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Abstract: The recent success of biological engineering is due to a tremendous amount of research
effort and the increasing number of market opportunities. Indeed, this has been partially possible
due to the contribution of advanced mathematical tools and the application of engineering principles
in genetic-circuit development. In this work, we use a rationally designed genetic circuit to show
how models can support research and motivate students to apply mathematics in their future
careers. A genetic four-state machine is analyzed using three frameworks: deterministic and
stochastic modeling through differential and master equations, and a spatial approach via a cellular
automaton. Each theoretical framework sheds light on the problem in a complementary way.
It helps in understanding basic concepts of modeling and engineering, such as noise, robustness,
and reaction—diffusion systems. The designed automaton could be part of a more complex system of
modules conforming future bio-computers and it is a paradigmatic example of how models can assist
teachers in multidisciplinary education.

Keywords: mathematics; synthetic biology; education; finite state machine; noise; cellular automaton;
reaction—diffusion system

1. Introduction

1.1. Genetic-Device Engineering

Nowadays, many research fields are converging into multidisciplinary areas where different types
of knowledge are required. In particular, synthetic biology is an incipient transversal field that seeks
the creation and modification of living organisms to provide them with new functions that they do not
have or to optimize already present capacities [1]. The development of engineered organisms pursues
the mass production of medicines, fuels, food, or bulk chemicals [2], and the design of biosensors
capable of detecting harmful compounds [3]. Experts see this discipline as the one responsible for
revolutionizing life sciences during the next decade [4,5]. Indeed, there are already commercial
ventures in this matter such as milk secretion by yeast, 3-carotene high-content rice, artificial vanillin
production or bio-rubber synthesis, among others [6].

Every year, hundreds of university teams participate in the most prestigious synthetic biology
competition in the world, which is called the International Genetically Engineering Machine competition
(iGEM) and is held by Massachusetts Institute of Technology and iGEM Foundation. In this contest,
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student teams develop cutting-edge synthetic biology ideas to transform organisms into bio-factories.
Plenty of breakthrough futuristic works can be found in the corresponding wiki of each team
(igem.org). Interestingly, a strict requirement for any project is to support the experimental work with
mathematical modeling.

After having reviewed tens of projects, one work caught our attention: the genetic finite state
machine (FSM) initially conceived by a group of undergraduate students from the Swiss Federal
Institute of Technology in Zurich (ETHZ, Ziirich, Switzerland). The ETHZ team developed an
automaton, whose states corresponds to genetic constructions, which are built in a modular way [7].
The corresponding project wiki is accessible (https://2006.igem.org/wiki/index.php/ETH_Zurich_2005).

An FSM is a mathematical model of computation in which the system can be in exactly one of a finite
number of states at any given time [8]. Each instant, the state of the machine is determined by the input
signals, i.e., the outgoing signal depends only on the state of the machine and the actual input values.
An FSM has interesting properties to be explored mathematically. Yet, to achieve a final prototype
fulfilling desired specifications, extensive modeling work is in general required since the implementation
of artificial genetic circuits has a huge impact on the native species. Correct parametrization is crucial
to fine-tune the circuit and obtain robust and well-programmed functionality.

We can implement this in a prokaryotic bacterium, such as E. coli. Cells incorporating this device
would be capable of “counting” up to two signals. However, adding n FSM in series, 2n stimuli could
be counted. Despite the slowness of genetic circuits compared with electronic ones, one milliliter of
suspension with living cells can have up to 10° cells, hence increasing the prospect of converting living
cells into computational networks. In other words, the cellular counter could be a part of the heart of a
future biological computer. Additionally, when coupled with other genetic devices, the FSM might be
used as a trigger once a threshold number of signals has been reached.

A genetic circuit works in a rather simple fashion: genetic modules produce regulatory proteins,
also called transcription factors, which affect the operation of the rest of the modules, i.e., such proteins
can either activate or repress the protein production of the other constructs [9]. Hence, this network is
analogous to an electronic circuit with logic gates [10], which can deliver completely different outputs
depending on its configuration [11]. Here, the analogy of the electric current corresponds to the protein
generation rate, which is, in turn, affected by the concentration of some of the transcriptional factors.

1.2. Cellular Automata and Self-Replicative Machines

A cellular automaton (CA) is a well-formalized framework that evolves in discrete steps and
is used for exploring spatial dynamic systems [12]. In this type of formalism, space is modeled as
a regular grid of cells, also called patches, of a particular dimension. Each cell can be in a limited
number of states and can interact with the neighbor patches following some defined set of transition
rules. The state of any cell evolves according to its present state and its neighboring patches. Typically,
the rule for updating the patches’ state is equal for each patch, does not change over time, and is
applied to the whole grid simultaneously and iteratively.

The CA concept was first introduced in the late 1940s by J. von Neumann and S. Ulam to design
machines that were able to self-reproduce [13]. Through rather simple principles, complex figures
and cell patterns emerged and in some cases even the cells could reproduce themselves. In 1970,
John Conway unveiled the probably best-known cellular automaton, the Game of Life (Life), published
by Martin Gardner in Scientific American magazine [14]. Conway designed Life so as to obtain patterns
that may grow indefinitely and can be considered a simplified example of a self-replicative machine.
One of Life’s most important characteristics is its ability to perform universal computation, that is,
that with an appropriate initial distribution of living and dead cells, Life can be converted into a
general-purpose computer, a Turing machine [15]. An online applet to explore the emergent patterns
of this cellular automaton is available (https://bitstorm.org/gameoflife/).
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1.3. Multidisciplinary Education under the Umbrella of Synthetic Biology

Nowadays, Science, Technology, Engineering, and Mathematics (STEM) education [16], [17] is
gradually increasing its importance in other fields of study, such as biology [18]. Multidisciplinary
teaching strategies [19-21] are necessary due to demanded professional profiles in a hyper-connected
and technological society that continuously requests high-tech products and services. In this regard,
students often lack in-depth mathematical knowledge and often tend to overlook mathematical
tools [22] that could be useful for their future research career and scientific success. Often, false beliefs
related to the difficulty and possible applications of mathematics affect students’ predisposition to
learn modeling notions [23]. With the appropriate context and selected examples [24,25], it would be
easier for engineers and life science students to comprehend advanced formal concepts.

In our case, we have been teaching a course on Metabolic Engineering and Synthetic Biology to
students in the last year of the Biotechnology degree at our university. This course is structured in
two parts:

1.  Metabolic Engineering, where the students are first introduced to (i) the fundamentals of the
dynamics of genetic circuits through ordinary differential equations and to (ii) genome-scale
metabolic modeling.

2. Synthetic Biology, where the students learn how to build synthetic circuits, to design genetic
parts, and how to use the different assembly methods [26] and related software [27].

Our present contribution is linked to the first part. We follow a project-based learning approach in
which students revisit the modeling framework of a previous iGEM project in groups of three to four
students. These projects allow us to delve deeper into some mathematical aspects with direct application
to biotechnology. Students have to implement models following the indications of the corresponding
team wiki. They have to evaluate and check what is exposed in the project and experiment with the
model, suggesting further improvements related to the chosen topic. Such an approach has contributed
to a sustained and rising enrolment of students in this course. This has further motivated students
to study Synthetic Biology and has contributed to the involvement and success of our team in the
iGEM competition. Finally, this approach is really effective to be transferred to online education as
we have seen during last months. We could redesign the course during the confinement caused by
the CoVID-19 pandemic without considerable effort. Indeed, students only need the appropriate
instructions and basic knowledge to start developing their own models, often following a modular
approach while making use of selected online tutorials and their own prepared documentation.

The second part of the subject is partially evaluated by presenting the biological aspects of
another iGEM project. In this case, students also have to include the Human Practices section,
in which they show the impact of the project on society and other disciplines. Multidisciplinary
approaches have been the backbone of our last projects presented at the iGEM competition (Hype-IT
http://2016.igem.org/Team:Valencia_UPV, ChatterPlant http://2017.igem.org/Team:Valencia_UPV and
Printeria http://2018.igem.org/Team:Valencia_UPV), where the development of open hardware and
software for the Synthetic Biology community has been a leitmotiv.

Though our actual modeling lectures have been positively evaluated by the students, we want
to go one step further in mathematics education. In this work, we present a teaching strategy
that could stimulate students to gather deeper mathematical knowledge to assess a well-known
example within the student’s background and apply different models to the same system. In this way,
students can better recognize the advantages and limitations of each modeling framework. For this
purpose, the “one-system-different-models” principle is applied to the FSM. By doing so, we can
investigate some of its mathematical properties from a broader perspective and delimit a proper
parametrization space.

In particular, we will first use ordinary differential equations (ODEs) to simulate the protein
concentration of each state and hence to illustrate the basic behavior of the whole system. Simple tools
such as ODEs encourage students to become more familiar with the problem and introduce students to
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abstraction and logical thinking since living cells can be treated as modular systems [28]. Some examples
can be found in [29,30]

Such a deterministic approach has some limitations because it gives an ideal average response,
which is often not realistic in the biological field due to the inherent randomness of life [31]. Thus,
other frameworks incorporating noise are needed. Since there are few states and thus few model
variables, we decided to use the master equation for computing the stochastic process as it is
computationally feasible for our case study and delivers an exact solution. A comprehensive review
of stochastic procedures in systems biology is available [32]. Finally, the circuit was simulated as a
cellular automaton to investigate spatio—temporal patterns since the FSM at the culture level can be
considered a reaction—diffusion system as most of the life processes are [33].

In summary, the present work intends to be a multidisciplinary example of how modeling
can contribute to the development of coherently designed systems. Thanks to engineering and
mathematical principles, higher levels of complexity can be reached, while encouraging young students
to learn more about mathematics and its often unexploited potential.

2. Materials and Methods

2.1. System Description

The signal counter is implemented as a genetic circuit switching among four internal states,
R; to R4 (Figure 1). The transition between these states is induced by an external signal. Therefore,
this genetic FSM is a Mealy Machine: its output depends both on the present state and the present
input [34]. The latter can be either absent or present (state values of 0 or 1) as indicated in Figure 1A.
Repeated stimuli will lead to successive transitions and finally, to recursive cycling through the four
states. Each time the state Ry is reached, an output signal is generated. Therefore, the system is
capable of counting input stimuli: for every second signal an output signal is generated. The FSM
has an electronic equivalent comprising 3-input NOR gates (Figure 1B). To biologically design such a
circuit, genetic logic gates are needed. Generally, any genetic gate is composed of a set of biological
parts [35] that allows the transcription of the genetic sequence and the consequent translation into
a protein, following the central dogma of molecular biology. Those parts are the promoter (starts
transcription, green arrow), ribosome binding site (starts translation, yellow oval), coding sequence
(the protein, blue arrow), and the terminator (stops transcription, stop sign) as shown in Figure 1C.
A NOR gate delivers a high output only if all inputs to the gate are low. This type of gate can be
biologically implemented through a high-basal activity promoter that is repressed by three regulatory
proteins. A promoter is a genetic part whose main role is to start the genetic replication cascade (state
is ON). When its start site is unblocked, the transcription machinery can attach to it and start copying
the coding sequence for a subsequent protein translation. Such regulatory proteins can either have
activator or repressive functions on other promoters. Yet, in this FSM, all are effective repressors,
except for the signal molecule, which has activation or repressor capacity depending on the promoter
it interacts with (Figure 1A). Moreover, if there is at least one of the three corresponding repressors of a
particular genetic construction, transcription of the genetic information is inhibited. Only when none
is present, transcription might occur (Figure 1C). Each NOR gate expresses a repressor protein Ry, that
can itself block the operation of both previous gates (Ry—1, Ryh—2) and only allow the next one Ry41.
In this way, the FSM can coherently shift to the next state when the signal status changes.
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Figure 1. (A) Mathematics: scheme of the four-state machine showing the state dependencies and
signals. (B) Engineering: diagram of the corresponding electronic circuit composed of four 3-input
NOR gates. (C) Biology: genetic design of a 3-input NOR gate based on a hybrid promoter regulated
by three different molecules (e.g., R4 is produced when Ry, Ry, and the signal S are absent).

2.2. Deterministic Model

We can describe the signal counter by a set of four ordinary differential equations, each for
one state, following Equations (1)-(4). Each represents the temporal evolution of the corresponding
regulatory protein Ry, as the general Equation (5) indicates.

% = ko + ksyn-act(S, Kss)-rep(Ra, KR )-rep(R3, KR) = Keg'R1 O
% = ko + ksyn'rep(S, Ksy)-rep(Rz, Kr ) -rep(Ra, KR) = Kjeg R2 @
dﬂ% = ko + ksyn-act(S, Ks,)-rep(Ry, Kr)-rep(R1, KR) = kgeg'R3 @
dd% = ko + ksyn-rep(S, Ks,)-rep(Ry, Kr)-rep(Ra, KR) = Kgeg R4 @

Hence, the content evolution of any protein can be described in general forn =1, 2, 3, 4 as:

dRy,
dt

= ko +ksynh(S, Ks, (1 + (=1)"1)/2) h(Rps1, 0)h(Ryp42,0) = kgeg R ®)

with the following functions:

(&)
W Ko p) = =2 ®)

1+(%)
act(S,K) = h(S,K,1) and rep(S,K) = h(S,K,0) (7)
S(t) = max(0, Sm,lx-sin(g—;:)) (8)

The set of parameters for the base simulation, the coherent design, is:

1

ko = 0 min™", ksyn = 300 min™", kgee = 10 min™", n = 4,
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Kg = 30, Kg; = Kgy = 0.1, Spuax = 300, p = 20 min,

while the initial conditions are
R1(0) = 1,R2(0) = R3(0) = Ry(0) =0

The first term of each equation corresponds to the basal synthesis rate ky, the second to the induced
synthesis rate, whose maximum capacity is given by ksy,, and the third term to the degradation
rate, which depends on the characteristic parameter k;. Kg is the repressor affinity; it modulates
the repressor capacity, that is, the repressor concentration required for an effective inhibition of
the other proteins’ synthesis. Similar consideration can be assumed for Kg, and Kg,, regarding the
signaling-molecule effect.

Interestingly, the system of ODEs clearly illustrates the genetic construct dependencies’ producing
the repressor protein. Each genetic construct is repressed by the regulatory protein created by the
genes that correspond to the next two states. Further, the even-number states are activated by the
signal molecule, while the odd ones are repressed. Such interaction is provided by the function h,
which is the Hill-Langmuir equation for p = 1, a particular case of a rectangular hyperbola. Moreover,
the Hill coefficient n is a measure of the ultra-sensitivity, i.e., the steepness of the response curve.
This parameter is linked with the cooperativity of molecular binding [36]. Values higher than one
describe a positively cooperative binding. This is the case for most of the regulatory proteins that are
attached to the promoter’s operator site. This site has normally enough space to allow the docking of
dimers or even tetramers of regulatory proteins as in our case. In general, it has been assumed that
those proteins do not interfere with each other or with their corresponding sites within the promoter.

In summary, the set of ordinary differential equations illustrates how one can define a complex
system with desired properties in a simple and modular way. For example, a biological 3-input NOR
gate can be in silico defined by coupling three different mathematical functions whose main variable is
the corresponding repressor, as indicated in the ODE system.

2.3. Stochastic Model

Randomness and life are intimately related since living cells display noisy behaviors in practically
any biological process due to the probabilistic character of biochemical reactions. This is especially
critical when the number of reacting molecules is low. In the context of cellular noise, intrinsic and
extrinsic noises can be differentiated [37]. The first one happens because of internal microscopic states
that lead to differentiated reaction rates. The second emerges from external noise sources that are
assumed to affect a given process in the same manner. Thus, extrinsic noise is characterized by affecting
molecule creation so that those processes might covary with respect to the external source.

To apply an appropriate stochastic procedure, first it will be assumed that the gene—protein
ecosystem of interactions is in thermal equilibrium, where particles move freely and randomly. Due to
their homogeneous distribution, they can be found in any part of the volume with the same probability.
Thus, the reaction propensities only depend on the actual state of the system [38], i.e., each protein level.
Hence, they are random variables whose evolution can be simulated through a Markov process [39].
Therefore, we will use the kinetic Monte Carlo method [38-40], which is often referred to as the
Gillespie algorithm in the biochemical context, for simulating the stochastic system. The procedure
consists of numerically simulating the time evolution of the molecules in a chemically reacting system.
This population is discrete and reacts randomly.

Within the master-equation approach, a fundamental magnitude is the system size ().
This parameter has a volume unit and is used to convert a concentration x into a number of molecules X:

X =Qx )
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Alternatively, at a given concentration, as defined by the deterministic model, the greater the
system size (), the larger the number of molecules. Therefore, the size directly establishes the number
of molecules present in the system and thus, the noise.

2.4. Spatial Model

Living systems are normally formed by millions of cells structured as tissues or as colonies. Indeed,
spatial modelling is crucial in many cases because space can also affect the overall performance due to
emergent properties at a global scale. ODEs can hardly cope with the spatial component when dynamic
processes are assessed and for this purpose, partial differential equations are necessary. Nevertheless,
there are other formalisms that can deal with space in a more visual and intuitive way such as cellular
automata and agent-based models [41]. In fact, we can transform our single-cell FSM into a cell-colony
automaton modeled as a regular lattice of cells.

To do so, a CA will be used. A two-dimensional regular grid of square cells is chosen for its
simplicity and the Moore neighborhood is proposed, i.e., each patch interacts with the eight adjacent
cells. There are 200 cells per row and column, summing up a total of 40,000 cells arranged as a square
world. When both horizontal and vertical borders are open, all patches have the same number of
neighbor cells and the world is in reality a torus. The biochemical reactions already described for
individual cells of the automaton will be implemented at a culture level. Further, diffusion will play a
role since it enables compounds to move from one cell to the neighboring ones. This is the principle
of reaction-diffusion systems, first introduced in the early 1950s by A. M. Turing [42] and whose
respective equations for our study case are the following forn =1, 2, 3, 4:

1+ (_1)n+1
AreacRy = | ko + ksyn'h S, Ksn, T 'h(Rn+1/ 0)'h(Rn+2/ 0) - kdeg'Rn At (10)
1
AgiffRy = Dr,"| —— Ry, — Ry, (11)
NG| je;(‘i) ]
ARy = AreacRy + AdiffRn (12)

Equation (10) represents the reaction rate for each time step At and genetic construct present in a
cell, i.e., there are four reaction rates in each patch. In contrast, Equation (11) shows the diffusion of a
cell i assuming isotropic dissemination of the four regulatory proteins along the eight neighboring cells
N; through the diffusion coefficient Dg,. Both rates together sum up the concentration rate at each
time step, as Equation (12) indicates.

For an appropriate visualization of protein concentrations along the cell lattice, we chose a different
color for each protein (red, yellow, green, and blue following the state sequence). The basic color rule is
that the protein with the highest concentration determines the patch’s color at any time step. The color
intensity increases according to the percentage of the most abundant protein in that cell, starting from
25% to 50%, the level at which the color intensity saturates.

We developed the code for the deterministic and stochastic simulations in Matlab R2019 a and the
routine for the cellular automaton in the NetLogo platform. The latter allows the rapid development of
CA and agent-based models for the exploration of emergent phenomena [43]. Indeed, NetLogo is an
open-source programming language and comes with an extensive model library in a variety of domains
such as economics, biology, physics, chemistry, psychology, and dynamic systems [44]. The employed
Matlab and NetLogo codes are included as Supplementary Materials for interested readers.
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3. Results

3.1. Deterministic Model

The designed genetic circuit is depicted in Figure 1, and the corresponding protein evolution
is displayed in Figure 2. The four-state automaton starts with the genetic construct producing the
repressor protein R;. Only when there is a signal can it be activated, i.e., remains in state 1. Since the
other repressors are absent, the machine stays in this state while the signal is present (Figure 2). Once the
latter disappears, R; proteins cannot be built up any more. Moreover, these factors have no inhibitory
effect on the next state construct by design. The production of R, starts once the signal inhibition
has faded and the next two repressors are still absent in the system. Remarkably, any previous-state
repressor does not affect the promoter of the next-state construct. Hence, the system shifts to R, and
stays in this state while there is no signal. In addition, the R; proteins are gradually degraded and
their concentration vanishes. Next, a second input signal appears; it represses the promoter of R, and
activates the one of Rj (Figure 2). Again, since there are no transcription factors of the next two states,
the machine will remain in this state while the signal is on. Finally, the same principles apply for the
last state, that is R4, but this construct also produces an output signal that can be externally measured.
In summary, the automaton shows a robust and expected output for each state, while the others remain
close to zero.

350 .
300
250

200

150

-
(=
o

Repressor concentration (arb. units)
an
o

0 20 40 60 80 100 120
Time (min)

Figure 2. Time evolution of the concentration of each repressor protein R, (corresponding colors
displayed) for a coherent design of a four state machine. The sinusoidal input signal (the first half
period is a sine function, the second is zero) of an overall period of 40 min is depicted in black.

Regarding the effect of the initial conditions, if only a tiny amount of R; is present, the system can
shift state in a consistent manner. If instead of this, the system starts from zero-protein conditions,
R; and Rj3 appear under signal presence as expected, and their maximal concentrations are around six
times lower (data not shown). Increasing the initial concentration of R; does not affect the automaton
behavior as long as there are no other proteins present.

The steady-state concentration is equal to the ratio of protein production to degradation given
by the respective coefficients ks, / kdeg/ that is, 300 concentration units for our case study. Therefore,
the repressor effects are negligible in the coherent design: there is no effective repression when one
state dominates over the rest.
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The genetic FSM is a complex system whose functionality is rather sensitive to changes in
the magnitude of particular parameters. To illustrate this fact, we evaluated the performance of
the automaton with the same parameter set as in the base case of a robust-functionality machine,
but assuming a reduced protein degradation rate kg, which is now considered to be 50 times lower
(kgeg = 0.2 min~1t). Interestingly, the system displays an altered response (Figure 3). First, time scales
and protein concentrations are now an order of magnitude higher. Counterintuitively, the maximal
machine output takes much longer to be delivered, though the repressor amounts are considerably
higher (Figure 3A). Indeed, the automaton does not display fully robust behavior since many more
input signals are required for reaching one machine cycle. The protein levels do not follow any
sequential chain and display a sharper shape. In addition, abrupt concentration changes are visible at
each signal shift. To further investigate the described effects, the protein concentrations were plotted in
a semilogarithmic plot and focused on the time scale of a single machine cycle (Figure 3B). Two different
system responses can be distinguished: a local one affected by any new input signal (the abrupt slope
changes) and an overall one, which is on a longer time scale. Hence, the FSM is still operating, as it
was intended, but at another pace. In fact, 22 input signals are necessary to reach the same state
again instead of two stimuli as in the standard design: eight for reaching the state peak, and another
fourteen for the lowest value. In general, if the degradation rate is divided by k, then the whole cycle is
k-times longer.
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_ A B TRo
g 4.5 ] :@
g 4.0} 4 E 10*F 6"[‘/\\31 [\/\/\ 3
-'-'E‘; 3.5 1 3‘:; ; 5
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Figure 3. (A) Time evolution of the concentration of each repressor protein R;, for the same parameter
set in the base simulation except for kzpq = 0.2 min~! and a much longer simulation period. (B) Same
simulation as in (A), but the repressor-concentration axis is in logarithmic scale and the selected time
scale is focused on one machine cycle. The input signal is depicted in black and its magnitude has been
rescaled for clarity.

Another interesting experiment can be carried out when asymmetries are introduced in the system
by considering a different effect of the input signal regarding its activation (R;, R3) and inhibition
capacity (R, R4). We hypothesize that the molecule representing the signal is capable of stronger
activation of the promoter responsible for the production of the proteins R; and R3, while efficiently
repressing the others. The corresponding parameters are now assumed to be Kg, = 10, Kg, = 165.
In Figure 4, the system displays oscillatory behavior as the signal emerges.
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Figure 4. Time evolution of the concentration of each repressor protein Ry, for the same parameter set
as the base simulation except for Ks, = 10, Kg, = 165. Signal depicted in black.

Remarkably, the four states are coupled, sharing the same concentration magnitude within state
blocks (red and green curves vs. yellow and blue ones). As long as the signal remains at a high level,
both blocks remain approximately constant. However, once it starts to disappear, all states enter a
strong feedback loop that is resolved once the signal is over and the second state rules over the rest.
Once the system receives another signal, the same oscillatory phenomenon arises. Similarly, the signal
amplitude has a clear impact on the device. When it is very low, below one unit, the evolution of the
protein content starts to oscillate when the signal is present, but for even lower signal values, the R
protein becomes predominant and its concentration is constant over time (data not shown).

3.2. Stochastic Model

For the stochastic approach, the protein level is not directly given as a continuous magnitude
but as a discrete one: the amount of one protein type will be either increased or decreased and only
in one unit each time step. In Figure 5, the solution of the FSM master equation for different system
sizes () is represented. The protein amount for the smallest () size (107%) ranges from zero to two
molecules. The expected repressor amount corresponds, similarly to the deterministic simulation,
to the proportion of protein production vs. degradation. Yet, in the stochastic framework, this ratio
is multiplied by the system size parameter ksyn / kdeg'Q/ which is 0.03 units for this cell-scale. Thus,
the maximal value is approximately 67 times that magnitude. The next system size (10~2) displays a
lower difference between the expected value (3 units, showed in black in Figure 1A in the top graph)
and the maximal output, which reaches up to 11 units. For both sizes, the system is rather noisy
since two proteins coexist in significant amounts permanently. Besides, there could be some aberrant
protein content for some time steps during the signal shift, e.g., unexpected R, proteins under signal
presence. In Figure 5B, the evolution of the machine for larger scales is plotted. For both values, 1 and
100, the system already has robust behavior, in which only one state is dominant, and the procedure
is followed in a sequential way: the FSM can shift to the next state regardless of the noise presence.
For clarity, all proteins for () equal one are depicted in black, yet they are coherent with the standard
state sequence R;-R;-R3-Ry4. The noise level expressed as the relative difference with respect to the
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mean value is for most cases below 15%. The system with the highest protein content () equal to one
hundred) resembles the deterministic performance, displaying very reduced noise levels.
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Figure 5. Time evolution of the amount of each repressor protein Ry, for different values of the system
size () following the master equation approach. (A) Top graph for Q = 1072 (deterministic solution is
plotted in black), bottom graph for Q = 1072. (B) Similarly, the system evolution with Q = 1 (right
axis, all states in black) and Q) = 100 (left axis, regular colors) is depicted.

Remarkably, larger systems show a coherent operation starting from the R; state. However, this is
not the case for the smaller scales. Hence, it is interesting to delve deeper into the robustness of
the machine as a function of its size and initial state information. For this purpose, we define the
robustness of the system as the proportion of correct-type proteins (following the coherent design) for
that semi-period with respect to the sum of all proteins for that time period. We calculate the robustness
for the first two cycles, i.e., four periods, since the system behavior is the same for the following cycles.

Figure 6 displays the robustness of the system as a function of its size for a given initial protein
amount, averaging 100 simulation replicates in each case. When the system departs from zero protein
units (gray), the robustness is less than 0.5 for small cellular systems (around 0.45 for the smallest
one) because the automaton is so chaotic that for some signal transitions, unexpected proteins can still
appear: the signaling effect is too weak to prevent any type of protein from being produced, regardless
of the signal correspondence at those time steps. Above sizes of 1073, the signal effect is already
sufficiently strong to at least discriminate between both protein blocks (Figure 5A, top graph). Therefore,
the robustness oscillates around 0.5 for the remaining system sizes. Remarkably, the robustness value
tends to have a greater variability for larger sizes. This occurs because the system has the same
probability to start counting from green-R; than from the red-R; protein. This provides a robustness
magnitude of either one or zero for each single run.

The next case is that with only a single protein of R; as the initial condition (darker red color).
The machine follows the same behavior as the previous case for () values below 1072. Above this
threshold, the FSM can operate with robustness values slightly above 0.5. However, in larger systems,
the machine output drops again to 0.5 because the system is too big for the initial information.
A similar situation occurs with Ry equal to 10 and 100; robustness falls to 0.5 but in much higher
cellular environments. Interestingly, any machine with a sufficiently large number of initial proteins,
approximately at least 10 red proteins at the time of onset, reaches full effectiveness around an ()
magnitude of 0.06 units. This cell scale roughly corresponds to 20 repressor molecules as maximal
output within our parametrization set.
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Figure 6. The robustness of the FSM is depicted as a function of the system size and for different Ry
initial protein levels while the others are absent. The robustness of the deterministic system for Ry equal
to or greater than zero is also shown. The inset plot displays the relationship between the minimal
amount of repressor units at the beginning of the experiment for a coherent operation of the FSM with
respect to the maximal system size. A typical value of the protein content for a living cell is highlighted.

Moreover, the deterministic robustness has been outlined. Deterministic systems without any
initial protein end up at a robustness of 0.5. The exact value is 0.498 due to minor protein units while
one states dominates over the other. Similarly, any deterministic initial protein content above zero
delivers a fully coherent FSM, with a robustness of 0.996, doubling the previous one as expected.

This value coincides with the maximal coherence of the stochastic simulations. Additionally,
the inset plot of Figure 6 illustrates the amount of repressor molecules at the onset of time that allows a
maximal system size before the automaton starts to fail at being fully robust. This association seems to
follow an exponential function: with a minor increase in the initial amount of proteins, the cell size can
be much higher to retain full functionality.

A related feature of the coherence of the device is the noise present in the cellular system. In this
regard, intrinsic and extrinsic noises can considerably impact the machine’s performance; therefore,
it is critical to assess their magnitude. For the case of a system size () of 10 (thousands of R; proteins
per cell), the noise level is already low but still significant (Figure 5B). To test the intrinsic noise of this
system size, 100 cells were simulated with two runs for each (Figure 7). For simplicity, the signal was
set as constant and equal to S5y = 300. The R; initial protein amount was assumed to be 100 since it is
sufficient for a coherent automaton, as Figure 6 illustrates.

Intrinsic noise emerges from the inherent nature of living cells: systems with the same parameters
can display different results when noise is present. Alternatively, extrinsic noise is an external stochastic
process that affects molecular reactions in an equivalent manner. For the FSM, the extrinsic noise can
be seen as a factor that promotes maximal protein levels to covary, and thus, it is orthogonal to the
intrinsic magnitude (top panel of Figure 7). Indeed, Figure 7 displays two experiments: one without
extrinsic noise (red dots) and the other with some extrinsic noise due to a 1% deviation from the mean
value of the synthesis-rate parameter ksyn (blue dots).



Mathematics 2020, 8, 1362

13 of 20

) 3600 Total noise L’ 3600
= .~ Total S e’ o
o 3400 O—W\:—e o® Q’O‘{@D INOise )
o ol o o]
c NS o &
2 3200} e 5% ]
1 o,
|d_, rd ’ ® ° 9.90 08
2 3000} . 8 o Nomnoise 3> 1
S ° KIT% (p1 =p2 = 3000)
:c, 2800 o o, T == No intr. noise .
c oo, (p1=p2)
— e
o 2600[ 4 ® No extr. noise -
‘6 , 7o (Ue = 0%)
[
Q. 2400F° ° © T =1% 2400 1
2400 2600 2800 3000 3200 3400 3600
-QEJ I I Ilntrinsilc nois:a I
83 200f _?i $Noise 2004
o v o = o g, 00 &
0o a0 0 50 D ﬁhgd) % © ° o —
c O_O__Qm.a;{,go. 0_0_8__0__0 —
1‘5 E ] %go 1 535 ? ° t
2 € -200f -200-
o L L L L L L
C 2400 2600 2800 3000 3200 3400 3600

Protein number - run 1 (p1)

Figure 7. Effect of intrinsic and extrinsic noises in the protein amount of R; under steady-state
conditions with a signal presence for () equal to 10. Two groups of 100 cells each were simulated with
2 runs per cell with a mean value of ksyn /kjee-() = 3000 in both cases. In particular, a cellular group
without extrinsic noise (red dots) and another with o, = 30 (blue dots, 1% of the mean value) were
simulated. The bottom panel depicts the intrinsic component o; of the total noise. The intrinsic noise
is given by the difference in protein number with respect to the gray line, i.e., the no-intrinsic-noise
line. The probability density function of the total (top panel) and the intrinsic (bottom panel) noises is
shown on the right side.

If one compares both cell groups, the total randomness, seen as a combination of intrinsic and
extrinsic noises, is only enlarged due to the latter factor in the blue-cell group, while the intrinsic noise
remains equal as the system size does. For the deterministic case without noise, both runs for the
same cell (with the same ksy,, value) would result in a protein value always equal to ksyn /kjeq-(2 under
steady-state conditions (yellow dot) while cells only displaying extrinsic noise would lie on the gray
dashed line in Figure 7 corresponding to no-intrinsic-noise cells (each run delivers the same protein
amount, pl = p2). In particular, the intrinsic deviation for most of the cells lies within +5% of the mean
protein amount (bottom panel of Figure 7).

Once we have illustrated both noise types, we will estimate their magnitudes depending on the
system size. In Figure 8 the relationship of the intrinsic noise, given as the coefficient of variation
for different cellular sizes, is depicted. The intrinsic noise is around 1.7 for the smallest systems and
stays almost constant up to Q) values below 1072. For cells with more proteins, the system noise
drops to 1.4 units. Interestingly, the confidence interval is rather narrow. This implies that the system
is rather small and therefore, the possible amounts for proteins too (below 10 repressor units as a
maximal amount, Figure 5A). However, for Q magnitudes between 1072 and 107!, the system displays
a larger solution space where possible protein numbers increase so much that the protein means can be
affected by high values, and the mean confidence interval increases. Alternatively, for magnitudes
above 107!, the system is so big that the intrinsic noise given as the coefficient of variation remains
low, below 0.2, and the confidence interval amplitude is almost zero. For larger sizes, the automaton



Mathematics 2020, 8, 1362 14 of 20

works coherently if there is not enough initial information, but the system can start at the wrong state
as already described in Figure 6.
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Figure 8. Intrinsic noise is given as the coefficient of variation based on the system size. Mean (blue
dots) of 100 replicates, smoothed mean (black line), and the 95% confidence interval (red line) thereof are
plotted. For each performance interval, a characteristic time evolution plot is also depicted. The inset
plot shows the extrinsic (1% of ksy,) and intrinsic noise levels for different system sizes as the standard
deviation under the same conditions, as explained in Figure 7.

In summary, the system displays three different behaviors based upon its size. For very small
scales, it operates in an almost random manner, showing up states that might not even be coherent
with respect to the signal status. This chaotic performance is gradually transformed into a coherent
device as the size increases. Indeed, there is a transition size band for Q) between 0.005 and 0.08 units,
in which sustained states can be formed, but not for the whole semi-period. Under these conditions,
the machine cannot shift the state in a sequential order. Above 0.1 units, the system displays a very
low noise level, acting as a deterministic system (the confidence interval coincides with the mean and
thus disappears visually), yet still depending on a sufficient amount of the initial protein content to
retain the sequence in the appropriate order. The inset of Figure 8 compares the magnitude between
the intrinsic and extrinsic noise levels, assuming an extrinsic amount equal to the one in Figure 7 (1%
of ksyn, e = 30).

The extrinsic level is lower than the intrinsic one for size values 0.5. Above this threshold,
the system is so large that the extrinsic noise increases exponentially, representing almost 90% of the
overall system noise for real-cell sizes ((2 = 1). It has to be noted that though the intrinsic noise is given
in absolute units and increases with the system size (shown in the inset of Figure 8), its coefficient
of variation does not. The latter is given in relative units and decreases with larger system sizes as
depicted in Figure 8. This happens since in the latter case the noise is divided by its mean and this
increases with the system size as shown in Figure 5.

3.3. Spatial Model

For the cellular automaton formalism, we first studied the system with the same parameters as
in the base case of the ODE set and chose a time step of 0.001 min and a diffusion coefficient of 0.01.
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In Figure 9, different time steps for the CA simulation are shown. The world is composed of cells whose
initial concentration of regulatory proteins is obtained from the uniform distribution [0, 2]. The protein
with the highest concentration determines the patch color. This is for most cells shown in a pale tone
due to similar concentration levels of all proteins in this random initialization. A few time steps after
the signal appearance, only red and green cells remain due to the signal activation and repression of
each protein block. However, once the signal vanishes, the concentration of red-green R;-Rj3 repressors
is still so high because the signal period is rather long. This contributes to a delay in the manifestation
of the other repressors (R,—Ry), even in the absence of a signal. Progressively, both protein blocks tend
to equalize their concentrations (we have assumed so far the same parametrization for each protein).
The cells are decoupled from signaling but follow local state aggrupation. Further, diffusion contributes
to the formation of larger clusters in which only one transcriptional factor dominates the others.
Diffusion together with the rather long signal period is enough in this simulation to collapse the system
so that after some time steps only a unique protein will be present (almost 100 times higher than any
other). Thus, the CA of the FSM under the given parametrization set ends up as a single-color world
of patches that can coherently shift within states following the signal inputs as required for a proper
device design.
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Figure 9. Cellular automaton of the culture-scale FSM within a square world with closed borders
starting from random values for all the regulatory proteins with At = 0.001 and Dy = 0.01 for all
species. Nine different time steps of a base-case simulation are shown before the system reaches full
synchronization (time sequence from left to right).

Different scenarios can be in silico tested by modifying boundary conditions and the parameter
set. The main characteristics that will be checked are the impact of the signal period, the reaction
and diffusion rate, and the degradation velocity of the regulatory proteins. We gave some flexibility
to the system by opening borders, which permits us to observe more types of dynamics. In this
way, the two-dimensional square lattice is equivalent to a torus as the neighborhood of the edge cells
continues at the opposite border.

The FSM is a reaction—diffusion system in which both phenomena interact and create emergent
patterns at a culture scale. The CA can be found in two basic situations, either the cells react
homogeneously to external stimuli as a single reaction unit or local clusters appear. If diffusion rules,
i.e, its rate is sufficient to absorb all the produced molecules, these are simply shared among all
patches. In this case, mean properties do apply since there are thousands of replicates of the same cell.
However, when reaction rules over diffusion, different cell configurations arise. Such figures might not
be interesting when a synchronous and overall response of the culture is expected, yet can be useful
when one seeks other behaviors, such as morphogenetic structures.

Figure 10 displays the automaton result of different cases after 100,000 steps in a torus world
formed by 40,000 cells. Next to some of the simulation results, the time evolution of the four protein
concentrations during the first 3000 steps is also displayed for a better illustration of the FSM behavior.
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The left side of the circle in Figure 10 shows patterns in which reaction governs over diffusion, while the
opposite happens on the right side. When diffusion rules, the other parameters are not relevant and
the culture FSM shrinks to homogeneous behavior. Depending on the parameter set, the time needed
for reaching system synchronization varies. Moreover, the signal period affects the response (right side
of Figure 10). Longer periods promote a steeper response and higher maximal protein content than
shorter ones under the diffusion regime. The latter transiently create a chaotic behavior with multiple
clusters reacting with each other that end up at a sole state for each time step.
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Figure 10. Scheme of the main attractors that can be gathered after 100,000 time steps by tuning the
process characteristics of the torus CA through its parameters. When reaction rules, signaling can be
tested as a spatially homogeneous property or as grid. The time evolution of each protein concentration
during the first 3000 steps is also included for some assessed cases, including those when diffusion rules
for long and also short signal periods. The number of dominant states is also indicated for each case.

Alternatively, when the reaction rate is sufficiently high (left side of Figure 10), the system can
retain bi-stable block activity. This implies that no single repressor is capable of reaching a concentration
threshold to eliminate its partner protein (R;—Rj3 and Ry—Ry), and therefore, two states can coexist
(bottom side of Figure 10). Increased degradation rates k; can lead to a single-color state since protein
levels are reduced as well as the effective reaction rate. Similarly, if we increase the repressor capacity
KR, the automaton might again reach an attractor state where the diffusion phenomenon governs the
whole system since the preponderant protein type can then inhibit the production of the rest.
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A signal-period increase can promote differentiated attractors. For example, moving bands of
same-state cells can develop. Further, if the period signal is rather short, vortices become visible (left
side of Figure 10). In each vortex center, the four concentrations are in similar amounts and a rotation
pattern emerges, yet the vortex center does not move. Vortices remain as long as external perturbations
are not strong enough to terminate them. This can only happen if stronger cell dynamics around the
vortex absorb them, or by a sudden increase of reaction or diffusion rates. In the first case, the FSM
ends up in two states, while in the latter, a round cluster can arise.

So far, it was assumed that if the external signal is a small molecule interacting with the
transcriptional machinery of living cells, the stimulus is present or absent across the collection of
functional units, i.e., the signal intensity is equal for all cells of the grid. However, we can also excite the
system by applying optical or electrical signals at specific points. In this case, it would be interesting to
analyze the propagation capacity of such stimuli within the culture and the pattern that appears due
to the spatial arrangement of the signal input. For this purpose, we carried out several experiments
in which the signal excites the system in specific cells but not in all of them (top and top-left side
of Figure 10). In general, keeping the symmetry of parameters, the spatial reduction of signaling
contributes to the disappearance of the R; and Rj states because they need signal input to actively
produce their proteins.

4. Discussion

The described base-case parametrization allows a coherent state shift after recurrent signaling
processes. In this regard, parameters forcing a strong repression enhance the coherent behavior.
For example, the ratio ksyn /kg can influence the proportion of both proteins of the same block.
When this ratio drops below some threshold magnitude, both protein concentrations tend to equalize.
On the contrary, when the ratio is very high, only one repressor dominates in that time period over
the rest. Additionally, if the three repressor fractions of the ODEs account for one (Equations (1)-(4)),
then the synthesis—degradation ratio corresponds to the steady-state protein value before the signal
status changes. Moreover, if only Kg, is increased, the signal intensity might not be sufficiently strong
to activate the block of R1-Rj3 proteins. In this case, both protein levels are in a very small amount and
similarly, Ry—Ry are present in a higher quantity. However, if Kg, is the parameter to be considerably
increased, the system starts to oscillate for low signal values and then reaches a stable state for R;
while the signal intensity is close to the peak value. However, when the signal reaches less than half its
amplitude, the system again becomes unstable. Once the signal is over, R, reaches the dominant state.
This R1-R, dominance is maintained over all remaining cycles. Therefore, the automaton shows a rich
variety of attractor states depending on the parameter set. In general, parameter sensitivity depends
on the overall set, so specific threshold values are hard to find. In any case, a more rigorous assessment
of the parameter sensitivity and bifurcation analysis are beyond the scope of this contribution.

Deterministic simulations properly describe mean system responses; they are especially
appropriate when molecules are present in high amounts. However, they cannot capture many
phenomena in processes with a limited number of entities. Indeed, living cells are noisy environments
with a discrete number of elements as is the case of the transcription and translation processes.
Small-scale systems will display a variety of possible behaviors that will not arise in the continuous
deterministic framework. For example, the possible effect of the initial information of the system,
i.e., the initial protein content, cannot be properly assessed under the first framework. Remarkably,
the typical system size of genetic devices in terms of the protein content is in the range of hundreds
to thousands of proteins ((2 = 1-10), which falls in the coherent size range (Figure 8). But even
in this case, the initial content will determine the fate of the system, an aspect not covered by the
deterministic approach.

Moreover, robustness (Figure 6) and noise (Figure 8) are intimately linked since the latter affects
the former. It is not casual that the transition period regarding the system size is the same for both
magnitudes: at this scale, the system is large enough to end up with a rather varied number of proteins
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levels and one-protein domination lengths less than a signal semi-period. However, a system with
sufficient size can retain a unique protein state along the corresponding time period. For larger scales,
the increase of the maximal protein level is proportional to (), which is not the case for smaller sizes
due to non-optimal functioning of the device: other proteins might emerge and thus, interfere.

In this regard, larger systems dilute the original information, i.e., the amount of initial proteins
of a specific type. Therefore, sufficient information has to be provided to overcome the inherent
randomness of larger systems, which might start with the wrong state sequence (right side of Figure 8).
Alternatively, systems that are rather small are intrinsically chaotic and do not allow coherent behavior.
Therefore, intermediate cell sizes deliver optimal results with respect to robustness when the initial
information is limited. In particular, for a typical protein content of 1000 repressor molecules, at least
approximately 60 initial protein units will be needed to ensure full functionality.

The cellular automaton provides students with a good scaffold to test and see spatial patterns
emerging from interacting cells. Figure 10 summarizes the CA’s three main scenarios: either all four
states are possible at a given time step, only a repressor block (2 proteins) or only a homogeneous
mono-protein system. As a general rule, diffusion tends to equalize protein concentrations and hence
to lead to a robust culture behavior as required. In summary, high reaction rates promote islands
of proteins, whereas diffusion works in the opposite direction. In this regard, high degradation
rates reduce the repression capacity of proteins: diffusion is not quick enough to reach the nodes
of production of other states and only the signal status matters. Therefore, the system ends up in a
two-state culture. Alternatively, low degradation levels induce the same phenomenon observed for
the deterministic case (Figure 3). The system ends up in a one-state world, but it takes much longer,
and non-smooth concentration variations appear following signaling frequency. It is important to
highlight that very high reaction rates lead to two-state automata. On the contrary, low reaction and
diffusion levels promote four coexisting states. Similarly, short signaling periods foster the same effect
since protein concentrations do not reach high values due to recurrent signal shifts, while longer
periods lead to blocked protein behavior for the opposite reason.

5. Conclusions

In this work, we studied a genetic finite state machine that was designed in a modular and rational
way. The constructed genetic machinery results from combining appropriate biological, engineering,
and mathematical efforts. This theoretical supportis critical for advancing the development of fine-tuned
organisms and related applications. Moreover, this device could be considered a prototypic example
of signal bio-counters for future biotechnological industries. Further, we showed how mathematical
models can support education by introducing students from different backgrounds to abstraction
and mathematical thinking. Indeed, the formal exploration of a system that is phenomenologically
familiar to the students, i.e., a synthetic biological device, can engage pupils in learning important
concepts such as robustness, noise or reaction—diffusion processes in a visual and direct way. The use
of complementary modelling frameworks might flatten the students’ learning curve: when correctly
selected, they can unveil the advantages and limitations of each formalism.

One of the most intriguing aspects of mathematics is its universality since unrelated systems
often have the same properties and can indeed be mathematically equivalent, as genetic and electronic
circuits are. Thus, the proposed scheme can be potentially reproduced in other research areas. We hope
that this work is a good example of how modeling can improve the comprehension and design of real
systems, while encouraging students to delve deeper into the fascinating world of mathematics.

Supplementary Materials: The code used in the Matlab and Netlogo platforms is available online at http:
[[www.mdpi.com/2227-7390/8/8/1362/s1.
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