations
among various genes, although alternatives exist. Many of these alternatives
are non-profit based, meaning they provide open-access without limitations.
Examples include the Catalogue of Somatic Mutations in Cancer8 (COSMIC)
[29], the HapMap9 [1], the Breast Cancer Information Core (BIC) [30], dbSNP10

[17] and many Locus Specific Databases (LSDBs). An LSDB aims to store only
data for a specific locus, or region of the genome. Often these type of data
sources store genetic variations for one gene, or a limited amount of genes. An
interesting effort to standardize these LSDBs, is the Leiden Open Variation
Project (LOVD) [31].Table 1.1 shows an overview of available data sources that
contain data on the BRCA1 gene. It is generally assumed that the data overlaps
at least to some extend, but the exact amount is unclear.

Adding to this already large list of data sources come the repositories that
provide data on proteins. The mission of UniProt11 [32] is to provide the sci-
entific community with a comprehensive, high-quality and freely accessible re-
source of protein sequence and functional information. InterPro12 [33] is an
integrated database of predictive protein ”signatures” used for the classification
and automatic annotation of proteins and genomes. InterPro classifies sequences

4http://www.reactome.org/
5http://www.genome.jp/kegg/
6http://www.genome.jp/kegg/pathway.html
7http://www.hgmd.cf.ac.uk/
8http://www.sanger.ac.uk/genetics/CGP/cosmic/
9http://hapmap.ncbi.nlm.nih.gov/

10http://www.ncbi.nlm.nih.gov/projects/SNP/
11http://www.uniprot.org/
12http://www.ebi.ac.uk/interpro/

http://www.reactome.org/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/pathway.html
http://www.hgmd.cf.ac.uk/
http://www.sanger.ac.uk/genetics/CGP/cosmic/
http://hapmap.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.uniprot.org/
http://www.ebi.ac.uk/interpro/
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Table 1.1: Number of genes, and amount of mutations for the BRCA1 gene per
genetic mutation source.

Source Genes BRCA1

HGMD (academic) 3132 1085
HGMD (commercial) 4122 1339
COSMIC 18647 15
LOVD BRCA1/2 2 502
BIC 2 1446

at superfamily, family and subfamily levels, predicting the occurrence of func-
tional domains, repeats and important sites. InterPro adds in-depth annotation,
including GO terms, to the protein signatures.

Clearly a large amount of databases exist, and every subdomain has at least
two different repositories in use. The above only shows a fraction of what
databases actually exists in the domain, which is estimated to be more then
1300. Some of those provide comprehensive ways to access their data, like En-
sembl does with Biomart [34], while others provide no others means then either
a manual copy-paste process or screen scraping based methods, like the HGMD.
In general the data can be accessed through public FTP servers. The data are
then provided in Tab Separated Files (TSV), Comma Separated Files (CSV) or
XML. In other cases yet, the SQL-based database in use by the repository can
be downloaded as a whole and installed as a local copy. It is clear that for each
subdomain various data sources exist, apart from this each has its own manner
of making the data accessible to third parties.

1.2.2 Conceptual chaos

The conceptual chaos, although largely related to, is fundamentally different
from the above stated data chaos. In short, having a fragmented data storage
is one thing, not knowing the precise semantics of those data is of a different
order. In rapid evolving domains like genomics it comes as no surprise that the
state of knowledge keeps progressing, maybe even on a daily basis. Although
in principle a benevolent process, this also means data have a risk of becoming
outdated; essentially rendering them invalid. Apart from this fact, it is difficult
to appropriately store data in such a manner that it allows for applications later
on that were not envisaged at the time of storage. In biology, basic concepts
like a gene, or allele still have not been defined to a level of formality usually
seen -and often necessary for a proper application- in Information Systems [2].
Fixing exactly this issue has been topic of research for over a decade, and the
Gene Ontology13 [4] has commonly been recognized to be the de-facto standard
as a result. Conceptual modeling based solutions include [35] [36], some first
efforts, and [37], which builds upon the former. A detailed state of the art will
be discussed in section 2.2.

13http://www.geneontology.org/

http://www.geneontology.org/
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Bringing order in the conceptual chaos has the potential benefit of allowing
a computationally based data selection process through which relevant data can
be sifted out and presented to a domain expert, often a biologist, for further
interpretation. Clearly, the amount of data being generated currently -which in
the future is only expected to increase [38]- is impossible to process by a single
human being. It is therefore becoming increasingly difficult for biologists, whose
core task is interpreting the various data, to assemble a ’complete’ picture and
act on that. A possible solution exists in the use of computers to alleviate the
load, and pre-select potentially relevant data from the data chaos. But in order
to do this, a proper semantic understanding of the domain is required, exactly
something that the conceptual schema of the human genome aims for.

1.3 Contribution

First of all it is important to mention this work has been the result of a multi-
disciplinary effort, combining conceptual modeling techniques to the domain of
bioinformatics, and genomics specifically. It can be considered a case study
for the application of Information Systems methodologies in new areas, thereby
defining a clear contribution to the IS community. At the same time, the con-
tribution to bioinformatics is clear in that our approach shows clear evidence of
improving current problems.

Fully resolving the issues of chaos stated above represent an immense task,
far outside the scope of this work. We do however aim to present a step in
the direction we believe is right towards a bioinformatics utopia where both
conceptually speaking, and in terms of data fragmentation the chaos is no long
existing. Conceptual modeling as a methodology has been long recognized as a
proven way to improve Information System quality, as will be discussed shortly
in section 2.1. Bioinformatics in general is producing large amounts of complex
data, that need to be interpreted by human experts. It is clear that to enable
a proper management of this task, Information Systems can prove very useful.
Seen from this perspective it makes perfect sense to use a well-defined conceptual
schema as a basis.

The Conceptual Schema of the Human Genome presented in this work can be
used as a type of blueprint schema from which generic Genomic Information Sys-
tems (GIS) can be created, both manually and automatically using well-proven
MDE methodologies. It is expected that this effort will allow for easier creation
of more consistent and correct GIS, as has been shown to happen in other areas
when applying MDE [39]. Another interesting of the CSHG introduces itself
as the implicit specification of the underlying ontology. By viewing a domain
as a set of concepts with properties, interconnected through various types of
relations the engineer, along with the domain expert, creates a specification of
a conceptualization. The added advantage of using a visual representation -as
is used by the conceptual schema- is that it is intuitive to both engineer and
domain expert. This latter property enables the engineer to work much closer
to the problem domain, effectively having a continuous and direct feedback loop
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with the domain expert, eventually leading to a higher quality representation
of reality. Adding to the ongoing discussion of how -and if- ontologies and con-
ceptual models significantly differ is an important academic contribution of this
work.

The work further shows that, although efforts are on the way, the earlier
mentioned claims of data inconsistency and invalidity are still very much real.
We have analyzed various data sources, and report here the many inconsistencies
found among them. Having a sound data set of genetic variation, validated
and consistent, in itself presents clear advantages to the domain. The effort
as present in this work does not pretend to offer new biological knowledge to
the domain, rather making the already available more consistent, valid and
accessible. The current situation in which researchers, biologists and clinical
staff need to navigate the many existing resources is time consuming, costly
in terms of money and error prone. The effort that has gone into analyzing,
interpreting and eventually loading the datasources mentioned in this work has
lead to the establishment of a sound, reliable data set not just from a biological
point of view but also from an Information Systems.

1.4 Methods and materials

For the purpose of this work the Conceptual Schema of the Human Genome has
been used to create a database, the Human Genome Database or HGDB. Trans-
forming the model into a database was done manually, although recent efforts
have gone into automating this effort by using the Moskitt14 tool [gin:2009].
The database has been created in Oracle Database 11g and runs on a virtual
CentOS 4 installation. The various databases that have been analyzed and will
be discussed in their respective chapters are as follows: (i) the Human Gene
Mutation Database (HGMD), (ii) the dbSNP and (iii) the BIC. Currently work
is being done on integrating the LOVD LSDB’s that store data on the Usher
syndrome15 into HGDB using the same loading module as will be presented in
this document. The preliminary results of loading these repositories in HGDB
will be included in the overviews for informative purposes, but will not be dis-
cussed in detail. Most of the development took place on a workstation with the
following specifications.

• Intel Core 2 Quad Q9550 @ 2.83GHz x 4 CPU

• 8Gb RAM

• Ubuntu 10.10 64-bits

• 500Gb HDD

As the current approach is gene centric, alleles and their reference sequences
play a vital role in the creation of the HGDB. Their importance is obvious as

14http://www.moskitt.org
15https://grenada.lumc.nl/LOVD2/Usher_montpellier/USHbases.html

http://www.moskitt.org
https://grenada.lumc.nl/LOVD2/Usher_montpellier/USHbases.html
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all data, like genetic variation, is located in reference to these sequences. Table
1.2 provides an overview which reference sequences have been used for each
gene, including accession and gi number. The accession number identifies each
reference sequence uniquely, while the gi number serves as a versioning number
identifying the sequence through time.

Table 1.2: Genes and their reference allele accession number, as well as the gi
number

Gene Accession Gi

BRCA1 NG 005905 262359905
BRCA2 NG 012772 256574794
CDH23 NG 008835 209977015
CLRN1 NG 009168 218505692
COL1A1 NG 007400 167830498
COL1A2 NG 007405 167860098
DFNB31 NG 016700 291049787
FBN1 NG 008805 283837777
GPR98 NG 007083 169790827
MYO7A NG 009086 215983053
NF1 NG 009018 213385299
PCDH15 NG 009191 218749815
USH1C NG 011883 226874844
USH1G NG 007882 189011553
USH2A NG 009407 222352133
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Chapter 2

State of the art

This chapter will discuss some of the research that was previously done. As
this work represents a multidisciplinary effort it is difficult to view the Infor-
mation Systems and genomics parts separately. We will discuss how conceptual
modeling is viewed from both an Information Systems point of view, as well as
shedding light on the current state of affairs in the bioinformatics domain con-
sidering this issue. We will then proceed to discuss what is currently being done
to resolve the data- and conceptual chaos earlier mentioned. We will focus on
the ontology-based solutions, as it provides interesting issues to discuss about
as the boundaries between ontologies and conceptual models need to be defined,
and later fade away to uncover that they are actually very much alike. Show-
ing how ontologies and conceptual models, rather then being mutual excluding
entities, can be used in a collaborative way to deal with the chaos is one of the
prime contributions of this work.

2.1 Conceptual modeling in Information Systems

Conceptual modeling (CM) is often suggested but not as often put to practice.
CM is expected to improve Information Systems’ requirements determination
and analysis of the problem domain as well as other parts of the systems de-
velopment lifecycle. The result of the conceptual modeling effort crystalizes in
a conceptual model. Defining this base concept is not trivial, as many varying
definitions exist. The one adopted in this work is as follows: ”A conceptual
model is a simplified representation of reality, devised for a certain purpose and
seen from a certain point of view”. The idea of a conceptual model is to have
a way of simulating a part of reality in a manageable manner, in order to be
able to reason over the creation process of artifacts in that reality. Seen from
this perspective, conceptual models in Information System engineering serve
the same purpose as scaled models of cars used in wind tunnel testing do in
the car industry. Various other uses of the technique have been identified, in-
cluding (i) a communication tool between engineers and domain experts [40],

29
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(ii) a formal conceptual foundation for organizational Information Systems at
various levels (a common accepted model of reality and a communication tool
between IS engineers, and developers), (iii) a foundation for applications devel-
oped by end users, and (iv) an essential part of the system documentation for
the maintenance of the system.

When CM is properly applied, the final Information System is expected to
be functionally richer, less error-prone, more aligned with user requirements, as
well as being more flexible to coping with changing user requirements and less
expensive [41]. Another advantage of CM is that it allows the software engineer
to work at higher levels of abstraction, as well as provide a comprehensive
way of communicating with domain experts. With this latter we refer to the
intuitive nature of visually represented models that convey the understanding of
the domain in a much clearer way then mere descriptions, or formal text-based
methods as confirmed by Larkin and Simon as early as 1987 [42]. This feature
allows the engineer to work closely together with the domain expert, ultimately
leading to a more precise understanding of the domain, the problem and how
to solve it using the appropriate Information System. Working with conceptual
models enables engineers to decompose design problems into parts that can then
be further assigned to professional with various levels of expertise in different
areas of systems development and implementation [43]. It is a well known fact
in Information Systems engineering that the later an error is encountered, the
more costly its resolution. Detecting errors in an early stage thus makes full
sense. It is for the above reasons that conceptual modeling as a discipline has
become an important area of research in Information Systems engineering as
pointed out by Topi and Ramesh [44].

Pastor et al. advance on these efforts by presenting the OO-method, an
Object-Oriented based formalism that allows for ’automated programming’ [7]
[39]. This latter refers to the process of viewing conceptual modeling a logical
step in the constant evolution of programming levels towards higher levels of ab-
straction. When considering conceptual schemas like a high level programming
language, which can be compiled into machine code through various automated
steps, it becomes clear how the earlier mentioned advantages of CM provide
significant contributions to the domain.

Currently, the EER and Object-Oriented (OO) formalisms are two to the
most common CM techniques used in systems analysis and design [45]. The
most widely employed modeling component is without a doubt the class di-
agram, well ahead of use cases and other elements [46]. Aguirre-Urreta and
Marakas [47] critically review the EER and OO empirical studies. It was found
that current empirical research of the domain happens without sufficient con-
sideration for the particularities of the process that mediates between inputs
and outputs. As an additional contribution of this work five dimensions on
which models commonly differ have been identified. First, the level of ontolog-
ical expressiveness among modeling techniques may vary. Interesting views on
this topic are presented by Wand et al. [48] and more recently, Weber [49] and
Wyssusek [50]. Currently the application of ontologies to the earlier mentioned
conceptual chaos in bioinformatics is trending. For this reason, this point is of
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particular interest in the context of this document, as will be further discussed
in section 2.3. Second, the differences in degree to which engineers are expe-
rienced in employing certain modeling methods may affect the outcomes to a
large extend.

Third, as Khatri et al. [51] show, the level of knowledge about the prob-
lem domain has a strong impact on the performance with usage of conceptual
models. This finding can be stretched even further by stating that individual
differences among subjects play a role on the performance of the task. Fourth,
consideration of the informational and computational equivalence of conceptual
models used in research may lead to an expectation about which types of differ-
ences may arise as a result of the comparison. And fifth, a growing amount of
research has focused on the alternative modeling practices that can be used to
map real- world phenomena to the constructs provided by the modeling tech-
nique. This research has highlighted the importance of considering which of
the many methods afforded by a particular formalism were used to construct
conceptual models, and what differences may occur as a result.

2.2 Conceptual modeling in bioinformatics

The first and most relevant contributions in this field are those made by [35],
and it should be considered the starting point for the later efforts done by Pastor
et al. [52] [53] [37] and this work. While conceptual modeling has shown in the
past to significantly improve software quality [54] [39], the enticing idea flowing
from this predicate is that modeling the human genome might very well improve
the quality of life itself. Of course, if we want to reason about genetic elements,
we need to know their conceptual significance, how they relate to each other and
to the environment. It doesn’t come as a surprise then, that various approaches
to the issue have been undertaken in the past, amongst which natural language
descriptions and ontology-based solutions. Natural language descriptions work
very well and are recognized as such in small, controlled environments where
all knowledge is already present in some form. However, the extremely large,
highly complex and ambiguous area of genetics does not fit this description, and
different solutions have to be explored.

Although the issue of ontologies and their applications will be discussed in
more depth in the shortly in section 2.3, we strive here to provide a bird’s-eye
view of how conceptual modeling in bioinformatics has been applied in the past.
As we accept that the philosophy behind conceptual modeling in many cases
resembles that of creating an ontology, it is clear that this section would be
incomplete without explicitly covering ontologies. Ontology is the philosoph-
ical study that deals with questions concerning what entities exist or can be
said to exist, and how such entities can be grouped, related within a hierarchy,
and subdivided according to similarities and differences. Originally adopted by
the information science as a means of describing a common vocabulary when
designing and constructing an Information System, ontologies are now being
used in many more domains, among which: knowledge engineering [55], [56],
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[57], [58], knowledge representation [59], [60], [61], qualitative modeling [62],
[63], [64], language engineering [65], [66], database design [67], [68]. In these
contexts, ontologies are usually understood as dictionaries, taxonomies, cate-
gorization schemata or modeling languages. Schulze-Kremer [69] confirms the
need for a solution to the conceptual chaos by stating: ”to eliminate semantic
confusion... or to provide an exact, semantic specification of the concepts”. He
further proceeds to describe two , well-known at the time, biological ontologies:
Cyc [70] and microKosmos [71]. The Gene Ontology (GO) as presented by Ash-
burner et al. [4] in 2000 is nowadays considered the de-facto standard as the
biology ontology and can be considered an evolution of the Ontology for Molec-
ular Biology as initially presented by Schulze-Kremer [69]. Schwarzer et al. [72]
further elaborate on GO by describing the application of the Gene Ontology
to the SNP concept. Coulet et al. [73] proceeds to provide an ontology-based
converter that allows for solving the notational problems associated to hetero-
geneous SNP descriptions.

Bard and Rhee [74] offer a review of ontologies in biology. Some examples
of relevant ontologies include the Cell Ontology (OBO)1, Galen2, a manage-
ment architecture for clinical information that includes an ontology for human
anatomy and MetaCyc3. It is interesting to note that in the 32 ”principal bi-
ological ontologies and other web sites” three entries can be directly linked to
GO, and probably more when delving deeper into the separate entries. This
confirms our earlier statement that the GO acts as a de-facto standard. Bard
and Rhee proceed to clarify the use of ontologies in general, and applications for
them in biology in particular as well as providing a future vision on the topic.
Their main conclusion is that the key to the general use of ontologies will be
access to the data in biological databases -the genetic variation data repositories
discussed later in this work fall into this category- that are annotated with the
knowledge in these ontologies.

An Information Systems approach to this specific biological problem space
is not entirely new. Okayama [75] describes the conceptual schema of a DNA
database using an extended entity-relationship model. Chen et al. [76] has indi-
cated how an extended object data model can be used to capture the properties
of scientific experiments, and [77] includes models for representing genomic se-
quence data. Paton et al. [35] advanced on this work by presenting a first effort
in conceptually modeling the S. cerevisiae genome, which is a type of yeast,
by proposing a collection of conceptual data models for genomic data. Among
these conceptual models are a basic schema diagram for genomic data, a protein-
protein interaction model, a model for transcriptome4 data and a schema for
modeling alleles. Whereas [53] provides a broader view by presenting conceptual
models for describing both genome sequences and related functional data sets,
[78] further elaborated on the basic schema diagram for genomic data thereby

1obo.sourceforge.net/list.shtml
2www.opengalen.org
3http://metacyc.org
4The transcriptome is the set of all RNA molecules, including mRNA, rRNA, tRNA, and

other non-coding RNA produced in one or a population of cells

obo.sourceforge.net/list.shtml
www.opengalen.org
http://metacyc.org
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narrowing the focus and specializing it for the human genome.
Whereas Paton et al. provide a broader view by presenting conceptual mod-

els for describing both genome sequences and related functional data sets, [52]
converged on the basic schema diagram for genomic data adapting it to the hu-
man genome and eventually produced a database, the human genome database
(HGDB) corresponding to this model and following the standard rules of logical
design. This database is now in the prototype phase and the first 2 genes, NF1
and BRCA1, have been partially loaded. Pastor et al. describes the evolution
HGDB went through during the process of conceptually mapping HGDB and
HGMD to each other in [53]. In [78] Pastor et al. describe the evolution of the
model more in general and provide a descriptive overview of how the model
came to be, and from where it evolved to what it is now.

Banning ambiguity in the genomics domain has been subject of many ear-
lier attempts, including ontologies and formal descriptions in natural language.
Looking from the computer scientist perspective, ambiguity is usually consid-
ered an undesirable and often avoidable feature. Indeed, in computer design
the behavior of the system is always intended to be known. In biology, and
especially genomics, this is simply not the case. Complexity derived from the
randomness which created the conditions allowing life to emerge is today ob-
scuring the processes driving this very same system.

2.3 Ontology based solutions

The sequencing of the Human Genome in the year 2000 by Craig Venter and
Francis Collins [9] came with tremendous promises. These effects are most
probably not yet apparent and science still struggles to process the huge accom-
plishment into knowledge artifacts. Scientists now broadly agree that reading
the sequence of DNA was the relatively easy part of genome analysis; figuring
out what the sequence actually means is the real challenge. Following these
insights a new scientific line of research was opened as the marriage of IT and
biology: bioinformatics. It is here that bioinformaticians try to combine rig-
orous yet computationally powerful IT with the ambiguous and fuzzy biology.
And as Venter and Collins efforts start to bear fruits and technology rapidly
advances, more and more sequencing experiments are being performed world-
wide generating large amounts of data; leading to the following question: how
do we manage the data chaos?

Current solutions are often based on ontologies, most notably the Gene On-
tology (GO). Literally translated from ancient Greek, ”oητoσ” means ”of that
which is” and ”-λoγια” science, study. The science of Ontology (uppercase
”O”) is diverse and dates back to the early Greeks, where it referred to the
analytic philosophy of determining what categories of being are fundamental,
and in what sense items in those categories can be said to ”be”. In modern
times, an ontology (lowercase ”o”) is considered many things. Gruber is cred-
ited for introducing the first compact, yet complete description: ”[an ontology
is a] specification of a conceptualization” [55].
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Ontologies enable us to build large, maintainable knowledge bases that can
codify what we know about specific areas of practice in precise, unambiguous
terms. Adding to this, it allows us to reason over these structured knowledge
bases, with the purpose of deducing new knowledge. In this short description
we identify two different applications; knowledge management and knowledge
deduction. An ontology can be of varying level of rigor, where a lower level,
and as such more ambiguous ontology will be fine to deliver the promise of
maintaining knowledge bases, but unable to allow for automated reasoning nec-
essary to deduce new knowledge. A higher level of rigor will allow for both
accurate knowledge management, and deduction of new knowledge at the cost
of increased complexity.

When the Gene Ontology was conceived in 2000 [4], it came with the promise
of enabling a conceptual unification of biology by providing a dynamic, con-
trolled vocabulary. Adding to this, it was hoped that the common vocabulary
would result ”in the ability to query and retrieve gene and proteins based on
their shared biology”, thus deducing new knowledge. Later research has shown
that Gene Ontology in reality often lacks rigor to allow for this high level of
ontology application. The early discussion started by [79] and [80], stating that
”It is unclear what kinds of reasoning are permissible on the basis of GOs hier-
archies.” and ”No procedures are offered by which GO can be validated.’”. We
now proceed to discuss the main points of their work.

2.3.1 Universals versus particulars

In metaphysics, a universal is a meta-concept. It defines what particular things
have in common, namely characteristics or qualities.The idea is that universals
can be instantiated by particular things, or particulars (also called individuals,
exemplars, instances, tokens). For example, the species E. coli, with the function
to boost insulin production is a universal. Instantiated as the particular E.
coli bacterium now existing in the Petri dish, its function is to boost insulin
production in specific cells in your pancreas. Why is it important to have a
distinction between particulars and universals? Consider the following case
in which we have modeled a universal, say ”gene”, that corresponds to the
biological concept by the same name and has a few properties: it is known for
instance that a gene has a promotor and a terminator while being located on
a specific chromosome. Once we now establish during a biological experiment
that a certain stretch of DNA must be a gene (effectively instantiating the
universal to an instance), we are now able to deduce from this knowledge that
this particular stretch of DNA must have a promotor, terminator and that it
is positioned on a chromosome. Imagine this same case but now we have not
modeled the universal, instead storing a list of stretches of DNA (instances) that
we consider to be genes. When we try to make the same deduction as earlier in
case we find a new stretch of DNA that corresponds to the biological concept
of ”gene”, we can not deduce what other properties it has.
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2.3.2 Continuants versus occurrents

Entities that continue to exist through time are often referred to as continuants.
In the GO context, organisms, cells and chromosomes are all continuants, even
while undergoing changes they do not cease to preserve their identity.

Occurrents on the other hand, are never said to exist in full for a single
instant of time. Rather they they unfold during successive phases, like for
example a viral infection unfolds itself over time. (Biological) processes usually
are characterized by passing through different states: where the nucleus is part
of the cell, mitosis is a part of the cellular process.

The continuant/occurrent opposition corresponds in the first place to the
distinction between substances (objects, things) and processes. GOs cellular
component ontology is in our terms an ontology of substance universals; its
molecular function and biological process ontology are ontologies of function and
process universals. But functions, too, are from the perspective of philosophical
ontology continuants. For if an object has a given function which means a token
function for a given interval of time, then this token function is present in full
at every instant in this interval. It does not unfold itself in phases in the manner
of an occurrent. If, however, the token function gets exercised, then the token
process that results does indeed unfold itself in this manner. Each function thus
gives rise, when it is exercised, to processes or activities of characteristic types.

2.3.3 GO’s relations

The GO relation isa is referred to as meaning instance of, however in practice
it is clearly used in such a way to indicate is a kind of or specialization between
universals (e.g. ”p53 is a protein”). Adding to this, sometimes the isa relation
is used to indicate part-of, as in the definition of vacuolar proton-transporting
V-type ATPase, V0 domain (GO:0000220), which identifies the concept as isa
vacuolar part, rather than as a component part thereof.

The part-of relation as defined by GO indicates a transitive relation intended
to conceptualize ”can be part of, not is always part of”. GO uses the part-
of relation for representation of parts of both substances and processes, and
of functions/activities. The part-of relation is ambiguous in that it does not
provide clear means of distinguishing between the following cases:

• A part-of any B

• A part-of some B

• A part-of B, only when a condition holds

However useful as a controlled vocabulary, Gene Ontology all to often fails to
deliver on the promise of allowing for deduction of new knowledge due to a lack
of necessary conceptual rigor. Egaña Aranguren et al. [81] captures the essence
of this issue by stating that ”The computers’ understanding is determined by the
semantics of the language”, thus if the semantics of the language are unclear, so
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is the computers’ understanding. It is difficult for humans to adequately reason
over situations they don’t understand, it is even more so for computers.

2.3.4 Conceptual modeling

Conceptual modeling is the practice of creating models for the purpose of either
designing an artifact, or achieving a higher understanding of a certain domain.
Often these two overlap in a process referred to as Model Driven Architecture
(MDA). In MDA the main objective consists of creating high quality software,
made possible by extensive use of conceptual modeling techniques. The idea is
to create models of the domain and the to-be created application, after which
the software can automatically be generated from these models, in some cases
without human interference [39]. Clearly, for this process to succeed the model
must be formal and unambiguous, i.e. the semantics of the language must
be clear. MDA is most often used in an Information Systems (IS) context,
but is it so strange to view the biological mechanism of life as an IS? A very
complex and organically based, but an IS nonetheless. Replacing human made,
silicon based, chips with organic proteins and processor instructions with DNA
transcription and translation to proteins. It is often through making analogies
with systems we already comprehend, that we come to understand otherwise
difficult to grasp mechanisms. Currently, a very attractive, challenging line of
research is the personalized medicine context (have a look for instance at [82],
where concrete applications of the IS-based working environment defended in
this paper are presented).

The first documented effort to combine the practice of conceptual modeling
is [35] which proposes conceptual models for genomic data. Pastor et al. [83]
and [37] then further elaborated on this initial work.

It is important to understand that using either approach; conceptual models
(CM) or ontologies is really not that different, as a matter of fact an ontology is
always present when creating a conceptual model. It is defined implicitly by the
model itself, while the other way around is not always true: not every ontology
has a visual representation allowing it to be named a conceptual model.

The universals versus particulars discussion is easily addressed by CMs: that
which is reflected in the model must always be a universal, for instance a gene,
having the following attributes: HUGO id, chromosome. While its particulars,
for instance a gene that has the HUGO assigned id ”BRCA1”, and which is
located on the human chromosome 17. These particulars are instances of the
CMs concepts, and usually exists only at runtime. Runtime being interpreted
broadly: both an executing object and a database tuple, stored persistently, are
considered runtime.

The GO expressiveness for conceptualizing relations among entities is not
rich enough. By being unable to capture certain knowledge adequately, the
uncontrolled use of non-standard operators becomes a tempting, ad-hoc, solu-
tion. Conceptual modeling offers a rich variety of relations: an aggregation is a
weak whole-part relation where the members can exist without the containing
or enclosing class, e.g. Staphylococcus epidermidis forms part of human skin
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flora, but can survive without a human host. A composition is also a whole-
part relation, but stronger than an aggregation such that the whole does not
exist without its parts, e.g. a human individual can not exist without a brain.
Further, inheritance allows in an intuitive way to identify hierarchies of con-
cepts; a skin cell is a specified type of cell, thus inherits properties of its super
type. The concept of a simple relation merely describes the abstract property of
allowing communication between two entities: for instance the communication
between neurons (this would be a reflective association). In case expressiveness
is still not rich enough, the Object Constraint Language [84] allows for even finer
specification by allowing the application of textual constraints to the models’
behavior.

In general, ontologies and conceptual models are not all that different. We
support the idea that in the creation of a conceptual model, an ontology is
always present implicitly. The ontology as a formal representation of what
is said to be in the modeled subdomain of reality can be inferred from the
model itself. A main difference is the visual aspect of conceptual modeling, in
which the domain expert can easily understand and therefore cooperate on the
creation of the model. This latter implies that conceptual models can be created
closer to the problem domain and therefore, we believe, lead to higher quality
representations with a better fit with reality.
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Chapter 3

The Conceptual Schema of
the Human Genome

Initially an ideal model of the Conceptual Schema of the Human Genome
(CSHG) was created, essentially describing how the genomic concepts should
be according to the latest of knowledge. However, as data was matched from
various external sources to this ideal model, it soon became clear a dichotomy
existed between the ideal model and the way data was represented in the real
world. A second model was created, logically named the real model. This real
model serves as a practical tool of resolving the encountered limitations, it there-
fore compromises on the aspect of understanding the domain. The intention of
the real model is to adapt the modeling elements included in the ideal model
to the way in which we found that data are stored and managed in practical
settings. As there is always a conceptual mapping between concepts in the
ideal model and how they appear in real models, we focus in this work on the
ideal model. To simplify the presentation of the schema, 6 conceptual views
are considered: the structural view, the variational view, the phenotype view,
the transcription view, the genome view and the bibliography/databank view.
The joins between these views are pointed out by shaded boxes. We will now
proceed to further detail these views in the following sections.

3.1 The structural view

A genome is defined as the entirety of an organism’s hereditary information,
in this case a human being. By this we mean the full sequence of base pairs
that make up the genetic sequence, consult section 1.1 for an introduction to
genomics. The genetic sequence is rarely one consecutive DNA molecule, but
rather a set of smaller DNA molecules, or chromosomes. These chromosomes
then are further decomposed into units of heredity commonly known as genes.

CSHG takes the concept of gene as a central point resulting in a gene cen-
tric conceptual schema. The structural view aims to capture exactly this by

39
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conceptualizing common genetic concepts like Gene and Allele, figure 3.1. In
terms of genetics these concepts are still surrounded with ambiguity, as shown
by [2] and [3].
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Figure 3.1: The structural view of the Conceptual Schema of the Human
Genome

In CSHG, a gene is considered to be a collection of identifying properties and
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attributes. id symbol represents an alphanumeric code for the gene according
to HGNC [85], it also functions as the primary key; id HUGO, a numeric code
assigned to the gene by HGNC; official name, the full name of the gene; sum-
mary, a short description; chromosome, the chromosome on which the gene is
located and locus, representing the location of the gene within the chromosome.
Locus, also often referred to as cytoband, refers to stored information about
the subregions of a chromosome that become visible with a microscope after
staining during a specific cell cycle phase (Metaphase).

An Allele is the ’version’ of a gene as encountered in organisms. By version
we mean the exact sequence of base pairs that represent the unit of heredity we
identify as gene. A particular gene might have one or many alleles associated.
In some cases, different alleles lead to different phenotypes -of which some may
have a negative or positive effect in terms of survivability of the individual-
and in other cases the different alleles don’t provoke differing phenotypes. In
CSHG an Allele thus has a start position and an end position, relative to the
beginning of the chromosome and a strand attribute to identify on which of
the two DNA strands it is located, indicated by either ’plus’ or ’minus’. We
identify two types of Alleles: Allelic Variants and Allelic Reference Type, each
of which has a single attribute sequence. The idea here is that a reference allele
is said to exist and represents a ’standard’ sequence of a particular gene, in
the context of this work the so-called NCBI refSeq [18] is used. The Allelic
Reference Type then can have various associated Variations, this latter concept
will be discussed in detail in section 3.2. Each of these Variations triggers the
possibility of a different Allelic Variant, which sequence is thus derived from the
Allelic Reference Type and Variation.

The Gene Data Bank Identification and Allele Data Bank Identification en-
tities will be discussed into more detail in section 3.6.

3.2 The variation view

Genetic variation is brought about by mutation, a change in the chemical struc-
ture of a gene. A variation can have either a negative, positive or neutral effect
on phenotype. Chapter 5 will go into more detail exactly about this latter ef-
fect and how the conceptualization was introduced in CSHG. Natural selection
avoids the reproduction of individuals with genetic variation that poses evolu-
tionary disadvantages. Genetic variation with negative effect is thus expected
to occur infrequently. Section 1.1.4 describes genetic variations in more detail.
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Figure 3.2: The variation view of the Conceptual Schema of the Human Genome
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The variation view of the CSHG makes an effort to capture exactly these
concepts, as displayed by figure 3.2. The Variation entity stores information
about changes in a certain allele in respect to the reference, the Allelic Ref-
erence Type. It has an id variation attribute for internal identifying purposes.
id variation db refers to the identification used in the external source from which
the Variation instance was extracted. It further holds a description, meant to
store a small natural language description about the variation.

The entities specifying the Variation concept through generalization can
then be classified into three categories; (i) location, (ii) effect and (iii) descrip-
tion, each representing a specific type of polymorphism. The location classes
store information about whether the variation affects one or more genes. In the
case of a genic location, only one gene is affected, while in the case of chro-
mosomal, multiple genes might be influenced. The effect entities specify the
variations effect on phenotype. This can either be mutant and thus influence
phenotype in a negative way, a neutral polymorphism or the effect might be un-
known. The splicing, regulatory, missense and others concepts are considered to
be mutations since they have a negative effect, hence they are a specialization
of the mutant concept. Ultimately, the description classes include descriptive
information about the variation. Depending on the degree to which the data on
the variation is precise, it falls into either the precise or imprecise class. When
imprecise, the entity only stores a general description. In the case of precise
data, it stores the position of the variation and further specifies the nature of
the variation into four classes: insertion which corresponds to the insertion
variation as defined in section 1.1.4, deletion which corresponds to the deletion
variation as defined in section 1.1.4, indel which corresponds to the point vari-
ation as defined in section 1.1.4 and inversion. Each of these concepts store
information about this specific type of variation and the exact attributes vary
from type to type.

The Data Bank and Bibliography References entities will be discussed in
section 3.6. Syndrome and Value will be explained in the following section,
while Allelic Reference Type and Allelic Variant have just been clarified in
section 3.1. Segment, Spliced Transcript and RegulatorSequence belong to the
transcript view and will be discussed shortly in section 3.4

3.3 The phenotype view

The Category, Feature, Value, Measurable and Syndrome classes associate a
variation to a phenotype. The Syndrome class corresponds most to the general
concept of disease; Neurofibromatosis and Huntingtons are examples of instances
of this class. A syndrome can be provoked by one or several variations; and a
variation can have multiple diseases associated to it. Usually, syndromes are
characterized by various features, instances of the Feature entity; in the case of
Neurofibromatosis, this includes the so-called café-au-lait spot features. These
features in turn, are classified by categories, which have a recursive property
indicated by the self-referencing relationship. Adding to this, each feature has
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an associated value, which is the measurable effect on phenotype (Measurable).
In the case of Huntingtons syndrome, this corresponds to the blood markers used
to detect tumors. It is important to note that not every variation is associated
to a specific phenotype; typically, variations characterized as polymorphisms do
not cause pathological phenotypes.

The Variation classes has been discussed in section 3.2.
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Figure 3.3: the phenotype view of the Conceptual Schema of the Human Genome
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3.4 The transcription view

This view, figure 3.4, models the allele segmentation for the transcription pro-
cess -the part of the conceptual model associated to the transcription process
itself is explained below. The Segment class represents a segment of the allele,
its attributes are: ord num (identifies a certain segment among all the allele seg-
ments), start position and end position (initial and end position of the segment
in the chromosome), and sequence (DNA sequence between start position and
end position). The Segment entity has four specialized entities classified by their
function in the transcription process: Promoter (DNA sequence region that fa-
cilitates the initiation of the transcription process); TranscribedSequence (DNA
sequence transcribed by the RNA polymerase II); Terminator (DNA sequence
that signals the end of the transcription process); and RegulatorSequence (DNA
sequence that regulates one or many transcription units). The Transcription
Unit class models -as its name indicates- the biological concept of a transcrip-
tion unit; the attribute ord num identifies a specific transcription unit in the
system. This class is defined as a composition of a Promoter segment, many
TranscribedSequence segments (many transcribed sequences may exist in the
same transcription unit, all starting at the same position), many Terminator
segments (a transcription unit may have more than one terminator segment),
and many RegulatorSequence segments (a transcription unit may have many
regulatory segments, shared by different transcription units belonging to sev-
eral genes in the most general case). It is interesting to note here that regulator
sequences do no necessarily have to reside within the gene they regulate, even
more they can reside on entirely different chromosomes [86].
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Figure 3.4: The transcription view of the Conceptual Schema of the Human
Genome
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Transcription is the biological process in which the genetic sequence in DNA
is transferred, or transcribed onto RNA, a molecule very similar to DNA. This
allows the genetic sequence to leave the cell nucleus, in order to reach other
biological systems that will eventually lead to the construction of complex pro-
teins. A gene can be thought of a as a set of separate blocks of nucleotides.
The coding blocks, or exons, eventually form the transcript, although which
exons are included in which version of the transcript may vary. The process
that regulates which exons are included, and discards all of the introns is called
splicing, see [2] for more information. The Transcription view in [fig. 2], models
the basic steps in protein synthesis. The Primary Transcript class represents
the transcribed copy from DNA to RNA of the TranscribedSequence. In the
biological process of transcription, the primary transcript is an RNA molecule,
containing a literal copy of the DNA sequence of a gene, including all coding
(exons) and non-coding (introns) fragments. Its sequence attribute is a derived
attribute from the Segment class. The PrimaryTranscriptPath class models the
different splicing factor-driven partitions of the Primary Transcript, its attribute
ord num identifies a partition from the complete set of partitions of a Primary
Transcript. In the ElementTranscript class, the ord num attribute identifies a
specific fragment within the partition. The Exon and Intron classes specialize
the type of partition fragments. The Spliced Transcript class represents different
exon combinations (sequences) of a Primary Transcript, its ord num attribute
identifies it among all the allele spliced transcripts. The result of these combina-
tions will be the mRNA and others RNA types (specialized classes from Spliced
Transcript).

The mRNA contains a nucleotide sequence that could potentially encode a
protein, this is known as ORF (Open Reading Frame). The id attribute of an
ORF identifies it in the system, and the sequence attribute stores the codifying
sequence. The Primary Polypeptide class describes the protein primary struc-
ture: the amino acid chain obtained as a result of the translation of an ORF.
This amino acid chain undergoes chemical transformations and the final result
is a functional protein, represented in the model as the Protein class. A protein
can consist of one or more Primary Polypeptides. In the Protein, its name at-
tribute represents the name of the resulting protein, and its sequence attribute
the amino acid sequence.

The ChromosomeSegment class represents the segments that comprise the
chromosome. This class has a sequence attribute which stores the correspond-
ing DNA sequence delimited by start position and end position attributes. A
chromosome has two main types of segments: coding-related segments (Genic-
Segment) and non coding-related segments (NonGenicSegment). Two classes
specialize NonGenicSegment : the IntergenicRegion class (the regions between
genes) and ChromosomalElement class. The last one has three specializing
classes that describe other elements of the chromosomes (Centromere, Telomere
and ORI ) whose function is to keep the chromosome functional and are not
involved in protein production.
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3.5 The genome view

The Genome view, figure 3.5, models individual human genomes. This view is
interesting for future applications, since massive parallel sequencing technologies
will allow the complete sequencing of individual genomes at a very low price in
the near future [87].
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Figure 3.5: The genome view of the Conceptual Schema of the Human Genome
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The class Research Centre represents the labs or research centers where an
individuals’ human genome was sequenced. A genome (Genome) is considered
a set of chromosomes (Chromosome). The number attribute identifies a chro-
mosome in a genome. The couple relation on the Chromosome class represents
the concept of homologue pairing, i.e. every human cell will carry two equiva-
lent chromosomes -one from the father and one from the mother- with the same
genes but different alleles for each gene.

3.6 The bibliography/databank view
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Figure 3.6: The bibliography/databank view of the Conceptual Schema of the
Human Genome



Chapter 4

Solving the HGMD case

The first part of this work centers on emphasizing the importance of applying
conceptual modeling techniques before constructing any Information System,
and Genomic Information Systems in particular. The second part starts here
and describes the results of loading the BRCA1 gene data from HGMD into
the database that results from the Conceptual Schema of the Human Genome.
The encountered problems serve as examples and a case proof of why an In-
formation System without a conceptual modeling sound backbone results in
myriad difficulties and undesired behavior, thereby enforcing our earlier men-
tioned statement.

[83] reports a study of comparing the HGMD to the CSHG, in order to iden-
tify a conceptual mapping between the two. It is this mapping that is followed
in this document, and the following section will report the encountered problems
for actually loading the information from the HGMD into the HGDB for the
BRCA1 gene. Roughly problems can be separated in two categories; intrinsic
data properties and data representation, with the final intention of providing
a concrete report on what type of problems the correct load of a conceptual
model-based genome data base must face and solve. This is important because
the main benefits of applying conceptual modeling principles to the understand-
ing of the human genome are located in both having the right data structure and
the right data contents. Identifying and classifying these data loading problems
provide general solutions that can help in solving the same problems in other
biological data loading contexts. Verifiable incorrect, inconsistent or incom-
plete data (tuples) are examples of these encountered mishaps with the actual
data, or intrinsic data properties. Difficulties associated to physically extract-
ing the data from the external source and ambiguously description of mutation
properties are typical examples of data representation problems. Naturally, the
division between the two categories is not strict and thus some overlap exists, it
is however useful to keep in mind that intrinsic data property problems tend to
be affecting the entire genetics domain, while the data representation difficulties
are restricted to HGMD.

51
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4.1 HGMD description

The Human Gene Mutation Database (HGMD) represents an attempt to collate
known (published) gene lesions responsible for human inherited disease. This
database, whilst originally established for the study of mutational mechanisms
in human genes [28], has now acquired a much broader utility in that it embodies
an up-to-date and comprehensive reference source to the spectrum of inherited
human gene lesions. Thus, HGMD provides information of practical diagnostic
importance to (i) researchers and diagnosticians in human molecular genetics,
(ii) physicians interested in a particular inherited condition in a given patient or
family, and (iii) genetic counsellors. The HGMD can be accessed either publicly
- having less entries but no fee is charged- or professionally -in which case a fee
is charged for access to the full data set.

The HGMD provides an overview of mutations causing or associated with hu-
man inherited disease. Adding to that, the repository includes disease-associated
polymorphisms reported in literature. In general, these data consist of various
types of genetic variation. In the current version of HGMD, both somatic and
mitochondrial variations are not included. All genetic variations in HGMD have
been found as a result of DNA analysis, excluding thus variations inferred from
amino acids sequencing. The latter is to avoid ambiguity issues that still sur-
round DNA sequence changes. Genetic variation in coding regions that does
not alter the encoded amino acid are also not included.

HGMD extracts its data from over 250 journals, which are not further spec-
ified. The papers are manually read and the data interpreted by experts, ensur-
ing the data is in theory high quality, but vulnerable to human error. HGMD
also includes some data from LSDB’s. At the time of writing (20-07-2011),
the HGMD contained 113 247 genetic variations, of which 82 808 are publicly
accessible.

4.2 Encountered problems

HGMD distinguishes 10 mutation types: Missense/nonsense, Splicing, Regula-
tory, Small Deletions, Small Insertions, Small Indels, Gross Deletions, Gross
Insertions, Complex Rearrangements and Repeat Variations. Roughly all the
types can be mapped to the Variation and Precise concepts of the CSHG, ex-
cept for the Gross Deletions, Gross Insertions, Complex Rearrangements and
Repeat Variations. The latter are described in a very unstructured manner,
almost natural language, and are thus considered impossible to process auto-
matically. Appendix A.1 provides a screenshot of how precise mutations -the
ones that have a precise description including position, change and phenotype-
and appendix A.2 provides a screenshot of those earlier mentioned unstructured
-or imprecise- mutations. The CSHG facilitates these tuples as Imprecise, which
stores a description of the mutation.
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4.2.1 Intrinsic data properties

In some cases the HGMD mutational data simply lacks entries. For instance, the
splice mutations overview provided by HGMD mentions 5 mutations in intron
22, while [88] states at least 2 other mutations; IVS22+67(T>C) and IVS22+8
(T>A). Three concrete examples of this problem were encountered, all three in
splicing site mutations. However, this particular type of problem is very difficult
to detect, since finding them involves rereading the articles HGMD provides
which is hard to automate. Thus, although only three concrete occurrences of
this problem have been encountered, it is likely more exist.

Splicing site mutation CS961492 describes a C>T mutation, as a possible
phenotype HGMD indicates Breast cancer. However, having the read the corre-
sponding article [89], not once breast cancer is mentioned in combination with
this mutation. The article does mention the mutation as being affiliated with
men suffering from prostate cancer. Thus, deducing from the rather limited
information made available by HGMD on this specific mutation, it is concluded
HGMD made an error during data entry.

Splicing site mutations CS063247 and CS011027 should be located near in-
tron 4, according to the HGMD splicing site mutations overview. However
according to the splice junctions overview HGMD provides, there exists no in-
tron 4, nor an exon 4. Since indeed both of the papers [90] and [91] state the
mentioned mutations near intron 4, it would be logical to presume the problem
is on HGMDs side. So at first, this specific problem instance was considered to
be either a major flaw in HGMD due to inconsistent reference sequences, or a
result of human error during the HGMD loading procedure. However, deeper
research revealed a more subtle situation. splicing site mutations are located
in HGMD by using a splice junctions overview, which provides an overview of
intron- and exon borders in the gene. HGMD constructs this overview by us-
ing a NCBI reference sequence, in this case L78833. This reference provides a
comment in natural language that explains the absence of an exon 4 as: ”Char-
acterization of an aberrant BRCA1 cDNA clone in the original report [92] led
to the misidentification of an inserted Alu element as exon 4. Not normally
found in BRCA1 transcripts, insertion of this Alu would lead to introduction of
a STOP codon. Hence, BRCA1 exons and introns are numbered 1a, 1b, 2, 3,
5, 6, etc.”.

Splicing site mutation CS012667 indicates a G>A mutation in nucleotide
+3 from the start of intron 2 . However neither the HGMD splice junction
overview, nor the NCBI reference gene sequence indicates a G-nucleotide at this
location. A very similar event happens with splicing site mutations CS001825
and CS991331. They both involve a mutation located 7 nucleotides upstream
(+7) from the start of intron 22. However, the first mentions an A>G mutation,
while the latter describes, for that exact same location, a T>C mutation. Since
both the NCBI reference sequence and the HGMD splice junctions overview
indicate an A nucleotide at the appropriate position, and the CS001825 reference
article [93] indeed mentions an A>G mutation at the specific location, one could
easily conclude the CS001825 A>G mutation in the correct one. However, the
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CS991331 reference article [88] does indeed point out a T>G mutation at the
location, so the truth might be slightly more subtle. Since [88] involves an
African-American population, while [93] entails a Chinese population, a possible
reason for the irregularity might be general genetic differences between those
ethnic groups. A phenomenon referred to as Single Nucleotide Polymorphisms,
or SNP’s [94]. 5 Occurrences of this problem have been identified in splicing site
mutations, 1 in Small Deletions and Small Insertions each, leading to a total of 7
occurrences. SNP’s are currently included in the CSHG as a separate concept,
facilitating the placement of these type of mutations. Finding these type of
genetic variations, mixed in with another type of variations does emphasize the
need for an unambiguous data representation.

4.2.2 Data representation

The HGMD public version, used for this research presents data through a web-
site in HTML tables. This makes an automatic extraction procedure very dif-
ficult, but not impossible. Using a ’screen-scraping’ approach including HTML
parser technology, the individual tuples can be isolated and extracted. This ap-
proach however has several drawbacks, among which its inflexibility of coping
with changing environments, which especially in this rapid evolving domain is
undesirable. It deserves mentioning here that the professional license, available
for a fee, does allow for acquisition of the HGMD database as a .sql file, making
this extraction process a lot easier. Also, the public version has a delayed update
cycle, while the professional license includes the entire up-to-date dataset.

Some data is provided in natural language. For instance the fact that the
first two BRCA1 exons are alternative non-coding exons is only mentioned in
the header of the Splice Junctions overview: ’The first 2 exons are alternative
non-coding exons and The translation initiation codon is located within exon
2, this mainly affects locating splicing site mutations (1 instance). Adding to
this, in Small Deletions (2 instances) and in Small Insertions (3 instances) some
mutations are located through mouse-over tags, the information communicated
by these tags is highly unstructured to a degree that we might call it natural
language as well. Also, in the case of imprecise mutations (Gross Deletions,
Gross Insertions, Complex Rearrangements and Repeat Variations), the greater
part of the information presented by HGMD is in natural language, impeding
an automated approach severely in the affected cases.

In some cases, the HGMD database uses different ways of locating muta-
tions, within the same type of mutations. For instance, Small Insertion mu-
tations CI030168, CI962219 and CI022582 happen in non-coding areas of the
gene, just like the Small Deletions mutations CD991644 and CD994433. Since
HGMD generally uses a cDNA codon referenced way of locating these types of
mutations, and given that non-coding sequences simply not exist in the cDNA,
HGMD locates these earlier mentioned mutations in a different way. In the case
of Small Insertions, HGMD provides a Splice Junction reference, very much like
the method used to locate splicing site mutations. In this case the CI030168,
CI962219 and CI022582 mutations are located at IVS20+21, IVS20+48 and
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IVS20+64 respectively. So IVS20 indicates the intron number, where +21 in-
dicates the offset, however since no acceptor/ donor information is provided,
it is unclear from which side of the intron the offset should be referenced. In
the case of Small Deletion mutations CD991644 and CD994433 at first sight,
no indication of how to locate them is provided. However, this information
is provided through mouse-over tags in the Splice Junctions referenced form,
described earlier. CD991644 is thus located by I7E8-24, aka IVS7 -15 del10.
and CD994433 is located by I12+34 / polymorphism ?. This problem was thus
encountered 3 times in Small Insertions and 2 times in Small Deletions, making
a total of 5 occurrences.

As said, HGMD refers to codons in many cases, which are sets of three
nucleotides. Since HGDB will be using a nucleotide referenced position to locate
mutations, a transformation of HGMD provided data is necessary. In theory,
acquiring the correct nucleotide would be a matter of multiplying the codon
number by three, reality is slightly more complicated as will be discussed in
the next paragraph. HGMD uses this way of locating mutations in the case of
Missense/nonsense (320 instances), most of the Small Deletion mutations (288
instances), most of the Small Insertion mutations (98 instances) and Small Indels
(11 instances), leading to a total of 715 instances of this problem. Retrieving
the corresponding nucleotide in DNA would simply be a question of multiplying
the codon number by 3, if not for the existence of introns and exons. cDNA
only comprises of the genes’ exons, thereby excluding the introns, contained in
the DNA. Due to this fact and given that HGDB will be incorporating a DNA
referenced scale, a linear transformation, by multiplying the codon number by
3, simply is not possible.

HGMD splicing site mutations are located by referring them to so-called
splice-junctions. These splice junctions indicate the borders between exon and
introns. HGMD thus indicates an intron border, by giving an intron number
and specifying which border by providing either a donor- (ds) or acceptor- (as)
site of the intron. The donor site corresponds to the side closest to the 5’ end
of the DNA strand, while the acceptor site corresponds to the side closest to
the 3’ end of the DNA strand. Then an offset is given, to indicate the amount
of nucleotides between the indicated splice junction and the actual mutation.
In the so-called splicing mutations overview HGMD then provides a sample
sequence for each intron/exon-junction contained in the gene. This method of
locating mutations is used primarily in splicing site mutations (80 instances), but
in some exceptional cases HGMD also uses this notation to provide locational
data for other types of mutations. For instance, In Small Deletions (2 instances)
and in Small Insertions (3 instances).

In the HGMD data exists ambiguity; for instance, mutations may or may not
result in a certain phenotype, this is indicated by a question mark following the
supposed phenotype. However, no probability scores are stated and a mutation
without a (noticeable) phenotype is considered to be a variation with neutral
effect. Since variations and mutations are considered to be two different con-
cepts in the HGDB data- model, this poses problems with loading the database
correctly. 94 instances of this problem have been identified: missense/nonsense
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mutations account for the most instances (73), splicing site mutations contains
another 16, small deletion mutations 2 and small insertion mutations account
for 3 instances.

In short to summarize the encountered problems in the data loading process.
Nine distinct problems have been identified, each of which has been discussed
separately in the above section. The following sections will provide useful in-
sights on how to resolve future instances of these. The problems as encountered,
will now be summarized in the following list.

Intrinsic data properties

1. Lacking data

2. Data entry errors

3. Reference to non-existing introns

4. General inconsistency

Data representation

1. Data difficult to access

2. Use of natural language

3. Inconsistent way of positioning mutations

4. Inconsistent with NCBI refSeq

5. General ambiguity

4.3 Data loading problem solutions

Inserting the 804 precise and 90 imprecise variations provided by the non-
commercial version of HGMD manually seemed like a cumbersome and more
importantly, error prone operation. For this reason a series of scripts was
devised to automate the procedure, while at the same time providing useful
experience and knowledge about how to further process the variational data
automatically. A full technical report on this process, including the source code
of these scripts can be found in [95]. The basic function of the software is to
convert the HGMD provided mutational data into the format used by HGDB
and detect inconsistencies in the data. The main tools are the cDNA- sequences
provided by HGMD [Genebank, U14680] [Genebank, L78833], the NCBI DNA
reference sequence [NCBI NG 005905.1] and the NCBI Coding Sequences (CDS,
located in NCBI RefSeq NG 005905.1). The HGMD cDNA sequence is the ag-
gregation of all coding sequences (exons) of the BRCA1 gene, thus excluding
introns. The NCBI DNA sequence then is the complete sequence of the BRCA1
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gene, including introns. The CDS information specifies what parts of the NCBI
DNA sequence are coding and which are not. The scripts extract, and in some
cases, calculate the variables which are to be inserted into the HGDB Varia-
tion, Precise and Imprecise tables. At the same time detecting inconsistencies
in the HGMD database that can not be resolved in an automated way, indicat-
ing a manual approach is needed in those cases. Since dealing with the above
mentioned problems was necessary to devise those scripts, they are considered
to be the crystallized solutions to the earlier mentioned problems. The main
disadvantage of this screen-scraping approach, is high vulnerability to changes
in HGMD data structure. This means the scripts will require regular updating.
Also, by depending on a medium like HGMD, trust is invested in the integrity of
the source. However, at this point the exact reliability of HGMD has not been
identified and some of the encountered problems during this project clearly sug-
gest reasons to doubt this reliability.

4.3.1 Intrinsic data properties

HGMD lacks data entries for two reasons. HGMD might simply not be up-to-
date with the latest information provided by scientific research on the subject,
or HGMD missed entries during the manual loading of the database. A partial
solution to this problem involves using the professional version of HGMD, which
includes more and more up-to-date entries. However, it is also a characteristic
of the immatureness of the field that no full coverage exists, simply not enough
research has been performed to identify all existing mutations. Therefore the
database will inherently be incomplete, and thus resolving falls outside the scope
of this paper.

HGMD provides erroneous data for a variety of reasons, human error on ei-
ther HGMD or the source paper side might be an issue. Inconsistencies between
HGMD and source paper notation style might play a role. In either case, this is
a very difficult problem category to detect since detection involves rereading the
papers. A possible, but unsatisfactory to some degree, solution would be to per-
form a deep investigation on a limited amount of mutational data provided by
HGMD, thereby uncovering error frequency. This error frequency, provided it
is investigated according to scientific measures, can then be extrapolated to the
rest of the database, thus providing a handle from which to calculate reliability
of the data-set.

Since inconsistencies can be detected, a manual check of the apparent incon-
sistent data is possible. Indeed, the scripts indicate only a few inconsistencies
and so the shear amount of papers to be read manually can be reduced drasti-
cally, making the manual approach possible in these cases. In case the source
is locating a mutation within a non existing intron, the solution might be to
manually complete the splice junctions overview, combining the information
from the NCBI reference sequence and coding sequences information (CDS),
however contradiction exists about whether an intron 4 actually exists. The im-
plications of this, as has been discussed earlier that reference papers are using
different reference sequences, are far more serious and indicate a structural flaw
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in the HGMD splicing site mutations data-set since no facilities to indicate such
differences exist within HGMD, neither indicate the involved reference papers
exactly what reference sequence they are using. Therefore reasons exist to doubt
the splicing site mutations integrity. However, detection depends on whether a
given sample corresponds to the actual nucleotide occurrence at that position
in the DNA sequence. Since HGMD only provides a single nucleotide sample
for splicing site mutations, the odds of a nucleotide at any position in the DNA
corresponding to it is 25%, reducing error detection reliability greatly. As has
been mentioned, in some cases the HGMD mentioned mutation involves a nu-
cleotide change where the to-be changed nucleotide is actually different in the
reference DNA gene sequence, thereby indirectly suggesting an error on either
the source paper side or the HGMD data entry side. Except for splicing site
mutations, as has been discussed earlier, most of these inconsistencies can be
detected with relatively high reliability. This is possible because HGMD gives a
sample sequence surrounding the mutations, that can be used as a handle to see
whether the mentioned nucleotide actually is the one on the calculated position
in the DNA sequence. In case of an inconsistency between the reference, and
the given sample sequence a manual approach is possible to investigate further.

4.3.2 Data representation

Solving the data extraction problems involves copy-pasting the HTML-tables
with mutational data, provided by HGMD, into the programming logic of the
scripts. By using the PHP explode-function the data is then cut into bite-size
chunks and stored in an array, ready for further processing. Due to choosing
this screen-scraping approach, information contained in HTML mouse-over tags
is not captured. A simple solution to this problem would be to copy-paste
the HTML source-code instead of the browsers rendering, effectively including
the HTML tags and thus the mouse-over contained information. Then use a
more elaborate algorithm to extract the pieces of information from the source.
Also, since many biological information sources present their information in
HTML tables as confirmed by [96], many solutions to this specific problem have
been devised, although no silver bullet solution exists today. The information
contained in these tags is highly unstructured to a degree where it is considered
natural language. Also, the informations structure of the different occurrences of
the problem differs highly. So a more generic solution has been chosen to solving
this problem: instead of using the information HGMD provides to locate the
mutation, the PHP script simply takes the sample string provided by HGMD
and matches this to the entire BRCA1 gene sequence, given that the string is
unique, a location will be found and presented.

Although solving this particular instance proved possible due to the fact the
natural language contained non-vital information, future occurrences might be
more difficult and no satisfying resolution exists, for coping with natural lan-
guage inherently is a weakness in computer technology. HGMD has a tendency
to disrupt it’s own structure, by providing different ways of locating mutations
within the same mutation type. This complicates an automated approach, how-
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ever a generic solution to this problem has been devised. Since the main dif-
ficulty here is the uncertainty about whether HGMD might present locational
data in yet other ways, it was decided not to use HGMDs locational data at all
in these exceptional cases. Instead, the earlier mentioned sample sequence given
by HGMD is extracted from the HTML table. The location of the mutation
within this sample sequence is then found by detecting a character case change.
The result of this detection is then considered to be the offset, very much alike
the offset given by HGMD in for instance the missense/ nonsense mutations.
The entire sample sequence is then matched against the entire BRCA1 reference
gene sequence, after which the offset is added to the found location resulting
in the absolute mutation position. The major flaw in this approach however,
is the fact that the given sample sequence might be happening more then once
in the BRCA1 gene, thereby compromising this methods reliability to some ex-
tend. For this reason, this approach is only considered usable in case the regular
method, which is considered to be more reliable due to the more rigid structure,
fails.

The way HGMD stores genetic variation positions, is very distinct from the
format in which HGDB stores this information. Each of the HGMD variation
types, undergoes a distinct transformation operation, depending on how HGMD
indicates the location within the cDNA and will be discussed separately.

Missense/nonsense

HGMD indicates a missense/nonsense location by providing a codon number,
referencing cDNA plus an offset. Since HGDB requires a DNA referenced nu-
cleotide position, transformation of this data is required. First, the software
composes its own cDNA sequence by extracting and merging the coding se-
quences from the NCBI DNA sequence using the NCBI CDS information. It
then matches the composed cDNA sequence to the HGMD cDNA to detect in-
consistencies. By matching the original and substituted codon (ATG > GTG)
provided by HGMD the position of the mutated nucleotide in reference to the
indicated codon is detected. Subsequently, it multiplies the codon number mi-
nus 1 by 3, in order to acquire a nucleotide referenced scale. It adds to this
number the exact location of the mutation within the codon hereby obtaining
the exact location of the mutation, referenced on a nucleotide cDNA scale. Ulti-
mately, to acquire the correct location within the DNA, a calculation involving
the NCBI CDS and nucleotide location of the mutation in the cDNA takes place,
consult appendix C.1 for the algorithm used to perform this calculation. The
software calculates the length of each coding sequence and each non-coding se-
quence in the DNA, according to the NCBI CDS. It then identifies the amount
of non-coding nucleotides between the start of the NCBI DNA sequence and the
mutation position, then adds this number to the cDNA referenced nucleotide
location, resulting in the DNA referenced nucleotide position of the mutation.
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Splicing

Solving the problems affiliated with the manner in which HGMD locates splic-
ing site mutations, seems rather straightforward at first: by simply using the
splice junctions overview provided by HGMD, every mutation should be located.
However due to the discovery of HGMDs splicing site mutations overview poor
correspondence to its own Splice Junctions overview, an alternative solution had
to be devised. In this case the script uses a matching strategy in which it grabs
the given nucleotide sequence from the Splice Junctions overview and matches
this to the reference sequence provided by NCBI, thereby locating the location
of the mutation more reliably.

Small Deletions / Small Insertions / Small Indels

These three types of variations are located by HGMD in exactly the same man-
ner, therefore they are discussed together. HGMD uses a codon referenced
cDNA scale to locate these variations, just like with missense/nonsense mu-
tations. However, in this case, the mutation can involve up to 20 bps and
therefore often happens outside the referenced codon, either to the 3’ or the 5’
side. In this case, the transformation software calculates the given codon loca-
tion in very much the same way as with the missense/nonsense mutations, by
matching the NCBI CDS data with the codon number, resulting in a nucleotide
position on a DNA scale for the first codon base. The software then calculates
the offset in nucleotides between the referenced codon, and the actual start of
the mutation, adding (or subtracting, depending on where the mutation starts
in relation to the reference codon, downstream or upstream the DNA strand)
this quantity to the nucleotide position of the codon in the DNA, resulting in
the DNA referenced nucleotide start position of the mutation.

Gross Deletions / Insertions / Complex rearrangements / Repeat
Variations

Since these type of mutations are considered to be imprecise, no data about
them needs processing. In this case, the script simply appends an identifier
and applies the values to the corresponding cells in the HGDB Variation and
Imprecise tables.

Absolutely resolving the data ambiguity would include rereading all the pa-
pers used to populate HGMD. However, this approach is impossible to automate
due to the highly unstructured nature of scientific papers. Hence another solu-
tion is suggested, modifying the HGDB to account for the uncertainty by adding
a certainty attribute to the variational table. HGMD presents on their back-
ground pages an indication of how to interpret this uncertainty by providing
the inclusion criteria for Disease-Associated/Functional Polymorphism’s.
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4.4 Lessons learned

In this chapter we have shown the primary reason of existence of conceptual
modeling techniques. The HGMD is considered an extremely useful source of
data about genetic mutations in the field. For being curated by domain experts,
it is also considered to be highly reliable. This document shows, that although
we do not doubt the quality of the data in itself, a lot remains to be wished
for. Some of the problems can be retraced to the relative youth of the genetic
domain. The reference to the non-existing intron 4 exemplifies this nicely. The
data are difficult to extract, but we do not consider this a real problem. It
has been the HGMD decision to choose a more commercial route, and when
respected one can obtain a more accessible means of retrieving the desired data.
This being said, the apparent lack of a thorough conceptual modeling approach
seems to bear its traces on the service.

Every tuple in the HGMD is supposed to represent a genetic variation, known
to be associated to disease. This quite rigorous definition becomes endangered
in cases where indicated variations ’might’ be associated to disease, as indicated
in the HGMD by the question mark. Indeed, a variation that is not associated
to disease should not be considered a mutation and thus not enter the dataset
as is. The CSHG handles these cases by providing the neutral polymorphism
dimension, for the Variation concept.

Another point of improvement is the lack of a proper way of facilitating the
various reference sequence in common use by research papers. For illustration,
a certain mutation might be located in position 131 in reference sequence X, but
correspond to position 125 in reference sequence Y. The HGMD provides its own
cDNA sequence, from which it locates the majority of the mutations. However
this cDNA sequence is based on an NCBI sequence, and can thus differ from
it. For an optimal use of the data provided by HGMD, this means an expert
in many cases still needs to evaluate and interpret the data. This is expensive
in both time and money. Aligning the HGMD set of mutations to the NCBI
reference sequence, which is considered to be the ’golden standard’, thus seems
a logical step and has been one of the merits of this work.

The results of resolving the problems encountered in HGMD are displayed
in figure 4.1. It shows an overview of the total number of variations per gene -of
the 15 genes considered in this work- and the number of entries finally loaded
in the HGDB. Appendix B.4 provides an overview of how the amount of loaded
variations relates to the total number of variations present in the repository
for a given gene. In the case of HGMD around 90 % of variations that are
considered are loaded, and in some cases -CLRN1, DFNB31, GPR98, PCDH15
and USH1G- a 100 % score has been achieved. The latter is probably the result
of a relatively low number of variations that HGMD stores for these genes -in all
of these cases less then 25- which reduces the odds of encountering problematic
tuples. This is however not always the case, as shown by USH1C, accounting
for 16 variations in HGMD but a success rate of only 75 %. Deviation from the
average per gene is relatively small with a standard deviation of 8.37 %, but can
serve as a guide to identify particularly irregular genes. For instance the NF1
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(77.80 %) and USH1C (75.00 %) genes are first candidates to perform further
research on. Research has already been performed on the NF1 gene but the
necessity to incorporate the lessons learned has been confirmed by this work.

Figure 4.1: Total number of variations per gene, and the number of loaded
variations per gene for the HGMD data repository.

Concretely, we suggest two major changes to the HGMD: (i) facilitate a
more elaborate way of handling associated phenotype, perhaps link directly to
the Online Mendelian Inheritance in Man (OMIM) database [22]. And (ii) add
a new column, in which the reference sequence indicated by the source paper
is also stored. This will allow for a much easier, and more efficient use of the
HGMD data set. Considering data is acquired manually from the papers, adding
this element of extracted data seems to be relatively low cost.

The CSHG aims to avoid the earlier mentioned problems, by applying the
conceptual modeling approach. It is our strong belief that the only way of accu-
rately representing any data, and perhaps genetic data in particular, can only
be done by means of careful analysis of the domain and its peculiarities. Fur-
thermore, following the selected conceptual modeling approach, the conceptual
schema itself is open to incorporating new concepts and new discoveries in a
domain whose constant evolution is without a doubt. A conceptual schema is
ready to adapt to any new knowledge in a way that enables having a continuously
updated whole, correct picture of the problem. The logical step of representing
the acquired model appears to be in the form of a conceptual schema. When
we look at the HGMD we can not help but notice that although very useful,
a lot is still to be wished for from an Information Systems point of view. It
is exactly this what characterizes the present day problems in the genetics do-
main; so many data are generated but no coherent, holistic view, of these data
exists. The data are scattered around the globe in various databases, many
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much like the HGMD, and hidden among them we possess over solutions to so
many problems. It is in this haystack, that the needle will allow for exciting
new possibilities and huge improvements in health care. We are now facing the
choice, to either brute force our way through the haystack, sifting and sifting
until we encounter the big prize. Or we structure the haystack, bring order in
chaos and obtain an understanding of what exactly composes the mechanical
processes that drive life. It is our belief that the only way to do this, is by
applying the use of a conceptual modeling approach.
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Chapter 5

Solving the dbSNP case

Explaining the various uses of the SNP concept, separating them into their ap-
propriate conceptual context and presenting a conceptual modeling approach
will allow solving this ambiguity. This is achieved by answering the main re-
search question; What makes a genetic variation, classified as a SNP different
from those genetic variations not classified as SNP?. The main contribution is to
show how a model driven approach to the genomic domain can aid in the under-
standing and adequate representation of relevant concepts. Previous solutions
applied to the problem space, including ontologies [72] and literal descriptions in
natural language, often fail to comprehensively model the concept. As a result
of the ambiguity intrinsically associated to natural language, defining the con-
cept exhaustively this way has proven to be a daunting task. In addition to this,
relating the concept to its context is equally as important as defining it intrinsi-
cally, and conventional methods often fail exactly at satisfying this requirement.
The contribution of this work is twofold however, on the one hand fixing the se-
mantics of the concept in a conceptual model while on the second hand enforcing
the use of conceptual models in the bioinformatics domain. Bioinformatics has
seen a rapid evolution in the past decade, starting with the sequencing of the
human genome in 2000 by Venter and Collins [9], and the amount of data being
generated is constantly growing. Managing these data has been done by ad-hoc
solutions mostly until now. These solutions often do not cope well with chang-
ing environments –one that bioinformatics is without a doubt– scale poorly and
do not support reusability well. Conceptual modeling, as the cornerstone of the
Model Driven Architecture, has been proven to show significant improvements
in engineering Information Systems [39]. Conventional solutions require a large
amount of manual coding effort each time the domain changes in order to keep
implementations in line. The conceptual modeling based solution allows for a
process much closer to the problem space by allowing the engineer to create
models that can be understood by the domain expert. From these models par-
tial, or in some cases full, implementations can be generated following sets of
rules and formal transformation processes, greatly reducing the effort required
to maintain implementations consistent with a changing domain.

65
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5.1 SNP definition

The dbSNP data repository [17] is an NCBI [97] driven effort to collect and
integrate all available data on genetic polymorphisms. The name suggests em-
phasis on single nucleotide polymorphisms, but reality is slightly different. As
is mentioned on the dbSNP website: ”This collection of polymorphisms in-
cludes single-base nucleotide substitutions (also known as single nucleotide poly-
morphisms or SNPs), small-scale multi-base deletions or insertions (also called
deletion insertion polymorphisms or DIPs), and retroposable element insertions
and microsatellite repeat variations (also called short tandem repeats or STRs)”.
Clearly NCBI is stretching the definition of SNP to fit any type of polymor-
phism, thereby blurring the concept. Confusing as it may be, we believe dbSNP
should actually be called dbVariation, as stated by NCBI itself in the Frequently
Asked Questions section of their website. Yue and Moult [98] use a very simi-
lar definition of SNP, stating that a SNP can be either neutral or deleterious.
This resource appears to be using the literal meaning of the label, simply indi-
cating every polymorphism that influences a single nucleotide as being a SNP,
regardless of its effect on phenotype.

A different definition originates from the Department of Biological Sciences,
Oakland University, Rochester, MI, USA [99]: ”Single nucleotide polymorphism
(SNP) is the simplest form of DNA variation among individuals. These simple
changes can be of transition or transversion type and they occur throughout the
genome at a frequency of about one in 1,000 bp. They may be responsible for the
diversity among individuals, genome evolution, the most common familial traits
such as curly hair, interindividual differences in drug response, and complex
and common diseases such as diabetes, obesity, hypertension, and psychiatric
disorders. SNPs may change the encoded amino acids (non-synonymous) or
can be silent (synonymous) or simply occur in the noncoding regions. They
may influence promoter activity (gene expression), messenger RNA (mRNA)
conformation (stability), and subcellular localization of mRNAs and/or proteins
and hence may produce disease”. It resembles the conventional definition loosely,
as it mentions a frequency of occurrence in an individual (about one in 1,000
bp) and pathogenicity (and complex and common diseases such as). Depending
on interpretation, one could state that also the size dimension is mentioned
implicitly, considering the definition handles single nucleotide polymorphism.

5.1.1 SNP characteristics

During the investigation of various definitions of the SNP concept existing in
todays genomic domain, the determinant characteristics, or dimensions, have
been identified. They form the conceptual spectrum in which the SNP concept
is positioned. Each concrete definition represents an instance of these abstract
dimensions, thereby fixing a position within the gamut. It is expected that by
incorporating these dimensions into a database, instead of fixing the concept
on one definition, flexibility is acquired and data can be queried dynamically
depending on the desired SNP interpretation. The commonly accepted defini-
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tion for SNP is explicitly based on 2 dimensions: occurrence in the population
and genotypic size. According to [100] a SNP is a single base change in a DNA
sequence. It is considered that the least frequent allele should have a frequency
of 1% or greater. The first dimension, occurrence in population, hides a third
and fourth characteristic. As a direct result of natural selection, for a polymor-
phism to happen more than a given percentage in the population, it needs to
have either a neutral or a positive phenotypic effect. A negative, or deleterious
effect is impossible to happen in a substantial portion of the population as it
eliminates itself. Therefore, SNPs considered according to the conventional def-
inition have no direct relation to disease. For this very same reason, SNPs as
defined in the conventional sense are relatively common among each individual.
On average, ∼8.33 SNPs happen every 10kb [94].

Various literature sources use various definitions of the SNP concept. dbSNP
forms one extremity of this spectrum by defining the concept very loosely. The
conventional definition then describes the other side of the spectrum by being
more rigorous. Following the various definitions leads to the identification of
four dimensions on which SNPs are commonly defined: occurrence in popula-
tion, occurrence in sequence, pathogenicity and size. Every dimension will now
be clarified briefly.

Occurrence in population

This dimension entails the aspect of occurrence of a SNP in a given popula-
tion. Examples of different populations include Asian, African or European. A
higher population occurrence than a fixed low percentage, suggests a polymor-
phism with neutral effect on phenotype. This barrier is not defined rigorously,
but commonly accepted percentages vary from 0.5% to 1%.

Occurrence in sequence

Due to natural selection, polymorphisms with deleterious or negative effects
are usually filtered out of a population. This process conserves neutral poly-
morphisms without observable effect and polymorphisms with positive effect
on phenotype. As a result of this mechanism, these type of polymorphisms
stack up in the genome of an individual. According to conventional definition,
in the human genome every ∼1200 base pairs a SNP is expected as stated by
[94]. This dimension however, describes a characteristic of the SNP concept in
general. Indeed, a specific SNP does not happen once every ∼1200 base pairs,
rather a different SNP is expected to be occurring with this frequency. It is
therefore a characteristic of a genome; stating the amount of SNPs happening
in it, rather than being a defining criterium whether a specific polymorphism is
considered to be a SNP or not.
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Pathogenicity

The association of a SNP to hereditary disease is captured in this dimension.
The general belief is that SNPs are not causatively associated to disease. Rather,
due to a phenomenon called Linkage Disequilibrium [101] and by using SNPs as
markers, susceptibility to hereditary disease can be detected without having to
sequence an entire individuals genome. In short, the SNP itself has no relation
to a pathogenic effect. SNPs used as marker, however, predict a different muta-
tion, happening at another position. This second, predicted, mutation usually
does have a direct pathogenic effect.

Size

Clearly, a single nucleotide polymorphism should involve only one nucleotide,
hence the name. However, considering the definition in which the SNP label
is used to identify non deleterious polymorphisms this description might be
stretched. Considering that DNA is read in triplets (combinations of three
nucleotides), the polymorphisms that are not a multiple of three often result
in frame-shift, changing the transcribed mRNA and thus the resulting protein.
Frame-shift often leads to an entirely different protein, and is thus very likely to
result in negative phenotype. A non-deleterious polymorphism, in theory, can
thus be any variation in which the affected nucleotides are a multiple of three.
However, every changed triplet, if non-synonymous, also changes an amino-acid
eventually leading to an increased chance of significantly changing the resulting
protein. Thus, although in theory a non-malicious polymorphisms might include
more then one nucleotide, it is most likely to involve a single nucleotide change.

5.1.2 Uses of the SNP concept

For a proper understanding of the genomic concept known as SNP, and to de-
fine it properly in terms of a conceptual model, it is necessary to know what
purpose the term serves. Not only needs to be investigated what the domain
exactly considers to be a SNP, but also how this concept is used in the domain.
This exact understanding of the concept, will allow for an adequate application
of the conceptual modeling approach. After applying the conceptual modeling
perspective to the problem of properly specifying SNPs, the concepts behind
them will less ambiguous and clearer. By more clear is meant that specific uses
in particular contexts are labeled with an adequate term, while the SNP notion
emerges clearly from the conceptual schema. Three distinct uses of the SNP
concept have been identified. (i) dbSNP, (ii) distinguishing harmless polymor-
phisms from harmful variations and (iii) as a genetic marker.

dbSNP uses the term to cover a wide variety of polymorphisms known to
happen in the human genome. It thereby stretches the conventional definition
of the term, and should thus actually be called dbVariation, as it mentions itself.
Another application of the term is identified when assuming SNP to be defined
according to measures on the dimensions shown in 5.1.
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When sequencing a human genome, various polymorphisms are usually en-
countered. Every ∼1200 base pairs, a mismatch happens between the sequence
used as reference and the sample at hand. Most of these polymorphisms hap-
pen without negative effect on the phenotype, as has been explained earlier.
Considering that DNA is read in triplets, or combinations of three nucleotides,
the polymorphisms that are not a multiple of three often result in frame-shift,
rendering the transcribed mRNA sequence senseless. This taken into account,
the most probable size in which a polymorphism is expected to not alter the
genetic sequence is one nucleotide, or a multiple of three. In the absence of
negative effect, they are likely to happen in more than 0.5% of the population.
Hidden among these relatively innocent polymorphism, lurks the one that is
associated to the development of disease. More than one polymorphism with
negative effect on phenotype, happening in any individual is very unlikely. Dis-
criminating between polymorphisms with negative effects, and polymorphisms
without is thus very important. The SNP concept, shaped in the way as is done
in 5.1 serves this purpose elegantly.

Table 5.1: The SNP concept defined to discriminate polymorphisms with neutral
effect on phenotype from polymorphisms with negative effect on phenotype.

Property Value

Occurrence in population >0.5 %
Pathogenicity None
Size 1 nucleotide

SNPs are also commonly used as genetic markers. Due to relative high
pricing of DNA sequencing, ways of using the available sequencing capacity
efficiently had to be come up with. One approach to this cost-saving strategy, is
making use of linkage disequilibrium. LD describes the nonrandom correlation
that exists between a marker and the presence of polymorphisms at a locus [101].
Following LD it is possible to asses the probability of a polymorphism happening
in a subjects genetic code, by knowing the state of a marker position. Vignal
[100] describes the use of SNPs as molecular markers in animal genetics. The
use of SNPs as genetic markers can thus be considered an imperfect solution to
high costs associated to DNA sequencing.

5.2 SNP incorporation in the CSHG

Incorporating SNPs into the Conceptual Schema of the Human Genome is es-
sential. Figure 5.1 demonstrates a representation of the extension. It provides
means of discriminating various types of polymorphisms. The most important
being the separation between harmful and harmless genotypic variations. In
the schema, harmful variations are considered variations with mutant effect,
while SNPs are considered to be variations of the type neutral polymorphism.
It is for this reason that data on SNPs need to be stored in such a way, that
it facilitates the earlier mentioned dimensions on which the concept is defined.
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This will allow for dynamic creation of queries, extracting the correct tuples
depending on which definition at runtime is chosen. To solve the ambiguity
associated to the SNP concept, an often considered sufficient solution involves
providing a concise, literal description of the term. Due to the various uses of
the concept, a static definition is believed to be insufficient. Also, this approach
fails to relate the concept to its context, an aspect considered very important
in the complex reality of genomics. Rather, coping with the variability of the
term seems appropriate and is facilitated by the extension to the conceptual
model of the human genome. In practice, this means that the earlier identified
dimensions of the definition needs to be represented in the schema, allowing for
dynamic capture of the concept.

An instance of the concept can then be instantiated with different values,
thereby allowing for the different uses and definitions that have been identified.
Thus, by separating the instance of the concept from the structural definition,
flexibility is obtained. First of all, the SNP concept is considered to be a spec-
ification of the Indel concept, which in turn is a specification of the Variation
concept. It deserves mentioning this implementation does not rule out SNPs
of size greater then 1, leaving room for flexibility on the size dimension. The
occurrence in population (populationOccurrence) is regarded as a SNP specific
attribute. Occurrences in populations might differ among various populations,
it is therefore crucial to also store the investigated population that resulted in
the discovery of the SNP at hand. Other polymorphisms, either mutant ones or
with unknown effect, are expected to have different effects among populations
as well. It is for this reason, the Population concept is related to both the SNP
and Variation concepts. The pathogenicity dimension relates the neutral poly-
morphism concept in the conceptual model to the SNP concept, securing that a
SNP is never associated to disease. According to the schema, a polymorphism
associated to negative phenotypic effects is considered to be mutant and is thus
captured already in the form of a Variation, the SNP super-type.
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Figure 5.1: Conceptual model of the human genome including the SNP concept.
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As one might notice, the dimension occurrence in sequence is not incorpo-
rated in the schema. The occurrence in sequence represents not a characteristic
of a single SNP, rather a characteristic of a specific genome. Indeed, a specific
SNP does not occur every 1200 base pairs, but rather every 1200 a SNP is
found. It is therefore not associated to the SNP concept and thus left out of
the schema. Also, it is considered unnecessary to be stored, for the reason that
it can be derived for every genome from the database itself, simply combining
the data on the total amount of nucleotides in an individuals genome, and the
amount of found SNPs.

To incorporate the marker functionality of the SNP concept, a new relation
would need to be made between SNP and Variation. This relation would consist
of a probability score, indicating the probability to which the SNP at hand
predicts the variation. This use of the concept is considered to be a result of the
immatureness of the domain. Using SNPs as markers merely satisfies a cost-
efficiency strategy, and is expected to be rendered useless in the near future by
advances in DNA sequencing technology. Although a correlation exists between
neutral SNP occurrence and malicious polymorphisms, there appears to be no
causal relation. It is for this reason, that has been decided not to incorporate
this use of the SNP concept in the conceptual model of the human genome.

5.3 dbSNP description

The Single Nucleotide Polymorphism database (dbSNP) [17] is a public-domain
archive for a broad collection of simple genetic polymorphisms. This collection
of polymorphisms includes single-base nucleotide substitutions (also known as
single nucleotide polymorphisms or SNPs), small-scale multi-base deletions or
insertions (also called deletion insertion polymorphisms or DIPs), and retropos-
able element insertions and microsatellite repeat variations (also called short
tandem repeats or STR’s). Each dbSNP entry includes the position, the se-
quence context of the polymorphism (i.e., the surrounding sequence), the oc-
currence frequency of the polymorphism (by population or individual), and the
experimental method(s), protocols, and conditions used to assay the variation.

As established earlier, the dbSNP database contains much more then sim-
ply SNP’s, making the extraction process described below significantly more
difficult. dbSNP stores data for 100 species, with a total of 87 536 603 entries
(Rs#’s), of which 29 813 700 have been validated. Currently (20-07-2011, db-
SNP build 132) the dbSNP repository contains 30 442 771 entries -of which 19
727 605 have been validated- for the Human genome.

5.4 Encountered problems

The problems encountered when loading dbSNP into HGDB can roughly be
divided in two categories: data quantity and semantic issues. The first refers to
the intrinsic difficulties of processing the large files, 22Gb compressed using the
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Gzip algorithm and approximately 120Gb when decompressed into XML files,
dbSNP uses on a regular workstation with 8Gb RAM. The latter refers to the
problems encountered associated to conceptual ambiguity or collision with the
conceptual schema. Both will now be discussed separately.

5.4.1 Data quantity problems

The dbSNP data repository provides access to its files through an open FTP
server1, where the files are organized per organism and file type. The files can
be downloaded as a SQL database dump, XML or ASN. The latter being a
more space efficient representation of XML. For the purpose of this work the
XML files are most appropriate. The already present solution for transforming
data from outside sources to the CSHG format, which will be discussed in detail
in chapter 7, is a Java application which makes it very suitable for integrating
already existing XML parser libraries.

The XML files are organized as one per chromosome, including the Mito-
chondrial chromosome, and a few summary files. All together they account for
22Gb in a compressed state, and approximately 120Gb when uncompressed.
The algorithm used to compress them is Gzip. Processing these file sizes pose
obvious performance issues when done on a regular workstation PC. The rele-
vant specifications of the PC from which was worked are described in section
1.4.

The file size for the individual files ranges from 56Mb compressed (591Mb
uncompressed) in the case of the relatively small chromosome Y, to 1.7Gb com-
pressed (18Gb uncompressed) for the largest chromosome on the human genome,
chromosome 1. Thus simply opening one of these with a regular text editor -
clearly a logical step in analysis of the files- poses serious difficulties, often
’freezing’ the system. Fortunately, Ubuntu provides powerful tools to handle
this type of files directly from the command line. Each file has a header section
with general data about dbSNP version, organism, taxonomy id etcetera. The
absolute majority of the file is taken up by the dbSNP entries, each entered as
a so-called Rs-item, identified by the <Rs> opening tag and </Rs> closing
tag. In between, all data for that that entry is stored, ranging from the various
submitted samples that lead to the establishment of that particular Rs entry
to the validated details like position, and observed alleles. A sample section
of a typical Rs entry can be consulted in appendix A.3. For more details on
the exact structure of the XML file, please consult the XSD file as provided by
dbSNP on their FTP server2.

In general the elements that are of interest to the HGDB are contained
within these earlier mentioned Rs entries. The Sequence element stores data
about the observed alleles in the sequence (the Observed element), and provides
flanking sequences -both upstream Seq5 and downstream Seq3 -. Within each
Rs entry there exist multiple Ss entries, that represent submitted samples which

1ftp://ftp.ncbi.nih.gov/snp/
2ftp://ftp.ncbi.nih.gov/snp/specs/docsum_3.3.xsd

ftp://ftp.ncbi.nih.gov/snp/
ftp://ftp.ncbi.nih.gov/snp/specs/docsum_3.3.xsd
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lead to the identification of this Rs entry. Each Rs can then contain various
Assembly elements, each representing an alignment to a specific build of dbSNP
and a specific build of the genome. Within these Assembly elements the relevant
entry of interest is the so called Component element, which tells us the reference
sequence to which the alignment was made, this is indicated by the accession
attribute along with the gi attribute. These latter two attributes correspond to
the refSeq attributes with the same name.

The Maploc element has various attributes associated that provide infor-
mation on the alignment itself and the associated quality: (i) locType, which
describes whether the alignment is exact or not, (ii) alnQuality, which gives an
align quality measure on a scale from 0 to 1, (iii) orient, which tells us on which
strand the SNP has been observed, (iv) leftFlankNeighborPos, which tells us the
starting position of the SNP. Table 5.2 provides an overview of how the various
XML elements and their attributes map to the CSHG.

Table 5.2: dbSNP relevant XML elements.
XML element XML attribute CSHG Class:attribute

Rs class:SNP
Rs rsId Variation:id variation db
Sequence Insertion:sequence
Sequence Deletion:bases
Sequence Indel:ins sequence
Sequence Inversion:bases
Maploc orient Allele:strand
Maploc leftFlankNeighborPos Precise:position

The solution to the large file problems meant parsing the XML files in such
a manner that limited computing resources would not present major obstacles.
As a single uncompressed dbSNP file surpasses the available RAM memory
the obvious solution of using a DOM based XML parsed was ruled out. Some
investigation took place and eventually the StaX3 based XML parser solution
was chosen. StAX is a standard XML processing API that allows you to stream
XML data from and to your application in an event pull manner, rather then in
an event push manner used by conventional SaX4 parsers. The implementation
details, interesting as they might be, surpass the scope of this work and shall
for that reason not be discussed in detail.

Another optimization to improve performance is related to the semantics
conveyed by the individual names of the dbSNP files. Each filename follows the
following convention; a string, ”ds ch” followed by the chromosome identifier,
ending with the file extension. The latter is ”.xml” when uncompressed and
”.xml.gz” when in compressed state. This identifier corresponds to the chro-
mosome number, 1 to 22, and in cases of Mitochondrial or the male/female
sex chromosome ”MT”, ”X ”, and ”Y ” respectively. So for example, the SNPs
for chromosome 17 will be stored in a file by the name ”ds ch17.xml.gz”. This

3http://stax.codehaus.org/
4http://www.saxproject.org/

http://stax.codehaus.org/
http://www.saxproject.org/
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naming convention allows us to optimize the SNP extraction process. As the
current approach is gene centered, SNPs will have to be extracted, transformed
and loaded gene by gene. So once we establish the chromosome to which the
gene belongs, we can use that information to efficiently select the adequate file
and avoid having to process the full 120Gb. Processing the full 120Gb requires
around 70 minutes, while a single chromosome takes between 5 and 10 minutes.

5.4.2 Problems related to semantics

The semantic issues as identified in dbSNP deal with problems that arise when
matching the data entries from dbSNP to data entries in HGDB. Roughly we
identified three problems: (i) processing the ’hidden’ variations, (ii) the sepa-
ration of ’junk’ data from valid data and (iii) correcting the observed alleles
when differing from reference allele strand. Each of these problems will now be
discussed separately in the following sections. Please consult appendix B for an
overview of the full coverage data that GDL obtains.

Processing the hidden variations

It was soon found that one single Rs entry could actually convey more then one
SNP. The Observed XML element provides a character String in which the ob-
served alleles can be stored, separated by slash characters (”/”). Clearly, if more
then two alleles have been observed, this particular Rs actually corresponds to
multiple SNPs as conceptualized in the CSHG. In order to make this rather
abstract statement more clear, let’s have a look at an example. The Rs with
id 245 -present in the Human genome on chromosome 11 at absolute position
276 447 63- has three known alleles, as taken literally from the Observed field:
-/A/T. Interpreting this string brings us to the conclusion that in some samples
no nucleotide was present at that position, while in others either an Adenine or
a Thymine nucleotide was encountered at that specific position. These different
’instances’ of the SNP need to be separated in order for them to be properly
introduced in the HGDB database.

Doing so requires a matching strategy in which the reference sequence al-
ready in use by HGDB needs to be queried for the nucleotide present at that
position, in order to determine which of the presented alleles is actually part of
the reference and which is not. Effectively determining which of the multiple
options actually is a Variation. The following pseudo code will take a String
as reference sequence and a Map with key-value pairs (in this case as key an
observed allele, and the value a Boolean identifying whether that observed al-
lele is the variation (TRUE) or reference (FALSE)). The algorithm delivers the
Map in which the single reference allele nucleotide is marked with TRUE, and
for all the others different instances of the SNP class need to be created. Please
consult appendix C.2.

St r ing r e f e r e n c e s e q u e n c e ;
Map<Str ing , boolean> o b s e r v e d a l l e l e s ;
int p o s i t i o n ;
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for ( int i = o ; i < o b s e r v e d a l l e l e s . s i z e ( ) ; i++) {
St r ing o b s e r v e d a l l e l e = o b s e r v e d a l l e l e s . get ( i ) ;
S t r ing r e f e r e n c e a l l e l e = r e f e r e n c e s e q u e n c e . p o s i t i o n ;

i f ( o b s e r v e d a l l e l e EQUALS r e f e r e n c e a l l e l e ) ) {
o b s e r v e d a l l e l e s . put ( o b s e r v e d a l l e l e , fa l se ) ;

}
}

Table 5.3: dbSNP total entries corrected for hidden variations.

Gene Total SNPs Corrected Excluding/including

BRCA1 3091 1662 53.77 %
BRCA2 2712 998 36.80 %
CDH23 4954 4754 95.96 %
CLRN1 547 565 103.29 %
COL1A1 748 809 108.16 %
COL1A2 787 843 107.12 %
DFNB31 1289 1222 94.80 %
FBN1 2320 2399 103.41 %
GPR98 5409 5254 97.13 %
MYO7A 1205 1094 90.79 %
NF1 2558 2499 97.69 %
PCDH15 11 830 12 186 103.01 %
USH1C 647 661 102.16 %
USH1G 121 111 91.74 %
USH2A 7925 7965 100.50 %
TOTAL 46 143 43 022 93.24 %

Separating the junk from valid data

Identifying valid entries in the large amount of data as provided by dbSNP is
essential to properly populate HGDB. The first step here is to determine what
exactly can be considered a valid entry. It has been decided that for the purpose
of HGDB only data entries that are known to be valid may be introduced in the
data set. This automatically excludes all dbSNP entries that are not classified
as ”locType=exact”, and where ”alnQuality<1.0 ”. Also the dbSNP data set is
known to contain poorly defined entries -from a formal IT perspective that is-
known as Satellite Tandem Repeats, or STR’s, for which currently we provide
no automated solution to interpret them. In order to have a coherent set of valid
SNPs these latter need to be sifted out, which can only be done in a ’rough’
manner. The Observed element of the XML structure conveys the various alleles
as observed by the various submitted entries (Ss entries), separated by slash
characters (”/”). Once the observed field contains a parenthesis -either ”(”
or ”)”- it was found to describe an STR. Unfortunately the dbSNP data files
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provide no native way of conveying mutation type. By this latter is meant, for
instance, a ’SNP type’ element that would properly identify the nature of the
variation.

Another example includes the determination whether a SNP inserts nu-
cleotides, deletes nucleotides or both (Indel). In order to determine this dis-
tinction, the Observed fields needs to be scanned for hyphens (”-”), which in
some sense represent a non-occurring nucleotide. When present at the begin-
ning of the string one can safely deduce this particular SNP has been observed
to insert one, or more nucleotides at the given position. In the case where the
hyphen appears at the end it is safe to assume this concerns a deletion of a
certain sequence of nucleotides. For the lack of those proper semantics, this
particular piece of information needs to be deduced from the ’Observed’ alleles
string. This rather rigorous process of separating junk from valid data has led
to the conclusion that around 63 % of the dbSNP entries per gene are actually
considered valid. Figure 5.4 provides an overview per gene of how many SNPs
are considered valid.

Table 5.4: dbSNP total entries as compared to valid entries per gene.

Gene Total SNPs Valid SNPs Total/valids

BRCA1 3091 1140 36.88 %
BRCA2 2712 684 25.22 %
CDH23 4954 3273 66.07 %
CLRN1 547 370 67.64 %
COL1A1 748 575 76.87 %
COL1A2 787 595 75.60 %
DFNB31 1289 827 64.16 %
FBN1 2320 1638 70.60 %
GPR98 5409 3570 66.00 %
MYO7A 1205 734 60.91 %
NF1 2558 1747 68.30 %
PCDH15 11 830 8208 69.38 %
USH1C 647 455 70.32 %
USH1G 121 74 61.16 %
USH2A 7925 5445 68.71 %
TOTAL 46 143 29 335 63.57 %

Correcting the observed alleles

dbSNP provides an attribute -the orient attribute within the Maploc element-
that identifies the DNA for which the alleles as provided have been observed.
The value for this attribute needs to be taken into account when comparing with
the reference sequence. Obviously, when comparing an observed allele classified
with a ’reverse’ orientation to the reference sequence classified as ’forward’ has
some implications. In short, the two strand DNA helix shape needs to be kept
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in mind. When one speaks of orientation, it is actually a reference to the strand;
either going from 3’ towards 5’ or the other way around. Consult section 1.1.1
for a more detailed overview on DNA strands and their directions. The strand
that conveys a coding sequence -which might eventually lead to the successful
translation of a protein- is often referred to as the ’sense’ strand, denoted with
a minus ’-’, while the other strand as ’anti-sense’, denoted with a plus ’+’.
As nucleotides bond to each other in a complementary manner -Adenine to
Thymine and Cytosine to Guanine- we now understand that when the reference
allele and the observed allele orientations do not match we need to perform
a transformation. This transformation takes the observed allele, for the sake
of simplicity in this case a single nucleotide, as input and replaces it with the
complementary equivalent, matching it to the orientation of the reference allele.
In more complex cases, in which more then a single nucleotide are considered,
one will also need to correct for the change of direction. This latter is done by a
simple reverse operation that reverses the order of the observed alleles’ sequence.
Appendix C.3 provides the algorithm that was used in GDL to handle this exact
issue.

5.5 Lessons learned

This chapter has contributed a conceptual modeling approach applied to the
ambiguity associated to the SNP concept. The existence of ambiguity sur-
rounding the term has been explained, and various existing solutions to it have
been discussed. It has been clarified how and why a conceptual modeling ap-
proach is structurally different from existing solutions, like ontologies, and that
only conceptual modeling techniques allow for providing a precise definition.
By researching the uses and existing definitions of the term, a conceptualization
of the domain was achieved. A clear understanding of the concept has thus
been established, and modeled accordingly as an extension to the already ex-
isting conceptual model of the human genome. The dimensions on which the
SNP concept is commonly defined have been identified and formalized in the
conceptual model, allowing for dynamically querying the resulting data repos-
itory according for each type of definition. Coming back to the main research
question: What makes a genetic variation, classified as a SNP different from
genetic variations, not classified as SNP?, the answer is clear. A genetic vari-
ation identified as a SNP is a single nucleotide polymorphism, not causatively
associated to disease and (therefore) happening in more then 0.5% of a popu-
lation. At the same time, SNPs are common due to their characteristics and
for this reason happen about once every 1200 base pairs. Therefore, the dbSNP
data repository should not be considered a collection of SNPs, but rather one
of genetic polymorphisms. The authors of this paper stress the importance of
a name change to dbVariation, in order to avoid future confusion. This paper
further demonstrates the capabilities of a conceptual modeling approach to solv-
ing ambiguity in a domain. Especially the Bioinformatics domain, where large
amounts of data have to be properly managed, and where, unfortunately, too
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often sound and well-known Information Systems concepts required to perform
an effective and efficient data exploitation, are not correctly applied.

The results of resolving the problems encountered in dbSNP are displayed
in figure 5.2. It shows an overview of the total number of variations per gene -of
the 15 genes considered in this work- and the number of entries finally loaded
in the HGDB. Appendix B.4 provides an overview of how the amount of loaded
variations relates to the total number of variations present in the repository
for a given gene. In the case of dbSNP an average success rate of 31.32 %
was achieved, significantly lower then HGMD (90.32 %), but this is due to the
relative high amount of variations present in dbSNP in general -dbSNP accounts
for approximately 77 % of total loaded variations- but also to the high degree of
ambiguity associated to the Observed field as discussed earlier. The deviation
from the average per gene is also highest in dbSNP with a standard deviation
of 13.47 %

Figure 5.2: Total number of variations per gene, and the number of loaded
variations per gene for the dbSNP data repository.

Early signs indicate that the dbSNP web interface provides much more data
then currently loaded from ’raw’ files as provided over FTP. Unfortunately there
was not enough time to properly investigate this claim, but a very plausible
explanation includes the number of variations that were eliminated during the
loading process on account of being considered invalid. It is possible that the web
interface shows each and every variation as submitted to dbSNP, without taking
into account to which reference sequence they have been aligned, they quality
of the alignment and whether the alignment was exact. This finding further
nourishes the debate about quantity versus quality in genomic databases. A
discussion in which this work attempts at all costs to remain on the ’quality’ side,
perhaps discarding some of the quantity originally worked with. It is however
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the philosophy of this project to only store data that is valid and consistent,
ultimately leading to the reliable data repository that is so much needed in the
domain right now.

As a suggestion for improvement to the dbSNP database -beside the obvious
name change from dbSNP to dbVariation to account for the conceptual ambi-
guity earlier mentioned-, the authors of this work suggest the addition of an
extra element in the dbSNP XML files. This element should identify the type of
each SNP; either being an insertion, deletion, indel or perhaps a more elaborate
classification. An adequate, and equally obvious name for this element would
be Type, and could be located within the Component element already present.
This latter allows for expressiveness to cope with the same SNP having perhaps
different observed behavior in different reference sequences.



Chapter 6

Solving the BIC case

The Breast Cancer Information Core (BIC)1 [30] is an open access, on-line mu-
tation database for breast cancer susceptibility genes. In addition to creating
a catalogue of all mutations and polymorphisms in breast cancer susceptibility
genes, a principle aim of the BIC is to facilitate the detection and character-
ization of these genes by providing technical support in the form of mutation
detection protocols, primer sequences, and reagent access. Breast Cancer is
the most common malignancy among women worldwide. Of these cancers, ap-
proximately 5-10% is attributable to inheritance of a mutation in one or more
highly penetrant autosomal dominant susceptibility genes. Both BRCA1 and
BRCA2 have been identified as exactly this type of genes. It was evident that
scientific and clinical interest in BRCA1 and BRCA2 would lead to an effort
to screen women at high risk of developing breast cancer for mutations in these
genes. Building a knowledge base about cancer susceptibility genes is one of the
steps towards realizing this goal. The BIC represents an effort aimed at exactly
this. As of April 2000 the repository contained 3416 entries describing genetic
variations in BRCA1, and 2292 entries for BRCA2.

Unfortunately the BIC data repository seems to have been inactive the last
decade or so. Since the publication by C. Szabo in 2000 [30] it seems no new
publications have been made. The data remains available but it is unclear when
it was updated, or whether new data keeps being added. However, browsing
through the data reveals that the latest date in which entries have been added
is the 25th of November, 2004. The data set in itself represents a collection
of curated tuples and is thus regarded by the community as reliable. An in-
teresting, but as of yet unanswered question is whether the data set has been
super seeded by other data sources like the Human Gene Mutation Database,
or various LSDB’s. The data set as is now has been found to accumulate 12
025 entries for the BRCA1 gene, and 11 331 for the BRCA2 gene. Of these
entries, 1446 and 1692 have been recognized as valid and unique for BRCA1
and BRCA2 respectively.

1http://research.nhgri.nih.gov/bic/
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6.1 BIC description

The BIC dataset can be viewed from the database website through a fee less
membership account, the overall layout of the BIC web site is shown in figure
6.1. Browsing the data can be done per gene, and to even finer granularity per
exon. The BRCA1 gene is divided into 25 exons, in which exon 11 is subdivided
into 11A until 11D, and no exon 1 and 4 exist (the numbering starts with exon
2). The absence of an exon 4 has been discussed in detail in chapter 4, section
4.3.1. The data can be downloaded as a Tab Separated File (TSV) either per
gene or per chromosome. The data files consist of 32 columns and store a variety
of data about each variation. The relevant ones are as follows: (i) Accession
Number, identifying the variation internally, (ii) NT, locating the variation nu-
cleotide precise within the cDNA, (ii) Base Change, describing which change
was observed. Other columns of interest include Reference, which in some cases
provides a literature reference for the variation, and Clinically Important which
tells us whether the observed change either led to a phenotype change or not.
The latter is strongly related to the SNP concept earlier discussed thoroughly
in chapter 5. for a full overview of the BIC data format, consult appendix A.4.

Positioning in BIC is done in two ways, the most common one is done by
aligning the variation with a transcript while in some cases the variation is
located against genomic DNA. All variations have been aligned with the same
-although different per gene, obviously- transcript reference sequences. The
reference sequences used by BIC are as follows: BRCA1 GenBank U146802

and BRCA2 GenBank U437463. Some variations have also been positioned
according to their genomic DNA location, but this only occurs for the BRCA1
gene, and BRCA1 GenBank L788334 is used.

6.2 Encountered problems

The BIC data set turns out to be quite comprehensive and accessible when
compared to the previous two cases, HGMD and dbSNP. The data are readily
available, although one needs to create a membership account free of charge, and
can be downloaded as a single file. Interpreting the data proved to be no problem
because of the [30] publication which comprehensively clarifies how the data is
structured, as well as assigning semantical meaning to each data property. The
Breast Cancer Information Core website is quite sparse in providing information
on how to interpret the data, and it does not provide a list of publications
associated to the BIC. Searching the well known channels for publications led
to the retrieval of the above document, but it is unclear whether this is the last
sign of life of the BIC or whether more recent publications exist.

A more interesting issue encountered in the BIC repository, and one that is
prone to reoccur, is the positioning problem. As stated above, BIC variations are

2http://www.ncbi.nlm.nih.gov/nuccore/U14680
3http://www.ncbi.nlm.nih.gov/nuccore/U43746
4http://www.ncbi.nlm.nih.gov/nuccore/L78833

http://www.ncbi.nlm.nih.gov/nuccore/U14680
http://www.ncbi.nlm.nih.gov/nuccore/U43746
http://www.ncbi.nlm.nih.gov/nuccore/L78833
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Figure 6.1: The Breast Cancer Information Core (BIC) website features.
Overview and map of the BIC website. Details of the links contained in the
Mutation Database section are shown.
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positioned along well established reference sequences. These sequences however,
are quite old and for this reason outdated. The BRCA1 GenBank U14680
came to be as a result of combining the efforts by Miki [92] and Futreal [102]
in 1994, the latest update as recorded by the NCBI dates back to the 10th
of June 2002. The BRCA2 GenBank U43746 as first presented by Teng [103]
in 1996 has not seen any modifications since then. It is not uncommon for
genomic data repositories to refer to outdated reference sequences; sometimes
the effort of realigning ’old’ data to new reference sequences is to costly or
simply impossible. The challenge in the case of BIC consists of ’saving’ these
data by realigning them with the currently used reference sequence, see section
1.4 for more details on which reference sequences have been used in the creation
of HGDB. This work reports on the process of manually aligning the sequences
and deducing the relevant corrections values from it. Due to time constraints no
automated solution can be presented but creating this would offer interesting
future research lines. In the following section the procedure that was followed
to retrieve the BIC datasets’ positions will be elaborated on.

6.2.1 Aligning reference sequences

Aligning genetic sequences has been subject of research for a long time. The
de-facto standard has become an algorithm known as BLAST as presented in
1990 by [104], which stands for Basic Local Alignment Search Tool. Nowa-
days, various versions of BLAST exist, some refined for a specific purpose while
other provide performance enhancements. Another popular algorithm is the
BLAT [105], the BLAST-Like Alignment Tool. All of these tools provide an
algorithm capable of comparing primary biological sequence information, such
as the amino acid sequences of different proteins or the nucleotides of DNA se-
quences. A BLAST search allows a researcher to compare a sequence against a
library or database of sequences , and identify library sequences that resemble
the query sequence above a certain threshold.

Because of the relatively uncomplicated nature of the required alignment,
the conventional BLAST algorithm as provided by the NCBI was deemed suffi-
cient. The NCBI implementation of BLAST5. For the purpose of this work not
every observed change between the sequences is relevant. Structural differences
that do not reflect a differing number of nucleotides between sequences can
safely be ignored. Indeed, these latter differences do not change the positioning
reference and are thus in the context of this particular application irrelevant.
The differences that do represent a change between the number of nucleotides
of both sequences, and thereby warp the positions accordingly need to be noted
and taken into account when correcting for them. An example of the BLAST
result file is shown in figure 6.2. The result of analyzing the BLAST result file
lead to the identification of a series of structural differences, both in the BRCA1
and BRCA2 genes. Currently performed manually, there is clear advantage in
devising an automated approach. These structural changes are then taken into

5http://blast.ncbi.nlm.nih.gov/Blast.cgi

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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account when creating a new, ’virtual’, set of joins that represent the exon
borders. These exon borders are required to calculate the absolute positions
-genomic; referenced on a scale where both exons and introns are taken into
account- of variations that are positioned in a relative style. The latter refers
to positioning in which introns have been left out of the sequence, for a more
detailed explanation refer to section 4.3.2 and appendix C.1.

Figure 6.2: BLAST result file showing the alignment between GenBank U14680
and refSeq NG 005905. The green box identifies variations between the two
sequences that did not affect structurally (length-wise) while the red box shows
a structural difference between the two. In the latter case the query sequence,
U14680, has a Cytosine base at a position where NG 009505 appears to have
no nucleotide at all.

6.3 Lessons learned

The BIC data set represents a clear added value to the HGDB. Although very
outdated in some aspects, the data was once well curated and of high quality.
The character of the data, being directly related to common malignancies among
women, makes it of clear interest both in both clinical and research aspects. It
would clearly be a waste to simply discard it, and this work has presented an
effort to recovering it. The method used to recollect the BIC data entries, by
aligning the outdated reference sequences to the current ones, is expected to be
of future use in other sources as well. As the genomics domain rapidly advances,
data sets become increasingly fast outdated. Sequences once considered the
latest and a reference, can quickly be discarded from this status once progressing
understanding proves them erroneous. As presented an obvious solution is to
calculate the differences between those old sequences and their new counterparts,
allowing the calculation of correction values. These corrections values can then
be put to use in establishing the positions of the BIC variations.

The results of resolving the problems encountered in BIC are displayed in
figure 5.2. It shows an overview of the total number of variations per gene -of
the 15 genes considered in this work- and the number of entries finally loaded
in the HGDB. Appendix B.4 provides an overview of how the amount of loaded
variations relates to the total number of variations present in the repository for
a given gene. In the case of BIC, the percentages are relatively low with an
average of 13.48 % and a standard deviation of 1.45 %. This is due to the high
amount of double entries as discussed earlier. Indeed of the 12 025 and 11 331
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variations for the BRCA1 and BRCA2 genes respectively only 1446 and 1692
are considered unique and valid.

Figure 6.3: Total number of variations per gene, and the number of loaded
variations per gene for the BIC data repository.



Chapter 7

Genoma Data Loader

The analysis, interpretation and loading of the above mentioned databases lead
to the establishment of a variety of lessons learned about these data, and their
typical problems. Considering the vast amount of genomic data, a manual ap-
proach to loading them into HGDB would be rather cumbersome and probably
impossible within a reasonable time span. The solution was found in creating
a custom Extraction Transformation and Load (ETL) framework, built in the
Java programming language. ETL applications have been used in many differ-
ent domains to integrate data from distinct data sources and integrating them
in a single repository, however all current solutions had to be discarded for two
main reasons. No ETL solution was found to provide the level of flexibility
required to cope with the wide variety of data sources (HTML, raw text, XML)
as well as present enough capability to incorporate custom algorithms to change
the data. These latter algorithms, although not always very complicated, ofter
require the access to data already present in the database, or ’external’ files.
These external files include cDNA sequences, that will after use not be loaded
in the database. All in all, these latter requirements minimized the pool of
possible ETL solutions to virtually none, however the applications that would
maybe have offered the required functionality proved to exceed the budget in
licensing fees.

Once opted for the ’from scratch’ approach to build the ETL tool, the Java
programming environment seemed the most appropriate tool to do it. Bioinfor-
matics has traditionally favored Java for its multi-platform capacities and large
amount of available libraries. For the purposes of this work, performance is
subordinate to flexibility and availability. Indeed, it doesn’t matter that much
whether the database loading takes 1 hour or a whole day, as the actual process
of introducing new databases and maintaining the already considered up to date
is much more time consuming. The wide arrange of libraries available for Java
made it a clear alternative, as this would minimize the need for reinventing the
wheel in many cases. At the same time, as the project was currently set up to
use Windows, Linux and Mac OS X firmly intertwined, it was reasoned that a
future solution should in theory be capable of running on all these platforms,
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as well as being developed on the various platforms.

The constant evolution of the Conceptual Schema, and thus the resulting
database ánd the ETL solution, meant that for a useful solution the application
needed to cope well with change. It was decided that a plugin-based solution
would be most adequate, in which a framework would take care of the regular
execution flow of the application, while plugin based execution blocks would
allow for a precise definition of how each external data repository should be
treated separately to transform its data to the appropriate format. Looking at
the future, in which not only the input side of the application would change but
also the storage side, and thus a ”plugout” concept was introduced. Currently
the only plugout that has been implemented is the Oracle database output inter-
face, which allows for loading of the transformed tuples to the Oracle database.
It is not difficult to imagine that various other plugouts might be created, like
one that makes a flat file dump or an XML output. The use of plugins and plu-
gouts enables the application to quickly evolve along with changes to existing
data sources, as the required modifications to programming code are confined to
as few classes as possible. At the same time, adding new data sources becomes
a quick and easy process in which previous lessons can be taken advantage from
as much as possible and requires a minimum amount of code creation; in the
best case scenario only two classes need to be created, with relatively little
programming complexity, to load a new data repository.

Saying that the Genoma Data Loader has known issues, yet to be resolved,
can be considered an understatement. There are many known, and probably
even more still unknown. This, however, should not be considered the result
of a lack interest or effort as invested by both the author of this work, and
many others. The GDL represents a step in the ambitious endeavor at uni-
fying genomic data. In a domain where data is considered the main currency
-characterized by complexity, large quantities and still surrounded by so much
that is left unknown- this unification is exactly what is craved for. In this section
we will introduce the successes of the GDL in section 7.2..

7.1 Structure

Roughly the Genoma Data Loader can be decomposed in three layers: extrac-
tion, transformation and loading. Figure 7.1 provides a conceptual schema of
the main structural components of the Genoma Data Loader framework. This
corresponds to the well established concept of so called ETL (Extract, Trans-
form, Load) applications. The idea of the Genoma Data Loader is to provide
a framework environment that handles the execution flow while at the same
time providing great flexibility and efficiency in adding additional functional-
ity. The latter is achieved by the use of a plugin based approach, in which so
called AGetter plugins are used to obtain raw data from external sources. The
ATransformers plugins are used to transform the raw data into their destina-
tion format, this includes semantic as well as syntactic changes. The ALoader
plugins then define classes that perform the loading procedure of the prepared
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data into the Human Genome Database. The high level plugin is defined by the
APlugin abstract class. The Tool object is used as a wrapper around the actual
plugins, instantiated by the Main class as it is executed and the command line
arguments are parsed. It deserves mentioning here that the framework can be
considered a pipeline where the Getters generate output -in the form of ’raw’
data files- which then serve as input for the Transformers, whose output than
-in the form of organized and ’clean’ data files- serves as input for the Loaders.

AGetter

ATransformer

ALoader

FtpGetterHgmdGetter

TSVMutationTransformer

APlugin

XMLMutationTransformer

AMutationTransformer

MutationLoader

Tool

-is wrapped by0..1
-wraps1

AObjectCreator ARawMutation

AXmlCreatorATsvCreator

genoma.data
.loader

*

1

*

-instantiates

*

APlugOut

SqlOutManager

FileOutManager

1

1

Figure 7.1: A conceptual schema that represents the structure of the Genoma
Data Loader program.

Currently two Getters have been implemented: HgmdGetter and FtpGetter.
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The first allows for an extraction of the HTML based HGMD data repository.
As input the following needs to be specified: HGMD account user name, HGMD
account password, HGMD account country and the gene for which the extrac-
tion needs to take place. The HgmdGetter then retrieves the Splice Junctions
overview, as well as the cDNA and mutational records of that specified gene.
The cDNA is currently not used in the transformation process, but might very
well serve as a validation strategy in the future. It deserves mentioning here that
the HgmdGetter should be used with precaution, as extensive use has proven to
be detected by the HGMD as abuse. The used account is then blocked to deny
further access. The author of this work advises approximately 5 minute gaps
between each gene query.

The FtpGetter is more generic then the HgmdGetter in that it can serve to
download data from various sources, including dbSNP. The reason for this higher
level of genericity is plain: far more data sources provide access to their data
over FTP then over HTML. As a matter of fact, currently the HGMD is the only
data repository that requires an HTML-enabled data access layer. The input for
the FtpGetter consists of a URL which defines the FTP server address, a path
that defines the exact location of the file(s) within the FTP server file hierarchy
and optionally log in credentials. These latter use as default an anonymous
login. The FtpGetter then proceeds to download a single file, in case the path
as specified in the parameters links a file, or the contents of a directory, in case
the path refers to a directory.

The ATranformer currently further specializes into AMutationTranformer
but it is conceivable that further additions are made that handle data that con-
cerns the ’core’ part of the schema -genic and allelic data, among others- which
would then logically be named ACoreTranformer. The AMutationTransformer
is an abstract class which bundles some common behavior for both Mutation
Transformer implementations: TSVMutationTransformer and XMLMutation-
Transformer. The first is an implementation that handles the input from tab
separated values (TSV) -as provided by for instance BIC- and the latter handles
input from XML files, as provided by dbSNP. These input files are most often
generated by the earlier mentioned Getters, but for instance in the case of BIC
these files need to be downloaded manually. Each ATransformer requires an
association with an AObjectCreator. The latter takes an atomic tuple from the
input file and instantiates the appropriate ARawMutation from it, for each in-
dividual data repository we have an implementation of the ARawMutation: e.g.
BicMutation, HgmdMutation, LovdMutation etc.. For each external data repos-
itory we need to define the ObjectCreator ; which can be either an ATsvCreator,
in the case of tab separated values, or an AXmlCreator, in the case of XML
files. For instance, in the case of the BIC we have two implementations, Bic-
Creator and BicMutation. The BIC data files are in the TSV format and so
the BicCreator extends ATsvCreator, while in our execution flow an instance
of TsvMutationTransformer is executing. The TsvMutationTransformer takes
an input file as parameter and uses the BicCreator to instantiate each atomic
tuple as a BicMutation, which in this case corresponds to each individual line.
A BicMutation represents the concept of what the BIC understands to be a
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mutation, meaning that each field of the class corresponds to a column in the
TSV input file. This allows us to capture the BIC mutation into our framework.
Each ARawMutation, and thus extending implementations like BicMutation, de-
fines a number of methods, among which a method called ’translate’. Calling
this methods initiates the transformation process of this single ’raw’ mutation
to a ’clean’ Variation. The latter corresponds exactly to the concept with the
same name as described in section 3.2. In case of XML input files, the process
is rather similar but instead of considering one line at a time -which is very
convenient for TSV files- the entire file is considered by the AXmlCreator. The
current implementation of AXmlCreator is thus an XML parser compliant with
the requirements as described in section 5.5.

The final step in the pipeline, loading, is performed by ALoader plugins. For
each ’part’ of the conceptual schema a different ALoader can be created, and
currently the only implementation handles the loading of mutational entries:
MutationLoader. Future implementations might include a CoreLoader. As the
Genoma Data Loader is expected to cope with changing environments, both
input wise and output wise, an extra layer was introduced which we will refer to
as Plugouts. The idea of a plugout is that it handles the interface with a specific
output medium, like an SQL-based database, an XML file or a TSV file dump.
Currently two implementations of the APlugOut exist: SqlOutManager and
FileOutManager. The first refers to the communication layer with an SQL based
database, like for instance the current Oracle database, while the latter refers
to a solution that dumps the data in a TSV file format. The SqlOutManager
uses Java PreparedStatements in batches to perform a quick and efficient load.
It is a ’clean’ load each time, as the affected tables are purged before actually
reloading them with data.

7.2 Coverage

Currently the GDL has a coverage of 15 genes, for which various data reposi-
tories are loaded. Figure 7.2 provides a graphical overview on the distribution
of the loaded data entries. It is interesting to note that in most cases dbSNP
variations account for the vast majority of the tuples, except for the BRCA1
and BRCA2 genes. This is even more remarkable taken into account these two
genes, due to their relation to highly common forms of both Breast and Ovarian
cancer, have exhaustively been researched; probably more then the others. The
data suggest, even when leaving the BRCA1/2 specific BIC data set out, that
far more genetic variations cause negative effects rather then being neutral on
phenotype. This leads us to the interesting hypothesis that perhaps many of the
variations in other, less researched genes, that are currently classified as SNP
-and therefore having a neutral effect on phenotype- might actually represent a
possible risk factor for susceptibility to disease. The large differences observed in
the number of genetic variations among genes is also startling. Quite unexpected
the PCDH15 gene accounts for more then 8000 variations, while BRCA1 and
BRCA2 together only account for around 3600 variations, even though these
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genes are included in the BIC database and PCDH15 is not. Possible expla-
nations include gene size and the relative importance of the genetic message to
survival of the individual. The BRCA1 (193 689 bp) and BRCA2 (91 193 bp)
genes combined account for 284 288 base pairs while PCDH15 alone is almost
1 million base pairs long (987 192 bp). The latter gene has been associated to
hearing loss in case of malign genetic variations, which may be less crucial to
the survival of the individual then susceptibility for cancer. Both facts provide
interesting questions that can be considered interesting new lines of research.

Figure 7.2: The current coverage of unique, successfully translated variations as
obtained by the GDL. The data are organized per gene and per repository. It is
clear that dbSNP represents the vast majority of variations in almost every gene.
Only BRCA1 and BRCA2 appear to obtain more entries from other sources.
This image might be distorted in that it is still unknown to what extend the
tuples from the various data sources overlap.
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Conclusions

This work presents a multi disciplinary effort to combining the domains of bioin-
formatics and informations systems. Current bioinformatics poses a variety of
challenges which makes it an interesting domain for the application of concep-
tual modeling techniques. These challenges include coping with (i) the large
quantities of data, (ii) a high degree of ambiguity and (iii) the rapidly evolving
knowledge. As technology progresses and high-throughput sequencing becomes
more mainstream the problems as identified in the genomics area are expected
to increase, rather than disappear. We decomposed the issue into two aspects,
namely the data chaos and the conceptual chaos. The first deals with problems
associated to data quantities and how they are globally stored in a fragmented
manner. The latter refers to issues associated to the semantics of the data, or
more specifically the ambiguity surrounding exactly these semantics in many
cases.

Solving the current data related issues in genomics has the potential to dras-
tically change the way we view health care. Craig Venter, one of the scientists
that lead the 2000 effort to sequencing the first draft of the human genome,
describes many of the exciting new possibilities in his book ”The Language of
Life” [82]. Personalized medicine is what current science believes to be the an-
swer to many diseases, including cancers, Alzheimer’s, diabetes, heart disease
and many more. The idea here is that every human individual has a unique
DNA fingerprint that makes it vulnerable to disease on the one hand, but more
sensitive to certain medicinal compounds on the other. Charting these indi-
vidual characteristics might prove a magnificent weapon in the fight against all
disease. As a real world example, the cancer case is easy to grasp. Cancer can
be considered in by far the most cases a mechanical defect of the genomic mech-
anisms. The DNA sequence contained in each cell of an individual accumulates
variations throughout it’s lifetime, by natural cell division -which although very
accurate is not entirely error-free- or external factors like carcinogens. Each
of these variations might affect phenotype slightly, like for instance increasing
the speed with which the particular cell divides. Often these slight changes
can be corrected by protection mechanisms present in the body, but sometimes
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these accumulated variations reach a certain threshold after which the natural
correction mechanisms can no longer correct the situation: a cancer is born.
From these steps, it is easy to see how a each cancer is different in every indi-
vidual, following the different variations one might accumulate over the years.
What follows is a specific DNA fingerprint for each individual cancer which in
turn makes it either vulnerable or resistant to specific chemical compounds, or
agents. Please notice here that when we speak of individual cancer, we mean
the specific cancer in each affected individual, not the various types of cancer
like breast cancer, colon cancer, pancreatic cancer etcetera. Once we are able
to relate these agents to the adequate sections of tumor ’DNA fingerprints’,
effective treatments are expected to emerge.

We have seen that current solutions to both the data chaos and conceptual
chaos are insufficient. Ad-hoc databases and ontologies are to often to limited in
their functionality, flexibility and extensibility to provide that what is needed:
a holistic view of the genomic domain as an Information System. The studied
data repositories (HGMD, BIC and dbSNP) each prove challenging in their own
respect. The HGMD appears to be largely affected by conceptual chaos prob-
lems; here ambiguity and conceptual fuzziness makes it hard, even for experts,
to determine what exactly is presented from a semantic point of view. Adding to
this, clear data inconsistencies and errors have been detected. The results of the
HGMD study have been published as a summary paper in the 2011 International
Conference on Bioinformatics Models, Methods, and Algorithms proceedings by
the title: ”Mutational data loading routines for human genome databases: the
BRCA1 case” [106] and as a full paper in the Journal of Computing Science
and Engineering, in 2010 by the same title [16]. Sheer data size is also not an
issue in the BIC, but rather interpretation of the data and correcting them for
being outdated. In both sources, the algorithms as presented in this work aim
to reduce inconsistencies by mapping data to a source deemed more reliable -the
NCBI- thereby allowing for elimination of those entries considered invalid. Fur-
ther more, the algorithms are able in some cases to restore outdated data tuples
by mapping genetic locations among ’old’ reference sequences and their newer
counterparts. The results of this have been presented in section 7.2. Where the
HGMD and the BIC are rather similar in their problem characteristics -being
both largely conceptual chaos qualified- dbSNP is rather different.

In dbSNP the large amounts of data are what actually makes an efficient
load difficult. Of course, conceptual mismatches also needed to be resolved and
the data interpreted, but this was mostly a matter of elimination of invalid
data, rather then transforming outdated data to a valid state. The real chal-
lenge has been to cope with the large quantities of XML-based data, as has been
described in chapter 5. All in all, the conclusions of studying these data repos-
itories is clear: the image of a fragmented genomic domain exists, both from
a conceptual- ánd data-oriented perspective, is correct. The data are stored in
various locations, following various schemas and standards while at the same
time not always adhering to clear, common biological concepts and semantics.
The solution to this problem as presented by the domain itself in the form of on-
tologies, although not extensively studied in this work but superficially touched
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in the State of the art section -chapter 2-, is in our view not sufficient. It has
been clarified that, in our perspective ontologies and conceptual models are not
mutually exclusive but rather complementary. The broadly accepted standard,
Gene Ontology, knows very specific flaws as was pointed out by Smith [79] and
Kumar [80] and further reinforced in this work. A result of the latter is the
acceptance of a paper in the ER2011 Onto-CoM workshop in Brussels with the
title: ”Gene Ontology Based Automated Annotation: Why it isn’t Working”
[107]. The GO lacks expressiveness, making it difficult for the creators to fully
capture the semantics of the domain. The latter often results in inadequate
use of specific constructs to compensate, thereby fading the formality of the
resulting ontology. A result of the latter is the reduced ability to reason over
the contents of the ontology, making it hard -if not impossible- to fulfill the
promises that were originally made when GO was conceived.

Early attempts at applying a conceptual modeling approach by [35] and
[52] have been extended into the Conceptual Schema of the Human Genome
as reported in this work. The results of this extension have been published
as a book chapter in the 2011 Handbook of Conceptual Modeling, by the title:
”A Conceptual Modeling Approach to Improve Human Genome Understanding”
[37]. The current state of data and conceptual chaos in bioinformatics in general,
but genomics specifically calls for solutions. Conceptual modeling has proven
to be a valuable tool in the creation of higher quality Information Systems
in a variety of domains. By using a visual representation of concepts, their
characteristics and relations among them we hold in hands a powerful reasoning
tool which allows informations systems engineers and domain experts to closely
work together. The visual aspect of conceptual schemas make it an intuitive tool
for both the engineer and domain expert and enables a shared language. The
fact that from sound conceptual representations nowadays full implementations
can be generated in almost fully automated ways [39] further reinforces the
argument of having a wider spread use of conceptual modeling techniques in
genomics, where up until now most Information Systems prove to be victim of
a variety of weaknesses, as has also been shown in this work. The fact that a
conceptual schema implicitly defines an ontology through in conceptualization
further emphasizes the complementary character of these sometimes thought to
be very different technologies.

It is thus our vision that a conceptual modeling of the human genome can
aid the current state of affairs in genomics in roughly two ways. First, data
chaos as identified by earlier works [14] [16] [15] and confirmed by this work as a
result of not applying or improperly applying well-known Information Systems
principles, can largely be resolved by following a Model Driven Architecture
approach. In this approach, conceptual schemas play a vital role as the backbone
of the paradigm. They allow for communication between the domain experts
and the Information Systems engineers, as pointed out earlier, while at the same
time serving as design artifacts that allow for automated generation of (parts)
of the Information System. Second, the creation of the conceptual schema of
the human genome is a goal in itself. Slightly more abstract and ambitious
then the former, but important nonetheless, the creation of a conceptual model
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can be seen as the crystallization of a certain body of knowledge. Exactly as
is being attempted by Gene Ontology -creating a tool for the unification of
biology- conceptual schemas might very well fulfill the promise. As has been
argued in this work and previously by Smith and Kumar [79] [80], among others,
the current de-facto standard leaves a lot to wish for. We firmly believe that
exactly conceptual modeling techniques can bring that what is needed to make
the promise of the Gene Ontology come true: by offering a visual tool, along
with improved and formally described expressiveness a powerful reasoning tool
can be acquired.

One of our goals in this work was to start a discussion on the application of
conceptual modeling techniques in genomics. Capturing biological understand-
ing is a huge challenge we face, and the question is not whether we want to
do it, but how do we do it. Specifications of conceptualizations are everywhere
around us, and all of these correspond to the broad concept of an ontology. It
is when we try and structure knowledge into a computationally sound struc-
ture and consider this to be the ontology, where not everything can stand that
qualification anymore. Rigorous methods are needed, for a semantically sound
ontology to emerge. The practice of conceptual modeling has been long around
in Information System development, and has proven very suitable to capture
domain knowledge in a controlled manner, both syntactically and semantically
sound; ultimately even leading to the automated generation and validation of
computer software. If we take the liberty of considering the biological system
of life as analogous to an Information System it is not easy to miss the grand
opportunities such a perspective provides. The analogy here is tempting and
exciting; if we can create higher quality Information Systems by fully under-
standing their respective problem domains, perhaps we can improve life itself
too by applying that very same method. After all, the mechanisms that underly
the processes that drive life are not that different from our artificial, man-made
Information Systems. Indeed, it requires only a small amount of imagination
to see how information contained on long-term storage in DNA transfers to
short-term storage RNA and is eventually ’executed’ in an intricate chemical
processing unit to form an organism.
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Future work

One of the first future research lines that comes to mind is evolution of con-
ceptual data modeling to cope with immense data quantities. It is clear that
in bioinformatics very large amounts of data are being managed, and that this
is very likely to increase exponentially the coming decades as technology fur-
ther develops. The current MDA techniques allow for the automated creation
of conventional relational databases like MySQL, Oracle and PostgreSQL. The
rules for transforming platform independent models (conceptual schemas) to im-
plementations that follow this relational paradigm have been well established.
These technologies, although very mature and performing exceptional in some
applications, date back to the ’70s. The current information age has changed
a lot since then; data quantities have increased, hardware capabilities have
changed, as well as user requirements, imposing entirely new challenges on stor-
age technology. Current popular solutions include the so-called NoSQL-based
solutions [108], in which conventional relational algebra is replaced with different
paradigms that allow for far larger data quantities, faster access times while in
some cases trading in some consistency in real time applications [109]. Currently
NoSQL solutions are put to practice by large multinationals like Facebook [110],
Google [111], Amazon and Twitter. Although often referred to as NoSQL, we
prefer the term non-relational databases as it covers the semantics better. It
would be a very interesting line of research to see if and how conceptual modeling
can be applied to the application to these new technologies. In particular, dis-
covering the set of rules and transformations required to translate a conventional
conceptual schema (platform independent model) to a non-relational database,
thereby combining the reduced development effort of model driven engineering
with the ability to cope with today’s high data quantity requirements.

Next, an interesting thought is the classification of different classes of loading
problems. The Genoma Data Loader program is able to identify certain types
of problems, like inconsistencies among data sources and format errors. The
latter referring to for instance, typing errors in which a letter is introduced in
the ’location’ attribute of a mutation. Classifying these problems into separate
categories and determining how runtime encountered problems can be assigned
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to them is expected to spark well directed research lines. By applying statistical
methods it is then possible to determine ’out of the ordinary’ data sets within
data sources, and among them. To illustrate we will take the example of the
HGMD, here we might assume that the average format error -for instance a
letter in an integer column- affects around 1 in a 100 mutations, per gene. We
now know, through applying statistics, if a certain average format error for a
newly loaded gene is significantly higher then the average overall that something
might be off; either the Genoma Data Loader code does not cope well with this
particular gene, or this is a new kind of formatting not yet implemented.

Through this work we have used a gene-centric approach. The conceptual
schema takes the concept of a gene as a central hub, an connects additional
properties to this main artifact. Reality might be slightly different as will be
illustrated with an example. Currently all variations in the Human Genome
Database are associated to genes and their respective result on phenotype. The
idea here is that if a gene is the atomic element of heredity, only those variations
that affect a gene will have an effect on phenotype. This however turns out not
be the case, as is now commonly believed among geneticists that also variations
in non-coding parts of the genome can affect phenotype. This latter renders,
at least to some extend, the currently chosen perspective invalid. A better
approach, and one that is being investigated right now, is to use the chromosome
centric approach. This allows for connecting variations to chromosomes, rather
then genes. This is in turn makes full sense, as we take into account that the
earlier gene centric solution was based on the shortcomings of technology at
that time, being unable to sequence entire genomes at reasonable prices. Now
that we possess over the short term prospect of acquiring cheap full genome
sequencing, these DNA stretches between the genes will be analyzed in much
more detail. The current evolution of the conceptual model, which took place
in parallel with this work, is already exploring these ideas.

One last interesting thought deals with data redundancy. It is currently
unknown to what degree common genomic data sources like the BIC, LOVD
and HGMD overlap. They each store very similar data, but in varying data
formats that make a comparison non-trivial. The result of this work, basically
the integration of these data in a common format, has made this comparison a
very feasible research line. It would be particularly interesting to see how the
entries in the relatively old and abandoned BIC made it, or not, to the other
data sources. The difficulty will be to determine what are the basic properties
of a variation that determine its identity. The authors of this work suggest that
the actual change and position are all that is needed. Some discussion can exist
about whether the phenotype should also be added. After all, it is still very
unknown if one variation can have just one, or various phenotypes. And if a
variation leads to various phenotypes, it must mean that other genetic changes
also affect the process; shouldn’t they be part of the concept of Variation too,
if that is what we want to indicate the genotypic blocks that lead to different
phenotypes? Indeed, following this line of thought the Variation concept should
not be restricted to a single change when it is connected to the Phenotype
concept, but rather a new concept in between. This new concept could be
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called Haplotype, following the genetic concept of variations being transmitted
together.
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Appendix A

Data format samples

A.1 HGMD precise mutations format sample

This screenshot provides a typical example of how HGMD precise mutations
are presented to the user. In this particular case we see the first 11 mis-
sense/nonsense mutations of the BRCA1 gene. The other precise mutations
-small deletions, small indels and small insertions- have a very similar layout.
The presentation is consistent among genes.

113



114 APPENDIX A. DATA FORMAT SAMPLES

A.2 HGMD imprecise mutations format sample

This screenshot provides a typical example of how HGMD presents imprecise
mutations to the user. In this particular case the first few entries of the gross
deletions overview of the BRCA1 gene are shown. The other imprecise mu-
tations -gross insertions, gross indels, regulatory and complex rearrangements-
have a similar layout.

A.3 dbSNP XML format sample

A sample of the XML file used by dbSNP to transfer data. What is shown is a
single Rs entry, which represents a single Single Nucleotide Polymorphism. The
data of this particular entry has been manipulated in order to fit on the page,
this includes semantical changes. The entry as shown on this page therefore
does not represent a correct dbSNP entry.

<Rs rsId="3894" snpClass="snp" snpType="notwithdrawn"

molType="genomic" genotype="true"

bitField="050000000001010500020100" taxId="9606">

<Het type="est" value="0" stdError="0"/>

<Validation byCluster="true" byOtherPop="true">

<otherPopBatchId>7179</otherPopBatchId>

</Validation>

<Create build="36" date="2000-09-19 17:02"/>

<Update build="132" date="2011-01-11 12:25"/>

<Sequence exemplarSs="3931" ancestralAllele="C">
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<Seq5>TAATCAGTCTCCTCCCAGCAAGTGATAT</Seq5>

<Observed>C/T</Observed>

<Seq3>AATTAGGAAGAGCTGGTACCTAAAAT</Seq3>

</Sequence>

<Ss ssId="3931" handle="OEFNER" batchId="489" locSnpId="M3"

subSnpClass="snp" orient="forward" strand="bottom"

molType="genomic" buildId="36" methodClass="DHPLC"

validated="by-cluster">

<Sequence>

<Seq5>TAATCAGTCTCCTCCCAGCAAGTGATATG</Seq5>

<Observed>C/T</Observed>

<Seq3>AATTAGGAAGAGCTGGTACCTAAAATGATTTT</Seq3>

</Sequence>

</Ss>

<Assembly dbSnpBuild="132" genomeBuild="37_1"

groupLabel="GRCh37" current="true" reference="true">

<Component componentType="contig" ctgId="224514809"

accession="NT_011875.12" name="NT_011875.12" chromosome="Y"

start="13798578" end="23901427" orientation="fwd"

gi="224514809" groupTerm="GRCh37" contigLabel="GRCh37">

<MapLoc asnFrom="5297784" asnTo="5297784" locType="exact"

alnQuality="1" orient="reverse" physMapInt="19096362"

leftFlankNeighborPos="179" rightFlankNeighborPos="181"

leftContigNeighborPos="5297783" rightContigNeighborPos="5297785"

numberOfMismatches="1" numberOfDeletions="0"

numberOfInsertions="0"/>

</Component>

<SnpStat mapWeight="unique-in-contig" chromCount="1"

placedContigCount="1" unplacedContigCount="0" seqlocCount="1"

hapCount="0"/>

</Assembly>

<RsLinkout resourceId="4" linkValue="60936"/>

<MergeHistory rsId="56546490" buildId="130"/>

<hgvs>NT_011875.12:g.5297785G&gt;A</hgvs>

</Rs>
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A.4 BIC data format sample

Accession Number Unique identifier generated at the time mutation is entered is
entered into database

Exon BRCA1 or BRCA2 exon in which mutation has been identified
cDNA nucleotide Nucleotide # in the transcript at which mutation occurs; Ref-

erence sequences: BRCA1 GenBank U14680; BRCA2 Gen-
Bank U43746

gDNA nucleotide Nucleotide # in genomic DNA at which mutation occurs; Ref-
erence sequences: BRCA1 GenBank L78833

Codon Triplet codon # (ATG is +1) in which mutation occurs
Base change Description of nucleotide difference compared to reference se-

quence
Amino acid change Description of resulting change in the encoded amino acid se-

quence
Mutation designation Designation of described mutation according to nomenclature

guidelines
Mutation type Frameshift, nonsense, missense, splice, in frame deletion
Mutation effect Frameshift, nonsense, missense, splice, unclassified variant,

polymorphism
Depositor Contributor of mutation report
Patient sample source Hospital or research institute from which patient sample orig-

inated
Patient ID number Patient identifier designation in publications, or used by the

hospital or research institute
Number of times reported Number of family members carrying mutation
Germline or Somatic muta-
tion
Detection method used SSCP, direct sequencing, DGGE etc.
Proband tumor type Breast, ovarian, other
Number of chromosomes
screened

Number of normal control chromosomes screened

Frequency of polymor-
phism (A/C/T/G)

Information on the frequency of variants in normal control
chromosomes, if known

Literature reference Literature citation in which mutation was first reported
Contact person Email address of individual to whom inquiries should be ad-

dressed
Notes Additional information describing the mutation, family his-

tory, patient series, age of onset, etc.
Creation date Date on which mutation is entered into the public database
Ethnicity Information on patient ethnicity, if known
Nationality Information on patient nationality, if known



Appendix B

Genoma Data Loader
coverage

B.1 Variations per gene, per data repository

Gene HGMD BIC dbSNP LOVD TOTAL

BRCA1 1035 12 025 3091 0 16 151
BRCA2 776 11 331 2712 0 14 819
CDH23 86 0 4954 1119 6159
CLRN1 15 0 547 276 838
COL1A1 443 0 748 0 1191
COL1A2 288 0 787 0 1075
DFNB31 4 0 1289 132 1425
FBN1 848 0 2320 0 3168
GPR98 6 0 5409 41 5456
MYO7A 190 0 1205 2136 3531
NF1 1018 0 2558 0 3576
PCDH15 23 0 11 830 504 12 357
USH1C 16 0 647 223 886
USH1G 6 0 121 50 177
USH2A 119 0 7925 2212 10 256
TOTAL 4873 23 356 46 143 6693 81 065
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B.2 Translated variations per gene and data repos-
itory

Gene HGMD BIC dbSNP LOVD TOTAL

BRCA1 1035 11 507 1662 0 14 204
BRCA2 776 11 169 998 0 12 943
CDH23 86 0 4754 1108 5948
CLRN1 15 0 565 276 856
COL1A1 443 0 809 0 1252
COL1A2 288 0 843 0 1131
DFNB31 4 0 1222 132 1358
FBN1 848 0 2399 0 3247
GPR98 6 0 5254 41 5301
MYO7A 190 0 1094 2090 3374
NF1 1018 0 2499 0 3517
PCDH15 23 0 12 186 489 12 698
USH1C 16 0 661 200 877
USH1G 6 0 111 50 167
USH2A 119 0 7965 2209 10 293
TOTAL 4873 22 676 43 022 6595 77 166
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B.3 Translated unique variations per gene and
data repository

Gene HGMD BIC dbSNP LOVD TOTAL

BRCA1 947 1446 1140 0 3533
BRCA2 733 1692 684 0 3109
CDH23 74 0 3273 241 3588
CLRN1 15 0 370 16 401
COL1A1 358 0 575 0 933
COL1A2 244 0 595 0 839
DFNB31 4 0 827 54 885
FBN1 721 0 1638 0 2359
GPR98 6 0 3570 13 3589
MYO7A 170 0 734 299 1203
NF1 792 0 1747 0 2539
PCDH15 23 0 8208 91 8322
USH1C 12 0 455 54 521
USH1G 6 0 74 7 87
USH2A 107 0 5445 471 6023
TOTAL 4212 3138 29 335 1246 37 931
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B.4 Translated unique variations versus total num-
ber of variations per gene and data reposi-
tory

Gene HGMD BIC dbSNP LOVD AVG S.DEV.

BRCA1 91.50 % 12.02 % 36.88 % 46.80 % 33.19 %
BRCA2 94.46 % 14.93 % 25.22 % 44.87 % 35.31 %
CDH23 86.05 % 66.07 % 21.54 % 57.88 % 26.96 %
CLRN1 100.00 % 67.64 % 5.80 % 57.81 % 39.08 %
COL1A1 80.81 % 76.87 % 78.84 % 1.97 %
COL1A2 84.72 % 75.60 % 80.16 % 4.56 %
DFNB31 100.00 % 64.16 % 40.91 % 68.36 % 24.31 %
FBN1 85.02 % 70.60 % 77.81 % 7.21 %
GPR98 100.00 % 66.00 % 31.71 % 65.90 % 27.88 %
MYO7A 89.47 % 60.91 % 14.00 % 54.79 % 31.11 %
NF1 77.80 % 68.30 % 73.05 % 4.75 %
PCDH15 100.00 % 69.38 % 18.06 % 62.48 % 33.81 %
USH1C 75.00 % 70.32 % 24.22 % 56.51 % 22.92 %
USH1G 100.00 % 61.16 % 14.00 % 58.39 % 35.16 %
USH2A 89.92 % 68.71 % 21.29 % 59.97 28.69 %
AVG 90.32 % 13.48 % 31.32 % 21.28 % 47.07 %
S.DEV. 8.36 % 1.45 % 13.47 % 9.77 % 10.61 % 12.31 %



Appendix C

Algorithms

C.1 Calculating absolute position

public stat ic int getAbsolutePos ( Li s t<Exon> exons , int cDNAPos) {
int p o s i t i o n = 0 ;
int l ength = 0 ;
for (Exon e : exons ) {

int exonLength = ( e . end exon − e . s t a r t e x o n ) + 1 ;

i f ( exonLength + length < cDNAPos) {
l ength += exonLength ;

} else {
p o s i t i o n = ( e . s t a r t e x o n + (cDNAPos −

l ength − 1) ) ;
return p o s i t i o n ;

}
}
return −1;

}

C.2 Separating reference from variation

/∗∗
∗ in some cases dbSNP ” h ides ” mu l t i p l e v a r i a t i on s
∗ in one <RS> entry ; t h i s can be i d e n t i f i e d by l ook ing
∗ at the ’ ’ observed ’ ’ f i e l d , which prov ides observed
∗ a l l e l e s separated by back s l a s h e s (/) . Each observed
∗ a l l e l e t ha t doesn ’ t correspond to the nuc l e o t i d e at
∗ t ha t po s i t i on in re fSeq means a unique va r i a t i on
∗ according to CSHG.
∗
∗ @return
∗ I f no observed a l l e l e corresponds with refSeq ,
∗ 0 i s re turned
∗/
private List<DbSnpMutation> par s eObse rvedAl l e l e s ( ) {

List<DbSnpMutation> v a r i a t i o n s = new ArrayList<
DbSnpMutation>() ;
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Pattern pattern = Pattern . compi le ( ” [ACTG]+?” ) ;
L i s t<Str ing> o b s e r v e d A l l e l e s = normal i zeSnpObservedAl le l e s (

observed , ( S t r ing ) a t t r i b u t e s . get ( ” o r i e n t ” ) ) ;
for ( S t r ing oa : o b s e r v e d A l l e l e s ) {

Matcher matcher = pattern . matcher ( oa ) ;
DbSnpMutation dsm = new DbSnpMutation ( this ) ;

i f ( ! o b s e r v e d A l l e l e s . conta in s ( ”−” ) ) {
dsm . type = P r e c i s e . Type . INDEL;
i f ( matcher . matches ( ) && !

obs e rvedA l l e l e I s InRe fSeq ( oa ) ) {
dsm . change = oa ;
v a r i a t i o n s . add (dsm) ;

}
} else i f ( o b s e r v e d A l l e l e s . indexOf ( ”−” ) == 0) {

dsm . type = P r e c i s e . Type . INSERTION;
i f ( matcher . matches ( ) && !

obs e rvedA l l e l e I s InRe fSeq ( oa ) ) {
dsm . change = oa ;
v a r i a t i o n s . add (dsm) ;

}
} else i f ( o b s e r v e d A l l e l e s . indexOf ( ”−” ) ==

o b s e r v e d A l l e l e s . s i z e ( ) ) {
dsm . type = P r e c i s e . Type .DELETION;
i f ( matcher . matches ( ) &&

obse rvedA l l e l e I s InRe fSeq ( oa ) ) {
dsm . change = oa ;
v a r i a t i o n s . add (dsm) ;

}
}

}
return v a r i a t i o n s ;

}
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C.3 Normalizing variations

/∗∗
∗ normal izes an observed g ene t i c change ,
∗ thus tak ing in to account the o r i en t a t i on o f
∗ the change ( e i t h e r ” reve r s e ” or ” forward ”) .
∗
∗ @param observedBase
∗ the observed change
∗ @param or i en t a t i on
∗ o r i en t a t i on o f the change , must be a
∗ s t r i n g t ha t equa l s e i t h e r ’ ’ r e ve r s ’ ’ or ’
∗ ’ forward ’ ’
∗ @return a normalized SNP change
∗/
public stat ic St r ing normalizeSNP ( St r ing observedBase , S t r ing

o r i e n t a t i o n ) {

BasePairComplement bpc = new BasePairComplement ( ) ;

S t r ing re turnva lue = ”” ;
i f ( o r i e n t a t i o n . equa l s ( ” r e v e r s e ” ) ) {

char [ ] l e t t e r s = observedBase . toCharArray ( ) ;
for ( int i = 0 ; i < l e t t e r s . l ength ; i++) {

char l e t t e r = l e t t e r s [ i ] ;
l e t t e r = bpc . basePa i r s . get ( l e t t e r ) ;
r e tu rnva lue = re turnva lue . concat ( ”” +

l e t t e r ) ;
}
r e tu rnva lue = new S t r i n g B u f f e r ( r e tu rnva lue ) . r e v e r s e

( ) . t oS t r i ng ( ) ;
} else {

r e tu rnva lue = observedBase ;
}
return r e tu rnva lue ;

}

/∗∗
∗ t h i s convenience c l a s s makes i t
∗ ea s i e r to r e t r i e v e f o r each
∗ nuc l e o t i d e i t s complementary
∗ e qu i v a l en t .
∗/
public class BasePairComplement {

public Map<Character , Character> basePa i r s ;

public BasePairComplement ( ) {
basePa i r s = new HashMap<Character , Character >() ;
basePa i r s . put ( ’A ’ , ’T ’ ) ;
basePa i r s . put ( ’T ’ , ’A ’ ) ;
basePa i r s . put ( ’G’ , ’C ’ ) ;
basePa i r s . put ( ’C ’ , ’G’ ) ;

}
}
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