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Abstract 

The brewing industry uses conventional pasteurization to assure beer microbial stability, but this process 

compromises its quality characteristics. This study proposes a novel cold pasteurization technology based 

on filtration through silica microparticles (5, 10, 25 or 50 µm) functionalized with essential oil components 

(EOCs). After the synthesis and characterization of the supports, craft beer was filtered through a bed of 

EOC-functionalized particles to assess their capability to entrap and/or inactivate beer microbiota. The 

microbiological analysis of filtered beer showed that the supports presented remarkable removal capacity 

against Escherichia coli, mesophilic bacteria, lactic acid bacteria, and mold and yeast. The preservation 

potential of the filtration technology remained steady after filtering multiple samples and previous 

washing with a high water volume. The determination of potential leaching of the immobilized EOCs 

resulted in zero release of the grafted molecules in the beer samples filtered through the bed of particles. 

Moreover, differences among control and filtered beers detected by a panel of untrained judges were 

scarce or nonexistent. The proposed technology can be considered an effective novel mild preservation 

method for craft beer as it can reduce the microbial load of the product and can prevent negative effects 

on the sensory properties of beverages. 

 

Keywords: cold pasteurization; immobilization; naturally-occurring antimicrobials; spoilage 

microorganism; beverages. 
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1. Introduction 

Beer is considered a microbiologically safe beverage given the presence of ethanol, carbon dioxide, low 

concentrations of nutritive substances, low pH, and low oxygen content (Sakamoto & Konings, 2003). 

However, some spoilage microorganisms can grow and may shorten beer shelf life (Cao, Zhou, Guo, & Li, 

2011). Lactic acid bacteria (LAB) are the most detrimental Gram-positive bacteria for beer as they produce 

organoleptic changes that can cause high economic loss (Lu et al., 2010). The main Gram-negative bacteria 

responsible for beer spoilage are anaerobic bacteria of genera Pectinatus and Megasphaera (Sakamoto & 

Konings, 2003). Spoilage can also be produced by wild yeasts that may result in serious problems because 

of the difficulty to distinguish them from brewing yeasts (Vaughan, O’Sullivan, & Sinderen, 2005).  

The brewing industry prevents microbial contamination by thermal pasteurization, which can provoke 

alterations to the organoleptic properties. Pasteurization increases the level of oxidation in beer, which 

results in loss of antioxidants, and also in changes in amino acids and proteins (Lund, Hoff, Berner, 

Lametsch, & Andersen, 2012). When exposed to heat, beer undergoes color and flavor changes (Cao et 

al., 2011; Franchi, Tribst, & Cristianini, 2011), as well as structural modifications by lower foam stability 

and higher turbidity because of the formation of new tannin-protein complexes with denaturized proteins 

(Deng et al., 2018). 

Thus interest in non-thermal treatments, including high-pressure processing (Milani, Ramsey, & Silva, 

2016), pulsed electric fields (Walkling-Ribeiro, Rodríguez-González, Jayaram, & Griffiths, 2011), ultraviolet 

irradiation (Lu et al., 2010) or ultrasound (Deng et al., 2018), has risen to extend beer shelf life. However, 

they have some implementation issues, such as limited efficacy, changes in food properties and high 

investment and production costs, which have limited their industrial application (Morris, Brody, & Wicker, 

2007; Walkling-Ribeiro et al., 2011; Yang, Huang, Lyu, & Wang, 2016). 

Filtration is an important process for the beverage industry, which is used to stabilize, clarify and/or 

concentrate liquids through the removal of solid particles (Fuenmayor, Lemma, Mannino, Mimmo, & 

Scampicchio, 2014). Cold-sterilization of beer by filtration through filters with a pore diameter less than 

0.2 μm provokes high retention of essential compounds, obtaining an insipid product with significant loss 

of color, dry matter, bitterness and foam. Besides, fouling and cleaning requirements are critical factors 

for the extensive application of this technology (Fillaudeau & Carrère, 2002). Otherwise, filtration based 
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on sand or diatomaceous earth is used to remove organic matter and microorganisms from liquids using 

bigger pore size, but these do not fulfill the efficiency needed when removing pathogens and present 

regeneration/disposal issues (Devi, Alemayehu, Singh, Kumar, & Mengistie, 2008).  

A new antimicrobial system, based on the covalent immobilization of naturally-occurring antimicrobial 

molecules on supports, has been recently developed by our research group. This invention involves the 

grafting of bioactive compounds to the surface of silica particles by preserving and enhancing their 

antimicrobial effect (Ribes et al., 2017; Ruiz-Rico et al., 2017). The present study proposes the application 

of these novel antimicrobial supports as filtering materials for the cold pasteurization of craft beer. Thus 

the objective is to develop supports based on essential oil components (EOCs) immobilized onto silica 

microparticles, and to assess the filtration potential against beer microbiota. 

 

2. Material and methods 

2.1 Reagents 

Carvacrol, eugenol, thymol, trimethylamine, (3-aminoproppyl)triethoxysilane (APTES), 2-butanone, 

chloroform, paraformaldehyde, sodium borohydride, KOH and silica particles (10, 25 and 50 µm) were 

purchased from Sigma-Aldrich (Madrid, Spain). Acetonitrile, methanol, diethyl ether, dichloromethane, 

NaCl, MgSO4, H2SO4 and HCl 37% were obtained from Scharlab (Barcelona, Spain). Vanillin was purchased 

from Ventós (Barcelona, Spain). Silica particles (SYLYSIA® SY350/FCP, 5 µm) were acquired from 

Silysiamont (Milano, Italy). Plate Count Agar (PCA), Man, Rogosa and Sharpe agar (MRS), Tryptic Soy Broth 

(TSB) and Peptone Dextrose Agar (PDA) were supplied by Scharlab (Barcelona, Spain). Pasteurized 

commercial beer (Pale Ale, 5.0% v/v) and unpasteurized commercial craft beer (American Pale Ale, 5.6% 

v/v), purchased in a local supermarket, were used to assess the effectiveness of the filtration system as a 

preservation treatment.  

 

2.2 Preparing the antimicrobial supports  

The EOC-functionalized particles were synthesized according to the methodology described by Ruiz-Rico 

et al. (2017), with some modifications. First, the aldehyde derivatives of carvacrol and thymol were 

synthesized by direct formylation, and eugenol aldehyde was prepared using a Reimer–Tiemann reaction. 

The aldehydes of carvacrol, eugenol and thymol and pure vanillin were reacted with APTES to obtain the 
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corresponding alkoxysilane derivatives. Then these derivatives were immobilized on the surface of silica 

particles with different mean sizes (5, 10, 25 or 50 µm). Afterward, the reduction of the imine bond formed 

between the aldehyde moiety of the bioactive compounds and the amine group of APTES was carried out 

to optimize anchorage in presence of sodium borohydride. 

 

2.3 Antimicrobial supports characterization 

The particles’ morphology was characterized by field emission scanning electron microscopy under a Zeiss 

Ultra 55 microscope (Carl Zeiss NTS GmbH, Oberkochen, Germany), observed in the secondary electron 

mode. The zeta potential analysis was performed in a Zetasizer Nano ZS (Malvern Instruments, 

Worcestershire, UK) after the sonication of particle suspensions in water. The degree of functionalization 

was determined by thermo-gravimetric analyses (TGA) and elemental analyses. TGA determinations were 

made on a TGA/SDTA 851e Mettler Toledo balance (Mettler Toledo Inc., Schwarzenbach, Switzerland) 

with a heating program that consisted of a heating ramp of 10 °C/min from 25 to 800 °C in an oxidant 

atmosphere (air, 80 mL/min).  

 

2.4 Beer filtration 

The effect of filtration with the 20 particles prepared in section 2.2 on the microbiological and sensory 

properties of filtered beers was evaluated by different filtration tests as follows: 

Test 1: Studying the retention capability after filtering 100 mL of beer through the bed of particles. 

Test 2: Studying the influence of previous washing with a high water volume, as a pre-conditioning 

treatment, on the retention properties. To this end, 1 L of sterile water was filtered through the particles 

prior to filtering 100 mL of craft beer. 

Test 3: Assessing the reuse capability of the supports by filtering three consecutive samples of 100 mL of 

craft beer. 

Test 4: Studying the combined effect of washing and filtering multiple samples on the removal capacity. 

The particles were washed with 1 L of sterile water as a previous treatment for the filtration of all three 

samples. 

These assays were performed using a stainless steel manifold (Microfil® filtration system, Merck Millipore, 

Darmstadt, Germany) connected to a sterile Erlenmeyer flask to collect the sample. In all the cases, a bed 
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of different silica microparticles (thickness of 0.5 cm) was used. Each test was carried out in triplicate, 

using different batches of beer to include natural variability in the beer preparation. Two control samples, 

these being non-filtered beer and beer filtered through a bed of non-functionalized silica particles, were 

included. 

The effectiveness of the supports as filtering materials was first tested with beer inoculated with 

Escherichia coli. This coliform microorganism was selected due to the potential occurrence of food-borne 

illnesses associated with beer contamination (Lu et al., 2010). The assay was performed using pasteurized 

beer inoculated with E. coli K12 (CECT 433, Colección Española de Cultivos Tipo, Spain) as surrogate of 

pathogenic E. coli strains.  

To prepare the inoculum, a colony was transferred to a test tube with 10 mL of TSB and incubated at 37 

°C for 24 h. The inoculum was centrifuged at 4000 rpm for 10 min and the precipitated cells were 

resuspended in 1 L of beer to obtain a microbial density of 106-107 cells/mL. The inoculated beer was 

filtered according to Test 1. The count values after plating and incubation of collected beer in PCA (37 °C, 

24 h) were logarithmically transformed and expressed as log10 CFU/mL, with a limit of detection of 5 

CFU/mL. 

To check the effectiveness of filtration to stabilize the microorganisms naturally present in craft beer, 

samples collected after Tests 1-4 were plated in different media. For the enumeration of aerobic 

mesophilic bacteria, beer was plated in-depth in PCA and plates were incubated at 30 °C for 72 h. LAB 

were counted after plating samples in-depth in MRS agar and incubation at 37 °C for 48 h. For the 

enumeration of mold and yeast, beer was plated on surfaces in PDA and plates were incubated at 25 °C 

for 72 h.  

 

2.5 EOCs leaching 

The potential leaching of the immobilized EOCs was evaluated after filtering 100 mL of beer through pre-

conditioned filter (Test 2). The quantification of the compounds in the beer was carried out by extraction 

using QuEChERS procedure followed by gas chromatography-mass spectrometry (GC-MS). 

The QuEChERS procedure combine two stages, analytes extraction with an organic solvent and different 

salts and clean-up of the organic extract by dispersive solid-phase extraction. The use of a clean-up step 
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was needed to avoid the deleterious effect of several matrix components (Valente, Santos, Moreira, & 

Rodrigues, 2013).  

The analysis was performed in a 6890/5975 inert GC-MS (Agilent Technologies, USA), equipped with a HP-

5 fused silica capillary column (30 m x 0.25 mm x 0.25 μm). The oven temperature was held at 60 °C for 3 

min, and then raised to 100 °C at 10 °C/min, to 140 °C at 5 °C/min, and finally to 240 °C at 20 °C/min. 

Helium gas was used as the carrier gas at a constant flow rate of 1 mL/min. The injector and MS transfer 

line temperatures were set at 250 °C and 230 °C, respectively. EOCs were quantified according to the 

external standard method, in which a calibration curve of the peak area was used against the compound 

concentration. Besides the amount of released EOCs, the percentage of leached compounds was 

calculated considering the EOCs attached to the supports and the amount of particles needed to prepare 

the bed of particles. 

 

2.6 Sensory evaluation 

A sensory analysis was performed to evaluate the acceptance of the beer filtered through the most 

suitable EOC-functionalized supports, according to the results obtained in the filtration assays and the 

leaching determination. Non-filtered craft beer was also included in the analysis. 

The panel involved 51 non-trained panelists (28 females, 23 males), whose ages ranged from 23 to 62 

years. Tests were conducted using a 9-point hedonic scale (1 = dislike very much, 9 = like very much). Four 

sensory parameters were evaluated (appearance, color, odor and general acceptance) and each coded 

sample was served to the panelists at room temperature in a capped transparent glass vial.  

 

2.7 Statistical analysis 

Data were statistically analyzed with Statgraphics Centurion XVI (Statpoint Technologies Inc., Warrenton, 

USA). Results obtained in filtration assays were evaluated by a multifactor analysis of variance to establish 

the effect of immobilized bioactive compound, particle size and number of filtrations. Data obtained in 

the characterization of the antimicrobial supports and sensory analysis were analyzed by a one-way 

ANOVA to discriminate among samples. The least significant difference procedure was used to test the 

differences between averages at the 5% significance level. 
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3. Results 

3.1 Characterization of antimicrobial supports 

Figure 1 shows the morphology of non-modified and carvacrol-functionalized supports, used as reference 

particles given the similarity between the different functionalized particles. The smallest particles (5 μm) 

have a sphere-like shape and an irregular surface. In contrast, the silica particles of sizes 10-50 μm have 

an irregular prism shape and a smooth surface. The supports present a homogeneous particle size rate, 

except for the 25 μm-particles that have a wider size range in accordance with the technical information 

of the specification sheet that establishes a particle size that falls within the 5-25 µm range. In all cases, 

functionalization did not affect the structure of the silica microparticles.  

 

Figure 1. Field emission scanning electron microscopy images of the bare and carvacrol-functionalized 

silica microparticles. 
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Table 1 presents the zeta potential of the supports. Bare particles exhibited negative zeta potential 

because of silanol moieties. In contrast, EOC-functionalized supports presented positive zeta potential 

values due to the attachment of alkoxysilane derivatives. The results of the degree of functionalization 

showed that EOC-functionalized supports had an amount of attached bioactive compounds of ca. 0.01 g 

EOC/g SiO2 for carvacrol and thymol, 0.04 g EOC/g SiO2 for eugenol and 0.12 g EOC/g SiO2 for vanillin on 

the different supports. 

 

Table 1. Zeta potential values (mV) of the bare and EOC-functionalized silica microparticles. Mean values 

± SD (n=3).  

Size Bare Carvacrol Eugenol Thymol Vanillin α 

5 µm -29.4 ± 1.2a 30.0 ± 0.6d 11.7 ± 0.7b 25.0 ± 1.9c 29.2 ± 0.7d *** 

10 µm -24.4 ± 3.0a 8.0 ± 2.4b 12.5 ± 5.8bc 13.9 ± 1.6c 23.0 ± 1.5d *** 

25 µm -33.3 ± 1.0a 2.3 ± 0.9b 41.9 ± 2.1e 12.5 ± 2.9c 23.4 ± 1.1d *** 

50 µm -17.1 ± 4.9a 6.6 ± 2.3b 30.9 ± 5.6c 21.0 ± 10.2c 24.9 ± 1.3c *** 

Same letters in the same row indicate homogeneous group membership. ***p<0.001 

 

3.2 Effect of filtration on E. coli reduction 

Figure 2 shows the E. coli counts after filtering inoculated beer through the non-functionalized and EOC-

functionalized supports. The use of non-functionalized supports resulted in a slight 1-log reduction. In 

contrast, the filtration with the EOC-functionalized particles reduced E. coli in beer from approximately 

107 CFU/mL to below 103 CFU/mL in most of the samples, and even to non-detectable limits for the 25 

µm-support functionalized with carvacrol. The supports with mean size of 10 and 25 µm were the most 

effective filtering materials for reducing E. coli.  
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Figure 2. Microbial counts (log CFU/mL) of E. coli inoculated in commercial pasteurized beer after filtering 

beer with non-functionalized particles (control) and EOC-functionalized supports. Mean values ± SD (n=3). 

 

3.3. Effect of filtration on beer microbiota reduction 

The removal capability of the supports was also assessed against naturally contaminating microorganisms 

of unpasteurized craft beer. The microbial counts from the unfiltered beer were 4.67±0.33, 4.34±0.05 and 

4.47±0.33 log CFU/mL for mesophilic, LAB and mold and yeast, respectively.  

Figure 3 shows the counts of beer microbiota after filtering beer through non-functionalized and EOC-

functionalized supports. Filtering beer through bare particles slightly lowered the microbial counts, mainly 

for the 25 µm-support. This material had a mean particle size that fell within the 5-25 µm range, which 

may favor the entrapment of microbial cells on the bed because particles of diverse size range formed a 

more homogeneous particle layer with smaller holes. The microbial reduction after filtration with non-

modified supports ranged between 0.3-0.9 logarithmic cycles for the different supports, which confirms 

the very limited removal capability of bare particles. For this reason, it would be necessary to use the 

antimicrobial compounds anchored to the supports.  

As can be seen in Figure 3, a clear reduction in the microbial load of beer filtered through any of the 

functionalized supports was achieved. The statistical analysis showed the significant influence of 

immobilized EOC and, especially, particle size, as well as their interaction on microbial reduction (p<0.05). 

The 10-25 µm functionalized particles were the most effective materials, and completely inhibited the 
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microorganisms with some exception. In contrast, the 5 µm particles displayed heterogeneous results 

with microbial reduction falling within 40-100% for the spoilage microorganisms.  

 

Figure 3. Microbial counts (log CFU/mL) of mesophilic bacteria (A), lactic acid bacteria (B) and mold and 

yeast (C) after filtering beer with non-functionalized particles (control) and EOC-functionalized supports. 

Mean values ± SD (n=3). 
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3.4. Effect of pre-conditioning on the retention properties 

Figure 4 shows the microbial counts of beer after filtration through the particles previously washed with 

water. The results revealed that pre-conditioning generally improved the removal capability of the 

functionalized materials. The statistical analysis confirms the influence of the immobilized EOC and 

particle size on mesophilic and LAB counts (p<0.01).  

 

Figure 4. Microbial counts (log CFU/mL) of mesophilic bacteria (A), lactic acid bacteria (B) and mold and 

yeast (C) after pre-washing and filtering beer with non-functionalized particles (control) and EOC-

functionalized supports. Mean values ± SD (n=3). 
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The retention capacity of the 5 µm-supports greatly improved after pre-conditioning. For mold and yeast, 

the filtration reduced counts in beer from 104 CFU/mL to undetectable limits. The functionalized particles 

of 10-25 µm were the most effective materials, and thymol was the bioactive compound that produced 

the most marked microbial reduction. 

 

3.5. Evaluating the reusability of the filtering materials 

Table 2 shows the microbial counts after filtering three beer samples. The retention properties of the 

supports of 10-25 µm remained after filtering multiple samples. The removal capacity was enhanced after 

filtering the consecutive samples for the 5-µm supports. In contrast, the 50-µm supports showed 

heterogeneous results according to the target microorganism and the immobilized EOC. The statistical 

analysis of the results confirmed the influence of particle size, immobilized EOC, the interaction between 

them, and the interaction between particle and number of samples on the microbial reduction of beer 

microbiota (p<0.05). 

 

Table 2. Microbial counts (log CFU/mL) after washing with sterile water and filtering three samples 

through EOC-functionalized supports. Mean values ± SD (n=3). N: number of filtered samples.  

  Mesophilic bacteria Lactic acid bacteria Mold and yeast 

 N Carvacrol Eugenol Thymol Vanillin Carvacrol Eugenol Thymol Vanillin Carvacrol Eugenol Thymol Vanillin 

5 µm 

1 2.6 ± 0.4 1.8 ± 0.1 nd 2.4 ±0. 4 2.4 ± 0.3 1.6 ± 0,2 nd 2.3 ± 0.1 nd nd nd nd 

2 1.6 ± 0.4 1.0 ± 0.2 nd 1.8 ± 0.6 1.5 ± 0.3 1.1 ± 0.1 nd 2.6 ± 0.3 nd nd nd nd 

3 0.3 ± 0.1 nd nd 0.5 ± 0.1 1.1± 0.1 0.6 ± 0.1 nd 1.1 ± 0.2 nd nd nd nd 

10 µm 

1 nd nd nd nd nd nd nd nd nd nd nd nd 

2 nd nd nd nd nd nd nd nd nd nd nd nd 

3 nd nd nd nd nd nd nd nd nd nd nd nd 

25 µm 

1 nd nd 0.6 ± 0.2 nd nd nd 0.6 ± 0.2 nd nd nd nd nd 

2 nd nd nd nd nd nd nd nd nd nd nd nd 

3 nd nd nd nd nd nd nd nd nd nd nd nd 

50 µm 

1 nd 1.9 ± 0.0 1.1 ± 0.7 0.7 ± 0.2 nd 2.3 ± 0.7 1.4 ± 0.8 1.0 ± 0.1 nd 1.0 ± 0.5 1.0 ± 0.4 nd 

2 0.8 ± 0.1 2.1± 0.2 1.0 ± 0.3 0.7± 0.3 0.8 ± 0.3 2.6 ± 0.6 1.7 ± 0.9 nd nd 1.3 ± 0.7 nd nd 

3 1.9 ± 0.2 2.2 ± 0.6 2.0 ± 0.3 nd 2.5± 0.9 2.9 ± 0.2 2.5 ± 0.1 nd 0.9 ± 0.6 2.3 ± 0.2 1.0 ± 0.2 nd 

nd (no detected, <5 CFU/mL) 

 

Likewise, Table 3 presents the microbial load after filtering multiple samples and interspersing the 

previous washing of the supports with water. The pre-conditioning improved the retention efficacy of the 
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supports, in accordance with the results described in Figure 3. Therefore, washing with a high water 

volume (3 L in all) preserved the removal properties. 

 

Table 3. Microbial counts (log CFU/mL) after washing with sterile water and filtering three samples 

through EOC-functionalized supports. Mean values ± SD (n=3). N: number of filtered samples.  

nd (no detected, <5 CFU/mL) 

 

3.6. EOCs leaching 

Table S1 presents the amount of lixiviated EOCs and the percentage of leached compounds in the effluent 

after filtering 100 mL beer through a pre-conditioned bed of particles (Test 2). As can be observed, zero 

release was observed in all the cases.  

 

3.7. Sensory evaluation 

Table 4 shows the scores of the evaluated attributes for non-filtered and filtered beer through the EOC-

functionalized supports of 10-25 µm following the Test 2. The statistical analysis showed that the size of 

support did not significantly influence the results, and then the sensory evaluation was analyzed to 

establish the influence of immobilized EOC on the beer attributes. As can be seen in Table 4, the non-

filtered beer received the highest scores in each of the evaluated attributes. Beer filtered through the 

EOC-functionalized supports resulted in minimal score differences. Only the beers filtered through the 

  Mesophilic bacteria Lactic acid bacteria Mold and yeast 

 N Carvacrol Eugenol Thymol Vanillin Carvacrol Eugenol Thymol Vanillin Carvacrol Eugenol Thymol Vanillin 

5 µm 

1 nd nd nd nd nd nd nd nd nd nd nd nd 

2 nd nd nd nd nd nd nd nd nd nd nd nd 

3 nd nd nd nd nd nd nd nd nd nd nd nd 

10 µm 

1 nd nd nd nd nd nd nd nd nd nd nd nd 

2 nd nd nd nd nd nd nd nd nd nd nd nd 

3 nd nd nd nd nd nd nd nd nd nd 1.3 ± 0.3 nd 

25 µm 

1 nd nd nd nd nd nd nd 0.6 ± 0.1 nd nd nd nd 

2 nd nd nd nd nd nd nd nd nd nd nd nd 

3 nd nd nd nd nd nd nd nd nd nd nd nd 

50 µm 

1 1.6 ± 0.6 nd nd 1.1 ± 0.6 nd 0.9 ± 0.2 nd nd nd nd nd nd 

2 2.5 ± 0.1 1.0 ± 0.2 1.3 ± 0.7 2.4 ± 0.2 1.2 ± 0.6 1.0 ± 0.3 1.0 ± 0.3 2.1 ± 0.2 nd nd nd nd 

3 3.0 ± 0.2 1.1 ± 0.4 1.3 ± 0.8 2.7 ± 0.2 2.6 ± 0.2 1.0 ± 0.6 1.0 ± 0.3 2.5 ± 0.3 nd nd nd nd 
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vanillin-functionalized particles decreased more than a point in some attributes, with the respect to the 

control sample in a 1-9 scale.  

 

Table 4. Average score of the different attributes evaluated in non-filtered and filtered beer. Mean values 

± SD (n=51). 

Sample Apperance Color Odor Acceptance 

Non-filtered 7.1 ± 1.5a 7.3 ± 1.4a 7.2 ± 1.5a 7.2 ± 1.3a 

Carvacrol 6.9 ± 1.3a 7.0 ± 1.3ab 6.2 ± 1.6bc 6.4 ± 1.5b 

Eugenol 6.6 ± 1.5a 6.7 ± 1.4b 6.4 ± 1.6b 6.4 ± 1.5b 

Thymol 6.9 ± 1.2a 7.0 ± 1.3ab 6.7 ± 1.5ab 6.7 ± 1.4ab 

Vanillin 5.4 ± 1.6b 5.1 ± 1.7c 5.8 ± 1.7c 5.5 ± 1.7c 

Same letters in a column indicate homogeneous group membership. ***p<0.001 

 

4. Discussion 

Conventional filtration in the beer industry are based on microfiltration using filter aids with a small pore 

size (0.2-0.5 µm) that affect food features (Fillaudeau & Carrère, 2002). In contrast, the supports proposed 

herein had a mean size that fell within the 5-50 µm range to preserve the properties of the processed 

beverage, and to prevent crucial factors for industrial application, such as fouling or filter cake (Gialleli, 

Bekatorou, Kanellaki, Nigam, & Koutinas, 2016).  

Besides, the supports’ size is similar or higher than the microorganisms’ size allowing the pass of the cells, 

as can be stated by the microbial counts after filtering beer through the non-functionalized supports. Beer 

microbiota includes bacteria, yeast and molds. Bacterial cells are typically 0.5–5 µm in length, yeast sizes 

are normally 3–4 µm, whereas molds, as filamentous multi-celled fungi, present a larger size within 10–

40 µm. The differences in size are in accordance with the results obtained in this study, in which the 

supports’ removal capacity is higher for mold and yeast. 

Natural antimicrobial compounds, including animal molecules like chitosan or lysozyme, bacteriocins like 

nisin or sakacin, and hop extracts have been applied to reduce microorganisms in beer, and have obtained 

remarkable antimicrobial activity against LAB, but not against yeast (Franchi, Tribst, & Cristianini, 2012; 

Galvagno, Gil, Iannone, & Cerrutti, 2007; Gil, del Mónaco, Cerrutti, & Galvagno, 2004). In this work, EOCs 

were chosen as bioactive compounds due to their reported antimicrobial properties and the fact that they 
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are considered GRAS molecules (Burt, 2004), although their potential in fermented beverages 

preservation has scarcely been explored (Chavan & Tupe, 2014). The application of these bioactive 

compounds presents some limitations, like their strong sensory properties and their interactions with 

food components (Hyldgaard, Mygind, & Meyer, 2012). In this context, the immobilization of these 

molecules overcomes limitations compared with their application in the free form, giving rise to novel 

effective antimicrobial supports (Ruiz-Rico et al., 2017).  

The evaluation of the EOC-functionalized supports to remove a model microorganism from inoculated 

pasteurized beer showed the effectiveness of the filtration technology to reduce at least 4 log cycles of E. 

coli. This reduction level fulfils the minimum requirements for microbiologically safe non-thermal 

processing of beer on a commercial scale, according to brewing specialists (Walkling-Ribeiro et al., 2011). 

The supports with mean intermediate size (10-25 µm) were the most effective filtering materials. While 

filtration through the 5 µm-supports may be inefficient because of the creation of preferential paths to 

facilitate the flux diminishes the contact between the EOCs and the microbial cells, the use of 50 µm-

particles can result in a high speed of the beer flux through the particles that decreases bacterial removal. 

In the same manner, this study have evidenced the ability of the different EOC-functionalized supports to 

remove the natural microbiota of craft beer. 

Regarding the studied bioactive compounds, the terpenoids of the Lamiaceae family plants (thymol and 

carvacrol) were the most effective EOCs, resulting in total removal of beer microbiota. These results agree 

with previous studies that have shown the good in vitro antimicrobial activity of carvacrol and thymol 

against pathogenic and spoilage microorganisms (Abbaszadeh, Sharifzadeh, Shokri, Khosravi, & 

Abbaszadeh, 2014; Rota, Herrera, Martínez, Sotomayor, & Jordán, 2008). Besides, vanillin and eugenol 

present effective inhibitory properties against microorganisms present in different food matrices (Holley 

& Patel, 2005). 

The pre-conditioning of filters preserved, and even improved, the removal capacity of the materials. The 

enhancement of the supports’ retention capability after washing may be due to particle bed compaction 

and to the consequent increase in the filtration time that favored the contact between microorganisms 

and antimicrobial compounds. In addition to this, it is important to highlight that the pre-conditioning 

allowed us to obtain a zero wash-out effect after filtering beer with the immobilized EOCs. The 

preservation of the removal properties after washing and the fact that EOCs cannot be detected in beers 
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filtered through pre-conditioned filters, supports the premise of the covalent grafting of the bioactive 

compounds onto the supports’ surface. 

Since it has been demonstrated the absence of the EOCs in beer filtered, at the same time that the 

filtration process was efficient in the microbial stabilization of craft beer, it has been confirmed that the 

antimicrobial effect resides in the immobilized EOCs. The removal capability of the EOC-functionalized 

particles was probably due to the combination of two factors: the retention of the microbial cells in the 

bed, and to the interaction between the immobilized EOCs and the microbial cell membrane, which 

facilitates microbial inactivation. EOCs affect the permeability of the external microbial membrane by 

favoring proton flow, and altering enzymatic and energy production systems, which leads to cell death, 

according to other authors (Burt, 2004; Hyldgaard et al., 2012). 

Processing beer with the filtration technology proposed herein allowed the microbial elimination of beer 

microbiota and achieved comparable results to those obtained by other non-thermal pasteurization 

techniques, such as pulsed electric fields (Walkling-Ribeiro et al., 2011). Processing of beer by filtration 

with EOC-functionalized supports, achieved adequate microbial reductions for the selected 

microorganisms (4-log reduction), meeting the minimum requirements for safe cold-pasteurized beer.  

Whereas conventional heat pasteurization (60 °C for 15 min) affects beer properties, alternative non-

thermal treatments avoid these limitations. In this study, sensory evaluation proved, mainly for the 

supports functionalized with thymol, the suitability of the developed processing methodology given the 

similarity on the attributes’ scores between non-filtered and filtered beer. Therefore, this novel cold-

pasteurization technology could preserve the features of craft beer and extend its shelf life better than 

conventional preservation methodologies.  

 

5. Conclusions 

Filtration through particles functionalized with essential oil components is an efficient methodology to 

reduce the microbial population present in beer. Therefore, a filtration process based on immobilized 

natural antimicrobial compounds has been developed as a proof of concept and has a very good potential 

to be used as a non-thermal preservation technique for craft beer. The developed filtering materials would 

be used to replace or complement the conventional filtering processes that take places in the brewing 

industry for clarification and stabilization of beer. However, before being applied in a real scenario, it is 
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necessary to study the retention capability against different spoilage and pathogenic microorganisms as 

well as to evaluate the influence of treatment on beverage properties. 
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