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Abstract 

 

Customer service measures are traditionally used to determine the performance or/and the control pa-

rameters of any inventory system. Among them, the fill rate is one of the most widely used in practice 

and is defined as the fraction of demand that is immediately met from shelf i.e. from the available on-

hand stock. However, this definition itself set out several problems that lead to consider two different 

approaches to compute the fill rate: the traditional, which computes the fill rate in terms of units short; 

and the standard, which directly computes the expected satisfied demand. This paper suggest two ex-

pressions, the traditional and the standard, to compute the fill rate in the continuous reorder point, or-

der quantity (s, Q) policy following these approaches. Experimental results shows that the traditional 

approach is biased since underestimate the real fill rate whereas the standard computes it accurately 

and therefore both approaches cannot be treated as equivalent. This paper focuses on the lost sales 

context and discrete distributed demands. 
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1 Introduction and Literature Review 

In many industries, inventory control has become a strategic key element that determines the success 

of important objectives. There are several decisions that inventory managers need to adopt for design-

ing inventory policies. First of all it is important to determine how to proceed when the system is tem-

porarily out of stock. If any demand, when out of stock, is backordered and filled as soon as possible, 

the inventory is managed in the backordering case. Conversely, if once a stockout takes place, the cus-

tomer goes elsewhere to satisfy its need, the inventory is managed in the lost sales case (Silver, 1998). 

Inventory research has traditionally focused on the backordering case mainly because it is mathemati-

cally much easier to characterize the inventory policy when demand is backorder rather than lost (Bi-



 

jvank et al. 2011; Zipkin 2008a; Zipkin 2008b). However, the assumption of excess demand being lost 

is of practical importance in sectors where customers are impatient. Examples are found in highly 

competitive sectors such as retail (Gruen et al. 2002), machinery spare parts, service sector (Diels and 

Wiebach 2011) or on-line commerce (Breugelmans et al. 2006). Thus inventory managers are increas-

ingly demanding methods and models for the lost sales case which is precisely the context of this pa-

per. Once this question has been solved, the fundamental purpose of an inventory system is to resolve 

the following issues (Silver, 1998): (1) how often the inventory status is reviewed; (2) when a replen-

ishment order takes place and (3) how large the replenishment order is. This paper is focus on one of 

the most frequently used inventory control system: the traditional continuous review system (s, Q). 

Contrary to what happens in the periodic review system, where the status of the stock is only known 

when it is reviewed, in the case of continuous review, it is known at any moment. This fact allows 

controlling when the inventory position (i.e. on-hand stock + on-order stock - backorders) drops to the 

reorder point, s, at which point a replenishment order equal to Q is launched and received after the 

lead time. To determine the order point, s, and the order quantity, Q, we find two possible approaches: 

minimizing total inventory costs or guaranteeing the achievement of a target service level. As Bijvank 

and Vis (2012) points out the service approach is useful when a service level restriction is imposed by 

the replenishment process and it is easier to define a target service level than all the costs, especially 

the stock out cost. For this reason, practitioners tend to use the service level criterion to establish the 

control parameters of the inventory system. 

One of the service measures most commonly used in practice is the fill rate (β futher on) that repre-

sents the fraction of demand that is immediately fulfilled from shelf, i.e. from the on-hand stock (see 

Axsäter (2000) among others). This simple-looking definition entails many technical details that are 

sometime overlooked. In the literature, the fill rate has been simplified through the traditional approx-

imation which computes the fill rate in terms of units short, i.e. as the complement of the quotient be-

tween the expected unfulfilled demand per replenishment cycle (also known as expected shortage) and 

the total expected demand. Over the last fifty years and for the continuous review system (s, Q) sever-

al authors have suggested methods to compute this measure based on the traditional approach. (Silver 

1970) proposes an exact formula for Normal distributed demands which eliminate the double counting 

of the backorders. (Vincent 1983) reviews the expression proposed by Silver (1970) and suggest prac-

tical approaches to the calculation of the fill rate that are easy implementable for both Normal and 

Poisson demands under the assumptions of unitary demand and backlog. Platt et al. (1997) derive two 

closed-form heuristic approaches to determine the parameters of this policy in a context of Normal 
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demand and backorder. Agrawal and Seshadri (2000) develop an upper and lower bound to the fill rate 

constrained inventory problem for continuous demands and backorder assumption. Axsäter (2006) 

propose a simple two-step approach to determine the parameters of the policy when the demand is 

Normal and excess demand is backordered. However, the results of this paper show that the traditional 

approach does not really equivalent to the fill rate definition. 

To the best of our knowledge, there is not any method to estimate the fill rate following its definition 

for the lost sales case and when the inventory is continuously reviewed by a (s, Q) policy. This gap 

motivates the objectives of this research: (i) to analyze in depth the definition of the fill rate; (ii) to 

demonstrate that the traditional method is not accurate enough; and (iii) to derive a standard approach 

for the fill rate under the assumption of discrete demand.  

The remainder of the paper is organized as follows. Section 2 describes the inventory system and in-

troduces the notation and general assumptions of this paper. Section 3 dedicates to analyze in depth 

the fill rate definition. Section 4 proposes the traditional and the standard method to compute the fill 

rate in this research context. Simulation and experimental results are illustrated and discussed in Sec-

tion 5 that also explains the practical implications that arise from using the two approaches presented 

in the paper. Finally, Section 6 summarizes the main contributions of this research.  

 

2 Inventory System, Assumption and Notation  

This paper considers a single echelon single item inventory system where demand is stochastic and 

modelled by any discrete distribution. The stock is controlled according to a continuous review reorder 

point, order quantity (s, Q) system for the lost sales case as shown in Fig. 1. In this system, a fixed 

quantity Q is ordered whenever the inventory position (i.e. on-hand stock + on-order stock - 

backorders) drops to the reorder point s. The replenishment order is received L periods after being 

launched. The replenishment cycle is the time elapsed between two consecutives order deliveries. 

General assumptions are: (i) time is discrete and is organized in a numerable and infinite succession of 

equally spaced instants; (ii) the lead time, L, is constant and known; (iii) there is never more than one 

order outstanding which implies that s<Q; (iv) a replenishment order of size Q is placed when de in-

ventory position is exactly at the reorder point; (v) the replenishment order is added to the inventory at 

the end of the period in which it is received, hence these products are available to satisfy the demand 

of the following period; (vi) demand during a period is fulfilled with the on-hand stock at the begin-



 

ning of that period; (vii) excess demand is lost and (viii) the demand process is assumed to be discrete, 

stationary and i.i.d. 

The notations in Fig. 1 and in the rest of the paper are: 

s =  reorder point, ROP (units), 

Q =  replenishment order quantity (units), 

L =  lead time for the replenishment order (time), 

z0 =  on-hand stock at the beginning of the cycle or at order delivery (units),  

DL=  accumulated demand during the lead time (units), 

D = accumulated demand from the beginning of the cycle until the ROP is reached (units), 

ft(·) = probability mass function of demand at t, 

Ft(·)= cumulative distribution function of demand during t periods, 

X+= maximum {X, 0} for any expression X. 

 

time

Lost demand
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Q

Q

 

 Fig. 1 Evolution of stock in a (s, Q) inventory policy and lost sales. 
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3-Fill Rate definition: traditional and standard approach 

The fill rate is one of the service measures most used in practice since it considers not only the possi-

bility that the system is out of stock, but also the size of the unfulfilled demand when it occurs 

Tempelmeier (2007). As the Introduction section points out, this metric is commonly defined as the 

fraction of demand that is immediately satisfied from shelf and can be expressed as: 

 

 

fulfilled demand
FR E

total demand

 
  

 
 (1) 

Or by using its complementary: 

 
1

 

unfulfilled demand
FR E

total demand

 
   

 
 (2) 

Although its definition is simple, we find different interpretations of it in the literature and consequent-

ly different expression to compute the fill rate. In fact, only few works suggest computing the fill rate 

following expression (1), i.e. estimating directly the expected fulfilled demand per replenishment cy-

cle. However, it is normally accepted the known as traditional approximation which computes the 

numbers of units not satisfied, instead of computing directly the fulfilled demand, as: 

 

 

 
1
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However as (Guijarro et al. 2012) point out expressions (2) and (3) are not mathematically equivalent. 
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4 Fill Rate Estimation in Lost Sales Context for the (s, Q) policy 

This section dedicates to derivate expressions for computing the fill rate when considering the two ap-

proaches explained in the previous section: the traditional approximation of the fill rate according to 

expression (3); and the standard method according to expression (2). 

 

4.1 Derivation of the Traditional approach 

This approach consists of computing, on one hand, the expected unfulfilled demand and, on the other 

hand, the expected total demand per replenishment cycle. According to the assumptions of this re-

search, the system will only be out of stock during the lead time and, therefore: 

      
1

L

i s

E Unfilled demand i s f i


 

    (4) 

The expected total demand per replenishment cycle results from adding up the demand from the be-

ginning of the cycle until reaching the ROP and the demand during the lead time. To compute it we 

need to know the on-hand stock balance at order delivery, which, in a lost sales context, is obtained 

thus  0 L
z Q E s D


   . Therefore, the demand that is required to reach exactly the ROP is: 

 0 L
D z s Q E s D s


      . Hence, 

      
0 0

( )
s

L L

j k

E Total demand Q s j f j s k f k


 

         (5) 

Consequently, the traditional approach to calculate the fill rate in a lost sales context that is applicable 

to any discrete demand distribution is set out as follows: 
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4.2 Derivation of the Standard approach 

This approach consists of directly computing the fraction of demand that is unfulfilled over the total 

demand during the replenishment cycle as in expression (2) and following the fill rate definition. Ob-

viously the demand that is lost during the lead time depends on the difference between DL and the on-



 7 

hand stock when the replenishment order is launch, which is exactly equal to s. Furthermore, when a 

stockout takes place the on-hand stock at order delivery in a lost sales context is 0
z Q  since 

 L
E s D 0


  . Therefore, the demand that is required to reach exactly the ROP is: 

0
D z s Q s     . Then the total demand over the replenishment cycle is equal to 

L
Q s D  .  

Therefore the standard method to calculate the fill rate in a lost sales context that is applicable to any 

discrete demand distribution is as follows: 
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1
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   (7) 

 

5 Illustrative Examples and practical implications 

This section illustrates the performance of βTrad and βStandard against a simulated fill rate. Using a ran-

domly generated demand following a Pure Poisson distribution function, we simulate the traditional 

continuous (s, Q) policy and compute the simulated fill rate, Sim as the average fraction of the com-

plement of the unfulfilled demand in every replenishment cycle when considering 20,000 consecutive 

periods. This simulation uses the data from Table 1, which encompasses 270 different cases. To assure 

the consistency of the results, we accomplish thirty replications to each case using the average of these 

replications as the final Sim. 

 

Table 1 Set of data 

Lead Time  L = 2, 3, 4 

Order Quantity  Q = 5; 6; 7; 8; 9 

Reorder point  s = 2; 3; 4 

Demand Variability (Poisson distributed)  =0.1; 0.5; 1; 1.5; 2; 2.5 

 

Fig. 2 (a) shows the comparison between βTrad and Sim. As it can be observed, βTrad systematically un-

derestimate Sim. Fig. 2 (b) shows the comparison between βStandard and Sim. In this case the results are 

conclusive since the βStandard exhibit the same performance than Sim and therefore no bias or significant 

deviations are observed. These results are consistent with Guijarro et al. (2012) and lead to affirm that 

both approaches cannot be considered as equivalents since βTrad is biased. 
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Fig. 2 βTrad and βStandard vs. Sim for the cases from Table 1. 

From a practical point of view, implications which arise from the biased performance of the Tradition-

al approach are found when using a target fill rate to define the control parameters of the inventory 

policy. Once the order quantity Q is defined, following for example a cost criterion, the reorder point, 

s, can be defined following a service criterion as the fill rate. Then, the question is what happens if 

managers use a biased method for that purpose. Figure 3 can be used to answer this question. It shows 

the evolution of the traditional and the standard approaches when increasing the reorder point for a 

Poisson distributed demand with demand rate λ=2, order quantity Q=6 and lead time L=3. If, for ex-

ample, a target fill rate is set to 0.75, the traditional approximation leads to s=5 whereas in fact just 

s=4 is necessary to reach the target, as shown the standard approach. This example illustrates that us-

ing the traditional approximation to determine the reorder point leads to unnecessarily increasing the 

mean inventory of the system and therefore the holding costs associated to it. This inefficiency is es-

pecially relevant in those industries in which the unit cost of the product is very high, the storage space 

is limited or when dealing with perishables. Therefore, managers should be aware of the risk of using 

the traditional approximation to set the control parameters of the policy to avoid unnecessary increases 

in holding costs. 
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Fig. 3 Comparison between βTrad and βStandard  with Poisson demand (λ=2, Q=6, L=3). 

 

6 Summary 

This paper proposes two expressions to calculate the fill rate when the inventory is managed by the 

continuous review reorder point, order quantity (s, Q) policy in a context of lost sales and discrete de-

mand. Both expressions arise from different interpretations of the fill rate definition. The first ap-

proach consists of computing it as the complement of the ratio between the expected unfulfilled de-

mand per replenishment cycle and the expected total demand per replenishment cycle. Following this 

approach we derive βTrad in section 4.1. The second approach consists of computing the fill rate as the 

complement of the expected unfulfilled demand over the total demand during the replenishment cycle. 

Following this approach we derive βStandard in Section 4.2.  

Section 5 illustrates the performance of βTrad and βStandard which allows supporting some important re-

sults. Regarding βTrad, the results show that it is biased since systematically underestimates the simulat-

ed fill rate. Note that an important consequence of the underestimation behaviour is found when βTrad 

is used to determine the parameters of the policy. If the system is designed to satisfy a target fill rate, 

the reorder point that will be provided by βTrad will be higher than necessary and therefore it will entail 

an increase of the mean inventory and consequently an increase of holding costs of the system. Re-

garding βStandard, the results show that it computes accurately the fill rate and therefore it is the appro-

priate expression in this research context. 
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