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Abstract: Mathematical analysis of rankings is essential for a wide range of scientific, public,
and industrial applications (e.g., group decision-making, organizational methods, R&D sponsorship,
recommender systems, voter systems, sports competitions, grant proposals rankings, web searchers,
Internet streaming-on-demand media providers, etc.). Recently, some methods for incomplete
aggregate rankings (rankings in which not all the elements are ranked) with ties, based on the
classic Kendall’s tau coefficient, have been presented. We are interested in ordinal rankings (that
is, we can order the elements to be the first, the second, etc.) allowing ties between the elements
(e.g., two elements may be in the first position). We extend a previous coefficient for comparing a
series of complete rankings with ties to two new coefficients for comparing a series of incomplete
rankings with ties. We make use of the newest definitions of Kendall’s tau extensions. We also offer a
theoretical result to interpret these coefficients in terms of the type of interactions that the elements
of two consecutive rankings may show (e.g., they preserve their positions, cross their positions,
and they are tied in one ranking but untied in the other ranking, etc.). We give some small examples
to illustrate all the newly presented parameters and coefficients. We also apply our coefficients to
compare some series of Spotify charts, both Top 200 and Viral 50, showing the applicability and utility
of the proposed measures.

Keywords: incomplete rankings; Kendall’s tau; permutation graph; competitive balance; Spotify

1. Introduction

The analysis of rankings of scores (cardinal rankings) or, particularly, rankings composed of natural
numbers (ordinal rankings), have been studied from different perspectives attending to the ultimate
goal of the researchers or practitioners (see [1]). When the interest is on obtaining a consensus score
that summarizes the opinion of various judges, the used mathematical tools are usually aimed to find
a ranking that minimizes a given distance metric (see the seminal paper [2,3] for some properties of
different metrics). In such a case, we say that a distance metric minimizes disagreement. We can place
in this area the methods called voter systems, ranking aggregation, and others (see the detailed review
in [4]).

When the interest is focused on comparing two series of rankings, one of the key points is to
obtain a measure that describes the evolution of the series. In this case, we have a series of rankings such
that each one of them prioritizes the elements based on the scores obtained at a particular time (see [5]).
For example, sports rankings belong to this category. Obviously, at the end of a season, there is no need
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to find a consensus ranking since, by the nature of sports leagues, it is the last ranking that serves
to summarize the result of the overall season. The same happens with the Stock Market, the richest
people rankings made by the Fortune magazine [6], university rankings (e.g., [7,8]), songs rankings
based on the number of downloads, streaming, or sales (see [9]), etc. Our work is focused on a series
of rankings behavior.

The terminology applied to rankings is not unique. For example, in [10] the term partial is used
to indicate rankings in which ties are presented, while in [11] the term partial indicates that not all
the objects are compared. In this paper, we use the terminology coined in [4,12]. We talk of complete
rankings when all the objects are compared (as in a football league) and incomplete when there are
absent objects (as in a Top k ranking). We explicitly use the terms with ties or without ties to indicate
whether we consider the presence of tied objects in the rankings. We recall that in [11] the term linear
order is used when all objects are compared and no ties are allowed (that is, for us, complete rankings
with no ties) and the term weak ordering when all objects are compared, but ties are allowed (that is,
for us, complete rankings with ties).

Incomplete rankings appear in multiple areas. For example, in national or European grant calls,
judges evaluate only a subset of the applications, and therefore each judge handles an incomplete
ranking. The same happens in literary contests, where each judge only reads a small number of
manuscripts. In the case of the results shown by search engines, it is clear that only the first Top k web
pages are displayed, being, as a consequence, an incomplete ranking.

We use, and extend, the results of some previous papers. Some concepts are taken from [5],
where a method to compare series of complete rankings with no ties was presented, and from [13],
where a method to compare series of complete rankings with ties was analyzed. We also make
reference to [14], where some theoretical aspects where studied. In all these works, there are two
main ingredients:

1. The use of generalizations of the classical concept of Kendall’s τ coefficient of disagreement [15–17];
2. The use of graphs associated to the series of rankings as a tool to visualize and also to help in the

definition the coefficients that summarize the “behaviour” of the series of rankings.

Regarding to extensions of Kendall’s τ coefficient, the first attempt to incorporate an axiomatic
distance metric was in [2], followed by the works [11,18,19].

More recently, in [4] these previous works were revised and a new axiomatic framework for
incomplete rankings was introduced. To the best of our knowledge, the last paper devoted to an
axiomatic study for incomplete rankings is [12], where it is shown as an extension of Kendall’s τ

coefficient to the case of incomplete rankings with ties.
Kendall’s τ has been extensively used, and some extensions can be found in the literature up to

the present day on [10,12,20]. In particular, Kendall’s τ has been recently reviewed for ophthalmic
research in [21] and it is a tool used in neuroscience studies—e.g., [22]—and in bioinformatics [23].

Regarding the use of graphs to represent a series of rankings, we recall, in particular, that a
graph can be used to describe the crossings between two rankings. This graph is called a permutation
graph (see [24,25]). When a graph is defined to show the consecutive crossings between a series of m
rankings, it is called a Competitivity graph [5]. This concept corresponds to that of intersection graph of a
concatenation of permutation diagrams in graph theory (see [26]). For more relations on graphs associated
with rankings, see [14].

In this paper, we take some results of [4,12] as our starting point to develop two coefficients to
describe the evolution of a series of m ≥ 2 incomplete rankings with ties. When applied to the case of
only two rankings, our measures reduce to the measures given in [4,12].

We also extend the study of a series of complete rankings with ties developed in [13] to the case of
incomplete rankings with ties. We make use of the standard modern notation in the field of rankings
mainly based on [10,12,27], among others.

We take as our starting point the definition of τx of [12] that is based on the computation of a
certain sum of the form ∑n

i=1 ∑n
j=1 AijBij that involves the terms of some matrix A and B that indicate
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the relative positions of the elements of two rankings. In Theorem 1, we give an expression of this sum
as a function of the type of interactions between a pair of elements {i, j} from one ranking to the next
one (e.g., interchanges from tie to untie, absence of one of the elements in one ranking, crossings, etc.).
This result allows for writing τx (and τ̂x) in terms of the interactions of the elements of the rankings.

On the one hand, this theoretical result also allows a computation of the sum ∑n
i=1 ∑n

j=1 AijBij
without computing explicitly the involved matrices. On the other hand, it allows for interpreting
the interactions of a series of rankings by using a permutation graph or, more generally speaking,
a competitivity graph. The edges are weighted to represent the weight of the corresponding interactions
and the whole series of rankings.

We define two coefficients τ•ev and τ̂•ev for series of incomplete rankings with ties by using an
analogy based on previous well-established definitions. We recall that, in the field of incomplete
rankings, “intuition” is usually used for some measures over others since when you handle an
incomplete ranking, there is no unique form to interpret the results (see this kind of reasoning in [4,12]).
In our case, our measures’ behaviour is checked by ensuring that they are well normalized and that
they reduce to well-known cases in limit situations.

Finally, other contributions of the paper are placed on a practical field. We give a methodology to
study the movements of rankings (of songs) in Spotify by using two different approaches: the cases of
series of incomplete rankings without ties and series of incomplete rankings with ties.

The structure of the paper is as follows. In Section 2, we recall Kendall’s τ and give the
fundamental relations that will be useful throughout the paper. In Section 3, we recall the notation and
basic results for the case of two incomplete rankings with ties allowed.

In Section 4, we give the fundamental theoretical result of the paper and some remarks that give
insight both into the validity and application of this result. In Section 5, we recall some definitions
from [13] to measure the evolution of m complete rankings with ties. In Section 6, we present two
coefficients, denoted as τ•ev and τ̂•ev to characterize the evolution of m incomplete rankings with ties and
some examples are given. In Section 7, we illustrate the applicability of the new coefficients by using
some real data obtained from Spotify charts. Finally, in Section 8, we outline the main conclusions of
the paper.

2. Preliminaries

In [16] it is shown that Kendall’s τ coefficient (also called measure of disarray) associated with two
rankings with the same number of elements n, can be written in the form

τ = 1− 2s
1
2 n(n− 1)

(1)

where s is the minimum number of interchanges required to transform one ranking into the other.
This coefficient is a measure of the intensity of rank correlation. The coefficient can also be written as

τ =
P−Q

1
2 n(n− 1)

(2)

where P is the number of pair of elements that maintain its relative order when passing from the first
ranking to the second one (that is, the first element is above or below the second in both rankings) and
Q is the number of pairs of elements that interchange its order (that is, in one ranking, the first element
is above the second and, in the other ranking, the first element is below the second, or vice-versa).

Note that Q and s are equal. Furthermore, this quantity can be identified with the number of
crossings or inversions when passing from the first ranking to the second. For this reason, throughout
the paper, we will keep in mind that Equation (1) gives the equivalence between the number of
crossings and the associated τ. This will be important in what follows since we will deal with different
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extensions of Kendall’s τ coefficient and since one of our preferred tools will be counting the number
of crossings, as in [5].

We recall from [27] that a distance metric d(a, b) can be transformed into a correlation coefficient
τ(a, b) by the formula

τ(a, b) = 1− 2d(a, b)
dmax(a, b)

(3)

where dmax(a, b) is the maximum possible distance between two rankings. We recall that a distance
metric between two rankings a and b is a non-negative real function f , such that it is symmetric
( f (a, b) = f (b, a), for any pair of rankings), regular ( f (a, b) = 0↔ a = b) and satisfying the triangle
inequality ( f (a, c) ≤ f (a, b) + f (b, c), for any rankings a, b, and c). Note that Equation (1) is of this
form, since n(n− 1)/2 is the maximum number of crossings between two given rankings. The same
happens with the Spearman’s ρ coefficient. In [16] the Spearman’s ρ for two ordinal complete rankings
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) with xi, yi ∈ N is defined by

ρ = 1− 6 ∑n
i=1(xi − yi)

2

n3 − n

and this is of the form (3) since it is easy to show that the maximum value of ∑n
i=1(xi − yi)

2 occurs
when one ranking is the reverse of the other and, as a consequence, the maximum value of the distance
metric d(x, y) = ∑n

i=1(xi − yi)
2 is 1

3 (n
3 − n) (see [3] for this and other properties of distance metrics).

We also recall that a permutation graph (called competitivity graph in [5]) is associated with two
rankings over the same elements in such a way that the nodes represent the elements and two nodes
and are connected with an edge if they cross their positions when passing from one ranking to the other.

In this way, it is clear that the number of edges of this graph is, precisely, s. Furthermore, another
quantity (borrowed from graph theory) is also introduced in [5]: the Normalized Mean Strength NS;
that is, the normalized sum of the weights of the edges of a weighted graph. When considering only
two rankings and its corresponding competitivity graph, we have the following relation

NS =
1− τ

2
(4)

that gives the equivalence between the Normalized Mean Strength and Kendall’s τ for two rankings.
Note that τ ∈ [−1, 1] and NS ∈ [0, 1]. We consider that the measure NS is more intuitive than τ since
it allows us to interpret the movements or activity of a series of rankings as a percentage.

3. Coefficients for Two Incomplete Rankings with Ties

In this section, we recall some definitions used in [4,12]. We will use the next three ingredients in
order to define a coefficient to compare two rankings:

1. A vector to define the ordinal ranking (including the description of absent elements and
tied elements);

2. A matrix to indicate the relative positions of the elements of the ranking (including absent and
tied elements);

3. A formula to define the coefficients for a pair of rankings by using the entries of their associate
matrices defined in the previous step.

Let V = {v1, v2, · · · , vn} be the objects to be ranked, with n > 1. The ranking is given by

a = [a1, a2, · · · , an] (5)
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where ai is the position of vi in the ranking. Note that if ai = aj, then vi and vj are tied. If vi is not
ranked, then it is denoted as ai = •. We also define the set

Va = {vi ∈ V | ai 6= •}.

We define an n× n matrix A = (Aij), with entries Aij associated to a as follows:

Aij =


1 if ai ≤ aj
−1 if ai > aj

0 if i = j, ai = •, or aj = •
(6)

According to [12], we define the coefficients

τx(a, b) =
∑n

i=1 ∑n
j=1 AijBij

n(n− 1)
(7)

and, when n > 1

τ̂x(a, b) =
n(n− 1)
n(n− 1)

τx(a, b) (8)

where n is the number of common ranked elements vi to a and b. That is:

n = |Va ∩Vb| (9)

Example 1. Let V = {1, 2, 3, 4, 5, 6, 7, 8}, and let us consider two rankings a and b. Then, a =

[6, 4, 5, 5, •, 2, 1, 3] represents the incomplete ranking with ties (7, 6, 8, 2, 3−4, 1), where 3−4 indicate tied
elements. Analogously, b = [3, 3, 2, 2, •, 1, •, 4] represents the ranking (6, 3−4, 1−2, 8). Note that n = 8 and
n = 6.

Note that τx with complete rankings and no ties reduces to the classic Kendall’s τ given by (1),
while τ̂x is a renormalization of τx, verifying |τ̂x| ≥ |τx|.

As we will see, Definition 6 in Section 6, is based on an analogy with Equation (1). To that end,
it will be necessary to count all the possible cases when passing from a to b (interactions between the
relative positions of pair of elements such as crossings, pass from tie to untie, from being in the ranking
to quitting it, etc.). We do this in the next section.

4. Main Result

The following result is the fundamental theoretical result of this paper. This result will allow us
to write τx and τ̂x in terms of the interactions of the rankings’ elements. It opens the possibility of
giving weights to the interactions, as is a common practice in modern definitions of Kendall’s tau [10].
This result also constitutes our starting point to define a coefficient for a series of more than two
incomplete rankings. This theorem also allows giving insight into the differences between τx and τ̂x.
Some other consequences are detailed in the remarks below and in Corollary 1.

Theorem 1. Given two vectors a, b representing incomplete rankings of n elements with ties, represented as
in (5), and their corresponding matrices A = (Aij) and B = (Bij) defined by (6), it holds that

n

∑
i=1

n

∑
j=1

AijBij = n(n− 1)− 4s− 2ntu − 2Ninc (10)
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where

Ninc =

(
n••
2

)
+

(
n∗•
2

)
+

(
n•∗
2

)
+ n••(n∗• + n•∗ + n∗∗) + n∗∗(n∗• + n•∗) + n∗•n•∗ (11)

s is the number of crossings—that is, the number of pairs {i, j}—such that ai < aj and bi > bj, or ai > aj
and bi < bj.
ntu is the number of pairs that are tied in only one ranking (from tie to untie or viceversa), that is,
such that ai = aj and bi 6= bj, or ai 6= aj and bi = bj.

In the definitions of s, and ntu, it is assumed that ai and bi are different from •. For the cases when one or
more • may appear, the following notation holds:

n•• is the number of entries such that ai = bi = •;
n•∗ is the number of entries, such that ai = • and bi 6= •;
n∗• is the number of entries, such that ai 6= • and bi = •.

Finally, it is also needed to define n∗∗ as the number of entries, such that ai 6= • and bi 6= •.

Proof of Theorem 1. For each pair {i, j} we will evaluate each term AijBij + AjiBji in the expression
∑n

i=1 ∑n
j=1 AijBij. The case i = j gives AiiBii + AiiBii = 0.

Thus, we focus on pairs {i, j} with i 6= j. There is a total number of n(n− 1)/2 of these pairs. It is
useful to consider the basic cell of the pair {i, j} with i < j.(

ai bi
aj bj

)

where ak and bk can be natural numbers or a • if the element k is not ranked in a or b.
Let us study first the cases that can appear when no • is present in the basic cell.

The Complete Case (C):

That is ak 6= •, bk 6= •, for all k ∈ {1, 2, . . . n}. We distinguish four types of basic cells.

Type C.1: Not crossing, and no ties in a nor in b.

For example: (
1 3
2 4

)
or

(
2 4
1 3

)
.

So that, we have ai 6= aj and bi 6= bj and two cases can appear:

C.1.1. If ai < aj and bi < bj, then AijBij + AjiBji = 1 · 1 + (−1) · (−1) = 2.
C.1.2. If ai > aj and bi > bj, then AijBij + AjiBji = (−1) · (−1) + 1 · 1 = 2.

Type C.2: Crossing.
For example: (

1 4
2 3

)
or

(
2 3
1 4

)
.

Again, we have ai 6= aj and bi 6= bj and two more cases can appear:

C.2.1. If ai < aj and bi > bj, then AijBij + AjiBji = 1 · (−1) + (−1) · 1 = −2.
C.2.2. If ai > aj and bi < bj, then AijBij + AjiBji = (−1) · (1) + 1 · (−1) = −2.

Type C.3: From tie to untie or viceversa.
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For example: (
1 3
1 4

)
,

(
1 4
1 3

)
,

(
3 1
4 1

)
, or

(
4 1
3 1

)

We have ai = aj and bi 6= bj or ai 6= aj and bi = bj. Therefore, four cases can appear:

C.3.1. If ai = aj and bi < bj then AijBij + AjiBji = 1 · 1 + 1 · (−1) = 0.
C.3.2. If ai = aj and bi > bj then AijBij + AjiBji = 1 · (−1) + 1 · 1 = 0.
C.3.3. If ai < aj and bi = bj then AijBij + AjiBji = 1 · 1 + (−1) · 1 = 0.
C.3.4. If ai > aj and bi = bj then AijBij + AjiBji = (−1) · 1 + 1 · 1 = 0.

Type C.4: From tie to tie.

For example: (
1 2
1 2

)
That is, we have: ai = aj and bi = bj, and then AijBij + AjiBji = 1 · 1 + 1 · 1 = 2.

We denote the number of pairs of each case using the terminology of Table 1. Note that ntt is the
number of pairs that are tied in both rankings, that is, such that ai = aj and bi = bj. Note also that ntu is
the number of pairs that go from tie to untie or viceversa.

Table 1. Number of pairs {i, j} corresponding to each type for the complete cases.

Type Number of Pairs

C.1 nnc
C.2 s
C.3 ntu
C.4 ntt

The Incomplete Case (I):

There is at least one • in the basic cell. In other words, there is some k such that ak = •, or bk = •,
or both. We distinguish seven cases:

Type I.1: Four • That is ai = aj = bi = bj = •, or graphically(
• •
• •

)
Then AijBij + AjiBji = 0 · 0 + 0 · 0 = 0. Let us denote by n•• the number of null rows that appear

in the matrix with columns a and b. Therefore, we have (n••
2 ) pairs {i, j} of this type.

Type I.2: Three •. That is, a cell of one of these forms(
• •
∗ •

)
,

(
∗ •
• •

)
,

(
• •
• ∗

)
, or

(
• ∗
• •

)

where ∗ is a number (not a •). Therefore, we have four cases, but all are similar to this one: ai 6= • and
aj = bi = bj = 0. Then, AijBij + AjiBji = 0 · 0 + 0 · 0 = 0.

Denoting n∗• the number of rows of the form (∗ •) in the n× 2 matrix (a b), and n•∗ the number
of rows of the form (• ∗) in the same matrix, it is clear that the number of pairs {i, j} of this type is:
n••(n∗• + n•∗).



Mathematics 2020, 8, 1828 8 of 30

Type I.3: Two •, one on each ranking. That is, any cell of one of these forms(
• •
∗ ∗

)
,

(
∗ ∗
• •

)
,

(
• ∗
∗ •

)
, or

(
∗ •
• ∗

)

These four cases can be reduced to two:

I.3.1. If ai = bi = •, ai 6= • and bj 6= •, then AijBij + AjiBji = 0 · 0 + 0 · 0 = 0.
I.3.2. If ai = •, aj 6= •, bi 6= • and bj = •, then AijBij + AjiBji = 0 · 0 + 0 · 0 = 0.

Denoting by n∗∗ the number of rows of the form (∗ ∗) in the n× 2 matrix (a b), it is clear that the
number of pairs {i, j} of this type is n••n∗∗ + n∗•n•∗.

Type I.4: Tied in one ranking and two • in the other. For example,(
1 •
1 •

)
,

(
• 1
• 1

)

That is, we have two cases, which are similar to this ai = aj and bi = bj = •, and then AijBij + AjiBji =

0 · 0 + 0 · 0 = 0.
Let us denote by na the number of different natural numbers in a and by nb be the number

of different natural numbers in b. Let ni• be the number of rows of the form (i, •) in that matrix,
for i = 1, . . . , na and, analogoulsly, let n•i be the number of rows of the form (•, i) in the matrix (ab)
for i = 1, . . . , nb. Then, it is straightforward to see that the number of cases of this type is given by

na

∑
i=1

(
ni•
2

)
+

nb

∑
i=1

(
n•i
2

)
.

Type I.5: Tied in one ranking, one • in the other. For example(
1 •
1 2

)
,

(
1 2
1 •

)
,

(
• 1
2 1

)
,

(
2 1
• 1

)
.

We have the following 4 cases:

I.5.1. If ai = aj and bi = • and bj 6= •, then AijBij + AjiBji = 0 · 0 + 0 · 0 = 0.
I.5.2. If ai = aj and bi 6= • and bj = •, then AijBij + AjiBji = 0 · 0 + 0 · 0 = 0.
I.5.3. If ai = •and aj 6= • and bi = bj, then AijBij + AjiBji = 0 · 0 + 0 · 0 = 0.
I.5.4. If ai 6= •and aj = • and bi = bj, then AijBij + AjiBji = 0 · 0 + 0 · 0 = 0.

Let ni∗ be the number of rows of the form (i, ∗) (where ∗ can be i) in the same matrix, with i ∈
{1, 2, . . . na}.

Analogously, let n∗i be the number of rows of the form (∗, i) (where ∗ can be i) in the matrix (a b).
Then, it is straightforward to see that the number of cases of this type is given by

na

∑
i=1

ni∗ni• +
nb

∑
i=1

n∗in•i.

Type I.6: Two • in one ranking and different numbers in the other.

For example (
1 •
2 •

)
,

(
• 2
• 1

)
We have here only two cases:
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I.6.1. If ai 6= aj and bi = bj = • then AijBij + AjiBji = (±1) · 0 + (±1) · 0 = 0.
I.6.2. If ai = aj = • and bi 6= bj then AijBij + AjiBji = 0 · (±1) + 0 · (±1) = 0.

Then, it is easy to see that the number of pairs {i, j} of this type is(
n∗•
2

)
+

(
n•∗
2

)
−

na

∑
i=1

ni∗ni• −
nb

∑
i=1

n∗in•i

where we have subtracted the number of cases of the type I.4.

Type I.7: Only one • and no ties.

For example, they are cases of the form(
1 1
2 •

)
,

(
1 •
2 1

)
,

(
1 1
• 2

)
,

(
• 2
1 1

)
We can have four cases that are similar to these

If ai < aj and bi 6= •, bj = • then AijBij + AjiBji = 1 · 0 + (−1) · 0 = 0.
If ai > aj and bi 6= •, bj = • then AijBij + AjiBji = (−1) · 0 + 1 · 0 = 0.

Let ni∗ be number of rows of the form (i, ∗) (where ∗ can be i) in the same matrix,
with i ∈ {1, 2, . . . , na} and, analogously, let n∗i be the number of rows of the form (∗, i) (where ∗
can be i) in the matrix (a b), with i ∈ {1, 2, . . . , na}. Then, the number of pairs {i, j} of this type is
given by

n∗∗(n∗• + n•∗)−
na

∑
i=1

ni∗ni• −
nb

∑
i=1

n∗in•i

where we have subtracted the number of cases of the type I.5.
In Table 2 we overview the number of cases for each type of the incomplete case.

Table 2. Number of pairs {i, j} corresponding to each type for the incomplete cases.

Type Number of Pairs {i, j}

I.1
(

n••
2

)
I.2 n••(n∗• + n•∗)
I.3 n••n∗∗ + n∗•n•∗

I.4
na

∑
i=1

(
ni•
2

)
+

nb

∑
i=1

(
n•i
2

)
I.5

na

∑
i=1

ni∗ni• +
nb

∑
i=1

n∗in•i

I.6
(

n∗•
2

)
+

(
n•∗
2

)
−

na

∑
i=1

(
ni•
2

)
−

nb

∑
i=1

(
n•i
2

)
I.7 n∗∗(n∗• + n•∗)−

na

∑
i=1

ni∗ni• −
nb

∑
i=1

n∗in•i

To end the proof, we add the contributions for all the cases, complete (C) and incomplete (I), to the
sum ∑n

i=1 ∑n
j=1 AijBij and we obtain

n

∑
i=1

n

∑
j=1

AijBij = 2nnc − 2s + 2ntt (12)
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Now, taking into account that all the cases must amount up to the total number of pairs we have

n(n− 1)
2

= nnc + s + ntt + ntu + Ninc (13)

where Ninc is the sum of all the cases in Table 2. By plugging nnc = n(n−1)
2 − s − ntt − ntu − Ninc

into (12), we finally get
n

∑
i=1

n

∑
j=1

AijBij = n(n− 1)− 4s− 2ntu − 2Ninc

where

Ninc =

(
n••
2

)
+

(
n∗•
2

)
+

(
n•∗
2

)
+ n••(n∗• + n•∗ + n∗∗) + n∗∗(n∗• + n•∗) + n∗•n•∗

In the next example, we illustrate the previous result.

Example 2. Given the rankings a = [1, •, 2, •, 3, 2, •, •, •, 1] and b = [2, •, 4, 2, •, 1, 3, 3, •, 2], then n = 10,
n•• = 2, n•∗ = 3, n∗• = 1, n∗∗ = 4, s = 2 (corresponding to the pairs {1, 6} and {6, 10}), ntu = 1
(corresponding to the pair {3, 6}) , ntt = 1 (corresponding to the pair {1, 10}), na = 3, nb = 4, n1• = n2• = 0,
n3• = 1, n•1 = 0, n•2 = 1, n•3 = 2, n•4 = 0, n1∗ = 2, n2∗ = 2, n3∗ = 0, n∗1 = 1, n∗2 = 2, n∗3 = 0, and,
n∗4 = 1.

From the parameters of Table 3, we obtain Ninc = 39. Thus, it is easy to check that ∑n
i=1 ∑n

j=1 AijBij =

n(n− 1)− 4s− 2ntu − 2Ninc = 2 as stated in Theorem 1.
The number of pairs {i, j} is 45, corresponding to the following cells

(
1 2
• •

)
,

(
1 2
2 4

)
,

(
1 2
• 2

)
,

(
1 2
3 •

)
,

(
1 2
2 1

)
,

(
1 2
• 3

)
,

(
1 2
• 3

)
,

(
1 2
• •

)

(
1 2
1 2

)
,

(
• •
2 4

)
,

(
• •
• 2

)
,

(
• •
3 •

)
,

(
• •
2 1

)
,

(
• •
• 3

)
,

(
• •
• 3

)
,

(
• •
• •

)

(
• •
1 2

)
,

(
2 4
• 2

)
,

(
2 4
3 •

)
,

(
2 4
2 1

)
,

(
2 4
• 3

)
,

(
2 4
• 3

)
,

(
2 4
• •

)
,

(
2 4
1 2

)

(
• 2
3 •

)
,

(
• 2
2 1

)
,

(
• 2
• 3

)
,

(
• 2
• 3

)
,

(
• 2
• •

)
,

(
• 2
1 2

)
,

(
3 •
2 1

)
,

(
3 •
• 3

)

(
3 •
• 3

)
,

(
3 •
• •

)
,

(
3 •
1 2

)
,

(
2 1
• 3

)
,

(
2 1
• 3

)
,

(
2 1
• •

)
,

(
2 1
1 2

)
,

(
• 3
• 3

)
(
• 3
• •

)
,

(
• 3
1 2

)
,

(
• 3
• •

)
,

(
• 3
1 2

)
,

(
• •
1 2

)
and the number of cases of each type for the incomplete case appearing on Theorem 1 are shown in Table 3.
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Table 3. Number of pairs {i, j} that have some •, corresponding to Example 2. Note that the sum of all
the types is, by definition in (11), Ninc.

Type Number of Pairs {i, j}

I.1
(

n••
2

)
= 1

I.2 n••(n∗• + n•∗) = 8
I.3 n••n∗∗ + n∗•n•∗ = 11

I.4
na

∑
i=1

(
ni•
2

)
+

nb

∑
i=1

(
n•i
2

)
= 1

I.5
na

∑
i=1

ni∗ni• +
nb

∑
i=1

n∗in•i = 2

I.6
(

n∗•
2

)
+

(
n•∗
2

)
−

na

∑
i=1

(
ni•
2

)
−

nb

∑
i=1

(
n•i
2

)
= 2

I.7 n∗∗(n∗• + n•∗)−
na

∑
i=1

ni∗ni• −
nb

∑
i=1

n∗in•i = 14

Remark 1. By using (10) and (7) we obtain

τx = 1−
4(s + 1

2 ntu) + 2Ninc

n(n− 1)
(14)

that can be thought of an extension of (1) to the case of two incomplete rankings with ties. This formula is one of
the original contributions of this paper. Note that the term Ninc is known since it is given by (11). This formula
will be useful in Section 6 to define our measure of correlation for a series of incomplete rankings with ties.

Remark 2. For two complete rankings with ties allowed, Equation (10) simplifies to

n

∑
i=1

n

∑
j=1

AijBij = n(n− 1)− 4s− 2ntu (15)

If we recall the definition of the distance of Kemeny and Snell [2] depending on a matrix C(a) = Cij(a)
such that

Cij(a) =


1 if element i is preferred to element j
−1 if element j is preferred to element i

0 if i = j, or if both elements i and j are tied
(16)

by following a similar procedure as in the proof of Theorem 1 it is easy to show that

∑
ij
|Cij(a)− Cji(b)| = 4s + 2ntu (17)

and by using (15) we get
n

∑
i=1

n

∑
j=1

AijBij = n(n− 1)−∑
ij
|Cij(a)− Cji(b)| (18)

that it is in agreement with the results shown in [27], but we obtain it as a particular case of Theorem 1.

Remark 3. The common number of ranked elements in a and b that we denote as n in (9) is precisely n∗∗.
Moreover, by using that

n•∗ + n∗• + n•• = n− n
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Let us check that Ninc given by (11) can be rewritten as

Ninc =

(
n
2

)
−
(

n
2

)
(19)

To that end, it is needed to use that n∗∗ = n and

n•∗ + n∗• + n•• = n− n (20)

To see how it is, we first note that(
n••
2

)
+

(
n∗•
2

)
+

(
n•∗
2

)
=

1
2

[
n2
•• + n2

∗• + n2
•∗ − (n•• + n∗• + n•∗)

]
=

1
2

[
n2
•• + n2

∗• + n2
•∗ − n + n

]
(21)

Second, we can simplify, by using (20)

n••(n∗• + n•∗ + n∗∗) = n••(n− n••) (22)

Third, note that, by using (20),

n∗∗(n∗• + n•∗) = nn− n2 − nn•• (23)

Now, by using (21)–(23) we have that Ninc given by (11) becomes

Ninc =
1
2

n2
•• +

1
2
(n∗• + n•∗)2 +

1
2
(n− n) + n••(n− n•• − n) + n(n− n)

and since
1
2
(n∗• + n•∗)2 =

1
2

(
n2 − 2nn + n2 + 2nn•• − 2nn•• + n2

••

)
we get

Ninc =
1
2
(n− n) +

1
2

(
n2 − 2nn + n2

)
+ nn− n2 =

n(n− 1)
2

+
n− n2

2
that is to say

Ninc =

(
n
2

)
−
(

n
2

)
and the proof is done. Note also that, by using (13), we have: (n

2) = nnc + s + ntt + ntu.

This last remark motivates the next result.

Corollary 1. Given two vectors a, b representing incomplete rankings of n elements with ties and their
corresponding matrices A = (Aij) and B = (Bij), it holds that

n

∑
i=1

n

∑
j=1

AijBij = n(n− 1)− 4s− 2ntu (24)

where n is the number of common ranked elements in both rankings—see (9)—s is the number of crossings,
that is, the number of pairs {i, j}, such that ai < aj and bi > bj or ai > aj and bi < bj, and ntu is the number
of pairs that are tied in only one ranking (from tie to untie or viceversa), that is, such that ai = aj and bi 6= bj,
or ai 6= aj and bi = bj.
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With (24), it is easy to obtain the maximum and minimum of the expression ∑n
i=1 ∑n

j=1 AijBij.
When s = 0 and ntu = 0 we have

n

∑
i=1

n

∑
j=1

AijBij = n(n− 1)

that is the maximum value of ∑n
i=1 ∑n

j=1 AijBij. Analogously, by taking s = (n
2), that is the maximum

number of crossings and consequently ntu = 0, we obtain from (24)

n

∑
i=1

n

∑
j=1

AijBij = n(n− 1)− 4
(

n
2

)
= −n(n− 1)

that is the minimum value of ∑n
i=1 ∑n

j=1 AijBij. These facts, that are in agreement with the results
shown in [12], explain why τ̂x defined by (8) takes values in [−1, 1].

Remark 4. By using (7) and (24) we obtain

τx =
n(n− 1)
n(n− 1)

− 4s + 2ntu

n(n− 1)
(25)

and from (8) and (25) we get

τ̂x = 1− 4s + 2ntu

n(n− 1)
(26)

Remark 5. As we have pointed out in (3), a distance metric d(a, b) can be transformed into a correlation
coefficient τ(a, b) by the formula

τ(a, b) = 1− 2d(a, b)
dmax(a, b)

(27)

Note that in expression (14), when Ninc 6= 0, the quantity n(n− 1) is not the maximum value of the
distance metric d(a, b) = 2s + ntu + Ninc (see Example 6). This problem does not appear with the use of τ̂x

since, by using (26) we can identify a “distance metric” given by d̂(a, b) = 2s + ntu and its maximum value is
achieved when s = n(n− 1)/2 (and consequently ntu = 0) and has the value of

d̂max = n(n− 1)/2

Therefore, τ̂x should be preferred over τx in terms of normalization (see [12] for other considerations).
This fact will be useful for the definition that we will introduce in Section 6.

In the next examples, we illustrate the two previous remarks. Note that when s = 0 and ntu = 0
then, by (26), τ̂x = 1 and it is not affected by the presence of • in the rankings. By analogy with (4),
we denote the Normalized Mean Strength of a and b as

NS(a1, a2) =
(1− τx)

2
, and N̂S(a1, a2) =

(1− τ̂x)

2
.

Example 3. Let a1 = [1, 2, 3, •, •, •] and a2 = [1, •, 2, 3, •, •]. It is easy to obtain: Ninc(a1, a2) = 14,
τx(a1, a2) = 0.1556, NS(a1, a2) = 0.4222, τ̂x(a1, a2) = 1, and N̂S(a1, a2) = 0.0.

Example 4. Let a1 = [1, 2, 3, 4, •, •] and a2 = [1, •, 2, 3, 4, •]. It is easy to obtain: Ninc(a1, a2) = 12,
τx(a1, a2) = 0.2, NS(a1, a2) = 0.4, τ̂x(a1, a2) = 1, and N̂S(a1, a2) = 0.0.

The next example shows the results when a ranking is compared to itself and its reverse ranking
for the case of complete rankings (note that τx = τ̂x since n = n).
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Example 5. Let a1 = [1, 2, 3, 4, 5, 6] and a2 = [6, 5, 4, 3, 2, 1]. Then

a1 → a1 a1 → a2

Ninc 0 0
τx 1.0 −1.0
NS 0.0 1.0
τ̂x 1.0 −1.0
N̂S 0.0 1.0

The next example shows that τx does not take its limit values when the rankings are incomplete
and that τ̂x is not defined when there are no elements in common in both rankings.

Example 6. Let a1 = [1, 2, 3, •, •, •], a2 = [•, •, •, 3, 2, 1], a3 = [1, 2, 3, 4, •, •], and a4 =

[•, •, 4, 3, 2, 1], Then
a1 → a1 a1 → a2 a3 → a4

Ninc 12 15 14
τx 0.2 0.0 −0.0667
NS 0.4 0.5 0.5333
τ̂x 1.0 not defined −1.0
N̂S 0.0 not defined 1.0

Our main practical result in this paper is the definition of a measure to deal not only with two rankings
a1 and a2, as we have seen so far, but with a series of incomplete rankings with ties {a1, a2, . . . am} in which,
in practical situations, some kind of time evolution is presented (e.g., a sport ranking during a session
where there may be ties or inclusion/elimination of teams, charts of songs ordered on a daily/weekly
basis, etc.). In order to define this measure, it will be useful to recall some concepts defined for
complete rankings.

5. Treatment of More Than Two Complete Rankings. Known Results

To study the evolution of more than two rankings we will use the concept of Kendall distance
defined in [10], where some weights were introduced to measure the changes when passing from one
ranking to the next. After that, we will recall how to extend this definition to a series of m complete
rankings, as in [13].

5.1. Kendall Distance for Complete Rankings with Penalty Parameters

We recall the definition of Kendall distance with penalty parameters p and q from [10,13].

Definition 1. Let a and b be two complete rankings with ties of the set N = {1, . . . , n}, and penalty
parameters p ∈ [0, 1

2 ] and q ∈ [0, 1
2 ]. The Kendall distance with penalty parameters p and q is defined as

K(p, q)(a, b) = ∑
{i,j}∈N

K̄(p, q)
i,j (a, b) (28)

where K̄(p, q)
i,j (a, b) is computed according to the following cases:

Case 1: If i and j are not tied in a, nor in b. If they cross their positions when passing from a to b then
K̄(p, q)

i,j = 1. Otherwise, K̄(p, q)
i,j = 0.

Case 2: If i and j are tied in both a and b. Then K̄(p, q)
i,j = q.

Case 3: If i and j are tied only in one ranking. Then K̄(p, q)
i,j = p.



Mathematics 2020, 8, 1828 15 of 30

Remark 6. The penalty parameters p and q are bounded and take into account the cases where there exist
tied elements in a, in b, or in both. For our purposes of measuring competitiveness, it is reasonable to assign
p = 1/2, to represent that they are tied in one ranking, and q = 0 to represent that they are tied in both of them.
These assignments are inspired by [10]. In particular, they proved that p ∈ [0.5, 1] in order to get that K(p,0)

was a metric.

Remark 7. Note that, by using the notation introduced in Theorem 1, it is easy to see that

K(p, q)
i,j (a, b) = s + p ntu + q ntt

where ntt is the number of pairs {i, j} that go from tie to tie. Therefore, by using (14) with Ninc = 0 we get

τx(a, b) = 1− 4K(0.5, 0)(a, b)
n(n− 1)

(29)

that is, once more, a relation of the form (3). We see here another consequence of Theorem 1: it opens the
possibility of defining new metrics based on putting penalties to the cases n••, n•∗, etc. since it gives an explicit
expression on these cases.

With the previous definitions, we can deal with the general case of the study of a series of complete
rankings. We do this in the next section.

5.2. Series of Complete Rankings with Ties

In [13], it was shown how to extend Definition 1 to m complete rankings with ties in a natural
way. We recall these definitions here because they will be extended in Section 6 to a series of
incomplete rankings.

Definition 2. Given m complete rankings with ties a1, a2, . . . am of n elements, we define the evolutive Kendall
distance with penalty parameters p and q as

K(p,q)
ev (a1, a2, . . . , am) =

m−1

∑
i=1

K(p, q)(ai, ai+1). (30)

When handling m rankings it is natural to include a new case (see [13]) that consists of a series of
ties between a crossing (see Example 7 further on). Thus it is convenient to define a new case in the
definition of K(p,q)

ev (a1, a2, . . . , am) according to the following rule.

Definition 3. Given m complete rankings with ties a1, a2, . . . am of n elements, we define the crossing after
ties coefficient K̄cat

i,j (a1, a2, . . . , am) following the rule

Case 4. If there exists a maximal set of rankings at1 , . . . , atk such that for each ` = 1, . . . , k the pair {i, j} is
not tied in at` , but is tied in at`+1, at`+2, . . . , at`+s, with s ≥ 1, it is not tied in at`+s+1 and, moreover,
{i, j} exchange their relative positions between at` and at`+s+1. In this case K̄cat

i,j (a1, a2, . . . , am) =

k, where k is the number of rankings in the maximal set of rankings at1 , . . . , atk verifying the
aforementioned property.
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Example 7. Given the rankings with ties

r1 r2 r3 r4 r5 r6

1 1, 2 1, 2 2 1, 2 1
2 3 3 1 3 2
3 4 4 3 4 3
4 4 4 4

the corresponding ai are
a1 a2 a3 a4 a5 a6

1 1 1 2 1 1
2 1 1 1 1 2
3 2 2 2 2 3
4 3 3 3 3 4

we have that the only nonzero crossing after ties coefficient is

K̄cat
1,2(a1, a2, . . . , a6) = 2

since we have the appearance of the two series

a1 a2 a3 a4

1 1 1 2
2 1 1 1

and
a4 a5 a6

2 1 1
1 1 2

that show a series of ties between a crossing of the pair {i = 1, j = 2}.

By including the cases given by Definition 3 in the sum defined in Definition 2, in [13] a corrected
evolutive distance in the following form is defined.

Definition 4. Given m complete rankings with ties a1, a2, . . . am of n elements we define the corrected evolutive
Kendall distance with penalty parameters p and q as follows:

K(p, q)
cev (a1, . . . , am) = K(p, q)

ev (a1, . . . , am) + ∑
{i,j}

K̄cat
i,j (a1, . . . , am), (31)

where the summation is over the pairs {i, j} that verify Case 4 in Definition 3.

Following the same argument as in [13], it is easy to show that

max[K(0.5, 0)
cev (a1, . . . , am)] =

1
2
(m− 1)n(n− 1) (32)

Now, in analogy with (3) and (14), the Kendall’s evolutive coefficient τev for a series of m complete
rankings with ties can be defined as

τev(a1, a2, . . . am) = 1− 4K(0.5,0)
cev (a1, . . . , am)

(m− 1)n(n− 1)
∈ [−1, 1] (33)

With these previous definitions we can present the new coefficients for incomplete rankings
with ties.
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6. New Coefficients for Series of Incomplete Rankings with Ties

Given a series {a1, a2, . . . , am} of incomplete rankings with ties, for each pair of rankings ai and
aj we can use Definitions 1–4 straightforwardly to also apply for a series of incomplete rankings by
assuming that there is no penalty for the case of absent elements (regarding Definitions 1 and 2) and
that these absent elements (denoted by ‘•’) do not contribute to either ties or to crossings after ties
(regarding Definitions 3 and 4). That is, those definitions are applied as they are, ignoring the effect of
the absent elements.

Keeping this in mind and, in analogy with (14), given a series of m incomplete rankings we could
include the effect of the incomplete cases by defining

τ∗ev = 1− 2devol(a1, a2, . . . , am)

max(devol)
(34)

with

devol(a1, a2, . . . , am) = 2K(p=0.5,q=0)
cev (a1, . . . , am) +

m−1

∑
i=1

Ninc(ai, ai+1)

where Ninc(ai, ai+1) is the number of incomplete cases when passing from ranking ai to ranking ai+1.
Note that the explicit form of Ninc(ai, ai+1) for each pair of consecutive rankings is given by (11)
in Theorem 1 and Corollary 1. The value of max(devol) depends on Ninc(ai, ai+1). We have seen in
Remark 5 that the definition of τx corresponds to take dmax(a, b) as the value corresponding to Ninc = 0
(and that is the reason why τx is not well normalized). We can translate here the same reasoning and
formalize it in the next definition.

Definition 5. Given m incomplete rankings with ties a1, a2, . . . am of n elements we define the corrected
evolutive Kendall’s τ coefficient for the series with penalty parameters p = 0.5 and q = 0 as follows:

τ•ev = 1−
4K(0.5,0)

cev (a1, . . . , am) + 2 ∑m−1
i=1 Ninc(ai, ai+1)

(m− 1)n(n− 1)
(35)

where K(0.5,0)
cev (a1, . . . , am) is given by Definition 4, and Ninc(ai, ai+1) is given by (11).

Here we have the same drawback as we showed for τx in Remark 5: τ•ev is not properly normalized
and it cannot get the values ±1 if any Ninc(ai, ai+1) 6= 0. Therefore, in analogy with (26), we introduce
a new coefficient in the following definition.

Definition 6. Given m incomplete rankings with ties a1, a2, . . . am of n elements, such that ni,i+1 > 1, for all
i = 1, 2, . . . , m− 1, we define the scaled corrected evolutive Kendall’s τ coefficient for the series with penalty
parameters p = 0.5 and q = 0 as follows:

τ̂•ev = 1− 2K(0.5,0)
cev (a1, . . . , am)

max(K(0.5,0)
cev (a1, . . . , am))

(36)

where K(0.5,0)
cev (a1, . . . , am) is given by Definition 4 and with

max[K(0.5,0)
cev (a1, . . . , am)] =

1
2

m−1

∑
i=1

ni,i+1(ni,i+1 − 1) (37)

where ni,i+1 denotes the common ranked elements between ai and ai+1.

Note that we need that, for some i, ni,i+1 6= 0.
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Remark 8. In the limit case of m complete rankings with ties, note that Equation (37) collapses to
Equation (32). Note also that τ̂•ev is affected by the crossings, the pass from tie to untie (or viceversa) and
the long crossings (crossings after ties given by K̄cat

i,j (a1, a2, . . . , am), given by Definition 3), due to the term

2K(p=0.5,q=0)
cev (a1, . . . , am). The effect of the elements that are out of the rankings appear explicitly by the term

ni,i+1 that does not take into account the position in ai nor in ai+1. τ̂•ev is well normalized, that is τ̂•ev ∈ [−1, 1].

Example 8. Let n = 6. Given the series of incomplete rankings with ties a1 = [1, 2, 3, 4, 5, 6], a2 =

[1, 2, 3, •, •, •], and a3 = [1, 2, •, •, •, •], an easy computation shows Kcev(a1, a2, a3) = 0 and thus τ̂•ev = 1.
Note that τ•ev = 0.1333.

Example 9. Let n = 6. Given the series of incomplete rankings with ties a1 = [1, 2, 3, 4, 5, 6], a2 =

[3, 2, 1, •, •, •], and a3 = [1, 2, •, •, •, •], it is easy to obtain that Kcev(a1, a2, a3) = 4 = max(Kcev) and thus
τ̂•ev = −1. Note that τ•ev = −0.1333.

As we have seen in the above definitions, the importance of Theorem 1 and Corollary 1 consists
of giving the explicit formula for Ninc(ai, ai+1) to allow for the computation of the coefficient τ̂•ev for
the series of m incomplete rankings with ties. Note that τ̂•ev ∈ [−1, 1]. For the particular case when
the rankings are complete, we have Ninc(ai, ai+1) = 0 for all the pairs of consecutive rankings and
ni,i+1 = n, for i = 1, 2, . . . , m− 1, and therefore Equation (36) reduces to the complete case given by
Equation (33), that is, τ̂•ev collapses to τev.

Another contribution of Theorem 1 and Definition 6 is that they are useful to describe the behavior
of the series of m rankings in terms of a competitivity graph. We can define a weighted graph for each
one of the interactions between the elements when passing from ai to ai+1: crossings, passing from
tie to untie (or vice-versa), and crossing after ties. Moreover, for each kind of graph, we can add the
contributions of all the pairs of consecutive rankings to obtain a projected graph for any interaction
(crossings, passing from tie to untie (or vice-versa), and crossing after ties). The procedure is the
following: First, we construct an undirected graph for each pair of rankings ak, ak+1 by identifying
each element i as a node and defining an edge between i and j by the rule: there is an edge connecting
{i, j}with weight K̄(p, q)

i,j (ak, ak+1) when this weight is nonzero. By adding the m− 1 pairs of undirected

graphs we obtain a projected graph with a total sum of weights K(p=0.5,q=0)
cev (a1, . . . , am). By adding the

crossing after ties term to the projected graph we have all the ingredients appearing on Definition 6.
We show this procedure by using the next example with m = 6 and n = 8.

Example 10. Given the series of incomplete rankings with ties

r1 r2 r3 r4 r5 r6

5 2 4 6 2 1
7 1 8 1, 4 1, 4 5
3 8 3 3 6, 7 8
8 3 2, 6 8 5 3

1, 4 5, 7 5, 7 2 3 4
4 1 7 8

the corresponding ai are
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a1 a2 a3 a4 a5 a6

5 2 6 2 2 1
• 1 4 5 1 •
3 4 3 3 5 4
5 6 1 2 2 5
1 5 5 • 4 2
• • 4 1 3 •
2 5 5 6 3 •
4 3 2 4 6 3

In this example we have n = 8, and an easy computation leads to the parameters shown in Table 4. For each
pair of consecutive rankings it is easy to compute the parameters defined in Theorem 1: n••, n•∗, n∗•, n∗∗, s,
ntu, and ntt. Then, by using Equation (10) in Theorem 1 we can obtain, for any pair of rankings, the value Ninc.
n is the number of common elements, given by (9). The coefficient τ•ev is given by (35), and the coefficient τ̂•ev is
given by (36). In analogy with (4) we can define the corresponding normalized mean strengths given by

NS• =
(1− τ•ev)

2
(38)

and

N̂S
•
=

(1− τ̂•ev)

2
(39)

Finally, in Table 4 we include the coefficients τx and τ̂x given by (7) and (8), respectively. These last coefficients are
included to show that our new coefficients τ•ev and τ̂•ev reduce to them when only a pair of rankings are considered.

Table 4. Parameters for pairs of consecutive rankings. Example 10.

a1 → a2 a2 → a3 a3 → a4 a4 → a5 a5 → a6

n•• 1 0 0 0 0
n•∗ 1 1 0 1 0
n∗• 0 0 1 0 3
n∗∗ 6 7 7 7 5

s 9 12 8 9 4
ntu 2 0 2 1 1
ntt 0 0 0 0 0

Ninc 13 7 7 7 18
n 6 7 7 7 5

τ̂•ev −0.3333 −0.1429 0.1429 0.0952 0.1000
N̂S
•

0.6667 0.5714 0.4268 0.4524 0.4500
τ•ev −0.1786 −0.1071 0.1071 0.0714 0.0357

NS• 0.5893 0.5536 0.4464 0.4643 0.4821
τx −0.1786 −0.1071 0.1071 0.0714 0.0357
τ̂x −0.3333 −0.1429 0.1429 0.0952 0.1000

To compute our new coefficients τ•ev and τ̂•ev for the whole series of rankings a1 to a6 we need
some previous parameters. First, we need the value

5

∑
i=1

Ninc(ai, ai+1) = 52

To compute K(p=0.5,q=0)
cev (a1, . . . , a6), given by (31), we need to know, previously, the value of the crossing

after ties coefficients K̄cat
i,j (a1, . . . , a6), given by Definition 3. Note that the unique long crossing occurs

for the pair {1, 4}: the elements tagged as 1 and 4 are such that 4 is above 1 in r3, both elements are tied
in rankings r4 and r5, and, finally, 4 is below 1 in ranking r6. Note, for example, that the pair {5, 7}
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does not accomplish the conditions of crossing after ties. Therefore the only term that contributes to
∑{i,j} K̄cat

i,j is K̄cat
1,4(a1, . . . , a6) = 1.

With respect to K(p=0.5,q=0)
ev (a1, . . . , a6), given by (30), we need to compute the terms

K̄(p, q)
i,j (ai, ai+1), given by (28), for any pair of consecutive rankings. A detailed computation shows

that, in this example, we have 42 crossings and 6 cases of tie to untie or viceversa. The precise pairs of
elements that contribute to these cases are shown in the corresponding projected weighted graphs in
Figure 1. The crossing after ties case is represented in Figure 2.

Figure 1. Projected weighted graphs representing the pairs of elements that contribute to crossings
(left panel) and the pairs corresponding to the case tie to untie or viceversa (right panel), occurring in
Example 10.

Figure 2. Projected weighted graph representing the crossing after ties cases occurred in Example 10.

Therefore we have all the ingredients to compute K(p=0.5,q=0)
cev . That is

K(p=0.5,q=0)
cev (a1, . . . , a6) = K(p=0.5,q=0)

ev (a1, . . . , a6) + ∑
{i,j}

K̄cat
i,j (a1, . . . , a6)

=
5

∑
i=1

K(p, q)(ai, ai+1) + ∑
{i,j}

K̄cat
i,j (a1, . . . , a6)

and, by Remark (7), we know that

K(p, q)
i,j (a, b) = s + p ntu + q ntt
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Therefore, we have

K(p=0.5,q=0)
cev (a1, . . . , a6) = (9 + 12 + 8 + 9 + 4) + 0.5(2 + 0 + 2 + 1 + 1) + K̄cat

1,4(a1, . . . , a6)

= 42 + 3 + 1 = 46.

By using (35), we obtain

τ•ev = 1− 4 · 46 + 2 · 52
(6− 1)8 · 7 = 1− 1.0286 = −0.0286

that corresponds to an equivalent normalized mean strength

NS• =
(1− τ•ev)

2
= 0.5143

Finally, regarding τ̂•ev, we have

τ̂•ev = 1− 2 · 46
1
2 (6 · 5 + 7 · 6 + 7 · 6 + 7 · 6 + 5 · 4)

= 1− 4 · 46
176

= −0.0455

that corresponds to
N̂S
•
= 0.5227.

All in all, we conclude that τ̂•ev is a proper coefficient for the evaluation of m incomplete rankings
with ties and can be considered as a natural extension of the coefficient τ̂x presented in [12]. In the next
section we apply the new coefficients τ•ev and τ̂•ev to real rankings appearing on Spotify charts.

7. Results

Spotify is one of the major music streaming services worldwide, with 299 million monthly active
users, as of July 2020 [28]. The company Spotify Technology S.A. has been listed on the New York
Stock Exchange since 2018. As of September 2020, the company offers a catalog of 60 million tracks and
operates in 92 countries from Albania to Vietnam [29]. Spotify divides the monthly active users into
four regions [30]: Europe (35%), North America (26%), Latin America (22%) and rest of the world (17%).
The app is available on several devices, such as computers, smartphones, tablets, wearable devices, etc.
The users can choose between a free service (called Freemium or Ad-Supported) or a Premium service.
In any case, the user can listen by streaming any song of the catalog (that is, the user does not own the
song’s digital file, but can listen to it). It is accepted that music streaming services have transformed
the entire music market—see [31]—and they have evolved very fast, changing their services and
capabilities. For example, Spotify has signed some partnerships with Microsoft [32], Sony [33] and
Facebook [34] among other big companies. There exists a large amount of literature about Spotify,
but it is mainly focused on Economics and Music. To the best of our knowledge, a small number of
papers are devoted to the mathematical aspects of the rankings produced by Spotify. Among these
papers, we have [35,36]. A paper that studies the relationship between personality and type of music
is [37]. See [38] for more details about Spotify.

Like other services on the Internet, Spotify provides some chart lists (song rankings) based on the
platform’s number of streamings. To this kind of rankings belongs the Top 200 (see [39–41]), that is
one of the topics of our study. Another ranking that we are interested in is called Viral 50 which is an
evolution of the original Social 50 ranking (see [42–44]) that incorporated in the song chart the effect
of the social sharing of a track by Spotify users. This sharing included platforms such as Facebook
and Twitter. It is not completely clear for us how this rank is computed, but it aims to gather fresh
songs that acquire high impact on social networks by new release promotions, special apparitions on
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tv-shows, music festivals, tours, etc. (see [45] for an example of how a viral song transformed into a
Top 100 song in 2013).

Due to the situation caused by the COVID-19 pandemic, the live music business reflected some
drawbacks, such as festivals being cancelled worldwide, a reduction in public-performance licensing,
and other related factors—see [46]. As an example, Warner Music Group Corp showed a total revenue
fall of 1.7% in the first quarter of 2020 compared to the first quarter of 2019 [47]. Spotify also reported
some impact on their business, but in the first quarter of 2020, it seemed that the consumption
recovered and monthly active users increased faster in the first quarter of 2020 than in the same
period of 2019 [30]. Some perturbations in Spotify streaming were also reported by the music analytic
company Chartmetric that observed a change in the type of consumption of Spotify streamings by
music genre in the period between 3 March 2020 to 9 April 2020, concluding that it seemed that it had
been a pandemic-induced lifestyle change [48].

With regard to the Top 50 viral, it is reasonable to think that the fact that many artists (such
as Lady Gaga, Alicia Keys, and Cardi B. [46]) have postponed big releases may have decreased the
movements in these charts.

7.1. Method to Convert Spotify Lists into Incomplete Rankings

Both Spotify Top 200 and Viral 50 lists can be treated as incomplete rankings since some elements
(songs) quit the list and some others that appear on the list (new songs). Let us call any of these
rankings as Top k rankings. In order to handle these Top k rankings, our methodology consists of the
following steps:

1. Select a set of m lists {v1, v2, . . . , vm} with k entries in each vi.
2. Denote as n the number of different songs that appear on these m lists. We tag these songs from 1

to n, following the order they first appear, reading the lists from the first to the last one, and each
list from top to bottom. Denote ti the tagged version of vi, for i = 1, 2, . . . , m, including all the
n songs.

3. Denote r1 a vector with entries from 1 to n. The first k values correspond to the elements in v1.
4. Construct the rankings ri for 2 = 1, . . . m, in the following form:

(a) The first k entries of ri are copied from ti;
(b) The rest of the entries form a vector si and come from the the elements that quit from ti−1

plus the elements that, being in si−1, are not included in ti.

These n− k elements preserve their relative order. This order is not important since these elements
are not included in the Top k ranking ti.

5. From each ti, we construct the corresponding incomplete ranking ai given by (5).

Example 11. Let us consider three Top 4 lists (v1, v2, v3) and construct the corresponding three rankings
(a1, a2, a3). Here we have m = 3 and k = 4.

v1 v2 v3

A B F
B C C
C E B
D A E

→
t1 t2 t3

s1 s2 s3

r1 r2 r3
1 2 6
2 3 3
3 5 2
4 1 5

{
5 4 1
6 6 4

} −→

a1 a2 a3

1 4 •
2 1 3
3 2 2
4 • •
• 3 4
• • 1

We have denoted as si the elements beyond the k position in each ranking ri. The rankings ai are constructed
looking at ri from positions 1 to 4. Since the elements that do no belong to ti are in si, we tagged them as •.
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7.2. Comparison of Two Series of Top 200 Rankings

From the site [49] we downloaded the series of Top 200 (Global) rankings corresponding to the
following time intervals:

• 2019 Series: 18 weekly rankings ranging from 28 December 2018 to 3 May 2019.
• 2020 Series: 18 weekly rankings ranging from 27 December 2019 to 1 May 2020.

The term Global means that the charts were produced from streaming on Spotify from all over the
world. By using the methodology explained in the previous section, we convert the 18 downloaded
rankings to a series of incomplete rankings (with no ties) a1, . . . , a18, and we compute our parameters.
This is repeated for each considered year. The results are shown in Table 5.

Table 5. Parameters for two series of incomplete rankings obtained from Spotify Top 200 lists.

2019 Series 2020 Series

n 474 556
Ninc 1.6× 106 2.4× 106

< ni,i+1 > 182 175
τ•ev 0.1256 0.0836

NS• 0.4372 0.4582
τ̂•ev 0.8540 0.8421

N̂S
•

0.0730 0.0789

In Table 5 we have denoted by < ni,i+1 > the average of {ni,i+1} for i = 1, 2, . . . , 17, that is the
mean number of common elements from each pair of consecutive rankings. We see that the number
of songs involved in the 2019 series is n = 474, which is lower than the 2020 series number. This fact
could indicate that there was more activity in the 2020 series since more new songs appeared than the
previous year. By extension, we can also conclude that the activity on Spotify of the users was higher in
the 2020 series.

The same tendency is observed by looking at Ninc and ni,i+1. Our coefficients NS• and N̂S
•

corroborate this intuition since they take higher values in the 2020 Series than in the 2019 Series.
Analogously, by looking at τ•ev and τ̂•ev, we see a decrease when comparing the 2019 Series with the
2020 Series. Recall that the coefficients NS• and N̂S

•
introduced in this paper offer a measure of the

movements in the rankings, since they take into account the number of crossings and, in this case,
that we do not have ties, due to the effect of absent elements.

In the same manner, as we did in Example 10, we can construct the projected graph corresponding
to the crossings for each series. We show these graphs in Figure 3, that have been plotted with MATLAB
by using the option ”subspace”.
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Figure 3. Graph based on crossings corresponding to the giant connected component of Top 200
2019 Series (left panel, 360 nodes, 16,115 edges) and Top 200 2020 Series (right panel, 374 nodes,
16,564 edges).

7.3. Comparison of Two Series of Viral-50 Rankings

From the site [50], we downloaded the series of Viral 50 (Global) weekly rankings corresponding
to the following periods:

• 2019 Series: 18 weekly rankings ranging from 3 January 2019 to 2 May 2019.
• 2020 Series: 18 weekly rankings ranging from 2 January 2020 to 30 April 2020.

For each considered year, we convert the 18 downloaded rankings to a series of incomplete
rankings (with no ties) a1, . . . , a18, and we computed again the aforementioned parameters. The results
are shown in Table 6.

Table 6. Parameters for two series of incomplete rankings obtained from Spotify Viral 50 lists.

2019 Series 2020 Series

n 315 300
Ninc 8.3× 105 7.5× 105

< ni,i+1 > 33.6 35
τ•ev 0.0067 0.0093

NS• 0.4966 0.4954
τ̂•ev 0.6037 0.6922

N̂S
•

0.1982 0.1539

The number of songs involved in the 2019 series is n = 315, that is greater than the number
involved in the 2020 series. This fact could indicate that there was less viral activity in the 2020 series
since fewer new songs appeared than the previous year. The same tendency is observed at Ninc.
This intuition is corroborated by our coefficients. NS• and N̂S

•
since they take lower values in the

2020 series than in the 2019 series. We also see an increase in τ•ev and τ̂•ev when comparing the 2019
series with the 2020 series.

If we compare these results with those obtained in the previous section, we conclude that Spotify’s
viral activity was negatively affected by the Pandemic. This may seem reasonable since many
events that produce sharing in Social Networks, such as shows, new releases, and performances,
were postponed during these months, as we have already discussed. We again plot the projected graph
corresponding to the crossings for each series in Figure 4.
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Figure 4. Graph based on crossings corresponding to the giant connected component of Viral-50 2019
Series (left panel, 185 nodes, 1685 edges) and Viral-50 2020 Series (right panel, 186 nodes, 1447 edges).

7.4. Comparison of a Series of Top 200 and a Series of Viral 50 Rankings

Given that our coefficients τ•ev, τ̂•ev, NS•, and N̂S
•

are normalized, we can compare series of
rankings of different type. Looking at Tables 5 and 6, we conclude (e.g., looking at N̂S

•
) that the Viral-50

rankings present more activity than the Top 200 rankings. For example in the 2019 series the value
of N̂S

•
is 0.1982 for the Viral-50 rankings, and only 0.0730 for the Top 200 rankings. This conclusion

seems reasonable, taking into account that the Viral-50 rankings are constructed by looking at the
behaviours of songs that may rapidly change, since they are viral phenomena.

7.5. Comparison of the Evolution of Two Series of Incomplete Ranking with Ties

Spotify charts Top 200 do not present ties, but we can construct incomplete rankings with ties if
we take into account the Top 200 ranking and the rest of the songs that appear in the whole studied
interval. In detail, to obtain a series of incomplete rankings with ties from a Top 200 series on Spotify,
we will consider the whole list of tracks along with the m rankings and focus on what happens in
positions greater than 200. Using the terminology used in Example 11 we consider the elements that
appear on the rankings, denoted as s1, s2, . . .. In this ranking we consider the following:

(i) All the tracks in s1 are tied. That is a1 = [•1,200 1n−200] where •1,200 is a row vector of 200 entries
of the type •, and 1n−200 is the row vector of all-ones, with n− 200 entries, being n the total
number of different tracks in the m rankings.

(ii) For i = 2, 3 . . . m, we consider that in si we have (at most) two buckets of tied elements. In one
bucket we have the elements (if any) that come from ti−1. In the other bucket, we consider the
rest of the elements of si

The next example with a series of m = 7 Top 4 charts illustrates this methodology.

Example 12. Let us consider the series of seven Top 4 tracks vi with n = 10 elements {A, B, . . . , J} given by
the rankings

A A F G G G J
B B E H H I C
C E A C C B A
D F C E E A H
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from these rankings we construct the rankings ti and si to obtain the rankings in the form

ti

si

1 1 6 7 7 7 10
2 2 5 8 8 9 3
3 5 1 3 3 2 1
4 6 3 5 5 1 8
5 3 2 6 6 8 7
6 4 4 1 1 3 9
7 7 7 2 2 5 2
8 8 8 4 4 6 5
9 9 9 9 9 4 6
10 10 10 10 10 10 4

Now, we consider the rankings si as a series of incomplete rankings with ties with the convention explained
above and we compute the corresponding ai vectors to obtain the rankings

a1 a2 a3 a4 a5 a6 a7

• • • 1 1 • •
• • 1 2 1 • 1
• 1 • • • 1 •
• 1 2 2 1 2 2
1 • • • • 1 2
1 • • 1 1 2 2
1 2 2 • • • 1
1 2 2 • • 1 •
1 2 2 2 1 • 1
1 2 2 2 1 2 •

Note that, since there are at most two buckets, the entries of ai belong to the set {1, 2, •}. Note also that in
s5 there is only one bucket.

By using this methodology, we have converted the series of rankings studied in Section 7.2 to the
corresponding series ai with ties. The parameters obtained are shown in Table 7.

Table 7. Series of incomplete rankings with ties obtained from Spotify Top 200 charts.

2019 Series 2020 Series

n 474 556
Ninc 1.4× 106 1.7× 106

< ni,i+1 > 256 331
τ•ev 0.2577 0.3108

NS• 0.3712 0.3446
τ̂•ev 0.8848 0.8757

N̂S
•

0.0576 0.0621

If we look at n, Ninc, < ni,i+1 >, and N̂S
•

in Table 7, we conclude that there has been more
activity in the 2020 Series than in the 2019 Series. However, by looking at NS• (and τ•ev), the conclusion
seems to be the reverse. Here we see, therefore, that τ•ev and τ̂•ev can present different tendencies. This is
related to the form in which they are normalized, as we have commented in Remark 5 and in Section 6.
These results provide an example of how the transformation from τ•ev to τ̂•ev is not linear, since τ•ev
increases from 2019 to 2020 but τ̂•ev decreases in the same period.
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In Figure 5, we show the plot of the giant component corresponding to the projected graph
showing the interactions of the form tie to untie or viceversa. That is, there is a link between elements
(nodes) i and j when the pair {i, j} goes from tie to untie (or vice versa) in any pair of consecutive
rankings ai and ai+1. We see many more interactions of this type in the 2020 series than in the
2019 series.

Figure 5. Graph based on crossings of the type from tie to untie or vice versa corresponding to the giant
connected component of 2019 Series (left, 377 nodes, 49,915 edges) and 2020 Series (right, 457 nodes,
82,051 edges). We also have 97 isolated nodes in the 2019 Series and 99 in the 2020 Series.

In Figure 6, we show the plot of the giant component corresponding to the projected graph
showing the interactions of the form tie to tie, that is, there is a link between elements (nodes) i and j
when the pair {i, j} goes from tie to tie in any pair of consecutive rankings ai and ai+1. We also see
many more interactions of this type in the 2020 series than in the 2019 series.

Therefore, and taking into account the values of Table 7, we can conclude (for this artificial model
of incomplete ranking with ties) that there was more activity in the 2020 series than in the 2019 series.

Figure 6. Graph based on crossings of the type from tie to tie corresponding to the giant connected
component of 2019 Series (left, 382 nodes, 65,269 edges) and 2020 Series (right, 462 nodes,
101,101 edges).

We have shown the application of the new coefficients introduced in this work, as long as the
utility of the visualizations based on the projected graph plots of the (evolutive) competitive graph
associated to a series of incomplete rankings with or without ties.
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8. Conclusions

We present the main conclusions of our work:

• We provide a theoretical result that allows for understanding, in terms of the type of interactions
between pairs of elements in a series of incomplete rankings with ties, two recently introduced
coefficients, given in [4,12].

• We have defined two new coefficients to characterize a series of incomplete rankings with ties in
terms of the interactions mentioned above.

• We have presented a methodology to treat Spotify charts (both Top 200 and Viral 50) as a series of
incomplete rankings. This methodology allows us to obtain conclusions about the movements in
the lists and, therefore, on the activity of the users of the app.

• We have obtained an artificial series of incomplete rankings with ties based on Spotify Top 200
lists, to apply our coefficients and show the applicability of the method.

• The main theoretical result (Theorem 1) may serve to define new coefficients by giving weight
to the interactions between pairs of elements when going from one ranking to the next one.
The applications can be of interest in other fields (neuroscience, sports, bioinformatics, etc.).
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