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ABSTRACT 

Social awareness regarding animal welfare, food safety, antimicrobial resistance and 

environmental health has increased, creating a new challenge for poultry producers and 

promoting the implementation of alternative sustainable production systems that include 

the ‘One Health’ concept in their design. In this sense, poultry production system is in 

constant development to meet consumer demands. For this reason, different alternatives 

to be applied at field level have been proposed, centred on the improvement of biosecurity 

protocols, the use of rustic slow-growing breeds and the implementation of precision 

livestock farming. In fact, it is demonstrated that an investment in more accurate and 

animal-friendly management systems could directly affect animal health, increasing 

animals’ resilience and achieving broilers with a strengthened immune system more able 

to cope with environmental challenges or infectious diseases.  

In this context, microbiota composition and development play an important role in poultry 

health and performance, in the spread of antimicrobial resistance and in the transmission 

of zoonotic pathogens throughout the poultry production chain. In this regard, it is 

demonstrated that an increase in animal welfare not only improve animals’ resilience, but 

also promotes the presence of beneficial microbiota and the integrity of the intestinal 

epithelium. As a consequence, protective mechanisms work perfectly and the interactions 

between environmental and intestinal bacteria are reduced. This way, it could be possible 

to achieve a reduction in antimicrobial administration at field level, as different studies 

have demonstrated a close association between antibiotic use in animal production and 

the appearance of resistance in humans. Moreover, the presence of zoonotic pathogens 

such as Salmonella in the food chain could be reduced. Salmonella spp. is the main cause 

of human foodborne outbreaks in the European Union, with a total of 91 857 cases of 

salmonellosis, and 1 581 outbreaks reported in 2018. The main sources of infection are 

poultry products such as eggs and chicken meat, and the main serovars related to these 

outbreaks are S. Enteritidis, S. Typhimurium, S. Typhimurium monophasic variant and S. 

Infantis, which is currently the most prevalent serovar isolated in broiler chickens. 

Therefore, the general objective of this doctoral thesis was to evaluate the effect of 

alternative production systems of poultry production on the microbiota composition 
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development, antimicrobial resistance dynamics and Salmonella epidemiology. For this 

purpose, two different experiments were performed. 

In the first experiment, the effect of the genetic breed was studied by comparing a 

commercial fast-growing breed vs. an alternative slow-growing breed, reared under their 

respective management systems. The objectives were to characterise the caecal 

microbiota and to investigate antimicrobial resistance and multidrug-resistance dynamics 

throughout the growing period. To do so, two commercial broiler breeds were used, one 

fast-growing (Ross®) and one slow-growing (Hubbard®), and 576 broilers were located 

in two identical poultry houses (288 animals in each room: 144 for fast-growing and 144 

for slow-growing). Animals from each experimental group were sampled on arrival day, 

at mid-period (21 days of age) and at the end of the growing period (42 and 63 days of 

age for fast and slow-growing breeds, respectively), and caecum samples were taken.  

To evaluate microbiota composition, 16S rRNA sequencing analysis of caecal content 

was performed. Results showed that Firmicutes represented the dominant phylum for 

both systems. At the outset, Proteobacteria was the second prevalent phylum for fast and 

slow-growing breeds, outnumbering the Bacteroidetes. However, during the rest of the 

production cycle, Bacteroidetes was more abundant than Proteobacteria in both groups. 

Finally, regardless of the management system, the most predominant genera identified 

were Oscillospira spp., Ruminococcus spp., Coprococcus spp., Lactobacillus spp. and 

Bacteroides spp. 

To study antimicrobial resistance dynamics, E. coli was selected as indicator bacterium, 

and antibiotic susceptibility testing was assessed according to Decision 652/2013. At the 

onset of the cycle, significant differences were observed between breeds, as the 

Escherichia coli strains isolated from fast-growing day-old-chicks showed higher 

antimicrobial resistance rates. However, at the end of the period no significant differences 

were found between breeds and their presence of resistant bacteria (above 95%). 

Therefore, although no antibiotics were administered during the growing period, a high 

level of antimicrobial resistance and multidrug-resistance at slaughter day was 

demonstrated. 

The results of this experiment show that fast and slow-growing broiler microbiota are in 

constant development throughout rearing, being relatively stable at 21 days of age. 
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Regarding the genus, it should be noted that the three most abundant groups for both 

systems, Ruminococcus spp., Lactobacillus spp. and Bacteroides spp., are related to better 

productive performance and intestinal health. Moreover, high levels of antimicrobial 

resistance and multidrug-resistance present during the growing period demonstrate that 

although it is crucial to control both antibiotics use and animal welfare during the growing 

period, measures should be taken at all levels of the production chain. 

In the second experiment, the effect of the farm management conditions was evaluated 

by comparing commercial European density and ventilation conditions vs. improved 

conditions. The objectives were to characterise the caecal microbiota, to evaluate 

antimicrobial resistance and multidrug-resistance dynamics, and to investigate the 

development of S. Infantis and its antimicrobial resistance throughout the growing period. 

To this end, a total of 1062 day-old chicks of a fast-growing broiler breed (Ross®) were 

housed in two poultry houses under commercial (33 kg/m2 density and maximum of 20 

ppm ammonia) and optimal (17 kg/m2 density and maximum of 10 ppm ammonia) farm 

conditions. Within each of the houses, 234 animals were located in pens and 327 were 

housed directly on the bed to simulate real production environment. Moreover, at 24h of 

rearing, 20% of the animals were orally infected with a S. Infantis strain susceptible to all 

the antibiotics tested. Animals from each experimental group were also sampled on 

arrival day, at mid-period (21 days of age) and at the end of the growing period (42 days 

of age), and caecum samples were taken. 

To investigate microbiota composition, 16S rRNA sequencing analysis was performed. 

Results showed a higher level of microbiota complexity in the group reared under optimal 

farm conditions at the end of rearing. Regarding microbiota composition, Firmicutes was 

the dominant phylum during all the growing period. However, the second most prevalent 

phylum was Proteobacteria at arrival day, and Bacteroidetes from mid-period onwards 

in both groups. Moreover, the most predominant genera identified were Oscillospira spp., 

Ruminococcus spp., Bacteroides spp. and Coprococcus spp. 

To evaluate antimicrobial resistance dynamics, as in the first experiment, E. coli was 

selected as indicator bacterium, and antibiotic susceptibility testing was assessed 

according to Decision 652/2013. Results showed high antimicrobial resistance rates 

throughout rearing, and no statistical differences were observed between groups. 

Moreover, both groups presented high multidrug-resistance rates at slaughter day.  
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Finally, to study Salmonella shedding, faeces samples from each experimental group 

were taken weekly and analysed as per ISO 6579-2:2017. Antibiotic susceptibility was 

also assessed according to Decision 652/2013. Salmonella shedding showed that the 

lowest counts were observed in the first week post-infection and the highest at slaughter 

day for both groups. Moreover, 100% of the isolates were multi-resistant after the first 

week post-infection. 

These results also reveal that microbiota diversity increases throughout the growing 

period, being relatively stable as of the mid-period. However, at the end of rearing there 

is a significant higher level of microbiota complexity in animals reared under optimal 

farm conditions, but without statistical differences in composition. Moreover, 

antimicrobial resistance and multidrug-resistance are present throughout rearing, without 

differences at the end of the cycle. Regarding the acquisition of antimicrobial resistance 

by S. Infantis, it starts at the onset of the production cycle and is maintained until the end, 

demonstrating the importance of transmission of antimicrobial resistance in zoonotic 

bacteria at farm level.  

In conclusion, the main results obtained from this doctoral thesis include that microbiota 

diversity and composition are in constant development throughout the growing period, 

being affected by farm management factors studied. Moreover, antimicrobial resistance 

is present in commensal bacteria as of the arrival day and increases until the end of 

rearing, emphasising the need to control antimicrobial administration in all stages of 

poultry production. Regarding S. Infantis epidemiology, the continuous shedding 

throughout the growing period and its ability to gain antimicrobial resistance, regardless 

of farm management conditions, strongly suggest the need for further studies with a view 

to establishing better control programmes to control the bacteria in the food chain.  
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RESUMEN 

La concienciación social con respecto al bienestar animal, la seguridad alimentaria, las 

resistencias antimicrobianas y la salud medioambiental ha incrementado en los últimos 

años, creando un nuevo reto para los productores avícolas y promoviendo la 

implementación de sistemas de producción alternativos que incluyan el concepto ‘One 

Health’ (“una sola salud”) en su diseño. Por ello, la producción avícola se encuentra en 

constante desarrollo para conseguir satisfacer las demandas de los consumidores. Por ello, 

se han propuesto diferentes alternativas para ser aplicadas a nivel de campo, centradas en 

la mejora de los protocolos de bioseguridad, el uso de estirpes más rústicas y de 

crecimiento lento, así como la implementación de la ganadería de precisión. Se ha 

demostrado que una inversión en sistemas de manejo más precisos y respetuosos con el 

bienestar animal puede tener un efecto directo sobre la salud de los mismos, aumentando 

su resiliencia, y consiguiendo pollos con un sistema inmunitario reforzado, más capaces 

de superar los retos ambientales o las enfermedades infecciosas. 

En este contexto, el desarrollo y la composición de la microbiota tienen un papel 

importante en la salud de los animales, en los índices productivos conseguidos, en la 

diseminación de resistencias antimicrobianas y en la transmisión de patógenos 

zoonósicos a lo largo de la cadena alimentaria. Una mejora del bienestar animal no solo 

incrementa la resiliencia de los animales, sino que también se ha demostrado que 

promueve la presencia de microbiota intestinal beneficiosa y la integridad del epitelio 

intestinal. Como consecuencia, los mecanismos de protección funcionan perfectamente y 

las interacciones entre las bacterias ambientales y las intestinales se reducen. De esta 

manera, sería posible conseguir una reducción de la administración de antibióticos a nivel 

de campo, muy necesaria debido a la estrecha relación entre el empleo de antibióticos en 

producción animal y la aparición de resistencias en humanos, demostrada por diferentes 

estudios. Además, también se podría reducir la presencia de patógenos zoonósicos, como 

Salmonella, en la cadena alimentaria. Salmonella spp. es la principal causa de brotes 

alimentarios en la Unión Europea, con un total de 91 857 casos de salmonelosis y 1 581 

brotes notificados en 2018. La principal fuente de infección son los productos avícolas 

como huevos y carne de pollo, y los principales serotipos relacionados con estos brotes 
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son S. Enteritidis, S. Typhimurium, S. Typhimurium monofásica y S. Infantis, que 

actualmente es el serotipo más prevalente en pollos de engorde. 

Por todo ello, el objetivo general de esta tesis doctoral fue evaluar el efecto de sistemas 

alternativos de producción avícola sobre el desarrollo y la composición de la microbiota, 

la evolución de las resistencias antimicrobianas y la epidemiología de Salmonella. Para 

ello, se realizaron dos experimentos diferentes. 

En el primer experimento, se estudió el efecto de la estirpe genética, comparando una 

estirpe comercial de crecimiento rápido frente a una estirpe alternativa de crecimiento 

lento, producidas bajo sus respectivos sistemas de manejo. Los objetivos de este 

experimento fueron caracterizar la microbiota cecal e investigar la dinámica de las 

resistencias y multirresistencias antimicrobianas a lo largo del ciclo productivo. Para ello, 

se utilizaron dos estirpes comerciales de pollo de engorde, una de crecimiento rápido 

(Ross®) y otra de crecimiento lento (Hubbard®), y se alojaron 576 pollos en dos naves 

idénticas (288 animales en cada nave: 144 de crecimiento rápido y 144 de crecimiento 

lento). Se muestrearon animales de cada grupo experimental el día de la llegada, a mitad 

de ciclo (21 días de edad) y al final del ciclo (42 y 63 días de edad para las estirpes de 

crecimiento rápido y lento, respectivamente), y se tomaron muestras de ciego.  

Para evaluar la composición de la microbiota, se realizó un análisis de secuenciación del 

ARNr 16S del contenido cecal. Los resultados mostraron que Firmicutes representó el 

filo dominante para ambos grupos. Al principio del ciclo, Proteobacteria fue el segundo 

filo más predominante para ambas estirpes, superando en número a Bacteroidetes. Sin 

embargo, durante el resto del ciclo productivo, Bacteroidetes fue más abundante que 

Proteobacteria en ambos grupos. Finalmente, independientemente del sistema de 

manejo, los géneros identificados más predominantes fueron Oscillospira spp., 

Ruminococcus spp., Coprococcus spp., Lactobacillus spp. y Bacteroides spp. 

Para estudiar la evolución de las resistencias antimicrobianas, se seleccionó Escherichia 

coli como bacteria centinela y se evaluó la susceptibilidad de las cepas a los antibióticos 

de acuerdo con la Decisión 652/2013. Al inicio del ciclo, se observaron diferencias 

significativas entre las estirpes, ya que las cepas de E. coli aisladas de pollitos de un día 

de la estirpe de crecimiento rápido presentaron un mayor porcentaje de resistencia 

antimicrobiana. Sin embargo, al final del periodo de engorde, no se encontraron 
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diferencias significativas entre las estirpes y la presencia de bacterias resistentes (por 

encima del 95% en ambos grupos). Por lo tanto, aunque no se administraron antibióticos 

durante el periodo de crecimiento, se observó un alto nivel de resistencia y 

multirresistencia antimicrobiana el día del sacrificio. 

Los resultados de este experimento ponen de manifiesto que la microbiota de los pollos 

de engorde de las estirpes de crecimiento rápido y crecimiento lento está en constante 

desarrollo a lo largo del periodo de engorde, siendo relativamente estable desde los 21 

días de edad. En cuanto la composición de la misma, a nivel de género cabe destacar que 

los tres grupos más abundantes para ambas estirpes, Ruminococcus spp., Lactobacillus 

spp. y Bacteroides spp., están relacionados con un mejor rendimiento productivo y salud 

intestinal. Además, los elevados niveles de resistencia y multirresistencia antimicrobiana 

presentes durante el ciclo productivo demuestran que, aunque es crucial controlar tanto 

el uso de antibióticos como el bienestar de los animales durante el periodo de engorde, 

deben tomarse medidas en todos los niveles de la cadena de producción. 

En el segundo experimento, se evaluó el efecto de las condiciones de manejo de la 

granja, comparando las condiciones comerciales europeas de densidad y ventilación, 

frente a condiciones mejoradas. Los objetivos fueron caracterizar la microbiota cecal, 

evaluar la evolución de las resistencias y multirresistencias antimicrobianas, e investigar 

el desarrollo de S. Infantis y sus resistencias antimicrobianas a lo largo del periodo de 

engorde. Para ello, se alojaron 1062 pollitos de un día de una estirpe comercial de 

crecimiento rápido (Ross®), en dos naves avícolas bajo condiciones comerciales (33 

kg/m2 de densidad y un máximo de 20 ppm de amoníaco) y óptimas (17 kg/m2 de 

densidad y un máximo de 10 ppm de amoníaco). Dentro de cada una de las naves, 234 

animales se ubicaron en corralinas y 327 se alojaron directamente en la cama para simular 

el ambiente real de producción. Además, a las 24 horas de la llegada de los animales, el 

20% de los mismos fueron infectados por vía oral con una cepa de S. Infantis susceptible 

a todos los antibióticos testados. También se muestrearon animales de cada grupo 

experimental el día de la llegada, a mitad del ciclo (21 días de edad) y al final del periodo 

de engorde (42 días de edad), y se tomaron muestras de ciego. 

Para investigar la composición de la microbiota, se realizó un análisis de secuenciación 

del ARNr 16S. Los resultados mostraron un mayor nivel de diversidad en el grupo 

producido bajo condiciones de manejo óptimas. En cuanto a la composición de la 
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microbiota, Firmicutes fue el filo dominante durante todo el ciclo productivo. Sin 

embargo, el segundo filo predominante el día de llegada fue Proteobacteria, y desde la 

mitad del periodo fue Bacteroidetes, en ambos grupos. Además, los géneros identificados 

más predominantes fueron Oscillospira spp., Ruminococcus spp., Bacteroides spp. y 

Coprococcus spp. 

Para evaluar la dinámica de las resistencias antimicrobianas, al igual que en el primer 

experimento, se seleccionó E. coli como bacteria centinela y se evaluó la susceptibilidad 

de las cepas aisladas a los antibióticos de acuerdo con la Decisión 652/2013. Los 

resultados mostraron altas tasas de resistencia antimicrobiana a lo largo del periodo de 

engorde, sin diferencias estadísticamente significativas entre los grupos. Además, ambos 

grupos presentaron altas tasas de multirresistencia el día de sacrificio.  

Por último, para estudiar la excreción de Salmonella, se tomaron muestras de heces de 

cada grupo experimental de manera semanal y se analizaron según la norma ISO 6579-

2:2017. También se evaluó la susceptibilidad a los antibióticos según la Decisión 

652/2013. Los recuentos más bajos de excreción de Salmonella se observaron en la 

primera semana post-infección y los más altos en el día de sacrificio, en ambos grupos. 

Además, el 100% de las cepas aisladas fueron multirresistentes después de la primera 

semana post-infección. 

Estos resultados también revelan que la diversidad de la microbiota aumenta a lo largo 

del periodo de engorde, siendo relativamente estable desde mitad de ciclo. Sin embargo, 

al final del periodo, el nivel de diversidad de la microbiota es significativamente mayor 

en los animales producidos bajo condiciones óptimas de manejo en granja, pero sin 

diferencias estadísticas en su composición. Además, las resistencias y multirresistencias 

antimicrobianas están presentes a lo largo de todo el ciclo productivo, sin diferencias al 

final del mismo. En cuanto a la adquisición de resistencias antimicrobianas por parte de 

S. Infantis, se inicia al principio del ciclo de producción y se mantiene hasta el final, lo 

que demuestra la importancia de la transmisión de resistencias a las bacterias zoonósicas 

en las explotaciones avícolas. 

En conclusión, los principales resultados obtenidos en esta tesis doctoral incluyen que la 

diversidad y la composición de la microbiota están en constante desarrollo a lo largo del 

periodo de engorde, viéndose afectadas por los factores de manejo estudiados. Además, 
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las resistencias antimicrobianas están presentes en las bacterias comensales desde el día 

de llegada, y aumenta hasta el final del ciclo, destacando la necesidad de controlar la 

administración de antibióticos en todas las etapas de la producción avícola. En cuanto a 

la epidemiología de S. Infantis, la continua excreción durante todo el periodo de engorde 

y su capacidad de adquirir resistencias, independientemente de las condiciones de manejo 

en granja, sugieren la necesidad de realizar más estudios para poder establecer mejores 

programas de control de la bacteria a lo largo de la cadena alimentaria. 

 

 

 

 

 

 

 

 

  



 

 XII 

RESUM 

La conscienciació social amb respecte del benestar animal, la seguretat alimentaria, les 

resistències antimicrobianes i la salut mediambiental han incrementat en els últims anys, 

creant un nou repte per als productors avícoles i promovent la implementació de sistemes 

de producció alternatius que incloguen el concepte ‘One Health’ (“només una salut”) en 

el seu disseny. En aquest sentit, la producció avícola es troba en constant 

desenvolupament per aconseguir satisfer les demandes dels consumidors. Per aquesta raó, 

s’han proposat diverses alternatives per ser aplicades a nivell de camp, centrades en la 

millora dels protocols de bioseguretat, l’ús d’estirps més rústiques i de creixement lent, 

així com la implementació de la ramaderia de precisió. De fet, s’ha demostrat que una 

inversió en sistemes de maneig més precisos i respectuosos amb el benestar animal poden 

tindre un efecte directe sobre la salut dels mateixos, augmentant la seua resiliència, i 

aconseguint pollastres amb un sistema immunitari reforçat, més capaços de superar els 

reptes ambientals o les malalties infeccioses. 

En aquest context, el desenvolupament i la composició de la microbiota tenen un paper 

clau en la salut dels animals, en els índexs productius aconseguits, en la diseminació de 

resistències antimicrobianes i en la transmissió de patògens zoonòsics al llarg de la cadena 

alimentària. En aquesta línia, s’ha demostrat que una millora del benestar animal no 

només incrementa la resiliència dels animals, sinó que també promou la presència de 

microbiota intestinal beneficiosa i la integritat de l’epiteli intestinal. Com a conseqüència, 

els mecanismes de protecció funcionen perfectament i les interaccions entre els bacteris 

ambientals i els intestinals es redueixen. D’aquesta manera, pot ser posible aconseguir 

una reducció de l’administració d’antibiòtics a nivell de camp, molt necessària degut a 

l’estreta relació entre l’ús d’antibiòtics en producció animal i l’aparició de resistències en 

éssers humans, demostrada per diferents estudis. A més a més, també es podria reduir la 

presència de patògens zoonòsics, com Salmonella, en la cadena alimentària. Salmonella 

spp. és la principal causa de brots alimentaris en la Unió Europea, amb un total de 91 857 

casos de salmonel·losi i 1 581 brots notificats en 2018. La principal font d’infecció són 

els productes avícoles com ous i carn de pollastre, i els principals serotips relacionats amb 

aquestos brots son S. Enteritidis, S. Typhimurium, S. Typhimurium monofásica i S. 

Infantis, que actualment és el serotip més prevalent en pollastres d’engreixament. 
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Per tot açò, l’objectiu general d’aquesta tesi doctoral va ser avaluar l’efecte de sistemes 

alternatius de producció avícola sobre el desenvolupament i la composició de la 

microbiota, l’evolució de les resistències antimicrobianes i l’epidemiologia de 

Salmonella. Per fer açò, es van realitzar dos experiments diferents. 

En el primer experiment, es va estudiar l’efecte de l’estirp genètica, comparant una 

estirp comercial de creixement ràpid front a una estirp alternativa de creixement lent, 

produïdes davall els seus respectius sistemes de maneig. Els objectius van ser 

caracteritzar la microbiota fecal i investigar la dinàmica de les resistències i 

multirresistències antimicrobianes al llarg del cicle productiu. Per fer açò, es van utilitzar 

dos estirps comercials de pollastre d’engreixament, una de creixement ràpid (Ross®) i 

altra de creixement lent (Hubbard®), i es van allotjar 576 pollastres en dos naus 

idèntiques (288 animals en cada nau: 144 de creixement ràpid i 144 de creixement lent). 

Es van inspeccionar animals de cada grup experimental el dia de l’arrivada, a mitat de 

cicle (21 dies d’edat) i al final del cicle (42 i 63 dies d’edat per a les estirps de creixement 

ràpid i lent, respectivament), i es van prendre mostres de cec. 

Per avaluar la composició de la microbiota, es va realitzar un anàlisi de seqüenciació del 

ARNr 16S del contingut fecal. Els resultats mostraren que Firmicutes va representar el 

fil dominant per a ambdós grups. Al principi del cicle, Proteobacteria va ser el segon fil 

més predominant per a ambdós estirps, superant en nombre a Bacteroidetes. No obstant 

això, durant la resta del cicle productiu, Bacteroidetes va ser més abundant que 

Proteobacteria en ambdós grups. Finalment, independentment del sistema de maneig, els 

gèneres identificats més predominants van ser Oscillospira spp., Ruminococcus spp., 

Coprococcus spp., Lactobacillus spp. i Bacteroides spp. 

Per estudiar l’evolució de les resistències antimicrobianes, es va seleccionar Escherichia 

coli com a bacteri sentinella i es va avaluar la susceptibilitat dels ceps als antibiòtics 

d’acord amb la Decisió 652/2013. A l’inici del cicle, es van observar diferències 

significatives entre les estirps, ja que els ceps d’E. coli aïllats de pollets d’un dia de l’ 

estirp de creixement ràpid van presentar un major percentatge de resistència 

antimicrobiana. No obstant això, al final del període d’engreixament, no es van encontrar 

diferències significatives entre les estirps i la seua presència de bacteris resistents (por 

damunt del 95% en ambdós grups). Per tant, encara que no es van administrar antibiòtics 
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durant el període de creixement, es va observar un alt nivell de resistència i 

multirresistència antimicrobiana el dia del sacrifici. 

Els resultats d’aquest experiment posen de manifest que la microbiota dels pollastres 

d’engreixament de les estirps de creixement ràpid i creixement lent es troba en constant 

desenvolupament al llarg del període d’engreixament, sent relativament estable des de els 

21 dies d’edat. Quant a la composició de la mateixa, a nivell de gènere cal destacar que 

els tres grups més abundants per ambdós estirps, Ruminococcus spp., Lactobacillus spp. 

i Bacteroides spp., es troben relacionades amb un millor rendiment productiu i salut 

intestinal. A més a més, els elevats nivells de resistència i multirresistència 

antimicrobiana presents durant el cicle productiu demostren que, encara que és crucial 

controlar tant l’ús d’antibiòtics com el benestar dels animals durant el període 

d’engreixament, deuen prendre’s mesures en tots els nivells de la cadena de producció. 

En el segon experiment, es va avaluar l’efecte de les condicions de maneig de la granja, 

comparant les condicions comercials europees de densitat i ventilació, front a condicions 

millorades. Els objetius van ser caracteritzar la microbiota fecal, avaluar l’evolució de les 

resistències i multirresistències antimicrobianes, i investigar el desenvolupament de S. 

Infantis i les seues resistències antimicrobianes al llarg del període d’engreixament. Per 

fer açò, es van allotjar 1062 pollets d’un dia d’una estirp comercial de creixement ràpid 

(Ross®), en dos naus avícoles davall de condicions comercials (33 kg/m2 de densitat i un 

màxim de 20 ppm d’amoníac) i òptimes (17 kg/m2 de densitat i un màxim de 10 ppm 

d’amoníac). Dins de cada una de les naus, 234 animals es van ubicar en corralines i 327 

es van allotjar directament al llit per simular l‘ambient real de producció. A més a més, a 

les 24 hores de l’arrivada dels animals, el 20% dels mateixos van ser infectats per via oral 

amb un cep de S. Infantis susceptible a tots els antibiòtics testats. També es van 

inspeccionar animals de cada grup experimental el dia de l’arrivada, a mitat del cicle (21 

dies d’edat) i al final del període d’engreixament (42 dies d’edat), i es van prendre mostres 

de cec. 

Per investigar la composició de la microbiota, es va realitzar un anàlisi de seqüenciació 

del ARNr 16S. Els resultats van mostrar un major nivell de diversitat en el grup produït 

davall condicions de maneig òptimes. Quant a la composició de la microbiota, Firmicutes 

va ser el fil dominant durant tot el cicle productiu. No obstant això, el segon fil 

predominant el dia d’arrivada va ser Proteobacteria, i des de la mitat del període va ser 
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Bacteroidetes, en ambdós grups. A més, els gèneres identificats més predominants van 

ser Oscillospira spp., Ruminococcus spp., Bacteroides spp. i Coprococcus spp. 

Per avaluar la dinàmica de les resistències antimicrobianes, igual que en el primer 

experiment, es va seleccionar E. coli com a bacteri sentinella i es va avaluar la 

susceptibilitat de els ceps aïllats als antibiòtics d’acord amb la Decisió 652/2013. Els 

resultats van mostrar altes tases de resistència antimicrobiana al llarg del període 

d’engreixament, sense diferències estadísticament significatives entre els grups. A més, 

ambdós grups van presentar altes tases de multirresistència el dia de sacrifici.  

Per últim, per estudiar l’excreció de Salmonella, es van prendre mostres d’excrements de 

cada grup experimental de manera setmanal i es van analitzar segons la norma ISO 6579-

2:2017. També es va avaluar la susceptibilitat als antibiòtics segons la Decisió 652/2013. 

Els recomptes més baixos d’excreció de Salmonella es van observar en la primera 

setmana post-infecció i els més alts en el dia de sacrifici, en ambdós grups. A més a més, 

el 100% dels ceps aïllats van ser multirresistents després de la primera setmana post-

infecció. 

Aquestos resultats també revelen que la diversitat de la microbiota augmenta al llarg del 

període d’engreixament, sent relativament estable des de mitat del cicle. No obstant aixó, 

al final del període, el nivell de diversitat de la microbiota és significativament major en 

els animals produïts davall condicions òptimes de maneig en granja, però sense 

diferències estadístiques en la seua composició. A més, les resistències i 

multirresistències antimicrobianes es troben presents al llarg de tot el cicle productiu, 

sense diferències al final del mateix. Quant a l’adquisició de resistències antimicrobianes 

per part de S. Infantis, s’inicia al principi del cicle de producció i es manté fins al final, el 

que demostra la importancia de la transmissió de resistències als bacteris zoonòsics en les 

explotacions avícoles. 

En conclusió, els principals resultats obtinguts en aquesta tesi doctoral inclouen que la 

diversitat i la composició de la microbiota es troben en constant desenvolupament al llarg 

del període d’engreixament, veient-se afectades per els factors de maneig estudiats. A 

més a més, les resistències antimicrobianes es troben presents en els bacteris comensals 

des del dia d’arrivada, i augmenta fins al final del cicle, destacant la necessitat de controlar 

l’administració d’antibiòtics en totes les etapes de la producció avícola. Quant a 
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l’epidemiologia de S. Infantis, la contínua excreció durant tot el període d’engreixament 

i la seua capacitat d’adquirir resistències, independentment de les condicions de maneig 

en granja, sugereixen la necessitat de realitzar més estudis per poder establir millors 

programes de control del bacteri al llargo de la cadena alimentària. 
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1.1 Poultry meat sector 

1.1.1 Poultry meat production 

Poultry is the fastest growing agricultural sub-sector worldwide, and broiler chicken meat 

is one of the animal-derived products most consumed across greatly diverse cultures, 

traditions and religions. On the one hand, in developed countries it is appreciated because 

it provides high-quality and low-fat protein; on the other hand, in lower-income countries 

this protein source is considered affordable, healthy and culturally acceptable (FAO, 

2020; OECD and FAO, 2020). In fact, poultry production is expected to expand by 16% 

in the next ten years, with a total of 51 million tonnes produced in 2019 vs. 57 million 

tonnes expected by 2029 in the 37 countries belonging to the Organisation for Economic 

Co-operation and Development (OECD) (OECD and FAO, 2020). 

In 2020, global poultry meat production increased by about 2.6%, with a total of 137 

million tonnes produced (FAO, 2020). The European Union (EU) is the world’s third 

largest poultry meat producer with an annual production of around 13.5 million tonnes in 

2019, representing an increase in production of around 0.8%. The main EU producers 

were Poland (2.6 million tonnes, 19.5%), Spain (1.7 million tonnes, 12.8%) and France 

(1.7 million tonnes, 12.8%) (Figure 1) (MAPA, 2020; Eurostat, 2021). 

 
Figure 1. Poultry meat production in 2019 (Percentage share of EU members, based on tonnes of 
carcass weight). Adapted from Eurostat, 2021. 
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However, during the last year the European poultry meat sector has been significantly 

impacted by the COVID-19 crisis. Despite the high demand for poultry meat observed at 

the beginning of the EU lockdowns, it was not sufficient to compensate for the loss of the 

catering consumption market. This lack of demand resulted in low production levels 

throughout the production chain. Even so, the sector has demonstrated both its resilience 

and its ability to maintain adequate levels of supply, despite the difficulties caused by the 

virus (AVEC, 2020).  

This demonstrates that the poultry production system is in constant development to meet 

consumer demands (FAO, 2021). Traditionally, it has evolved using strategies based on 

the intensification and automation of farm facilities (FAO, 2020; MAPA, 2020). 

However, current consumer awareness requires the implementation of sustainable 

production systems, respectful with animal welfare and the environment (Gomes et al., 

2014; Sassi et al., 2016; Castellini and Dal Bosco, 2017; Mottet and Tempio, 2017; Goo 

et al., 2019). 

1.1.2 Animal welfare and resilience concepts 

There are numerous definitions for animal welfare, but there is a general consensus that 

it means a balance between the animal itself and its surrounding environment. Broom 

stated that animal welfare is its state as regards its attempts to cope with its environment 

(Broom, 1986). Subsequently, the World Organisation for Animal Health (OIE) defined 

it as ‘an animal is in a good state of welfare if it is healthy, comfortable, well nourished, 

safe, able to express innate behaviour, and if it is not suffering from unpleasant states 

such as pain, fear and distress’ (OIE, 2019a).  

The concept of animal welfare appeared in Europe in the 19th century, with organisations 

concerned about the conditions of animals, mainly horses, working in mines and 

transport. When working animals were successively replaced by machines, farm animals 

became the main target of animal welfare proponents. In this context, in 1964 Ruth 

Harrison succeeded, by the publication of 'Animal Machines', that the Britain 

Government investigated the welfare of farm animals (Harrison, 1964). Subsequently, in 

1979 they formalished, by the UK Farm Animal Welfare Council, the ‘Five Freedoms’ 

(FAWC, 1979). Finally, the European Commission (EC) implemented the role of 

freedom in animal welfare regulation in 1998, showing that the perception of animal 
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welfare was closely related to the prevailing conditions of society (EC, 1998; Bessei, 

2018). 

The specific discussion on poultry welfare has been limited for several decades to 

European countries  throughout (Bessei, 2018). However, current EU welfare regulations 

in broiler production are stricter than in other countries. The EU directive rigorously 

regulates stocking density, lightning, climate, noxious gases, feed and feeding systems, 

health care, inspection and hygiene measures (EC, 2007). In Spain, the directive is 

transposed in the Royal Degree 692/2010 (BOE, 2010), and the global regulation 

governing this issue is found within the Animal Protection and Welfare Code (BOE, 

2020). Great strides have been achieved in recent years, but it is necessary to continue 

advancing in the study and improvement of animal welfare in animal production. 

Moreover, it is demonstrated that an investment in more accurate and animal-friendly 

management systems in poultry production could directly affect animal health, by 

increasing animals’ resilience (Soleimani et al., 2012; FAO, 2013; Gomes et al., 2014; 

Dawkins, 2017; Swaggerty et al., 2019). Resilience is the capacity of an animal to be 

minimally affected by external or internal negative agents or to rapidly recover from their 

influence.  

In this line, resilient animals can easily cope with environmental challenges or infectious 

diseases, so farmers can also reduce their use of antimicrobials (AMAs), achieving both 

healthy and easier-to-manage flocks (Colditz and Hine, 2016), creating a new approach 

to the development of poultry production systems. 

1.1.3 Evolution of poultry production systems 

For thousands of years, poultry production has been considered an important productive 

activity in human civilisation, and breeds and farm systems have been adapted to social 

cultures and agro-ecological systems (Alders et al., 2018). 

Prior to the 20th century, poultry were generally reared in extensive systems, largely free 

ranging, and dependent on scavenging and some supplementation of feed. However, from 

mid-century onwards, in response to rapidly increasing demands for animal-derived 

products driven by human population growth, poultry meat production increased 

dramatically due to the fast intensification of poultry industry and breed selection, 
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achieving shorter generation times, enhanced animal performance and higher meat 

content (Speedy, 2003; Alders et al., 2018; Albrecht et al., 2019). Although this growth 

has been considered a great success in economic terms, there are serious concerns 

regarding the long-term sustainability of intensive farming systems (Castellini et al., 

2012). 

Recently, public awareness regarding animal welfare, food safety and environmental 

health has increased. The impact of livestock production on global warming and 

pollution, together with the need to control zoonotic infectious diseases and antimicrobial 

resistance (AMR) in the food chain, has encouraged the development of new production 

systems, including the ‘One Health’ concept in their design (Castellini et al., 2012; Lusk, 

2018a; Albrecht et al., 2019). It is defined by the Centers for Disease Control and 

Prevention (CDC) and the One Health Commission (OHC) as ‘a collaborative, 

multisectoral, and transdisciplinary approach with the goal of achieving optimal health 

outcomes recognising the interconnection between people, animals, plants, and their 

shared environment’. It includes issues such as zoonotic diseases, AMR, food safety and 

food security, vector-borne diseases, environmental contamination and other health 

threats shared by people, animals and the environment (Mackenzie and Jeggo, 2019; 

Mayor Zaragoza et al., 2019). 

In this context, more sustainable production systems are being developed, focusing on 

enhanced animal welfare and limiting the use of AMAs by improving biosecurity and 

vaccination protocols, implementing precision livestock farming systems, and using more 

resistant and rustic slow-growing breeds, but also maintaining the profitability of broiler 

farms (Figure 2) (Sassi et al., 2016; Castellini and Dal Bosco, 2017; Clavijo and Flórez, 

2018; El-Deek and El-Sabrout, 2019).  
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Figure 2. Evolution of protection tools in broiler production. 

 

Finally, all the efforts carried out by the poultry sector to adapt the production systems to 

consumer demands are materialised in EU and Spanish legislation. The EC has developed 

different regulations to control animal welfare (EC, 2007) and AMAs administration (EC, 

2019), creating the European Surveillance of Veterinary Antimicrobial Consumption 

(ESVAC) project (EMA, 2016). Moreover, as an EU member, Spain has followed 

European instructions, establishing the Animal Protection and Welfare Code (BOE, 

2020) and the National AMR Plan (PRAN, 2020). 

1.2 Influence of intestinal health in poultry  

This section deals with the main definitions regarding microbial population, the influence 

of the microbiota in poultry health and the main methods to study it, as well as the 

characteristics of one of the main zoonotic pathogens in poultry, Salmonella spp. 

1.2.1 Intestinal microorganisms in poultry production 

1.2.1.1 Definitions 

Microbial communities are commonly defined as the assemblage of microorganisms 

living together (including commensal, symbiotic and pathogenic ones), with their 

interactions, in a common biome. The biome is defined as a reasonably well-defined 
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habitat which has specific bio-physio-chemical properties (Konopka, 2009; Berg et al., 

2020). However, to study their inhabitants, there are three important concepts to 

distinguish. 

Firstly, the term microbiome includes the sum of all microorganisms present in a defined 

biome (bacteria, archaea, phages, viruses, plasmids, prions, viroids, and free DNA) and 

their action area. Furthermore, this definition also encompasses the whole spectrum of 

molecules produced by the microorganisms under the influence of the surrounding 

environmental conditions, including their structural elements (nucleic acids, proteins, 

lipids, polysaccharides), and metabolites (signalling molecules, toxins, organic, and 

inorganic molecules). The term microbiota only refers to the living microorganisms of 

this biome, including viruses, bacteria, fungi and protozoa. However, with few 

exceptions, when discussing the microbiota in poultry intestine one is referring to the 

bacterial population. Finally, the metagenome defines the genetic potential of the 

microbiota and includes the collection of genomes, genes and plasmids within the 

different bacterial populations (Figure 3) (Marchesi and Ravel, 2015; Kogut, 2019; Berg 

et al., 2020). 

 
Figure 3. A schematic highlighting the composition of the term microbiome. Adapted from Berg et 
al., 2020. 
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1.2.1.2 Influence on poultry health 

It is demonstrated that microbiota composition and development have an important 

influence on animal health, productivity and disease control (Oviedo-Rondón, 2019). In 

fact, due to the close relationships existing between hosts and their associated 

microorganisms, it is considered that there is a coevolution between them (Zaneveld et 

al., 2008; Berg et al., 2020). In poultry, the digestive system is the main reservoir of 

microorganisms, and commensal bacteria have a considerable effect on its physiology, 

nutrient exchange, the exclusion of pathogens and also the modulation of the immune 

system (Clavijo and Flórez, 2018; Carrasco et al., 2019). 

The influence of the gut microbiota on the development of the intestinal tract is present 

since hatching, when the main colonising bacteria are established. These bacteria will 

compete with the pathogenic ones throughout the growing period, reducing the adhesion 

and colonisation of pathogens and zoonotic bacteria in the intestine by competitive 

exclusion. Moreover, regarding nutritional interaction, microbiota contribute nutrients 

that are important to the metabolism of broiler chickens, including short-chain fatty acids, 

ammonium, amino acids and vitamins (Pan and Yu, 2014; Clavijo and Flórez, 2018; 

Kogut, 2019). On the other hand, microbiota plays an important role in modulating both 

the innate and the acquired immune response of broilers. Regarding innate immune 

response, the intestinal mucosa is considered the first line of defence against infection. In 

the acquired immune system, the commensal bacteria provide protection to the mucosa 

membrane by modulating the immune response, by controlling the quantity of mediators 

secreted by the cells of the acquired immune system and stimulating the helper T cells 

(Brisbin et al., 2008; Oakley et al., 2014; Clavijo and Flórez, 2018). 

Generally, during the first days of life, the intestinal tract is successively colonised by 

Proteobacteria and by Firmicutes. Afterwards, Firmicutes dominate the caecal 

population, followed by Bacteroidetes (Wei et al., 2013; Ballou et al., 2016). High levels 

of Firmicutes and Bacteroidetes phyla are correlated with good intestinal health, 

containing bacterial groups with diverse metabolic activities (Kumar et al., 2018; 

Yacoubi et al., 2018; Rychlik, 2020). In contrast, an increment of Proteobacteria 

population is associated with a disruption of the microbiota composition (dysbiosis) 

(Neal-McKinney et al., 2012; Shin et al., 2015). Therefore, it might be interesting to 
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consider microbiota composition as a biomarker of poultry health (Ducatelle et al., 2018; 

Pandit et al., 2018; Carrasco et al., 2019). 

Thus, it is deduced that balanced microbiota confers many benefits to the intestinal 

physiology of the host. Conversely, stress greatly affects intestinal health, causing 

dysbiosis, leakage of the mucosal barrier and inflammation. In this situation, pathogens 

could take the opportunity to colonise and multiply in the intestinal tract (Ducatelle et al., 

2018; He et al., 2019; Kogut, 2019; Mandal et al., 2020). In this sense, microbiota has 

been seen to be an important source of external and internal contamination of the carcass 

by bacteria of such great importance as Salmonella spp. and Campylobacter spp. during 

loading, transport and slaughter (Rasschaert et al., 2008; Ellerbroek et al., 2010). For this 

reason, defining a healthy microbiota is very important to be able to prevent or correct 

dysbiosis and minimise its impact on health (Dogra et al., 2020). 

In consequence, establishing poultry production systems based on improving animal 

welfare and biosecurity control could promote the presence of beneficial intestinal 

microbiota and the integrity of the intestinal epithelium, reducing the interactions 

between environmental and intestinal bacteria. This fact makes manipulation of the 

intestinal microbiota to enhance the beneficial components a promising therapeutic 

strategy for the future (Dawkins, 2019).  

1.2.1.3 Methods for studying microbial communities 

Traditionally, bacterial identification has been performed by phenotypic identification, 

using specific culture media and incubation conditions. Classic isolation techniques allow 

us to study bacterial morphology, development, biochemical characteristics and 

antimicrobial susceptibility (Bou et al., 2011). However, it is estimated that only 10–20% 

of caecal bacteria can be cultured. This could be due to the fastidious growth requirement 

of many intestinal bacteria, the need to co-culture bacteria involved in metabolic cross-

feeding, and storage, with general difficulties in reproducing environmental conditions 

(Stanley et al., 2014; Clavijo and Flórez, 2018). 

The recent implementation of molecular techniques in microbiology studies allows to 

evaluate intestinal bacteria in an overview. Therefore, we are now able to observe not 

only the target bacteria but also all the microorganisms present and their relationship. 
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Currently, two main methods for studying microbial communities using high-throughput 

sequencing are applied: whole-genome shotgun and marker gene studies. Whole-genome 

shotgun metagenomics sequences all genomes existing in a biome, to analyse the 

biodiversity and the functional capabilities of the microbial community. In contrast, 

marker gene analyses are based on the sequencing of a gene-specific region to reveal the 

diversity and composition of specific taxonomic groups; among these, the principal 

method used to analyse the presence of bacteria uses the 16S rRNA gene (Pérez-Cobas 

et al., 2020).  

In poultry, the caecum is described as the organ with the greatest taxonomic diversity and 

abundance (Clavijo and Flórez, 2018). For this reason, applying new metagenomic 

techniques in caeca samples could afford a better understanding of how the microbiota 

evolves in poultry and its effect on intestinal health (Ducatelle et al., 2018). 

1.2.2 Zoonotic microorganisms in poultry production 

As defined by the World Health Organisation (WHO), ‘zoonosis is an infectious disease 

that has jumped from a non-human animals to humans; these pathogens may be bacterial, 

viral or parasitic, or may involve unconventional agents and can spread to humans 

through direct contact or through food, water or the environment’ (WHO, 2020).  

In poultry, during and after slaughtering, the bacteria from intestinal microbiota and the 

slaughterhouse environment could contaminate carcasses and their subsequent products, 

and some of these bacterial contaminants can grow or survive during food processing and 

storage. For this reason, and due to the increasing trends of consumption and production 

of poultry derived products in EU, ensuring their microbial safety is an important issue 

for public health (Rouger et al., 2017; EFSA and ECDC, 2019b). In this sense, 

Campylobacter spp. and Salmonella spp. are the two main zoonotic microorganisms 

involved in human gastroenteritis worldwide; within them, Salmonella spp. constitutes 

the main source of human foodborne outbreaks in EU (EFSA and ECDC, 2021). 

1.2.2.1 Salmonella spp. characteristics, prevalence and control 

Salmonella spp. are Gram-negative and facultatively anaerobic members of the family 

Enterobacteriaceae. They are motile and rod-shaped bacilli (Figure 4). Their motility is 

also conferred by flagella, and the most important species in human health is S. enterica, 
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which comprises more than 2 600 serovars with different specificities for vertebrate hosts 

(Graziani et al., 2017). 

In humans, clinical symptoms of salmonellosis are diarrhoea, abdominal pain, fever, 

headache, nausea and/or vomiting, lasting from 2 to 7 days, approximately. However, in 

some cases, particularly in children and elderly patients, the illness could become severe 

and life-threatening (WHO, 2018). In fact, in 2018 the proportion of cases with 

hospitalisation status in the EU was 43.2% of all salmonellosis cases  (EFSA and ECDC, 

2019b). 

 
Figure 4. Characteristic Salmonella cells and related structures. Obtained from Centres of Disease 
Control and Prevention. Available at https://www.cdc.gov/salmonella/reportspubs/salmonella-
atlas/serotyping-importance.html. 

As reported above, it is considered the main source of human foodborne outbreaks in EU. 

In 2018, the European Food Safety Authority (EFSA) reported 91 857 confirmed cases 

(8 730 only in Spain) and a total of 1 581 outbreaks. Results for human salmonellosis 

cases were also similar to those observed in 2017. However, the number of outbreaks was 

higher compared to previous years. Moreover, it is important to highlight that a 

significantly increasing trend was observed in Spain between 2014 and 2018, due in part 

to an improvement in surveillance (EFSA and ECDC, 2019b). In 2019, Spain did not 

receive complete data due to the COVID-19 crisis, so the case numbers were lower than 

expected (with a total of 87 923 and 5 103 human cases in EU and in Spain, respectively) 

(EFSA and ECDC, 2021). 
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Regarding Salmonella serovars involved in human cases, the most commonly reported in 

2018 and 2019 were S. Enteritidis, S. Typhimurium, monophasic S. Typhimurium 

(1,4,[5],12:i:-) and S. Infantis. Specifically, S. Infantis is widespread among most 

Member States (MS) and it is an important serovar throughout the poultry production 

chain. Moreover, the relevance of this serovar is further reinforced by its high levels of 

multidrug-resistance (MDR). This serovar was markedly related to broiler sources (93%), 

accounting for 36.5% of isolates from broiler flocks and 56.7% from broiler meat (Figure 

5) (EFSA and ECDC, 2019b, 2021). 

 
Figure 5. Distribution (%) of the human EU Salmonella serovars in poultry production. Adapted 
from EFSA and ECDC, 2021. Der: S. Derby, Ent: S. Enteritidis, Inf: S. Infantis, Typ: S. 
Typhimurium, VMT: S. Typhimurium monophasic variant. 

In poultry, the EC established by the European Regulation 2160/2003 and its subsequent 

amendments, that MS have to set up Salmonella National Control Programmes to reduce 

the prevalence of those serovars considered relevant for public health. In this sense, in 

broiler production, boot swab samples must be taken before the animals leave for the 

slaughterhouse, and the target serovars are S. Enteritidis, S. Typhimurium and 

monophasic S. Typhimurium (1,4,[5],12:i:-) (EC, 2003a, 2012). 
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1.2.3 Antimicrobial resistance in poultry production 

This section deals with a brief definition of AMR and its development, the main 

characteristics of Escherichia coli as AMR sentinel bacterium, the main mechanisms of 

AMR, and finally, the presence of AMR in poultry production. 

1.2.3.1 Definition and development  

As reported above, AMR is one of the most significant threats to public health worldwide, 

and also one of the most important concerns for consumers. Indeed, the WHO published 

that if effective interventions against the increase in AMR are not performed, by 2050 

there could be more than 10 million deaths annually as a result of such resistance (WHO, 

2019). 

AMR occurs when bacteria, viruses, fungi and parasites change over time and develop 

the ability to defeat the medicines designed to kill them, making infections harder to treat 

and increasing the risk of disease spread, severe illness and death. As a result, the AMAs 

become ineffective and infections persist. Moreover, resistant microorganisms are 

considered a ‘One Health’ problem, because they can spread between people, animals, 

and the environment (Figure 6) (Davies and Davies, 2010; WHO, 2014; CDC, 2020). 

 
Figure 6. Antimicrobial resistance development and spread in a ‘One Health’ perspective. 
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Prior to the 20th century, in the pre-AMAs age, death from minor infections was 

commonplace. It was in 1928 when Alexander Fleming discovered penicillin and its 

antibiotic (AB) potential, but the first ABs introduced in clinical practice were the 

sulphonamides, in 1937. As of that moment, ABs were used to treat bacterial infections, 

saving thousands of lives both in animals and humans. Regrettably, the use of these 

wonder drugs was accompanied by the rapid appearance of resistant strains; in fact, in 

1942 the first resistant bacteria appeared (Figure 7)  (Clatworthy et al., 2007; Davies and 

Davies, 2010; CDC et al., 2020). Indeed, the widespread use of AMAs over the last 60 

years has resulted in a significant increase in AMR and MDR bacteria worldwide. 

Moreover, super-resistant strains or ‘superbugs’ have appeared, with high levels of AMR 

and enhanced morbidity and mortality, further reducing the therapeutic options for these 

bacteria (Davies and Davies, 2010). 

 
Figure 7. Timeline of antibiotics deployment vs. its antibiotic resistance observed. Adapted from 
Clatworthy et al., 2007. 

Alert to this crisis, the EC implemented the Directive 99/2003 (EC, 2003b), establishing 

the obligation to collect and analyse comparable data on AMR present in zoonotic agents 

in food and animals. Subsequently, in 2013 the EC developed Decision 652/2013, 

detailing and harmonising rules for the monitoring and reporting of AMR in EU MS (EC, 

2013).  

Thus, different organisms developed programmes to control the evolution of AMR. In 

the EU, the European Medicines Agency (EMA) started the ESVAC project in 2010, 

focused on the collection and reporting of data on the use of AMAs in animals from EU 

(EMA, n.d.). Moreover, EFSA and the European Centre for Disease Prevention and 
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Control (ECDC) have been drafting annual EU Summary Reports on AMR since 2014 

(EFSA and ECDC, 2019a). Finally, in 2015 the WHO set out the Global Action Plan on 

Antimicrobial Resistance. The main objectives of this project were to improve awareness 

and understanding of AMR, to strengthen the knowledge base through surveillance and 

research, reduce the incidence of infection, optimise the use of AMAs in human and 

veterinary medicine, and to develop new medicines, vaccines and other tools to treat 

infections (WHO, 2015). In Spain, the National AMR Plan was established in 2014, 

promoted by the Ministries of Health and Agriculture and coordinated by the Spanish 

Agency for Medicines and Health Products (AEMPS), with the aim of increasing 

awareness about the prudent use of AMAs to reduce their application both in veterinary 

and human medicine (PRAN, 2019). 

Regarding the results obtained of these efforts, in 2019 the EFSA demonstrated that 

legislation has mostly been implemented by the MS, increasing the production of 

comparable and reliable phenotypic AMR data over time, particularly of the resistance 

indicator E. coli (EFSA and ECDC, 2019a). 

However, it is important to highlight that due to the complexity of the processes that 

contribute to emergence and dissemination of AMR, and the lack of basic knowledge on 

these topics, there has been so little significant achievement in the effective prevention 

and control of AMR development (Davies and Davies, 2010). 

1.2.3.2 Commensal Escherichia coli as antimicrobial resistance sentinel bacterium 

Regarding the evaluation of AMR, indicator commensal E. coli is considered by the 

EFSA as the main data of the EU-wide monitoring. It was selected as sentinel bacterium 

because it is well demonstrated that this bacterial species mirrors the exposure of the 

population to AMR selection pressure, and it constitutes a reservoir of resistance genes, 

providing valuable and comparable data between MSs (EFSA and ECDC, 2019a). 

E. coli are Gram-negative, facultative anaerobic, motile rod-shaped bacteria (Figure 8), 

and include several serogroups that differ in pathogenic potential. The majority are non-

pathogenic and innocuous residents of the intestine of vertebrates; however, some groups 

can cause severe diarrhoeal disease, occasionally with fatal outcome (Schaechter, 2009; 

Percival and Williams, 2013). 
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Figure 8. Characteristic Escherichia coli cells and related structures. Obtained from Centres of 
Disease Control and Prevention. Available at https://www.cdc.gov/ecoli/2021/o157h7-02-
21/index.html. 

E. coli is related to be the most abundant facultative anaerobe in faeces and intestine of 

animals. In fact, its prevalence in the intestines of production animals is usually above 

90%. Moreover, in both structure and function, it is considered the prototype for members 

of the Enterobacteriaceae family (Schaechter, 2009; Percival and Williams, 2013; EFSA 

and ECDC, 2019a). 

The monitoring of AMR in commensal E. coli is essential to provide comprehensive, 

comparable and reliable information on the development and spread of AMR bacteria, to 

measure the impact of measures taken to reduce AMR and to monitor progress achieved 

in the EU. The continually evolving threat from emerging resistance underlines the need 

to further strengthen AMR monitoring and to constantly review the data collected to 

inform, update and consolidate national action plans against AMR (EFSA and ECDC, 

2019a). 

1.2.3.3 Mechanisms of antimicrobial resistance 

Bacteria can resist ABs action by different mechanisms, such as AB destruction, AB 

modification, modification of AB enzymes, target alterations (target replacement, target 

site mutations, target site enzymatic alterations, target site protection, target 

overproduction or target bypass), and by reducing AB accumulation due to either 

decreased permeability and/or increased efflux (Figure 9) (Reygaert, 2018). 
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Figure 9. General antimicrobial resistance mechanisms. Adapted from Reygaert, 2018. 

These resistance mechanisms exhibited by bacteria can be intrinsic, acquired, or adaptive 

(Joon-Lee, 2019; Christaki et al., 2020). 

Intrinsic resistance is due to the inherent properties of the bacterium. For instance, the 

impermeability of the outer membrane present in Gram-negative bacteria. 

Acquired resistance appears when a previously susceptible bacterium acquires an AMR 

mechanism by a mutation or horizontal gene transfer. The transmission of new genetic 

material from exogenous bacteria can occur through three main processes (Figure 10): 

- Conjugation: This involves the transfer of genetic material from one bacterial cell 

to another by direct physical contact between the cells, through plasmids 

transmission. Multiple resistance genes are often present on a single plasmid, 

enabling the transfer of MDR in a single conjugation event. This is probably the 

most important mechanism of horizontal gene transfer. 

- Transduction: The transfer of genetic material between a donor and a recipient 

bacterium by a bacteriophage. 

- Transformation: Consists of a genetic recombination in which free DNA 

fragments from a dead bacterium enter a recipient bacterium and are incorporated 

into its chromosome (not very common). 
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Figure 10. Horizontal resistance gene transmission between bacteria: conjugation, transduction and 
transformation. Adapted from Holmes et al., 2016. 

Finally, adaptive resistance is transient, resulting from modulations in gene expression 

as a response to environmental changes. These mechanisms appear induced by a specific 

signal (for example, stress, growth state, pH, concentrations of ions, nutrient conditions 

or sub-inhibitory levels of ABs) (Holmes et al., 2016; Joon-Lee, 2019; Christaki et al., 

2020).  

However, bacteria typically coexist in complex multi-species microbiomes, and their 

interactions could have a profound effect upon the response to an AB treatment. There 

are three main ways in which bacterial communities can survive AB exposure together 

(Figure 11), and these interactions could have multiple different effects and could occur 

simultaneously: collective resistance, collective tolerance and exposure protection. 

Collective resistance interactions elevate the ability to resist the action of ABs, 

continuing to increase the bacterial population. Collective tolerance interactions alter the 

cell state, slowing down the rate of bacterial death in the ABs presence, but without an 

increment of bacterial population. And, finally, exposure protection interactions protect 

the sensitive members of a bacterial population, reducing the effective concentration of 

the AB (Vega and Gore, 2014; Meredith et al., 2015; Bottery et al., 2020).  
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Figure 11. Microbial community interactions affecting the response to antibiotic exposure. A: 
Exposure protection: Resistant bacteria inactivating antibiotic concentration, protecting sensitive 
members of bacteria population. B: Collective tolerance: Some species unable to form biofilm 
collaborating in established biofilms of other species. C: Collective resistance: Susceptible 
community member of a bacterial population could activate their resistance mechanisms in the 
presence of other species. D: Due to the cross-feeding networks, tolerance to antibiotics is lowered to 
the level of the most susceptible community member, as resistant species are unable to grow due to 
the loss of essential recourses. Obtained from Bottery et al., 2020. 

In conclusion, bacteria are highly versatile and adaptive, as in order to survive they need 

to be capable of dealing with toxic substances. However, with the alarming increase in 

AMR, it is imperative to find alternative and effective treatments to combat these 

pathogens. Unfortunately, there is no easy solution to this global problem. Perhaps it is 

necessary to design new AMA agents or to look for alternatives to prevent and treat 

bacterial infections (Reygaert, 2018). 

1.2.3.4 Presence of antimicrobial resistance in poultry production 

In animal production, traditionally the main objective of AMAs has been the therapeutic 

and prophylactic use in control of bacterial infections, but in the 1950s there was a 

deviation of this function and they began to be used in sub therapeutic doses as growth 

promoters. As reported above, balanced microbiota increase the resistance to colonisation 

by pathogenic microorganisms by competitive exclusion. However, these bacteria also 

entail costs for the host, including competition for nutrients, production of toxic 

catabolites and decrease of fat digestibility, at the expense of animal growth performance. 
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Thus, this different use promoted growth and efficiency of broilers (Dibner and Richards, 

2005; Oliveira et al., 2020).  

Nevertheless, as outlined above, the uncontrolled administration of ABs in the past has 

resulted in an increased AMR and MDR presence in the food chain (Aarestrup, 2015; 

Khurana et al., 2017; EFSA and ECDC, 2020). For this reason, the use of AMAs as 

growth promoters is a production technique banned in the EU since 2006 by the EC 

Directive 1831/2003 (EC, 2003c). 

As a consequence, although the EMA reported that Spain has been the EU country with 

the highest consumption of ABs in animal production for several years, their consumption 

has halved (ESVAC, n.d.; EMA, 2020). In fact, there have been important differences 

between the first and the last EFSA reports regarding AMR in poultry production. During 

the period from 2006 to 2012, Spain presented the highest levels of AMR to most ABs, 

especially to quinolones and tetracyclines (EFSA and ECDC, 2014), but in 2020, it 

reported a decreasing trend in the AMR rates to b-lactams and tetracyclines (EFSA and 

ECDC, 2020). 

These data are the result of the efforts made by the European and Spanish poultry sector 

to reduce AMA administration at field level. Firstly, by avoiding the entry and spread of 

pathogen microorganisms, improving biosecurity, farm management and vaccination 

protocols (Rojo-Gimeno et al., 2016); and secondly, by investing in more accurate and 

animal-friendly management systems, achieving animals with a strengthened immune 

system and more resilient to contact with infectious agents (Soleimani et al., 2012b; 

Gomes et al., 2014; Rouger et al., 2017; Swaggerty et al., 2019). However, different 

scientific studies underline the importance of developing stricter sanitary measures at the 

interface between the environment and livestock farming to reduce AMR transmission to 

poultry chain (Allen et al., 2010; Bengtsson-Palme et al., 2018; Westphal-Settele et al., 

2018).  
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1.3 Main control measures for zoonotic and resistant microorganisms in poultry 

In this context, it is essential to establish control measures in poultry farms to eliminate 

zoonotic and resistant microorganisms from the poultry production chain, such as the 

improvement of biosecurity protocols, the use of more rustic and slow-growing breeds, 

and the implementation of precision livestock farming management to better control 

environmental farm conditions. 

1.3.1 Biosecurity 

The first barrier created to protect farms from pathogen and AMR microorganisms is 

biosecurity. As defined by the OIE and Food and Agriculture Organisation of the United 

Nations (FAO), it consists of the measures implemented to reduce the risk of the 

introduction and spread of disease agents. Biosecurity is based on two basic principles: 

bio exclusion (the measures established to prevent the entering of infectious agents into 

the farms, such as introducing only controlled healthy birds and clean supplies of feed, 

water and litter), and biocontainment (which prevents the spread of the possible infectious 

agents). In addition, these principles involve segregation of the flocks (controlling the 

contacts with other animals and/or humans) and adequate cleaning and disinfection 

protocols (FAO, 2008; Alders et al., 2018). 

Subsequently, due to the new consumer concerns and meat market evolution, the FAO 

set out a holistic definition of biosecurity, including the ‘One Health’ concept: ‘strategic 

and integrated approach that encompasses the policy and regulatory frameworks 

(including instruments and activities) for analysing and managing relevant risks to 

human, animal and plant life and health, and associated risks to the environment’ (Figure 

12). This definition includes not only the protection from pathogens, but also the need for 

a sustainable production, answering society’s demands both in terms of quality of the 

product and of the production (managing health risks to humans and animals, 

respectively), protecting the environment and biodiversity, and allowing farmers to make 

a living from their work and be recognised for it (FAO, 2007).  

Figure 12. Holistic definition of biosecurity. Adapted from 
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Figure 12. Holistic definition of biosecurity. Adapted from FAO, 2007. 

In poultry production, the main biosecurity measures include that poultry farms should 

be located in a suitably isolated geographical location, surrounded by a security fence to 

prevent and control the entry of unwanted animals and people, constructed and 

maintained to prevent the entry of wild birds, rodents and arthropods to the poultry 

houses, and designed with materials so that correct cleaning and disinfection protocols 

could be carried out. In addition, all premises should have a written biosecurity plan. 

Regarding flock management, the ‘all-in all-out’ system is recommended, and all the data 

on bird health, production, medications, vaccination, mortality and surveillance should 

be recorded (OIE, 2019b). 

Another measure to effectively prevent and control the spread of poultry diseases includes 

the use of vaccination, an important prophylactic tool worldwide. However, vaccines and 

vaccination programmes vary widely, depending on several local factors, such as type of 

production, the local pattern of disease, the status of maternal immunity, vaccines 

available, costs and potential losses (Marangon and Busani, 2006). For instance, with 

respect to Salmonella control in the Valencian Community, future broiler breeders must 

be vaccinated against S. Enteritidis and S. Typhimurium, according to European 

Regulation 2160/2003 (EC, 2003a; PAZ, 2021). 

However, the poultry sector needs to keep evolving to overcome the threat of infectious 

diseases and AMR spread around the EU, which endangers both animal and human 
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health. More specifically, it is necessary to address all dimensions of the production chain 

(public safety, economic and environmental), and at multiple scales (local, regional, 

national and international) (Mottet and Tempio, 2017). 

1.3.2 Broiler breeds 

As reported above, in response to social awareness regarding animal welfare and AMR 

transmission through the food chain, new poultry production systems focused on 

sustainability are being developed. In this sense, producers are motivated to choose 

genetic breeds selected for their ability to deal with the natural environment, while also 

maintaining an adequate growth rate (Castellini and Dal Bosco, 2017). However, the 

balance between productive performance and animal welfare is not easy to achieve.  

On the one hand, traditional commercial fast-growing breeds are selected for daily gain 

and feed-conversion rates, reaching the slaughter weight in 6-7 weeks; but they are also 

designed for intensive poultry production, needing to live under extreme environmental 

controlled conditions. Being able to satisfy consumer demands for poultry-derived 

products entails great profitability for broiler farms, but also a higher impact on global 

warming and greenhouse-gas emissions (Jez et al., 2011). Moreover, these breeds are 

more susceptible to infectious diseases and more dependent on biosecurity measures and 

AMAs use (Castellini and Bosco, 2017; Albrecht et al., 2019). On the other hand, slow-

growing breeds are more adapted to organic poultry systems, being able to support 

poorer diets and environments, but taking a longer period to grow (about 9-12 weeks). 

This fact creates a different and more sustainable approach in poultry management, with 

adaptation to external environmental conditions, reducing local pollution and decreasing 

global impact (Jez et al., 2011; Alders et al., 2018). Moreover, their selected rustic and 

well-developed immune system could achieve a reduction in use of AMAs at field level. 

However, the lengthening of the growing period entails a lower efficiency of poultry 

production, with lower incomes for farmers or higher prices to consumers (Albrecht et 

al., 2019). 

Nevertheless, to be able to assess the effectiveness of these alternative production systems 

regarding AMR spread through the food chain, it is necessary to have better knowledge 

of the epidemiology of AMR throughout the growing period (Sirri et al., 2011; Lusk, 

2018b).  
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1.3.3 Precision livestock farming 

Finally, a different approach proposed to solve public concerns regarding poultry 

production systems is being developed: precision livestock farming, focused on the 

improvement of farm management strategies and environmental farm conditions by using 

technology and engineering principles, but maintaining the use of fast-growing breeds. 

The main objective of this method is to create an automatic management system based 

on real-time monitoring to control animal performance, health and welfare, by recording 

data from diverse sources collected through smart sensors and compiled in a central 

database. In consequence, the reduction in health and welfare problems would lead to a 

more efficient and sustainable production in the long term (Berckmans, 2014; Sassi et al., 

2016; Rowe et al., 2019). 

In this sense, a large number of factors are considered sources of stress in poultry 

production, such as environmental deterioration, unsuitable social environments, 

difficulties in accessing essential resources, overcrowding, inadequate temperatures or 

diseases. Nevertheless, many of these factors can be controlled through well-established 

management practices to provide birds an optimal farm conditions (Gomes et al., 2014; 

Sassi et al., 2016; Goo et al., 2019). 

This way, creating a reliable, simple to understand and economically viable precision 

livestock farming system for widespread use could reduce costs and improve animal 

welfare and animals’ resilience at field level. Moreover, due to the important influence 

on animal health and productivity of microbiota composition, combining these 

technological advances with the development of cost-effective and straightforward 

molecular techniques that allow an understanding of the evolution of microbiota during 

the growing period and the effect of management practices on its modulation, could help 

make decisions about the future of the poultry sector (Stanley et al., 2014; Sassi et al., 

2016; Hasan and Yang, 2019; Rowe et al., 2019). 

1.4 Study cornerstone 

In this context, poultry is one of the most important production sectors worldwide (OECD 

and FAO, 2020), which is in constant development to meet these consumer demands 

(FAO, 2020, 2021). However, current consumer awareness regarding animal welfare, 
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sustainability, food safety and AMR spread, all considered under the ‘One Health’ 

approach, requires the implementation of alternative production systems (Sassi et al., 

2016).  

The alternatives proposed are focused on the improvement of all dimensions of the 

production chain, including genetic breeds selected for their ability to deal with the 

natural environment, but also maintaining an adequate growth rate, and the improvement 

of environmental conditions and thus animal welfare, and metagenomic studies to better 

control farm and animal health parameters. 

However, to be able to assess the effectiveness of these alternative farm management 

techniques, it is necessary to have a better knowledge of the evolution of microbiota 

composition and the epidemiology of AMR in animal production (Sirri et al., 2011; Lusk, 

2018b).  

In this context, the following chapters were designed to assess the effect of different farm 

management techniques on microbiota development and AMR dynamics during the 

growing period in poultry production. 
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The general objective of this doctoral thesis was to evaluate the effect of improving 

animal welfare in poultry production on the microbiota composition development, AMR 

dynamics and Salmonella epidemiology. To achieve this goal, two different experiments 

were performed. 

Firstly, the effect of the genetic breed was studied by comparing a commercial fast-

growing breed vs. an alternative slow-growing breed, reared under their respective 

management systems. For this purpose, the following objectives were proposed: 

1. To characterise the caecal microbiota in two different broiler management 

systems, fast and slow-growing, during their respective growing periods, using 

16S rRNA sequencing analysis. 

 

2. To investigate the AMR and MDR dynamics in two genetic poultry breeds, fast-

growing and slow-growing, during the growing period, using commensal E. coli 

as sentinel bacterium. 

Secondly, the effect of the farm management conditions was evaluated by comparing 

commercial European density and ventilation conditions vs. improved conditions in a 

commercial fast-growing breed. To this end, the following objectives were proposed: 

3. To analyse the influence on microbiota balance of broilers in standardised 

commercial farm conditions or under improved farm conditions, using 16S rRNA 

sequencing analysis. 

 

4. To evaluate the AMR and MDR dynamics during growing period under two 

different management conditions (commercial vs. optimal), using E. coli as 

sentinel bacterium. 

 

5. To investigate the development of S. Infantis AMR during the broiler growing 

period, according to density and ventilation management. 
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3.1 Effect of the genetic breed on intestinal microbiota and 
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3.1.1.1 Abstract 

Caecal microbiota and its modulation play an important role in poultry health, 

productivity and disease control. Moreover, due to the emergence of antimicrobial-

resistant bacteria, society is pressing for a reduction in AB administration by finding 

effective alternatives at farm level, such as less intensified production systems. Hence, 

the aim of this study was to characterise the caecal microbiota in two different broiler 

management systems, fast and slow-growing, using 16S rRNA sequencing analysis. To 

this end 576 broilers were reared in two different management systems (fast and slow-

growing). Results showed that Firmicutes represented the dominant phylum for both 

systems. At the onset, Proteobacteria was the second prevalent phylum for fast and slow-

growing breeds, outnumbering the Bacteroidetes. However, during the rest of the 

production cycle, Bacteroidetes was more abundant than Proteobacteria in both groups. 

Finally, regardless of the management system, the most predominant genera identified 

were Oscillospira spp., Ruminococcus spp., Coprococcus spp., Lactobacillus spp. and 

Bacteroides spp. In conclusion, fast and slow-growing broiler microbiota is in constant 

development throughout rearing, being relatively stable at 21 days of age. Regarding the 

genus, it should be noted that the three most abundant groups for both systems, 

Ruminococcus spp., Lactobacillus spp. and Bacteroides spp., are related to better 

productive performance and intestinal health. 
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3.1.1.2 Introduction 

Microbiota is defined as the microbial community, including commensal, symbiotic and 

pathogenic microorganisms, which colonise different areas of animals and have an 

important influence on animal health, productivity and disease control (Oakley et al., 

2014; Stanley et al., 2014; Pourabedin and Zhao, 2015; Sender et al., 2016; Banerjee et 

al., 2018; Clavijo and Flórez, 2018; Pandit et al., 2018; Shang et al., 2018; Carrasco et 

al., 2019). Hence, the presence of beneficial microbiota plays an important role in 

production, protection from pathogens, control of epithelial cell proliferation and 

differentiation, detoxification (controlling the behavioural and neurological functions of 

the host) and modulation of the immune system (Sekirov et al., 2010; Clavijo and Flórez, 

2018; Carrasco et al., 2019). 

Principal factors affecting the microbiota are age, breed, maternal elements, sex, diet, 

housing, hygiene, temperature, litter, AB administration and gastrointestinal location 

(Clavijo and Flórez, 2018; Kers et al., 2018). Referring to the last factor mentioned, the 

caecum is described as the organ with the greatest taxonomic diversity and abundance, 

which retains food for the longest period, with the greatest water absorption, and it is 

responsible for urea regulation and carbohydrates fermentation (Clavijo and Flórez, 

2018). 

Moreover, due to the emergence of antimicrobial-resistant bacteria, society is pressing 

for a reduction in AB administration by finding effective alternatives to control infectious 

diseases at farm level (WHO, 2014; Alós, 2015; Gadde et al., 2017; Montoro-Dasi et al., 

2020). Some of these alternatives are feed additives (prebiotics, probiotics, symbiotics, 

organic acids, enzymes, phytogenics and metals), alternative medical treatments 

(antibacterial vaccines, immunomodulatory agents, antimicrobial peptides and 

bacteriophages) and, finally, different, less intensified broiler management systems 

(Hancock et al., 2012; Cheng et al., 2014; Castellini and Dal Bosco, 2017; Polycarpo et 

al., 2017; Suresh et al., 2017; Sevilla-Navarro et al., 2018; Alagawany et al., 2018). 

Although the beneficial effects of many of these alternatives have been demonstrated in 

vitro, the general consensus is that the effect of these products depends on the farm, 

farmer management and animal characteristics, such as the breed selected (Gadde et al., 

2017; Kogut et al., 2017; Kers et al., 2018). 
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The variability obtained in different studies highlights the need to know, under production 

conditions, how the microbiota evolves, which could assist in decision-making in situ, 

especially at critical moments of the production period. For example, when the broiler 

reaches the farm from the incubator, an adaptation moment that will mark the 

development of the production cycle (Pedroso et al., 2005; Oakley et al., 2013; Kers et 

al., 2018; Carrasco et al., 2019; Richards et al., 2019); at the stage when the immune and 

digestive system is already mature, and therefore, will determine the potential of the breed 

in terms of growth and conversion (Brisbin et al., 2008; Shang et al., 2018; Xi et al., 

2019); or at the end of the cycle, a key moment, as it is the step before the animals are 

transferred to the slaughterhouse. The microbiota has been seen to be an important source 

of external and internal contamination of the carcass by bacteria of such great importance 

as Salmonella and Campylobacter during loading, transport and slaughter (Rasschaert et 

al., 2008; Ellerbroek et al., 2010; Kogut, 2019; Sevilla-Navarro et al., 2020). Therefore, 

having a broad knowledge of this composition throughout the cycle can help the sector 

choose the different control measures to be applied during rearing, which enhance the 

presence of beneficial microorganisms, as well as the immune system, and can control 

and even eliminate the presence of pathogenic microorganisms at critical moments in the 

production cycle (Clavijo and Flórez, 2018; Carrasco et al., 2019; Kogut, 2019). 

However, today there is still a need to develop cost-effective and straightforward 

molecular techniques that can be used for this purpose at field level. 

In this context, the aim of this study was to characterise the caecal microbiota in two 

different broiler management systems, fast and slow-growing, during their respective 

growing periods, using 16S rRNA sequencing analysis. 

3.1.1.3 Material and methods 

In this experiment, all animals were handled according to the principles of animal care 

published by Spanish Royal Decree 53/2013 (BOE, 2013). 

3.1.1.3.1 Experiment design  

The study was performed in an experimental poultry house in the Centre for Animal 

Research and Technology (CITA-IVIA, in its Spanish acronym, Centro de Investigación 

y Tecnología Animal – Instituto Valenciano de Investigaciones Agrarias, Segorbe, 
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Spain). To this end, 576 broilers (males and females) provided from the same hatchery 

were randomly housed in two identical poultry rooms (replicates A and B) and 288 

animals were housed in each room (144 fast and 144 slow-growing breeds). In addition, 

animals were distributed in 24 pens (12 pens for each group, fast and slow-growing 

broiler management system) of 1.3 m2 in a final stocking density of 35 kg/m2, with wood 

shavings as bedding material (Figure 13). 

 
Figure 13. Animals’ housing scheme in experiment 1. FG: Fast-growing breed; SG: Slow-growing 

breed. 

Two management systems were evaluated: fast-growing and slow-growing, and two 

commercial breeds were used (Ross® and Hubbard®, respectively). The fast-growing 

management is characterised by using and efficient feed conversion and good meat yield 

breed (Ross, 2019), with the appropriate feed, and an early slaughter age (42 days). In 

contrast, the slow-growing management system is a lees intensified type of production, 

focused on the criteria of animal welfare and absence of ABs (Valls, 2017), with a 

different feed and a later slaughter age (63 days) (Figure 14). 
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Figure 14. Experiment design management systems scheme in experiment 1. 

To simulate the real conditions of broiler production, the houses were supplied with 

programmable electric lighting, automated electric heating and forced ventilation. The 

environmental temperature was set at 32 °C on arrival day and gradually reduced to 19 

°C by 41 days post hatch. The birds received drinking water and were fed ad libitum. 

Nutritional and product safety analysis were assessed before the arrival of animals in the 

Poultry Quality and Animal Feed Centre of the Valencia Region (CECAV, in its Spanish 

acronym, Centro de Calidad Avícola y Alimentación Animal de la Comunidad 

Valenciana, Castellón, Spain). Two different age commercial diets were offered to the 

animals: from arrival until 21 days post hatch, chicks were fed a pelleted starter diet, and 

from 21 days old to the slaughter day a pelleted grower diet was offered to animals. The 

diets for each management system were formulated to meet each breed metabolic 

requirements and to provide equal nutrient profiles (Santomá and Mateos, 2018). The 

starter diet was the same for both breeds (Camperbroiler iniciación, Alimentación Animal 

Nanta, Valencia, Spain), while the grower feed was the standard diet specific for each 

one: A-32 broiler and A-80 Pollos crecimiento (Alimentación Animal Nanta, Valencia, 

Spain) for fast-growing and slow-growing breed, respectively. Nutritional composition 

of the diets has been detailed in Table 1. Only one batch of feed per age (starter and 

grower) was manufactured. Moreover, no coccidiostats or antimicrobials were added to 

either diet, and high biosecurity levels were maintained in the experimental poultry house 

during the rearing. Mortality rates and diarrhoea presence were recorded daily. Finally, 

animals were weighed at weekly intervals and feed consumption per pen was recorded. 
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Table 1. Composition of starter and grower diets for FG and SG breeds. 

Analytical 
constituents 

Diet 
Starter (%) Grower FG (%) Grower SG (%) 

Crude fat 3.5 3.1 3.8 

Crude protein 20.5 19.4 18.0 

Crude fibre 2.6 3.1 3.2 

Crude ash 6.6 5.0 5.5 

Lysine 1.14 1.13 0.94 

Methionine 0.62 0.51 0.40 

Calcium 1.00 0.78 1.00 

Phosphorus 0.69 0.51 0.43 

Sodium 0.15 0.14 0.17 

Ingredients 

Corn, soy flour, wheat, soy 
oil, calcium carbonate, 

monocalcium phosphate, 
sodium chloride 

Corn, soy flour, rice bran, 
calcium carbonate, sodium 

chloride 

Wheat, soy flour, barley, 
soy oil, calcium carbonate, 
monocalcium phosphate, 
sodium chloride, sodium 

bicarbonate 
Starter (%): percentage of analytical constituents for starter diet, Grower FG (%): percentage of analytical 
constituents for grower diet of fast-growing breed, Grower SG (%): percentage of analytical constituents 
for grower diet of slow-growing breed. 

3.1.1.3.2 Sample collection 

To assess the development of microbiota composition throughout the growing period, 

animals from each experimental group were randomly selected and caecal samples were 

collected at different times of the growing period: on arrival day (1day), at mid-period 

(21 days for both groups) and before slaughter (42 days of age in fast-growing, and 63 

days in slow-growing). On arrival day, 30 animals per group (fast or slow-growing) were 

selected and sampled just before being assigned to the houses (n=30/group). Later, at 

mid-period, and before slaughter, caecal samples from 30 animals per group and house 

were collected again at each sampling moment (n=60/group/sampling moment). Caecal 

samples were taken individually and placed in sterile jars. The samples were processed 

immediately after collection (Figure 15). 



CHAPTER III. EXPERIMENTAL CHAPTERS 
 

 71 

 
Figure 15. Sample collection scheme in experiment 1. 

3.1.1.3.3 DNA extraction 

Caecal content was removed and homogenised. On the first day of rearing, five pools of 

six animals from each experimental group were prepared (n=5/group). Then, for the mid- 

and end period, five pools of six animals from each group and house were made 

(n=10/group/sampling moment). DNA of pool content was extracted according to the 

manufacturer’s instructions (QIAamp Power Fecal DNA kit, Werfen, Barcelona, Spain) 

and frozen at -80 °C for shipment to the Centre for Biomedical Research of La Rioja 

(CIBIR, in its Spanish acronym, Logroño, Spain). 

3.1.1.3.4 16S rRNA sequencing analysis 

First, all samples received were analysed in a Fragment Analyzer (Genomic DNA 50Kb 

kit, AATI) to ensure their integrity. Additionally, the initial DNA concentration was 

measured by means of a Qubit fluorometer (dsDNA HS Assay kit, Invitrogen). From 12.5 

ng of DNA (evaluated in Qubit) of each sample, the library was prepared following the 

instructions of the 16S rRNA Metagenomic Sequencing Library Preparation (Illumina) 

protocol 

(https://support.illumina.com/documents/documentation/chemistry_documentation/16s/

16s-metagenomic-library-prep-guide-15044223-b.pdf). Primer sequences cover the V3-

V4 regions of the 16S rRNA gene. The following primers also include the Illumina 

adapters: 16S Amplicon PCR Forward Primer = 5’ 
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(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG

) and 16S Amplicon PCR Reverse Primer = 5’ 

(GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTA

ATCC). The sequencing run was performed in a MiSeq (Illumina) system in 2x300 bp 

format. 

The quality of the raw unprocessed reads was evaluated using the FastQC software 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). After removal of adapters 

by Trim Galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), the 

quality of clean reads was re-evaluated with FastQC. Then, because the fragments 

sequenced for each of the samples are overlapped in their central region, the V3-V4 

region of the 16S rRNA gene was partially reconstructed into fragments of approximately 

550-580bp. The Operational Taxonomic Unit (I) picking and analysis was performed 

with QIIME (v1.9.1) pipeline (Caporaso et al., 2010), following the methodology ‘pick 

open reference OTUs’ against the taxonomy reference base Greengenes 13.8 at 97% 

nucleotide identity. Finally, InteractiVenn software was used for Venn diagram 

construction (Heberle et al., 2015). 

Calculation of the alpha diversity indexes was done by QIIME (v1.9.1), which generates 

multiple rarefactions on the I table at different sequencing depths, calculates the alpha 

diversity indexes at each depth, and finally coheres the data, generating rarefaction graphs 

for each index. To Identify OTUs with differential abundance in this study, the analysis 

was performed using two tests: a non-parametric analysis (Kruskal-Wallis) and a 

parametric test (MetagenomeSeq). In both cases, analysis set out from the standardised 

and filtered table of OTUs to eliminate those OTUs that may be spurious. Analysis was 

carried out at three taxonomic levels: Phylum, Genera and OTU. Then, the alpha diversity 

indexes were statistically compared between groups of samples through the Python script 

‘compare_alpha_diversity.py’ included in the QIIME v1.9.1 package. It performs a two-

sample t-test by using by default, as in our case, a non-parametric (Monte Carlo) method 

and permutation value of 999. The t-test value and a P-value (Bonferroni correction) were 

obtained for each couple of defined groups. In this study, a rarefaction depth of 72 060 

reads were selected for this analysis (Qiime, n.d.). 

Beta diversity was evaluated based on indices or coefficients of similarity, dissimilarity 

or distance between the samples from qualitative (presence/absence of OTUs) or 
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quantitative (proportional abundance of each OTU) data. The OTU filtering and 

normalisation from the OTU table was performed using the QIIME v1.9.1 protocol. A 

threshold of 0.01% was applied, meaning that the OTU sequences with an abundance 

below the 0.01% are assigned as spurious sequences, and therefore removed from the 

analysis. The OTU table normalisation, applying the Cumulative Sum Scaling method 

through the MetagenomeSeq package was chosen as an alternative to the rarefaction one, 

according to previous studies (Paulson et al., 2013; McMurdie and Holmes, 2014). In 

QIIME’s metagenomics protocol, beta diversity was measured through a distance or 

dissimilarity matrix between each pair of samples. This matrix was visualised with 

Principal Coordinate Analysis (PCoA) graphs in 2D and 3D, which allow analysis of the 

distance between each pair of samples.  

Moreover, to analyse the statistical significance of sample groupings by using beta 

diversity distance matrices, the ‘compare_categories.py’ Qiime v1.9.1 script was used. 

This script, which uses the R vegan and ape packages, allows analysis of the strength and 

statistical significance of sample groupings. Several methods are available, and two of 

them were selected for this study: ANOSIM and Adonis. Both methods were applied to 

the three different calculated matrices (Bray-Curtis, Unweighted Unifrac and Weighted 

Unifrac).  

3.1.1.3.5 Data availability 

Bioproject: PRJNA612272: Assessment of animal husbandry and environmental control 

as alternatives to antibiotics use in broiler and growing rabbit production. Effect on multi-

resistances. 

BioSample: SAMN14365530: Fast and slow-growing broiler breeds. Caecal microbiota 

characterisation. 

3.1.1.4 Results 

During this study, a total of 50 caecal pools (25 per experimental group) were collected, 

processed and sequenced. No clinical signs were observed during rearing, and the 

productive parameters obtained were in accordance with the breed standards (Table 2). 

There were no statistical differences between replicates (P-value>0.05). 
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Table 2. Weight of the animals (weight±s.d.) and conversion rate (CR±s.d.) during 
the productive cycle for FG and SG management systems. 

 FG SG 

Days of life Weight (g) CR Weight CR 

0 47.20±0.98  41.31±1.24  

7 184.80±8.92 1.16±0.10 146.05±6.25 1.26±0.14 

14 492.90±44.81 1.25±0.18 368.23±43.77 1.29±0.35 

21 823.32±41.88 1.23±0.16 547.21±18.42 1.22±0.63 

28 1503.41±77.66 1.30±0.15 936.98±31.20 1.34±0.44 

35 2043.72±163.78 2.73±0.74 1283.64±93.16 2.70±0.83 

42 2605.91±242.06 3.06±1.30 1631.83±105.98 3.29±1.07 

49   2049.22±146.00 3.05±1.08 

56   2439.40±183.25 3.17±1.76 

63   2776.33±181.86 4.34±1.99 

FG: Fast-growing breed, SG: Slow-growing breed, CR: conversion rate. 

 

3.1.1.4.1 rRNA profiling of fast and slow-growing management systems 

The MiSeq sequencing of the 50 samples produced a total of 14 143 246 sequencing reads 

with an average of 282 864.9 reads per sample. Quality and chimera filtering produced a 

total of 12 661 675 filtered reads with an average of 253 233.5 reads per sample and 

ranging from 109 447 to 356 331 reads. 

Assessment of rarefaction curves based on the Chao1, Shannon, Simpson and Observed 

OTUs biodiversity indexes calculated for the six sequence read groups (day-old chicks, 

mid-period and slaughter day results for fast-growing and SG management systems) 

indicated that four of the curves tended to reach a plateau (Table S1, Table S2, Table S3 

and Table S4). However, samples from groups 1 and 2 (day-old chicks from both groups) 

are at the limit of the rarefaction, leaving a rarefaction number of 72 060 reads (Figure 

16). 
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Figure 16. Evaluation of alpha diversity in fast and slow-growing management systems using 
different calculation measures. A: Chao 1. B: Shannon. C: Simpson. D: Observed OUTs. AD SG: 
Slow-growing breed at arrival day; AD FG: Fast-growing breed at arrival day; MP SG: Slow-
growing breed at mid-period; MP FG: Fast-growing breed at mid-period; E FG: Fast-growing breed 
at the end of the growing period; E SG: Slow-growing breed at the end of the growing period. 

The Chao1 alpha diversity index reveals a notable difference between the caecal 

microbiota depending on the moment of sampling (arrival, mid-, end period) (Table 3). 

For the fast-growing management system, statistically significant differences (P-

value<0.05) were found between sampling moments. Samples from day-old chicks (88.3) 

displayed a lower level of complexity of the microbiota compared to that found at mid-

period (384.4), and samples from mid-period animals displayed a lower level of 

complexity than the samples from the end of the growing period (420.3). Similarly, for 

the slow-growing management system, alpha diversity index increased throughout the 

growing period with statistically significant differences between sampling moments, with 

a result of 111.9, 373.8 and 447.2 on arrival day, at mid-period and at the end of the 

growing period, respectively. 
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Table 3. Alpha diversity according to management system (FG or SG) and sampling 
moment based on Chao 1 index. 

Sampling moment FG SG 

Arrival day 88.3a 111.9d 

Mid-period 384.4b 373.8e 

End period 420.3c 447.2f 

FG: Fast-growing breed. SG: Slow-growing breed. a, b, c: Different superscripts within column FG indicate 
a significant difference within group (P ≤ 0.05). d,e,f: Different superscripts within column SG indicate a 
significant difference within group (P ≤ 0.05). 

3.1.1.4.2 Differential gut microbiota composition 

Inspection of predicted taxonomic profiles at phylum level for all samples based on 

MetagenomeSeq parametric test is summarised in Table 4. This analysis showed that 

Firmicutes represented the dominant phylum of the caecal community in both 

management systems at all sampling times in the production cycle (P-value<0.05). At the 

onset of the growing period, Proteobacteria was the second prevalent phylum for fast and 

slow-growing breeds, outnumbering the Bacteroidetes phylum. However, during the rest 

of the production cycle, Bacteroidetes phylum was more abundant than Proteobacteria 

in both groups.  

For the fast-growing management system, there were statistically significant differences 

between the phyla prevalence and the time of sampling (arrival day, mid-period and end 

period). Proteobacteria and Bacteroidetes phyla were more abundant at the arrival day 

(36.4% and 5%, respectively). However, Firmicutes was the most prevalent phylum at 

mid-period (95.1%). 

For the slow-growing management system, Bacteroidetes (5.7% at arrival day) and 

Firmicutes (95.2% at mid-period) showed the same pattern as in the fast-growing breed. 

However, statistically significant differences were shown between day-old chicks and the 

mid-period percentage of Proteobacteria (32.8% and 1.2%, respectively), which 

subsequently remained stable until the end of the cycle (1.7%). 
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Table 4. Taxonomic profiles at phylum level according to management system (FG 
or SG) and sampling moment based on MetagenomeSeq parametric test. 

Breed FG SG 

Sampling moment AD (%) MP (%) E (%) AD (%) MP (%) E (%) 

Actinobacteria 0.0 0.3 0.5 0.2 0.3 0.4 

Bacteroidetes 5.0a 1.9b 5.7c 5.7l 1.9m 9.3n 

Cyanobacteria 0.0d 0.5d 0.7e 0.0 0.4 1.1 

Firmicutes 58.6f 95.1g 90.3h 61.1o 95.2p 85.6q 

Proteobacteria 36.4i 1.3j 1.5k 32.8r 1.2s 1.7s 

Tenericutes 0.0 0.3 0.6 0.2 0.4 1.1 

Unassigned;NA 0.0 0.6 0.8 0.0 0.6 0.8 

FG: Fast-growing breed; SG: Slow-growing breed; AD (%): Percentage of different phyla at arrival day, 
MP (%): Percentage of different phyla at mid-period, E: Percentage of different phyla at the end of the 
growing period. a- k: Different superscripts indicate a significant difference within each phylum during 
rearing for fast-growing management system (P ≤ 0.05). l- s: Different superscripts indicate a significant 
difference within each phylum during rearing for slow-growing management system (P ≤ 0.05). 

Furthermore, in this study 46 taxa were identified at genus level (Figure 17). Regardless 

of the management system and time point, the most predominant genera identified were 

Oscillospira spp. (7.5%), Ruminococcus spp. (3.6%), Coprococcus spp. (2.9%), 

Lactobacillus spp. (2.5%) and Bacteroides spp. (2.0%). In order to further identify 

microbiota composition for both breeds, we focused on 33 genera, which were shown to 

be present at an average relative abundance of more than 0.5% in at least one sample 

group (Mancabelli et al., 2016). 
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Figure 17. Taxonomic analysis at genus level throughout the growing period. A: Evolution of genera 
throughout the growing period for fast-growing management system (AD: Arrival day; MP: Mid-
period; E: End). B: Evolution of genera throughout the growing period for slow-growing 
management system (AD: Arrival day, MP: Mid-period, E: end). 

In addition, it is important to highlight that 75% (24/32), 93% (40/43) and 97.8% (45/46) 

are common genera for both experimental groups at the beginning, mid- and end period, 

respectively (the different genera are detailed in Table S5). 

For the fast-growing management system, the results of the genera analysis are shown in 

Table 5. At arrival day, predominant bacteria of microbiota were Unclassified members 

(U. m.) of the Enterobacteriaceae family (36.4%), U. m. of Clostridiaceae family (6.2%), 

U. m. of the Ruminococcaceae family (5.7%), U. m. of Lachnospiraceae family (4.9%), 

Clostridium spp. (4.1%), U. m. of Enterococcaceae family (3.7%), Oscillospira spp. 

(3.5%) and Enterococcus spp. (3.0%). At mid-period, the predominant genera in caecal 

samples were U. m. of the Ruminococcaceae family (18.1%), U. m. of Lachnospiraceae 

family (10.4%), Oscillospira spp. (9.6%), Coprococcus spp. (4.0%), Lactobacillus spp. 

(3.9%) and [Ruminococcus] spp. (3.3%). Finally, at the end of the growing period, the 

most prevalent bacteria were U. m. of the Ruminococcaceae family (17.7%), U. m. of 
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Lachnospiraceae family (10.2%), Oscillospira spp. (8.8%), Coprococcus spp. (3.5%) and 

Bacteroides spp. (3.1%). 

For the slow-growing management system, the results of the genera analysis are shown 

in Table 6. The pattern for day-old chicks was similar to that observed at this sampling 

time for the fast-gowing group. The most abundant bacteria were U. m. of the 

Enterobacteriaceae family (32.6%), U. m. of the Ruminococcaceae family (7.5%), U. m. 

of Lachnospiraceae family (6.5%), Oscillospira spp. (5.8%), U. m. of Clostridiaceae 

family (4.8%) and U. m. of Enterococcaceae family (3.6%). At mid-period, predominant 

genera were U. m. of the Ruminococcaceae family (18.4%), U. m. of Lachnospiraceae 

family (10.3%), Oscillospira spp. (9.6%), Coprococcus spp. (3.8%), Lactobacillus spp. 

(3.4%) and [Ruminococcus] spp. (3.3%). Lastly, at slaughter day, U. m. of the 

Ruminococcaceae family (17.0%) were the most abundant bacteria, followed by U. m. of 

Lachnospiraceae family (8.6%), Oscillospira spp. (7.7%), Coprococcus spp. (3.2%), 

Bacteroides spp. (4.1%) and Parabacteroides spp. (3.1%). 
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Table 5. Taxonomic profiles at genus level according to sampling moment in FG 
management system. 

Phylum Family Genus AD (%) MP (%) E (%) 

Unassigned 0.0 0.6 0.8 

Bacteroidetes 

Bacteroidaceae Bacteroides 1.5 0.5 3.1 

Porphyromonadaceae Parabacteroides 1.2 0.4 0.7 

Rikenellaceae - 2.0 1.1 1.2 

Odoribacteraceae Butyricimonas 0.3 0.0 0.7 

Cyanobacteria - - 0.0 0.5 0.7 

Firmicutes 

Planococcaceae - 0.0 0.5 0.4 

Enterococcaceae 
- 3.7 0.0 0.0 

Enterococcus 3.0 0.2 0.1 

Lactobacillaceae Lactobacillus 0.9 3.9 2.8 

- - 0.2 0.5 0.6 

- - 13.7 29.4 28.9 

Christensenellaceae - 0.0 0.2 0.6 

Clostridiaceae 

- 0.6 0.0 0.3 

- 5.6 0.2 0.2 

Clostridium 4.1 0.5 0.5 

Lachnospiraceae 

- 4.9 10.4 10.2 

Blauria 0.7 2.0 2.1 

Coprococcus 1.6 4.0 3.5 

Dorea 0.2 1.4 1.1 

Epulopscium 2.6 0.0 0.0 

[Ruminococcus] 2.5 3.3 2.9 

Ruminococcaceae 

- 5.7 18.1 17.7 

Anaerotruncus 0.0 0.5 0.4 

Faecalibacterium 0.9 1.5 2.0 

Oscillospira 3.5 9.6 8.8 

Ruminococcus 2.1 5.0 4.4 

Erysipelotrichaceae 

- 0.9 0.9 0.4 

Coprobacillus 0.4 0.9 0.5 

cc_115 0.0 0.9 0.6 

Proteobacteria Enterobacteriaceae - 36.4 1.3 1.5 

FG: Fast-growing breed, AD (%): percentage of different genera at arrival day, MP: percentage of different 
genera at mid-period, E: percentage of different genera at end the end of the growing period. 
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Table 6. Taxonomic profiles at genus level according to the sampling moment in SG 
management system. 

Phylum Family Genus AD (%) MP (%) E (%) 

Unassigned 0.0 0.6 0.8 

Bacteroidetes 

Bacteroidaceae Bacteroides 2.6 0.4 4.1 

Porphyromonadaceae Parabacteroides 1.0 0.5 1.1 

Rikenellaceae - 2.0 1.1 3.1 

Odoribacteraceae Butyricimonas 0.0 0.0 1.1 

Cyanobacteria   0.0 0.4 1.1 

Firmicutes 

Planococcaceae - 0.2 0.5 0.4 

Enterococcaceae 
- 3.6 0.0 0.0 

Enterococcus 1.0 0.2 0.4 

Lactobacillaceae Lactobacillus 1.2 3.4 2.9 

- - 0.4 0.6 0.3 

- - 14.6 29.9 30.0 

Clostridiaceae 
- 4.8 0.2 0.3 

Clostridium 2.7 0.4 0.4 

Lachnospiraceae 

- 6.5 10.3 8.6 

Blauria 0.8 1.8 1.5 

Coprococcus 1.6 3.8 3.2 

Dorea 0.8 1.3 0.7 

Epulopscium 2.4 0.0 0.0 

Ruminococcus 2.1 3.3 2.3 

Ruminococcaceae 

- 7.5 18.4 17.0 

Anaerotruncus 0.0 0.5 0.3 

Faecalibacterium 1.5 1.8 1.5 

Oscillospira 5.8 9.6 7.7 

Ruminococcus 1.7 5.1 3.6 

Erysipelotrichaceae 

- 1.0 0.9 0.6 

Coprobacillus 0.4 0.9 0.5 

cc_115 0.0 0.8 0.6 

Proteobacteria Enterobacteriaceae - 32.6 1.2 0.9 

Tenericutes - - 0.2 0.4 0.7 

SG: Slow-growing breed, AD (%): percentage of different genera at arrival day, MP: percentage of different 
genera at mid-period, E: percentage of different genera at end the end of the growing period. 
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Finally, to assess differences in microbiota between sampling moments, beta diversity 

was analysed based on Bray-Curtis dissimilarity, Weighted UniFrac and Unweighted 

UniFrac indexes for these groups, after which the UniFrac distance matrix was 

represented through PCoA. The R2 values obtained depending on the statistical test used 

were: Bray-Curtis R2 = 0.85, Unweighted UniFrac R2 = 0.73 and Weighted UniFrac R2 = 

0.89 (these data are detailed in Table S6). These results support that microbiota diversity 

is significantly affected by the age of animals for both management systems (P-value = 

0.001) (Figure 18). There is a notable difference between day-old chicks and the rest of 

the sampling moments for each group. However, mid-period and end sampling moments 

are also separated in PCoA graphics, indicating that microbiota diversity continued to 

increase, although to a lesser extent, until the end of the growing period. 

 
Figure 18. Evaluation of the beta diversity based on Bray-Curtis dissimilarity between sampling 
moments (arrival day, mid-period and end of the rearing period) for each management system. A: 
Beta diversity represented by PCoA graphic for fast-growing management system. B: Beta diversity 
represented by PCoA graphic for slow-growing management system. PC1: Principal component 1, 
principal component 2. 

3.1.1.5 Discussion 

The present study assessed the caecal microbiota in two different management systems: 

fast-growing and slow-growing, with two different genetic broiler breeds, during their 

respective growing period. In fact, knowing the main microbiota composition during the 

growing period and how management practices could influence its modulation could help 

to take quick decisions at farm level (Wahlström et al., 2016; Hasan and Yang, 2019). In 

this sense, it might be interesting to consider microbiota composition as a biomarker of 

poultry health and productive performance (Pandit et al., 2018; Wang et al., 2018; 

Carrasco et al., 2019). It is well demonstrated that a greater complexity of the gut 
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microbiota is observed as animals grow (Lu et al., 2003; Mohd Shaufi et al., 2015; Ocejo 

et al., 2019). Our findings showed that there is an important change in microbiota 

composition from animals’ arrival to the mid-period, and a less pronounced variation has 

been observed from mid-period to the end of rearing. Microbiota becomes relatively 

stable at 21 days of rearing, coinciding with the gut maturation in broilers (Lu et al., 2003; 

Mohd Shaufi et al., 2015; Richards et al., 2019; Xi et al., 2019). Although some authors 

reported that bacterial diversity in the intestinal tract is higher in breeds with high feed 

efficiency (Stanley et al., 2012; Carrasco et al., 2019), however results of this study 

showed a similar microbiota diversity for both breeds through the production cycle 

(Schokker et al., 2015; Richards et al., 2019). This evidences the importance of flock 

management during the production cycle in terms of microbiota balance control (Qu et 

al., 2008; Kers et al., 2018; Carrasco et al., 2019). It is important that any AB alternative 

introduced in farms, such as feed additives or management practices, should promote 

microbiota development of phyla related to gut health and productive performance. 

Regarding gut microbiota composition, the predominant phyla obtained in this study for 

both management systems were Firmicutes and Bacteroidetes, followed by 

Proteobacteria (Wei et al., 2013; Mohd Shaufi et al., 2015; Carrasco et al., 2019; Xi et 

al., 2019). Colonisation of the gastrointestinal tract starts at the time of hatching (Stanley 

et al., 2014; Carrasco et al., 2019; Rychlik, 2020). At first days of age, it becomes 

successively colonised by Protebacteria, specially by Enterobacteriaceae family, and by 

Firmicutes (Kers et al., 2018). Afterwards, Firmicutes dominate the caecal population, 

followed by Bacteroidetes (Wei et al., 2013; Ballou et al., 2016). Firmicutes, constitutes 

a heterogeneous phylum containing bacterial groups with different metabolic activities, 

and several studies have shown that a high level of this phylum is correlated with good 

intestinal health (Ducatelle et al., 2018; Yacoubi et al., 2018). Bacteroidetes phylum is 

stable through the growing period for both systems, playing an important role in 

converting fermentable starch to simple sugars and these, in turn, to volatile fatty acids to 

meet the energy demand of the host, so their presence could be particularly affected by 

diet components (Lu et al., 2003; Kumar et al., 2018; Rychlik, 2020). At the onset of 

rearing, Proteobacteria are also found in a high concentration for both groups. An 

increment of this phylum is associated with dysbiosis and, consequently, with an increase 

in the presence of zoonotic bacteria belonging to this phylum, such as Salmonella or 

Campylobacter. For this reason, it is important to ensure strict management practices at 
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the start of the growing period, as any stress could produce an increment of this phylum, 

and could result in a higher shedding of pathogenic bacteria and environmental 

contamination throughout rearing (Neal-McKinney et al., 2012; Shin et al., 2015; 

Ducatelle et al., 2018; Carrasco et al., 2019). It is an important concern for poultry sector 

to maintain these bacteria under control from the beginning to the end of rearing, the last 

step before loading, transport and processing of chickens at the slaughterhouse. 

Nowadays, Campylobacter and Salmonella are still the two most important causes of 

zoonotic diseases in Europe, and poultry products are the main source of human infection 

(EFSA and ECDC, 2019). 

At genus level, it is important to highlight that 75%, 93% and 97.8% are common to both 

management systems, at the beginning, mid- and end period, respectively. These results 

could mean that despite the management practices in the field, the microbiota could have 

similar development for both broiler production systems (Zhao et al., 2013; Richards et 

al., 2019). Moreover, although there exist some variations at genus level, results obtained 

in terms of microbiota composition are broadly similar for both management systems. 

According to other authors, slight changes in microbiota composition have not always 

entailed a performance consequence (Torok et al., 2011; Schokker et al., 2015).  

The most predominant genera were Oscillospira spp., Ruminococcus spp., Coprococcus 

spp., Lactobacillus spp. and Bacteroides spp., in line with data reported by other authors 

(Wei et al., 2013; Hasan and Yang, 2019; Xi et al., 2019). These genera are associated 

with higher production rates, so it might be said that high levels of these genera are 

indicators of adequate intestinal health in poultry (Mohd Shaufi et al., 2015; Banerjee et 

al., 2018; Clavijo and Flórez, 2018; Hasan and Yang, 2019). Among these, Ruminococcus 

spp. is known for its ability to degrade complex carbohydrates and thus may have 

contributed to an improved degradation of dietary fibre (Flint et al., 2012; Siegerstetter 

et al., 2017). Moreover, Lactobacillus spp. is an important probiotic in promoting healthy 

gut, as these bacteria are believed to be responsible for starch decomposition and lactate 

fermentation (Mohd Shaufi et al., 2015; Clavijo and Flórez, 2018; Hasan and Yang, 2019; 

Rychlik, 2020). In turn, Bacteroidetes spp. plays an important role in breaking down 

complex molecules to simpler compounds which are also essential for growth of the host 

and gut microbiota development (Flint et al., 2012; Rychlik, 2020). In this aspect, feed 

has a vital influence on genus development (Zhu et al., 2002; Ducatelle et al., 2018; 
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Yadav and Jha, 2019; Jha et al., 2019). In this study, fast-growing birds were fed a corn-

based diet and slow-growing birds were fed a wheat-based one. Different studies support 

that diets based on barley or wheat instead of corn-based ones increased the prevalence 

of Lactobacillus spp. at caeca level (Rodríguez et al., 2012; Yadav and Jha, 2019; 

Paraskeuas and Mountzouris, 2019), but these diets also could favour the proliferation of 

Clostridium perfringens and predispose young chicks to necrotic enteritis (Pan and Yu, 

2014; Chen et al., 2015; Jha et al., 2019). Nevertheless, corn- or soy-based diets could be 

deficient in available phosphorus and supplementation is often necessary (Fernandes et 

al., 1999). Therefore, the most important aspect of diet management is to meet metabolic 

requirements of animals by using a balanced diet formulation (Santomá and Mateos, 

2018; Jha et al., 2019). The application at field level of management techniques that 

produce the correct balance of any group of microorganisms that benefit intestinal health 

could result in animal health and productivity. Likewise, management techniques that 

favour the development of undesirable bacterial groups always need to be discarded. 

In short, there are numerous factors that influence on microbiota composition 

development, and all of them should be valued globally in situ, under its specific 

production characteristics (Kers et al., 2018). Therefore, developing molecular 

techniques that can be applied in the field to measure the balance of the microbiota in 

each specific case could help us assess the impact of different management techniques on 

day-to-day work, and could be a promising line of research for our sector. 

3.1.1.6 Conclusion 

In conclusion, fast and slow-growing broiler microbiota is in constant development 

throughout rearing, being relatively stable at 21 days of age. Firmicutes and 

Proteobacteria are the most abundant phyla at the onset of the production cycle. 

However, while the Firmicutes increased their concentration for the two management 

systems throughout the growing period, the Proteobacteria decreased until the end of the 

cycle. Regarding the genus, it should be noted that the three most abundant groups for 

both systems, Ruminococcus spp., Lactobacillus spp. and Bacteroides spp., are related to 

better productive performance and intestinal health. 
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Table S1. Statistical comparation of alpha diversity between sample groups based on Chao 1 index. 

 

Group1 Group2 Group1 mean Group1 std Group2 mean Group2 std t stat P-value 

FGAD FGMP 88.32 29.03 384.44 16.50 -23.41 1.11e-11 

FGMP FGE 384.42 16.50 420.31 17.86 -4.43 0.00 

SGAD SGMP 111.86 8.60 373.82 15.96 31.93 2.93e-13 

SGMP SGE 373.86 15.96 447.22 4.66 -13.24 1.69e-10 

 
FGAD: fast-growing breed at arrival day; FGMP: fast-growing breed at mid-period; FGE: fast-growing breed at the end of the growing period; SGAD: slow-growing breed at 
arrival day; SGMP: slow-growing breed at mid-period; SGE: slow-growing breed at the end of the growing period. 
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Table S2. Statistical comparation of alpha diversity between sample groups based on Shannon index. 

 

Group1 Group2 Group1 mean Group1 std Group2 mean Group2 std t stat P-value 

FGAD FGMP 1.29e11 0.19 6.69e11 0.21 -4.55e11 2.53e04 

FGMP FGE 6.69e11 0.21 6.21e11 0.23 4.70e11 0.00 

SGAD SGMP 1.51e11 0.13 6.69e11 0.15 6.25e11 0.00 

SGMP SGE 6.69e11 0.15 6.52e11 0.18 2.16e11 0.06 

 

FGAD: fast-growing breed at arrival day; FGMP: fast-growing breed at mid-period; FGE: fast-growing breed at the end of the growing period; SGAD: slow-growing breed at 
arrival day; SGMP: slow-growing breed at mid-period; SGE: slow-growing breed at the end of the growing period. 
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Table S3. Statistical comparation of alpha diversity between sample groups based on Simpson index. 

 

Group1 Group2 Group1 mean Group1 std Group2 mean Group2 std t stat P-value 

FGAD FGMP 0.36 0.06 0.98 0.01 -3.03e11 4.06e02 

FGMP FGE 0.98 0.01 0.96 0.01 3.87e11 0.00 

SGAD SGMP 0.53 0.02 0.98 0.00 5.48e11 1.67e04 

SGMP SGE 0.98 0.00 0.97 0.00 4.04e11 0.00 

 
FGAD: fast-growing breed at arrival day; FGMP: fast-growing breed at mid-period; FGE: fast-growing breed at the end of the growing period; SGAD: slow-growing breed at 
arrival day; SGMP: slow-growing breed at mid-period; SGE: slow-growing breed at the end of the growing period. 
 

 

 

 

 

 

 

 

 

 

 

 



 

 98 

Table S4. Statistical comparation of alpha diversity between sample groups based on Observed OTUs index. 

 

Group1 Group2 Group1 mean Group1 std Group2 mean Group2 std t stat P-value 

FGAD FGMP 41.18 1.05e10 374.46 1.72e10 -3.70e11 3.09e03 

FGMP FGE 374.46 1.72e10 407.56 1.93e11 -3.84e11 0.00 

SGAD SGMP 46.92 5.28e11 363.38 1.60e11 4.01e11 2.55e03 

SGMP SGE 363.38 1.60e11 437.72 5.55e10 -1.31e11 1.85e00 

 
FGAD: fast-growing breed at arrival day; FGMP: fast-growing breed at mid-period; FGE: fast-growing breed at the end of the growing period; SGAD: slow-growing breed at 
arrival day; SGMP: slow-growing breed at mid-period; SGE: slow-growing breed at the end of the growing period. 
 

 

 

 

 

 

 

 

 

 

 



 

 99 

Table S5. Different taxonomic profiles at genus level according to the moment of the growing period in fast (FG) and slow-growing (SG) 

breeds. 

 
Sampling moment Breed Phylum Class Order Family Genus Percentage 

Arrival day 

FG 

Bacteroidetes Bacteroidia Bacteroidales [Odoribacteraceae] Butyricimonas 0.27% 

Firmicutes Clostridia Clostridiales Peptostreptococcaceae  0.22% 

Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospira 0.45% 

SG 

Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium 0.20% 

Firmicutes Bacilli Bacillales Planococcaceae NA 0.20% 

Firmicutes Clostridia SHA-98 - - 0.24% 

Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Sutterella 0.20% 

Tenericutes Mollicutes RF39 - - 0.19% 

Mid-period 
FG 

Firmicutes Clostridia SHA-98 - - 0.02% 

Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Sutterella 0.01% 

SG Proteobacteria Alphaproteobacteria RF32 - - 0.01% 

End SG Firmicutes Clostridia Clostridiales Lachnospiraceae Epulopiscium 0.01% 
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Table S6. Statistical comparation between beta-diversity indexes calculated according the different methods. 

 

Beta-diversity matrix 
Adonis test ANOSIM 

F-stat R2 P-value Statistic value P-value 

Bray-Curtis 49.076 0.84795 0.001 0.79932682926829257 0.001 

Unweighted-Unifrac 23.453 0.72716 0.001 0.70287804878048776 0.001 

Weighted-Unifrac 69.523 0.88764 0.001 0.82837073170731712 0.001 
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3.1.2 The dynamic of antibiotic resistance in commensal Escherichia coli 

throughout the growing period in broiler chickens: fast-growing vs. slow-growing 

breeds 

 

 

 

 

 

 

 

 

 

 

 

 

 
L. Montoro-Dasi, A. Villagra, S. Sevilla-Navarro, M.T. Pérez-Gracia, S. Vega, C. Marin. 2020. The 
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3.1.2.1 Abstract 

AMR is an important threat to public health worldwide. Furthermore, different studies 

have demonstrated a close association between AB use in animal production and AMR 

in humans. It is well known that it is necessary to reduce AB administration in farms by 

finding effective alternative treatments, using more resistant breeds and improving animal 

welfare. However, to be able to assess the alternatives proposed, it is essential to study 

the epidemiology of AMR under production conditions. Hence, the aim of this study was 

to investigate the AMR dynamic in two genetic poultry breeds during the growing period. 

The study was performed in two experimental poultry houses to simulate real production 

conditions and no ABs were administered during the growing period. In addition, two 

poultry breeds were used, fast-growing and slow-growing. To evaluate AMR evolution, 

E. coli was selected as indicator bacterium. To this end, animals from each experimental 

group were sampled at different times: on day of arrival, at mid-period and at slaughter 

day. In the laboratory, caecal content was removed and inoculated in selective media. 

Then, biochemical tests were performed to confirm E. coli. Finally, AB susceptibility was 

assessed according to Decision 652/2013. At the onset of the cycle, significant differences 

were observed between breeds, as the E. coli strains isolated from fast-growing day-old-

chicks showed higher AMR rates. However, at the end of the period, no significant 

differences were found between breeds and their presence of resistant bacteria (above 

95%). Therefore, although no ABs were administered during the growing period, a high 

level of AMR at slaughter day was demonstrated. Further studies are necessary to 

determine the main risk factors that increase the level of AMR throughout the productive 

cycle in broiler chickens. In conclusion, it is important to highlight that although it is 

crucial to control both AB use and animal welfare during the growing period, measures 

should be taken at all levels of the production chain. 
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3.1.2.2 Introduction 

AMR has become a major threat for public health worldwide (WHO, 2014). One of the 

main factors contributing to the emergence of resistant bacteria has been the massive use 

of AMAs for growth promotion and disease prevention for several years in animal 

production (Guo et al., 2018; Mehdi et al., 2018). However, although nowadays the use 

of AB in poultry is a controlled practice (ESVAC, 2017), different studies demonstrated 

a close association between the AB use in animal production and AMR in humans 

(Marshall and Levy, 2011; Chang et al., 2014; Founou et al., 2016; Horigan et al., 2016; 

Liu et al., 2016; Sharma et al., 2018) by the transfer of resistance from animal products 

to humans (Chantziaras et al., 2013). As a result, commonly used ABs have become 

ineffective in the treatment of a wide variety of bacterial diseases (Khurana et al., 2017; 

EFSA and ECDC, 2018). For this reason, society is pressing for a reduction in AB 

administration and greater efforts to find effective alternatives to control infectious 

diseases in farms (Alós, 2015; Gadde et al., 2017).  

Consequently, several classes of alternatives have been proposed and tested in poultry 

production, including probiotics, prebiotics, symbiotics, organic acids, enzymes, 

phytogenics, metals, antibacterial vaccines, immunomodulatory agents, antimicrobial 

peptides, bacteriophages and different broiler chicken growth systems (Hancock et al., 

2012; Cheng et al., 2014; Castellini and Dal Bosco, 2017; Polycarpo et al., 2017; Suresh 

et al., 2018; Alagawany et al., 2018; Sevilla-Navarro et al., 2018).  

In response to the social pressure to reduce AB administration and find effective 

alternatives to control the presence of bacterial infections in farms (Alós, 2015; Gadde et 

al., 2017; Lusk, 2018a), the alternative poultry production system (organic, free-range) is 

founded on a different approach, keeping sustainability and animal welfare in 

consideration. Producers are therefore motivated to choose breeds selected for their 

ability to deal with the natural environment (Castellini and Dal Bosco, 2017). 

However, to be able to assess the effectiveness of these alternatives it is necessary to have 

better knowledge of the epidemiology of AMR throughout the growing period under 

animal production conditions (Sirri et al., 2011; Lusk, 2018b). For this purpose, 

commensal E. coli has typically been selected as AMR sentinel, as it provides valuable 
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data and constitutes a reservoir of resistance genes, which can spread horizontally to 

zoonotic and other bacteria (EFSA and ECDC, 2019). 

Hence, the objective of this study was to investigate the AMR and MDR dynamic in two 

genetic poultry breeds, fast-growing and slow-growing, during the growing period, using 

commensal E. coli as sentinel bacterium. 

3.1.2.3 Material and methods 

In this experiment, all animals were handled according to the principles of animal care 

published by Spanish Royal Decree 53/2013 (BOE, 2013). 

3.1.2.3.1 Experiment design  

The study was performed in two poultry houses of an experimental poultry house in the 

CITA-IVIA, to simulate the real conditions of poultry production. Two commercial 

breeds were used, one fast-growing (Ross®) and the other slow-growing (Hubbard®), 

the latter being a more animal-friendly alternative and increasingly demanded by 

consumers. The fast-growing breed is characterised by efficient feed conversion and a 

good meat yield (Ross, 2019). In contrast, the slow-growing breed is focused on the 

criteria of animal welfare, meat quality and absence of ABs (Valls, 2017). 

To this end, 576 broilers (males and females) provided from the same hatchery were 

located in two identical poultry rooms (replica A and B) and 288 animals were housed in 

each room (144 of fast-growing and 144 for slow-growing). The animals were randomly 

housed in 24 pens (12 pens for each breed) of 1.3 m2 in a final stocking density of 35 

kg/m2, with wood shavings as bedding material. The house was supplied with 

programmable electrical lights, automated electric heating and forced ventilation. The 

environmental temperature was gradually decreased from 32 ºC (1 day) to 19 ºC (42 days) 

in line with common practice in poultry production. The experimental pelleted feed was 

commercial feed according to standard diets for broilers. Two different age diets were 

offered to the birds: starter (1 day to 21 days, Camperbroiler iniciación, Alimentación 

Animal Nanta, Valencia, Spain) and grower (21 days to 42/63 days, A-32 broiler and A-

80 Pollos crecimiento, Alimentación Animal Nanta, Valencia, Spain, for fast-growing 

and slow-growing breed, respectively). Only one batch of feed per age (starter and 

grower) was manufactured. The starter diet was the same for both breeds, while the 
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grower feed was the standard diet specific for each breed. Nutritional and product analysis 

were assessed before the arrival of animals. Feed was weighed, manually distributed and 

added ad libitum. Furthermore, the mortality and the presence of diarrhoea were recorded 

daily. Finally, animals were weighed at weekly intervals and feed consumption per pen 

was recorded. 

3.1.2.3.2 Sample collection  

To assess the dynamic of AMR rates in the microbiota of broilers throughout the growing 

period, commensal E. coli was selected as sentinel (EFSA and ECDC, 2018). To this end, 

30 animals from each experimental group were randomly selected and sampled at 

different points during the growing period: on arrival (day-old chicks), at the mid-period 

(21 days old) and before slaughter (42 days of age in fast-growing, and 63 days in slow-

growing). Caecum samples were taken individually and placed in sterile jars. The samples 

were processed within 24h after collection. 

3.1.2.3.3 E. coli isolation 

Caecal content was removed and homogenised. Afterwards, pools of six animals from 

each replica were prepared (5 pools/treatment) and the pools content was cultured directly 

onto a non-specific medium: blood agar (Scharlab, S.L., Barcelona, Spain) in aerobic and 

anaerobic conditions, and 2 Gram-negative specific media: MacConkey agar (Scharlab, 

S.L., Barcelona, Spain) and Coliform chromogenic agar (Scharlab, S.L., Barcelona, 

Spain). Agar plates were incubated at 37 ºC ± 1 ºC for 24h. After incubation, suspected 

colonies were streaked into a nutrient medium (Scharlab, S.L., Barcelona, Spain) and 

incubated at 37 ºC ± 1 ºC for 24h. Then, API-20E test (Biomerieux, S.L., Barcelona, 

Spain) was performed to confirm E. coli. 

3.1.2.3.4 Antimicrobial susceptibility testing 

Antimicrobial susceptibility was tested according to the European Committee on 

Antimicrobial Susceptibility Testing (EUCAST) guidelines (Matuschek, 2014). The 

source for zone diameters used for interpretation of the test was: 

http://www.eucast.org/clinical_breakpoints/. E. coli strains were inoculated into Mueller-

Hinton agar (Scharlab, S.L., Barcelona, Spain) to form a bacterial lawn, the AB discs 

were added and plates were incubated at 37 ºC for 24h. The ABs selected were those set 
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forth in Decision 652/2013 (EC, 2013), including two quinolones: ciprofloxacin (CIP, 5 

µg) and nalidixic acid (NAL, 30 µg); three b-lactams: ampicillin (AMP, 10 µg), 

cefotaxime (CTX, 30 µg) and ceftazidime (CAZ, 30 µg); one phenicol: chloramphenicol 

(CHL, 5 µg); one potentiated sulfonamide: trimethoprim-sulfamethoxazole (SXT, 

1.25/23.75 µg); one polymyxin: colistin (CST, 10 µg); one macrolide: azithromycin 

(AZM, 15 µg); one glycylcycline: tigecycline (TGC, 15 µg); one aminoglycoside: 

gentamycin (GEN, 10 µg), and one pyrimidine: trimethoprim (TMP, 5 µg). MDR was 

defined as acquired resistance to at least one agent in two or more AMA classes (EFSA 

and ECDC, 2016). 

3.1.2.3.5 Statistical analysis 

A Generalised Lineal Model (GLM) was used to compare the AMR rates between breeds 

(fast-growing vs slow-growing breed) and between ABs throughout the growing period 

(beginning, mid-period and slaughter day). A P-value<0.05 was considered to indicate a 

statistically significant difference. Analyses were carried out using a commercially 

available software application (SPSS 24.0 software package; SPSS Inc., Chicago, IL, 

2002). 

3.1.2.4 Results 

During this study, all the productive parameters obtained corresponded to the breed 

standards and no clinical signs were observed. During growing, a total of 50 pools of 

caecal content were examined in four agar plates, of which 199 (n=200) were culture 

positive for E. coli (100 for fast-growing breed and 99 for slow-growing breed). 

3.1.2.4.1 Prevalence of antimicrobial resistance 

AMR rates of E. coli isolates from both breeds are presented in Figure 19. For all strains 

isolated, 98.0% (n=98) and 91.9% (n=91) from fast and slow-growing breed, 

respectively, were resistant to at least one out of the twelve ABs tested. Moreover, 

statistically significant differences in AMR rates were shown throughout the growing 

period according to the breed studied (P-value<0.05). At the onset of the growing period, 

100.0% (n=12) and 63.6% (n=11) of the isolates from fast and slow-growing breed were 

AB resistant and the strains isolated from fast-growing animals presented a higher AMR 

rate, with statistical differences between breeds (P-value<0.05). However, by the end of 
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the growth period these differences disappeared; the fast-growing breed reached an AMR 

rate of 95.6% and the slow-growing breed reached an AMR rate of 96.2%. 

 

 
Figure 19. Antimicrobial resistant E. coli strains dynamic in fast-growing and slow-growing breed 
throughout the growing period. a, b: Different superscripts means significant differences with a P-
value<0.05. 
 

For the fast and slow-growing breed, E. coli AMR rates obtained against different ABs 

tested over time are summarised in Table 7. 
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Table 7. Antibiotic resistance rates according to the antibiotic and the moment of the growing period in FG and SG breeds. 

 

Breed 
Sampling 
moment 

n CIP NAL CTX CAZ AMP CHL SXT CST AZM TGC GEN TMP 

FAST-
GROWING 

BREED 

Beginning 12 50b 91.7 8.3 33.3c 91.7b 8.3 41.7 0 8.3a 0 8.3 50 

Mid-period 43 95.4c 83.7 11.6 11.6b 55.8a 2.3 58.1 9.3 9.3a 0 2.3 55.8 

End 45 20a 71.1 0 0a 53.3a 4.4 35.6 8.9 82.2b 0 0 51.1 

SLOW-
GROWING 

BREED 

Beginning 11 0a 0a 0 27.3 27.3a 0 0 0 0a 0 0 9.1 

Mid-period 35 91.4b 57.1b 17.1 5.7 42.9a 0 28.6 0 2.9a 0 0 31.4 

End 53 11.3a 86.8c 7.6 9.4 66.9b 5.7 26.4 9.4 41.5b 0 1.9 45.3 

 
FG: Fast-growing breed, SG: Slow-growing breed, CIP: ciprofloxacin, NAL: nalidixic acid, CTX: cefotaxime, CAZ: ceftazidime, AMP: ampicillin, CHL: chloramphenicol, 
SXT: trimethoprim-sulfamethoxazole, CST: colistin, AZM: azithromycin, TGC: tigecycline, GEN: gentamycin and TMP: trimethoprim. 
a, b, c: different superscripts in each column means significant differences with a P-value<0.05. 
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3.1.2.4.2 Prevalence of multidrug-resistance 

According to the MDR rates observed in fast-growing E. coli strains, on arrival day, 

75.0% of the AB resistant strains showed an MDR pattern, and this pattern was 

maintained until the end of the growing period (83.7%) (P-value>0.05). 

Conversely, for slow-growing breed, none of the E. coli strains isolated at the start of the 

growth period showed an MDR pattern (0%), although this percentage increased to 84.3% 

(43/51) before slaughter (P-value<0.05) (Figure 20). 

 
Figure 20. Multidrug-resistant E. coli strains dynamic in fast-growing and slow-growing breed 
throughout the growing period. a, b, c: Different superscripts means significant differences with a P-
value<0.05. 

3.1.2.4.3 Antibiotic resistance patterns 

For the fast-growing breed, no AMR was observed in 2 (2.0%) of the isolates, 12 E. coli 

strains were resistant to only one AB and 18 (18.0%) to two, 13 (13.0%) to three, 21 

(21.0%) to four, 25 (25.0%) to five, 3 (3.0%) to six and to seven and 2 (2.0%) to eight. 

Only one isolate was resistant to ten of the twelve ABs tested (Table 8). 
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For the slow-growing breed, 8 (8.1%) E. coli isolates were completely susceptible to all 

the ABs tested, 25 (25.3%) isolates were resistant to only one AB and 13 (13.1%) to two, 

21 (21.2%) to three, 18 (18.2%) to four, 7 (7.1%) to five and 3 (3.0%) to six and to seven. 

Only one isolate was resistant to nine of the twelve ABs tested (Table 8). 

Overall, 59 different resistance patterns were observed. The combination of CIP-NAL-

AMP-SXT-TMP (n=21, 20%) was the most frequently observed pattern, followed by CIP 

alone (n=13, 6.5%), the combination of NAL-AMP-SXT-TMP (n=11, 6.5%) and NAL-

AMP-TMP (n=11, 6.5%). 

AMR to the combination NAL-AMP was found in 56.0% and 46.5% of fast-growing and 

slow-growing E. coli strains, respectively, followed by resistance to the combination CIP-

NAL (48.0% for fast-growing breed and 25.3% for slow-growing breed). Finally, it is 

important to highlight that 35.0% of fast-growing isolates and 18.2% of slow-growing 

isolates showed resistance to the combination CIP-AMP-NAL. 
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Table 8. Number of E. coli strains isolated resistant to the different number of antibiotics tested according to the sampling moment in 
FG and in SG breeds.  

 

Breed 
Sampling 

moment 

Number of AMR to the indicated number of antibiotics 

0 1 2 3 4 5 6 7 8 9 10 Total 

FAST-

GROWING 

BREED 

Beginning 0 1 2 3 1 3 1 0 1 0 0 12 

Mid-period 0 3 7 6 11 13 0 2 0 0 1 43 

End 2 8 9 4 9 9 2 1 1 0 0 45 

Total 2 12 18 13 21 25 3 3 2 0 1 100 

SLOW-

GROWING 

BREED 

Beginning 4 7 0 0 0 0 0 0 0 0 0 11 

Mid-period 2 10 7 3 6 4 2 1 0 0 0 35 

End 2 8 6 18 12 3 1 2 0 1 0 53 

Total 8 25 13 21 18 7 3 3 0 1 0 99 
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3.1.2.5 Discussion 

The present study assessed the AMR dynamic in fast and slow-growing breeds 

throughout the growing period under commercial farms conditions. To our best 

knowledge, this is the first study in the scientific literature to evaluate the relationship 

between both breeds on AMR evolution under the same production conditions. 

Social pressure against intensive production systems demands the prohibition of AB 

administration during the growing period and the use of new welfare-friendly breeds, 

which means chickens genetically adapted to less intensive production conditions 

(Castellini and Dal Bosco, 2017). However, our results demonstrated that although non-

ABs were administered during the growing period, the same AMR rates were observed 

in both breeds (fast and slow-growing) at the end of the growing period. 

In 2016, the EFSA reported that 77.8% of E. coli isolated from broilers in EU were 

resistant to ABs. However, there were large differences in AMR rates between EU MS, 

being notably lower in Nordic countries and higher in Southern countries, especially 

Spain (EFSA and ECDC, 2018). 

Regarding AMR rates obtained for the different ABs assessed, it is important to highlight 

the results obtained for TGC and CST, as they are the last-resort drugs used to treat human 

infectious diseases caused by multi-resistant bacteria (Kern, 2018). On the one hand, in 

this study the AMR to TGC was not detected in any isolate strain. This result agrees with 

that reported by the EFSA, in the EU, where only four countries presented AMR to this 

AB (EFSA and ECDC, 2018). The total susceptibility to TGC might be explained by its 

restricted use to human hospital treatments (PRAN, 2018). On the other hand, resistance 

to CST was found in both breeds. These results are also similar to those reported by the 

EFSA, in which only seven countries, including Spain, reported AMR to CST (EFSA and 

ECDC, 2018). Moreover, in other countries such as China, CST AMR rates reported were 

also very high (Zhang et al., 2019). This fact can be explained by its use in animal 

production for several years, especially in swine, to treat infectious diseases and as a 

growth promotor (EMA, 2017). Thus, the use of CST as a growth promoter has resulted 

in a high AMR to CST worldwide. It is important to highlight that the use of ABs as a 
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growth promotor is a production technique has been banned in the EU since 2006 (EC, 

2003). 

The AMR rates shown in this study to CTX, CAZ, CHL and GEN were low, in 

accordance with results obtained in previous studies in EU (EFSA and ECDC, 2018; 

MAPA, 2018). However, Koga et al. (2015) recorded higher resistance rates in 

commercial broiler production in Brazil to all these ABs, except to CAZ.  

It is important to highlight the high AMR obtained to CIP, NAL, AMP, SXT, AZM and 

TMP in this study (Koga et al., 2015; Hussain et al., 2017; Ayandiran et al., 2018; EFSA 

and ECDC, 2018). Slight variations in AMR rates among isolates in these studies could 

be due to the different analysis methods employed, the different management systems set 

up, level of AMR in hatcheries and use of ABs in the study areas (Okorafor et al., 2019). 

Specifically, for AMP, TMP and SXT, one hypothesis that could explain the results 

obtained in this study is that these ABs are permitted in Spain as therapeutic agents for 

bacterial infections and, as reported above for CST, they have been used as a growth 

promoter in animal production systems for several years (PRAN, 2018). 

The results obtained in this study demonstrated the importance of AMR shedding from 

breeders to day-old chicks. Several authors have shown that day-old-chicks are potential 

reservoirs of multi-resistant enterobacteria obtained vertically from breeders (Jiménez-

Belenguer et al., 2016; Projahn et al., 2017a,b; Okorafor et al., 2019). MDR bacteria 

could be transmitted through contaminated eggshells and/or from parent stock to hatchery 

(Daehre et al., 2017; Projahn et al., 2017a; Osman et al., 2018). Indeed, different reports 

have demonstrated that vertical transmission to chicks from the top of the production 

pyramid resulted in the introduction and spread of resistance genes in poultry (Borjesson 

et al., 2016; Osman et al., 2018).  

On the other hand, horizontal transmission of AMR seems to be an important concern for 

the poultry industry (Szmolka and Nagy, 2013; Bengtsson-Palme et al., 2017; Agyare et 

al., 2018). Genomic analysis of the bacteria indicates that they could acquire 

their resistance profiles by incorporating different genetic elements through horizontal 

gene transfer (Agyare et al., 2018). For this reason, different scientific studies underline 

the importance of developing sanitary measures at the interface between 

the environment and livestock farming (Allen et al., 2010; Bengtsson-Palme et al., 2018; 



CHAPTER III. EXPERIMENTAL CHAPTERS 

 115 

Westphal-Settele et al., 2018). However, it is important to highlight that in this study the 

animals’ origin is from the same hatchery. For this reason, further studies are necessary 

to compare the AMR dynamics from different companies. 

3.1.2.6 Conclusion 

In conclusion, the fact that the same AMR rates were observed, regardless of the breed 

studied, strongly suggests the possibility of vertical transmission from hatcheries and 

dissemination spread through the environment between flocks. Further studies are needed 

to confirm this hypothesis, and innovative-cost effective tools should be implemented at 

farm level to avoid AB administration whenever possible throughout the broiler 

production chain. 
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3.2.1 Assessment of microbiota modulation in poultry to combat infectious 

diseases 
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L. Montoro-Dasi, A. Villagra, M. de Toro, M.T. Pérez-Gracia, S. Vega, C. Marin. 2021. Assessment 

of microbiota modulation in poultry to combat infectious diseases. Animals; 11(3):615. doi: 
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3.2.1.1 Abstract 

Poultry is one of the main agricultural sub-sectors worldwide. However, public concern 

regarding animal welfare and antimicrobial resistance has risen in recent years. Due to 

the influence of management practices in microbiota, it might be considered to evaluate 

poultry welfare and health. Therefore, the objective of this research was to analyse the 

influence on microbiota balance of broilers under commercial and optimal farm 

conditions, using 16S rRNA sequencing analysis. The research was performed in two 

identical poultry houses (commercial vs. optimal). Results showed a higher level of 

microbiota complexity in the group reared under optimal farm conditions at the end of 

rearing. Regarding microbiota composition, Firmicutes was the dominant phylum during 

all the growing period. However, the second prevalent phylum was Proteobacteria at the 

arrival day, and Bacteroidetes since mid-period in both groups. Moreover, the most pre-

dominant genera identified were Oscillospira, Ruminococcus, Bacteroides and 

Coprococcus. In conclusion, it is necessary to optimise farm management as much as 

possible. Using gut microbiota diversity and composition as biomarkers of animal health 

could be an important tool for infectious disease control with the aim to reduce the 

administration of ABs at field level. 
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3.2.1.2 Introduction 

Broiler chicken meat is the most consumed worldwide, due to the current demand for 

cheap and safe protein supplies. In fact, in 2020, global poultry meat production increased 

by 2.6%, and Spain was the fifth producer country in the EU, producing more than one 

and a half million tons (FAO, 2019, 2020; MAPA, 2020). These data demonstrate that 

poultry is the fastest growing agricultural sub-sector. For this reason, producers have 

historically been driven to intensify farming systems. 

However, public concern regarding animal welfare and friendly production systems has 

increased in recent years (Mottet and Tempio, 2017; Castellini and Dal Bosco, 2017). 

Thus, legislation in this area is stricter and researchers are focused on the study of 

livestock management conditions to satisfy social concerns and market demands 

(Blokhuis et al., 2003; Sassi et al., 2016; Castellini and Dal Bosco, 2017; BOE, 2020). 

As defined by the OIE, ‘an animal is in a good state of welfare if it is healthy, comfortable, 

well nourished, safe, able to express innate behaviour, and if it is not suffering from 

unpleasant states such as pain, fear and distress’ (OIE, 2019). In this sense, a large number 

of factors are considered sources of stress in poultry production, such as environmental 

deterioration, unsuitable social environments, difficulties in accessing essential resources, 

overcrowding, inadequate temperatures or diseases (Gomes et al., 2014; Sassi et al., 

2016; Goo et al., 2019). 

Historically, to fight against infectious diseases, poultry veterinarians have mainly used 

AMAs. Social demand for AB-free meat has also increased. For this reason, the main 

objective is to achieve optimal health and welfare status of the animals to increase their 

resilience. This way, they will be able to cope easily with the environmental risks, 

including possible pathogens, without AMAs administration (Guardia et al., 2011; 

Soleimani et al., 2012b; Franz et al., 2012; Gomes et al., 2014; Sassi et al., 2016; Thaxton 

et al., 2016; Dawkins, 2017). 

In this social context, producers are motivated to choose alternative production systems 

to avoid the drawbacks of more intensive production, while also trying to maintain the 

profitability of their farms (Gocsik et al., 2016; El-Deek and El-Sabrout, 2019). To assess 

the effect of these alternative management measures, intestinal microbiota composition 

might be considered as a biomarker of animal’s health and stress status (Pandit et al., 
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2018; Wang et al., 2018; Carrasco et al., 2019). It has been demonstrated that any change 

in the environment directly affects intestinal bacteria balance, and intestinal bacteria 

balance is known to have an important influence on animal’s health and performance 

parameters. Thus, the implementation of new and cost effective molecular techniques at 

field level could help to take rapid and swift management decisions (Clavijo and Flórez, 

2018; Pandit et al., 2018; Wang et al., 2018; Carrasco et al., 2019; Hasan and Yang, 2019; 

He et al., 2019). 

Hence, the aim of this study is to analyse the influence on microbiota balance of broilers 

in standardised commercial farm conditions or under improved farm conditions, using 

16S rRNA sequencing analysis. 

3.2.1.3 Material and methods 

In this trial, handling of experimental animals was approved by the Ethical Review Panel 

of the Directorate-General for Agriculture, Fisheries and Livestock from the Valencian 

Community by the code 2018/VSC/PEA/0067, according to Spanish Royal Decree 

53/2013 (BOE, 2013). 

3.2.1.3.1 Experiment design  

In this research, two different environmental farm conditions were studied: commercial 

farm conditions (CFC, house 1: 35 kg/m2 of final density and non-optimal ventilation 

parameters, allowing a maximum ammonia concentration of 25 ppm) and optimal farm 

conditions (OFC, house 2: final density at 17 kg/m2 and ventilation within the optimal 

parameters, allowing a maximum ammonia concentration of 10 ppm) (Figure 21). 
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Figure 21. Experiment design management systems scheme in experiment 2. 

To this end, a total of 1 062 of day-old-chicks (Ross®) (males and females) were 

distributed in two poultry houses in an experimental poultry farm at CITA-IVIA. In each 

of the houses, 204/531 animals were located in 12 pens with wood shavings as bedding 

material. The rest of the animals (327/531) were housed in the remaining space using also 

wood shavings as bedding material to simulate production conditions (Figure 22). 

According to common practice in poultry production, houses were supplied with 

programmable electrical lights, automated electric heating and forced ventilation. The 

environmental temperature was gradually lowered from 32 ºC (1 day) to 19 ºC (42 days). 

Moreover, high biosecurity levels were maintained in the experimental poultry farm 

during the rearing. 

 
Figure 22. Animals’ housing scheme in experiment 2. 
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Animals were fed with two different diets according to standard diets for broilers: from 

hatching day until 21 days post hatch, chicks were fed a pelleted starter diet 

(Camperbroiler iniciación, Alimentación Animal Nanta, Valencia, Spain), and from 21 

days of age to the slaughter day (42 days of age) the poultry were offered a pelleted 

grower diet (A-32 broiler, Alimentación Animal Nanta, Valencia, Spain). Nutritional 

composition of the diets is detailed in Table 9. Only one batch of feed per age was 

provided, no coccidiostats or antimicrobials were added, and all the analysis were 

assessed before the beginning of the experiment. Feed has been supplied ad libitum, but 

to control feed consumption, it was weighed and added manually. Finally, the mortality 

and the presence of diarrhoea were registered daily, and animals’ weight and feed 

consumption were recorded at weekly intervals. 

Table 9. Composition of starter and grower diets. 

Analytical constituents Diet 
Starter (%) Grower (%) 

Crude fat 3.5 3.1 
Crude protein 20.5 19.4 
Crude fibre 2.6 3.1 
Crude ash 6.6 5.0 

Lysine 1.14 1.13 
Methionine 0.62 0.51 

Calcium 1.00 0.78 
Phosphorus 0.69 0.51 

Sodium 0.15 0.14 

Metabolic Energy (MJ/Kg) 12.20 13.13 
Starter (%): percentage of analytical constituents for starter diet, Grower FG (%): percentage of analytical 
constituents for grower diet. 

3.2.1.3.2 Sample collection and DNA extraction 

To assess the microbiota evolution, animals from each experimental group were sampled 

at the arrival day (day-old chicks), at the mid-period (21 days old) and at the slaughter 

day (42 days of age). On arrival day, animals were selected and caecal samples were 

collected just before being delivered to the houses (30 samples). Samples were then 

collected again for each treatment (60 samples/group). Caeca were sampled and placed 

individually in sterile jars (Figure 23). 
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Figure 23. Sample collection scheme in experiment 2. 

After sample collection, caecal content was removed and homogenised. Then, pools of 

six animals from the same experimental group were prepared (5 pools on arrival day and 

10 pools/experimental group at mid-period and at the end of rearing), the DNA of pools 

content was extracted (QIAamp Power Fecal DNA kit, Werfen, Barcelona, Spain) and 

frozen at -80 ºC for shipment to the CIBIR, according to manufacturer’s instructions. 

3.2.1.3.3 16S rRNA gene amplification and MiSeq sequencing  

16S rRNA gene amplification and MiSeq Sequencing was performed according to 

Montoro-Dasi et al. 2020 (Montoro-Dasi et al., 2020b).  

3.2.1.3.4 Data availability 

BioProject: PRJNA612272: Assessment of animal husbandry and environmental control 

as alternatives to antibiotics use in broiler and growing rabbit production. Effect on multi-

resistances. 

BioSample: SAMN15190317: Commercial and optimal poultry farm conditions. Caecal 

microbiota characterisation. 

3.2.1.4 Results 

A total of 45 caecal pools were collected, processed and sequenced: 5 initial samples and 

20 per experimental group throughout the growing period. There were no statistical 
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differences between pools from the same experimental group (P-value>0.05). Moreover, 

productive parameters obtained were in accordance with the breed standards, and no 

clinical signs were observed. 

3.2.1.4.1 16 rRNA sequencing 

The total of sequencing reads of the 45 samples was 21 961 574 (average 274 519.7 

reads/sample), with a total of 19 269 620 filtered reads (average 240 870.3 reads/sample), 

ranging 121 959-477 578 reads. The rarefaction curves were evaluated according to 

Shannon, Chao1, Observed OTUs and Simpson biodiversity indexes. Samples from the 

group 1 (day-old chicks) are at the limit of the rarefaction, leaving a rarefaction number 

of 54 070 reads (Figure 24). 

 
Figure 24. Evaluation of alpha diversity in commercial and optimal farm conditions by using 
different calculation measures: Chao 1, Shannon, Simpson, Observed OUTs. AD: Arrival day; CFC 
(MP): Commercial farm conditions at mid-period; OFC (MP): Optimal farm conditions at mid-
period; CFC (E): Commercial farm conditions at the end of the growing period; OFC (E): Optimal 
farm conditions at the end of the growing period. 

Rarefaction curves based on the Chao1, Shannon, Simpson and Observed OTUs 

biodiversity (Table S7, Table S8, Table S9 and Table S10) showed statistically significant 

differences (P-value<0.05). The Chao1 alpha diversity index reveals a notable difference 

between the caecal microbiota diversity depending on the moment of sampling (Table 

10). 
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Table 10. Alpha diversity (Chao 1 index) according to the moment of the growing 
period in CFC and OFC. 

Sampling moment Arrival day Mid-period End 

CFC 
99.6a 

417.5b 474.8c 

OFC 418.0b 484.8d 

CFC: commercial farm conditions, OFC: optimal farm conditions. a, b, c, d: different superscripts mean 
significant differences between groups with a P-value<0.05. 

3.2.1.4.2 Variation in caecal microbiome structure between farm conditions 

Caecal microbiome structures for CFC and OFC at phylum level are represented in Table 

11. According to the Kruskal-Wallis and MetagenomeSeq tests, no significant differences 

were found between farm conditions.  

Table 11. Taxonomic profiles at phylum level according to sampling moment in CFC 
and OFC. 

CFC: commercial farm conditions, OFC: optimal farm conditions, AD (%): percentage of different phyla 
at arrival day, MP (%): percentage of different phyla at mid-period, E: percentage of different phyla at the 
end of the growing period. No statistically significant differences were found between farm conditions at 
phylum level. 

At genus level, 58 taxa were identified and all of them were present in both production 

conditions. However, we focused on the 25 genera present at an average relative 

abundance of more than 0.5% in at least one sample group (Mancabelli et al., 2016; 

Montoro-Dasi et al., 2020b). 

Sampling moment AD MP E 

Farm condition (%) CFC (%) OFC (%) CFC (%) OFC (%) 

Actinobacteria 0.0 0.1 0.1 0.2 0.2 

Bacteroidetes 3.0 4.3 4.1 9.5 9.3 

Cyanobacteria 0.0 0.0 0.0 0.5 0.5 

Firmicutes 63.2 91.5 91.8 83.8 84.0 

Proteobacteria 33.4 1.7 1.7 2.1 2.2 

Tenericutes 0.0 1.2 1.2 1.5 1.4 

Verrucomicrobia 0.0 0.0 0.1 0.8 0.7 

Unassigned 0.3 1.1 1.0 1.6 1.5 
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In the total sampling, 5 genera were present only in day-old-chicks, 15 appeared at mid-

period and 7 at the end of the growing period. Moreover, the most common genera 

identified were Oscillospira spp. (8.8%), Ruminococcus spp. (4.0%), Bacteroides spp. 

(3.5%) and Coprococcus spp. (3.2%). 

In day-old-chicks, the most prevalent genera were Uniclassified members (U.m.) of 

Proteobacteria phylum (29.4%), U.m. of Firmicutes phylum (13.0%), U.m. of 

Ruminococcaceae family (6.7%), Oscillospira spp. (6.0%), Clostridium spp. (5.6%), 

U.m. of Lachnospiraceae family (5.3%), Enterococcus spp. (3.8%), Ruminococcus spp. 

(3.5%) and U.m. of Enterococcaceae family (3.1%). 

At mid-period (21 days of age), the predominant bacteria were U.m. of Firmicutes 

phylum (27.4% and 28.0% for CFC and OFC, respectively), U.m. of Ruminococcaceae 

family (18.3% and 18.2%), U.m. of Lachnospiraceae family (11.1% and 11.2%), 

Oscillospira spp. (10.4% and 10.3%), Ruminococcus spp. (4.4% for both farm conditions) 

and Coprococcus spp. (3.7% for both farm conditions). 

Finally, at slaughter day (42 days of age), the most common genera were, likewise, U.m. 

of Firmicutes phylum (28.0% for both experimental groups), U.m. of Ruminococcaceae 

family (16.1% for CFC and 15.6% OFC), U.m. of Lachnospiraceae family (9.5% and 

9.6%) and Oscillospira spp. (8.7% and 8.5%), followed by Bacteroides spp. (5.7% and 

0.7% for CFC and OFC, respectively), Ruminococcus spp. (3.9% for both groups) and 

Coprococcus spp. (3.2% and 3.6%). 

Finally, to evaluate differences in microbiota between farm conditions, the R2 values 

obtained in beta diversity analysis depending on statistical test used were: Bray-Curtis R2 

= 0.84517, Unweighted UniFrac R2 = 0.79540 and Weighted-UniFrac R2 = 0.90923 

(these data are represented in Figure S1 and detailed in Table S11). PCoA of the OTU 

data for each experimental group reveal different profiles depending on the sampling 

moment (P-value<0.05). The beta diversity comparisons based on Bray-Curtis 

dissimilarity and genera presence between both experimental groups throughout the 

growing period are represented in Figure 25, revealing different profiles depending on 

the sampling time (P-value<0.05). 
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Figure 25. Evaluation of the beta diversity based on Bray-Curtis dissimilarity and comparison of 
genera presence in commercial and optimal farm conditions. A: PCoA graphic and similar vs. 
different genera for both experimental groups at mid-period. B: PCoA graphic and similar vs. 
different genera for both experimental groups at the end of the growing period. CFC: commercial 
farm conditions, OFC: optimal farm conditions, PC1: principal component 1, PC2: principal 
component 2. 

3.2.1.5 Discussion 

The implementation of molecular techniques in microbiology studies allows to evaluate 

intestinal bacteria in a ‘before we saw the tree, now the whole forest’ overview. Currently, 

we are able to observe not only the target bacteria but also all the microorganisms present 

and their relationship depending on environmental or management conditions. 

As described previously, microbiota play a considerable role in animal health. Their 

composition and richness are directly related with intestinal health, immune system status 

and performance parameters. Thus, increasing animal welfare in poultry production 

above the standards laid down in European Union legislation could improve the intestinal 

microbiota balance, increasing the resilience of the animals, lessening the prevalence of 

infectious diseases and, in consequence, reducing AB administration in animal 
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production (Teirlynck et al., 2011; Chen et al., 2015; Ducatelle et al., 2018; Maki et al., 

2019; Díaz-Sánchez et al., 2019; Ocejo et al., 2019). 

Among the different sources of stress, one of the major problems in poultry production is 

that avian species are particularly sensitive to environmental challenges associated with 

temperature and stocking density, especially to heat stress. It is defined as the situation in 

which temperature and humidity exceed the comfort zone, and it has a significant effect 

on the productivity and immunology status of animals, causing multiple physiological 

disturbances. Heat stress is especially problematic in very humid geographic areas, where 

achieving optimal ventilation parameters in farms is complicated (Lara and Rostagno, 

2013; Farag and Alagawany, 2018b; Tsiouris et al., 2018; He et al., 2019; Ranjan et al., 

2019). 

In this research, animals were reared under two different farm conditions (CFC and OFC) 

throughout the growing period in order to evaluate the effects of management measures 

on gut microbiota evolution. There were statistically significant differences in microbiota 

diversity between farm conditions at slaughter day (42 days of age), when OFC showed 

a high diversity level. It is well demonstrated that a greater complexity of the gut 

microbiota is observed as animals grow and became relatively stable as of mid-period 

(Lu et al., 2003; Amit-Romach et al., 2004; Kers et al., 2018; Shang et al., 2018; 

Kollarcikova et al., 2019; Montoro-Dasi et al., 2020b). However, overcrowding and heat 

stress present at the end of the growing period usually induce oxidation alteration, which 

is closely related to intestinal barrier integrity, which is in turn related to gut microbiota 

(Song et al., 2014; He et al., 2019; Yang et al., 2019; Paraskeuas and Mountzouris, 2019; 

Slawinska et al., 2019). Moreover, high stocking density is related to problems in 

performance and health, possibly caused by the poor access to feed and water, abnormal 

behaviour and a low air and floor quality (Bessei, 2006; Estevez, 2007; Goo et al., 2019). 

Regarding microbiota composition, the most predominant phyla observed in this research 

were Firmicutes, followed by Proteobacteria on arrival day and by Bacteroidetes during 

the rest of the growing period, in line with results reported by other authors (Wei et al., 

2013; Mohd Shaufi et al., 2015; Kumar et al., 2018; Pandit et al., 2018; Carrasco et al., 

2019; Xi et al., 2019). Moreover, the most predominant genera were also in accordance 

with the bibliography (Wei et al., 2013; Hasan and Yang, 2019; He et al., 2019; Xi et al., 

2019). This fact evidences that although the microbiota diversity is low in animals housed 
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according to the European Union legislation, stress levels are not enough to change the 

microbiota composition. 

3.2.1.6 Conclusion 

In conclusion, microbiota diversity increases throughout the growing period, being 

relatively stable since the mid-period. However, at the end of the rearing, a significant 

higher level of microbiota complexity was observed in animals reared under optimal farm 

conditions. Regarding microbiota composition, no statistical differences were observed 

between experimental groups, for both of them Firmicutes was the most abundant phylum 

during all the research, Proteobacteria decreased their concentration throughout the 

growing, and Bacteroidetes increased. At genus level, the most common groups observed 

for both management systems were Oscillospira spp., Ruminococcus spp., Bacteroides 

spp. and Coprococcus spp. Thus, it could be recommended to reassess the management 

farm conditions using gut microbiota diversity and composition as biomarkers of animal 

health. This could be an important tool for infectious disease control with the aim is to 

reduce the administration of ABs at farm level. 
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3.2.1.8 Supplementary material 
 

- Table S7. Statistical comparison of alpha diversity between sample groups based 

on Chao 1 index. 

 

- Table S8. Statistical comparison of alpha diversity between sample groups based 

on Shannon index. 

 

- Table S9. Statistical comparison of alpha diversity between sample groups based 

on Simpson index. 

 

- Table S10. Statistical comparison of alpha diversity between sample groups based 

on Observed OTUs index. 

 

- Figure S1. Evaluation of the beta-diversity in commercial and optimal farm 

conditions. A: Beta diversity represented by PCoA graphic for both farm 

conditions at all sampling times. B: Beta diversity represented by Heatmap for 

both farm conditions at all sampling times.  

 

- Table S11. Statistical comparison between beta diversity indexes calculated 

according the different methods. 
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Table S7. Statistical comparison of alpha diversity between sample groups based on Chao 1 index. 

Group 1 Group 2 Group 1 mean Group 1 std Group 2 mean Group 2 std t stat P-value 

OFC E AD 484.78 4.27 99.61 12.15 83.56 0.0 

CFC MP AD 417.51 7.43 99.62 12.15 58.25 0.0 

CFC E AD 478.83 4.96 99.62 12.15 79.56 0.0 

OFC MP AD 417.99 5.71 99.62 12.15 64.23 0.0 

OFC MP CFC MP 417.99 5.71 417.51 7.43 0.16 0.88 

CFC E CFC MP 478.84 4.97 417.51 7.43 20.59 3.19E-13 

OFC E OFC MP 484.78 4.27 417.99 5.71 28.09 2.09E-15 

OFC E CFC MP 484.78 4.27 417.50 7.43 23.55 3.46 

CFC E OFC MP 478.83 4.96 417.99 5.71 24.12 2.49E-14 

CFC E OFC E 478.83 4.96 484.72 4.27 -2.72 0.02 

AD: arrival day; CFC MP: commercial farm conditions at mid period; OFC MP: optimal farm conditions at mid period; CFC E: commercial farm conditions at the end of the 
growing period; OFC E: optimal farm conditions at the end of the growing period. 
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Table S8. Statistical comparison of alpha diversity between sample groups based on Shannon index. 

Group 1 Group 2 Group 1 mean Group 1 std Group 2 mean Group 2 std t stat P-value 

OFC E AD 6.48 0.11 1.79 0.09 74.92 0.0 

CFC MP AD 6.07 0.30 1.79 0.09 29.15 4.14 

CFC E AD 6.36 0.14 1.79 0.09 62.06 0.0 

OFC MP AD 6.25 0.32 1.79 0.09 28.13 4.67 

OFC MP CFC MP 6.25 0.32 6.07 0.30 1.23 0.29 

CFC E CFC MP 6.36 0.14 6.07 0.30 2.64 0.03 

OFC E OFC MP 6.48 0.11 6.25 0.32 1.97 0.10 

OFC E CFC MP 6.48 0.11 6.07 0.30 3.81 0.0 

CFC E OFC MP 6.36 0.14 6.25 0.32 0.93 0.42 

CFC E OFC E 6.36 0.14 6.48 0.11 -1.92 0.11 

AD: arrival day; CFC MP: commercial farm conditions at mid period; OFC MP: optimal farm conditions at mid period; CFC E: commercial farm conditions at the end of the 
growing period; OFC E: optimal farm conditions at the end of the growing period. 
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Table S9. Statistical comparison of alpha diversity between sample groups based on Simpson index. 

Group 1 Group 2 Group 1 mean Group 1 std Group 2 mean Group 2 std t stat P-value 

OFC E AD 0.96 0.01 0.55 0.03 37.28 4.40E-13 

CFC MP AD 0.93 0.02 0.55 0.03 25.72 1.71E-11 

CFC E AD 0.96 0.01 0.55 0.03 36.31 3.08E-13 

OFC MP AD 0.94 0.03 0.55 0.03 23.18 4.84E-11 

OFC MP CFC MP 0.94 0.03 0.93 0.02 1.06 0.43 

CFC E CFC MP 0.96 0.01 0.93 0.02 3.82 0.0 

OFC E OFC MP 0.96 0.01 0.94 0.03 2.03 0.09 

OFC E CFC MP 0.96 0.01 0.93 0.02 4.27 0.0 

CFC E OFC MP 0.96 0.01 0.94 0.03 1.72 0.16 

CFC E OFC E 0.96 0.01 0.96 0.01 -0.90 0.51 

AD: arrival day; CFC MP: commercial farm conditions at mid period; OFC MP: optimal farm conditions at mid period; CFC E: commercial farm conditions at the end of the 
growing period; OFC E: optimal farm conditions at the end of the growing period. 
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Table S10. Statistical comparison of alpha diversity between sample groups based on Observed OTUs index. 

Group 1 Group 2 Group 1 mean Group 1 std Group 2 mean Group 2 std t stat P-value 

OFC E AD 473.47 5.85 55.68 4.24 132.33 0.0 

CFC MP AD 409.23 8.54 55.68 4.24 81.33 0.0 

CFC E AD 468.05 4.14 55.68 4.24 167.86 0.0 

OFC MP AD 410.0 5.92 55.68 4.24 111.18 0.0 

OFC MP CFC MP 410.0 5.92 409.23 8.54 0.22 0.84 

CFC E CFC MP 468.05 4.14 409.23 8.54 18.59 1.72E-12 

OFC E OFC MP 473.47 5.85 410.0 5.92 22.88 6.16E-14 

OFC E CFC MP 473.47 5.85 409.23 8.54 18.62 1.81E-12 

CFC E OFC MP 468.05 4.14 410.0 5.92 24.10 2.77E-14 

CFC E OFC E 468.05 4.14 473.47 5.85 -2.27 0.04 

AD: arrival day; CFC MP: commercial farm conditions at mid period; OFC MP: optimal farm conditions at mid period; CFC E: commercial farm conditions at the end of the 
growing period; OFC E: optimal farm conditions at the end of the growing period. 
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Figure S1. Evaluation of the beta-diversity in commercial and optimal farm conditions. A: Beta diversity represented by PCoA graphic for both farm conditions at 
all sampling times. B: Beta diversity represented by Heatmap for both farm conditions at all sampling times. AD: arrival day; CFC (MP): Commercial farm conditions 
at mid period; OFC (MP): Optimal farm conditions at mid period; CFC (E): Commercial farm conditions at the end of the growing period; OFC (E): Optimal farm 
conditions at the end of the growing period. 
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Table S11. Statistical comparison between beta diversity indexes calculated according the different methods. 

Beta-diversity matrix 

Adonis test ANOSIM 

F-stat R2 P-value Statistic value P-value 

Bray-Curtis 54.586 0.84517 0.001 0.67777631578947362 0.001 

Unweighted-Unifrac 38.876 0.79540 0.001 0.6668026315789474 0.001 

Weighted-Unifrac 100.17 0.90923 0.001 0.688736842105263 0.001 
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3.2.2.1 Abstract 

New measures applied to reduce AMR at field level in broiler production are focused on 

improving animals’ welfare and resilience. However, it is necessary to have better 

knowledge of AMR epidemiology. Thus, the aim of this study was to evaluate AMR and 

MDR dynamics during the rearing of broilers under commercial (33 kg/m2 density and 

max. 20 ppm ammonia) and improved (17 kg/m2 density and max. 10 ppm ammonia) 

farm conditions. Day-old chicks were housed in two poultry houses (commercial vs. 

improved), and no AMA agents were administered at any point. Animals were sampled 

at arrival day, mid-period and at slaughter day. High AMR rates were observed 

throughout rearing. No statistical differences were observed between groups. Moreover, 

both groups presented high MDR at slaughter day. These results could be explained by 

vertical or horizontal resistance acquisition. In conclusion, AMR and MDR are present 

throughout rearing. Moreover, although a lower level of MDR was observed at mid-

period in animals reared under less intensive conditions, no differences were found at the 

end. In order to reduce the presence of AMR bacteria in poultry, further studies are needed 

to better understand AMR acquisition and prevalence in differing broiler growing 

conditions. 
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3.2.2.2 Introduction 

AMR is one of the most significant threats to public health worldwide. Indeed, the WHO 

published that by 2050, if effective interventions against the increase in AMR are not 

carried out, there could be more than 10 million deaths annually as a result of such 

resistance (WHO, 2019). Increased awareness of the health threats related to AMR has 

resulted in greater social demand for antibiotic-free food production, especially 

antibiotic-free meat, in recent years (Marshall and Levy, 2011; Chang et al., 2015; 

Horigan et al., 2016; Liu et al., 2016; Founou et al., 2016; Sharma et al., 2018). 

The EMA reported that Spain has been the European country with the highest 

consumption of AMAs since data became available (ESVAC database, n.d.). In this 

sense, it is claimed that the uncontrolled administration of AMAs in the past, as treatment 

for infectious diseases or as a growth promoter, has resulted in an increased MDR 

presence in the food chain (Aarestrup, 2015; Khurana et al., 2017; EFSA and ECDC, 

2020). In fact, the notable prevalence of colistin resistance is particularly worrying, due 

to its widespread use in veterinary medicine over many years, as it is a last-resort AMA 

reserved to treat MDR bacterial infections in human medicine (Apostolakos and 

Piccirillo, 2018). 

However, due to the strict control of AMA administration since the National AMR Plan 

was established in 2014, their consumption in animal production has halved (EMA, 

2020). Specifically, between 2015 and 2019, in poultry a reduction of 71% in total AMA 

administration has been reported, along with a 95% falloff in colistin administration 

during 2019, recording the largest European drop in consumption of critical AMAs 

(PRAN, 2020). 

These data are the result of the efforts carried out by the poultry sector to reduce AMA 

administration at field level. Firstly, by avoiding the entry and spread of pathogen 

microorganisms, improving biosecurity, farm management and vaccination protocols 

(Rojo-Gimeno et al., 2016); and secondly, by investing in more accurate and animal-

friendly management systems, achieving animals with a strengthened immune system 

and more resilient to contact with infectious agents (Soleimani et al., 2012b; Gomes et 

al., 2014; Rouger et al., 2017; Swaggerty et al., 2019). To this end, the use of alternative 

production systems has been promoted, focused on slow-growing breeds selected for their 
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ability to deal with the natural environment (Montoro-Dasi et al., 2020a), and the 

implementation of less intensive production systems, more sustainable and animal-

welfare-friendly, but also maintaining the profitability of broiler farms (Gocsik et al., 

2016; El-Deek and El-Sabrout, 2019). 

However, to be able to assess the effectiveness of these measures, it is necessary to have 

better knowledge of the epidemiology of AMR throughout the growing period under 

different farm conditions (Sirri et al., 2011; Lusk, 2018). For this purpose, commensal 

Escherichia coli has typically been selected as AMR sentinel, as it provides valuable data 

and constitutes a reservoir of resistance genes, which can spread to zoonotic and other 

bacteria (Montoro-Dasi et al., 2020a; EFSA and ECDC, 2019). 

Nevertheless, further studies are still needed to achieve more resilient animals to ensure 

that AMA administration continues to decrease at field level. In this context, the aim of 

this study was to evaluate the AMR and MDR dynamics in broiler chickens during the 

rearing period under two different management conditions (commercial vs. improved), 

using E. coli as sentinel bacterium. 

3.2.2.3 Material and methods 

In this experiment, animals were handled according to the principles of animal care 

published by Spanish Royal Decree 53/2013 (BOE, 2013). Moreover, all protocols were 

approved by the Ethical Review Panel of the Directorate-General for Agriculture, 

Fisheries and Livestock from the Valencian Community, by the code 

2018/VSC/PEA/0067. 

3.2.2.3.1 Experiment design 

The study was carried out in an experimental poultry farm at the CITA-IVIA. The 

cleaning and disinfection protocol applied in the poultry farm was according to the Kersia 

Group protocol (Kersia Group, n.d.). The product used to clean the poultry houses was 

Hyprelva Net Plus (Hypred S.L., Orcoyen, Spain), and the product employed to disinfect 

them was Virobacter (Hypred S.L., Orcoyen, Spain). Finally, the product used to disinfect 

the pipelines was Deptal SMP 5% (Hypred S.L., Orcoyen, Spain). 
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A total of 1062 day-old-chicks (Ross®) (males and females) were housed in two identical 

poultry houses (531 animals in each house). Within each of the houses, 204 animals were 

located in 12 pens and the rest of them (327) were on the floor out of the pens, all with 

wood shavings as bedding material. Moreover, two different management conditions 

were evaluated: commercial farm conditions (CFC, house 1) and improved farm 

conditions (IFC, house 2). In house 1 (CFC) animals were kept at 33 kg/m2 density and 

non-optimal parameters of ventilation were applied (allowing a maximum concentration 

of ammonia of 20 ppm), while in house 2 (IFC) chicks were kept at 17 kg/m2 density and 

ventilation was provided within the optimal parameters (allowing a maximum 

concentration of ammonia of 10 ppm). Ammonia concentration was continuously 

measured from the air, using a Exafan climatic sensor DOL 53, installed near the outlet 

to obtain representative values of the room concentrations. Moreover, both houses were 

equipped with programmable electrical lights, automated electric heating and forced 

ventilation. The lighting programme was decreasing from 23L:1D on the arrival day to 

16L:8D from day 15 to the end of the growing period. Light intensity was guaranteed at 

least 20 lux in all parts of the farm at the height of the animals, and the light was provided 

through white bulb lamps uniformly distributed throughout the poultry house. The 

environmental temperature was set at 32 °C on arrival day and gradually reduced to 19 

°C by 41 days post hatch in line with common practice in poultry production. 

Day-old chicks were vaccinated in the hatchery against Gumboro disease, Marek disease, 

and Infectious Bronchitis (IBV). During the growing period, no vaccines were 

administered. 

Animals received drinking water and were fed ad libitum, feed was weighed and 

distributed manually. Two different age commercial diets were used to meet animals’ 

metabolic requirements (Table 12): from arrival day until 21 days post hatch, a pelleted 

starter diet was offered to the birds (Camperbroiler iniciación, Alimentación Animal 

Nanta, Valencia, Spain), and from 21 days old until slaughter day they were fed a pelleted 

grower diet (A-32 broiler, Alimentación Animal Nanta, Valencia, Spain). Nutritional and 

product analysis were assessed before the arrival of animals and only one batch of feed 

per age was manufactured. Moreover, no coccidiostats or AMAs were added to either 

diet, and high biosecurity levels were maintained in the experimental poultry house 
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during the rearing. Finally, the mortality rates and presence of diarrhoea were registered 

daily, and animals’ weight and feed consumption were recorded at weekly intervals. 

Table 12. Composition of starter and grower diets. 

Analytical constituents Diet 
Starter (d 1-21) (%) Grower (d22-42) (%) 

Crude fat 3.5 3.1 
Crude protein 20.5 19.4 
Crude fibre 2.6 3.1 
Crude ash 6.6 5.0 

Lysine 1.14 1.13 
Methionine 0.62 0.51 

Calcium 1.00 0.78 
Phosphorus available 0.69 0.51 

Sodium 0.15 0.14 

Ingredients 

Corn, soy flour, wheat, soy 
oil, calcium carbonate, 

monocalcium phosphate, 
sodium chloride 

Corn, soy flour, rice bran, 
calcium carbonate, 

sodium chloride 

Starter (%): percentage of analytical constituents for starter diet, Grower FG (%): percentage of analytical 
constituents for grower diet. 

3.2.2.3.2 Sample collection 

To evaluate the dynamic of AMR rates in the microbiota of broilers throughout the 

growing period, commensal E. coli was selected as sentinel bacterium (EFSA and ECDC, 

2019; Montoro-Dasi et al., 2020). 

For this purpose, animals were randomly selected from each experimental group and 

caeca samples were collected. Three different sampling moments were established: at 

arrival (day-old chicks), at the mid-period (21 days old) and at the end of the production 

cycle (42 days of age). On arrival day, animals were selected and sampled just before 

being delivered to the houses (30 samples). Then, caecal samples were collected per each 

treatment (60 samples farm condition/house). Caeca were taken individually and placed 

in sterile jars. Samples were processed within 24h after collection. 

3.2.2.3.3 E. coli isolation 

First, caecal content was removed and homogenised. Then, pools of six animals from the 

same experimental group were prepared: 5 pools from day-old-chicks (30 samples), 10 

pools from animals in CFC at mid-period (60 samples), 10 from animals in IFC at mid-

period (60 samples), 10 pools from animals in CFC at the end of the growing period (60 
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samples) and 10 pools from animals in IFC at the end of the growing period (60 samples). 

Pools content was cultured directly onto a Coliform Chromogenic agar (Scharlab, S.L., 

Barcelona, Spain) in duplicate, and agar plates were incubated at 37 ± 1 °C for 24 hours. 

After incubation, suspected colonies were streaked onto a nutrient medium (Scharlab, 

S.L., Barcelona, Spain) and incubated at 37 ± 1 °C for 24 hours. Then, API-20E test 

(Biomerieux, S.L., Barcelona, Spain) was performed to confirm E. coli. 

3.2.2.3.4 Antimicrobial susceptibility testing 

The protocol established to study the antimicrobial susceptibility of the isolates was 

according to Montoro-Dasi et al. (2020) (Montoro-Dasi et al., 2020a). Briefly, the 

bacteria were inoculated onto Mueller-Hinton agar (Scharlab, S.L., Barcelona, Spain) and 

the AB discs were added. Plates were incubated at 37 ± 1 °C for 24h. The analysis was 

carried out according to EUCAST guidelines (Matuschek et al., 2014) and the source for 

zone diameters used for interpretation of the test was: 

http://www.eucast.org/clinical_breakpoints/. The AMAs selected were those set forth in 

Decision 652/2013 (EC, 2013), including CIP (5 µg), NAL (30 µg), AMP (10 µg), CTX 

(30 µg), CAZ (30 µg), CHL (5 µg), SXT (1.25/23.75 µg), CST (10 µg), AZM (15 µg), 

TGC (15 µg), GEN (10 µg), and TMP (5 µg). MDR was defined as acquired resistance 

to at least one agent in three or more antimicrobial classes (EFSA and ECDC, 2019; 

Montoro-Dasi et al., 2020). 

3.2.2.3.5 Statistical analysis 

Statistical Analysis was performed according to Montoro-Dasi et al. 2020 [20]. A GLM 

test was used to compare the AMR and MDR rates between farm conditions (CFC vs. 

IFC) and between sampling moments (arrival day, mid-period and slaughter day). To do 

so, we fitted GLM where the occurrence of resistance was the response variable, and 

experimental group was the fixed effect. For this analysis, the error was designated as 

having a binomial distribution and the probit link function was used. Binomial data for 

each sample were assigned a 1 if the E. coli isolates were resistant or a 0 if not. Similarly, 

AMR rates of each antibiotic throughout the growing period (arrival day, mid-period and 

slaughter day) were evaluated, using a GLM as previously. A p-value of <0.05 was 

considered to indicate a statistically significant difference. Analyses were carried out 



CHAPTER III. EXPERIMENTAL CHAPTERS 

 161 

using a commercially available software application (SPSS 24.0 software package; SPSS 

Inc., Chicago, IL, 2002). 

3.2.2.4 Results 

During this experiment, all the productive parameters, including mortality rates, animals’ 

weight, feed intake and feed conversion rate (Table 13), were according to the breed 

standards (Aviagen, 2019) and no intestinal signs or disease were observed. Thus, no 

AMAs were administered. In this study, a total of 45 pools of cecal content were analysed 

in duplicate, and all of them were culture positive for E. coli (n=90). 

Table 13. Mortality rate (MR), body weight (BW), feed intake (FI) and feed 
conversion rate (FCR) of the animals for both experimental groups: Commercial 
farm conditions (CFC) and improved farm conditions (IFC), throughout the 
growing period.  

Days of 
life 

CFC IFC 

MR (%) BW (g) FI (Kg) FCR MR (%) BW (g) FI (Kg) FCR 

7 1.47 157.73 0.13 1.19 0.98 160.42 0.13 1.12 

14 0.50 413.17 0.37 1.35 1.49 428.59 0.36 1.38 

21 0 788.25 0.71 2.02 0 789.15 0.67 1.89 

28 0 1234.59 1.17 2.66 0 1233.51 1.09 2.46 

35 0 1810.06 1.45 2.54 0 1788.30 1.27 2.27 

42 0 2471.14 1.51 2.25 0 2461.13 1.36 2.09 

 

3.2.2.4.1 Prevalence of antimicrobial resistance and multidrug-resistance 

From all E. coli isolates, 83.3% (n=75/90) were resistant to at least one of the 12 AMAs 

tested, and no statistically significant differences were found between replicates. In 

addition, no statistically significant differences were found between the percentage of 

resistant E. coli strains isolated from the two sampling groups (CFC vs. IFC) (P-

value>0.05) (Figure 26).  
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Figure 26. Antimicrobial-resistant E. coli isolates dynamic for commercial (CFC) and improved farm 
conditions (OFC) throughout the growing period. No statistically significant differences were 
observed. 

Furthermore, 57.3% of the resistant isolates (n=43/75) showed a MDR pattern, with 

statistically significant differences between experimental groups (Figure 27). At the onset 

of the growing period, 62.5% of the isolates (n=5/8) were MDR. For CFC, similar rates 

were maintained until the end of rearing, with a total of 68.8% (n=11/16) and 57.9% 

(n=11/19) of MDR isolates at mid-period and on slaughter day, respectively. However, 

for IFC group there were statistically significant differences between sampling moments 

(P-value<0.05): mid-period samples (14.3%, n=2/14) displayed a lower level of MDR 

isolates than those obtained from animals at end of the growing period (77.8%, n=14/18). 

Moreover, when the percentages of MDR were analysed between experimental groups, 

statistically significant differences were found at mid-period (P-value<0.05). 
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Figure 27. Multidrug-resistant E. coli isolates dynamic for commercial (CFC) and optimal farm 
conditions (IFC) throughout the growing period. a,b: Different superscripts means significant 
differences within group with a P-value<0.05. A,B: Different superscripts means significant 
differences between groups with a P-value<0.05. 
 

E. coli AMR rates obtained against the different AMAs tested over time for both 

experimental groups are described in Table 14.
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Table 14. Antimicrobial resistance rates obtained for each antibiotic in different sampling moments and experimental groups (commercial 
vs. improved farm conditions) throughout the growing period. 

Experimental 
group 

Sampling 
moment n CIP NAL CTX CAZ AMP CHL SXT CST AZM TGC GEN TMP 

CFC 

Arrival day 10 70b 70 0 0 50 0 30ab 0b 0b 0 30bc 40ª 

Mid-period 20 60b 75 0 0 30 0 55a 0b 0b 0 10c 55ª 

End 20 60b 65 0 2 45 0 10b 60ª 1ab 0 75a 60ª 

IFC 

Arrival day 10 70b 70 0 0 50 0 30ab 0b 0b 0 30bc 40ª 

Mid-period 20 30a 55 0 0 20 0 10b 0b 0b 0 15c 10b 

End 20 50b 65 0 4 35 0 35a 45ª 5ª 0 65ab 55a 
a,b,c: Different superscripts in each antibiotic means significant differences with a p-value<0.05. n: total of isolates from each experimental group in each sampling moment. 
CFC: Commercial farm conditions, IFC: Improved farm conditions, CIP: Ciprofloxacin, NAL: Nalidixic acid, AMP: Ampicillin, CTX: Cefotaxime, CAZ: Ceftazidime, CHL: 
Chloramphenicol, SXT: Trimethoprim-sulfamethoxazole, CST: Colistin, AZM: Azithromycin, TGC: Tigecycline, GEN: Gentamycin, TMP: Trimethoprim. 
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3.2.2.4.2 Antimicrobial resistance patterns 

AMR patterns are described in Figure 28. At the arrival day, 20% (n=2) of the isolates 

were susceptible to all the AMAs tested, 10% (n=1) of the isolates were resistant to only 

1 AMA, 20% (n=2) to 2, 20% (n=2) to 4, 20% (n=2) to 5, and 10% (n=1) to 6. 

For CFC, 25% (n=5) of the isolates were completely susceptible, 2.5% (n=1) were 

resistant to one of the 12 AMAs tested, 10% (n=4) to 2, 15% (n=6) to 3, 32.5% (n=13) to 

4, 10% (n=4) to 5, 5% (n=2) to 6, and only 2.5% (n=1) were resistant to 8 of the AMAs 

tested. 

Finally, for IFC, 20% (n=8) of the E. coli isolates were susceptible to all the AMAs 

analysed, 22.5% (n=9) of the isolates were resistant to 1 AMA, 10% (n=4) to 2, 15% 

(n=6) to 3, 17.5% (n=7) to 4, 7.5% (n=3) to 5, 5% (n=2) to 6, and only 2.5% (n=1) were 

resistant to 8 of the AMAs tested. 

Overall, 34 different resistant patterns were observed, and the most prevalent were GEN 

(n=8), CIP-NAL-SXT-TMP (n=8), NAL (n=6), CIP-NAL (n=6), CIP-NAL-GEN-TMP 

(n=5) and CIP-NAL-AMP-SXT-TMP (n=5). 
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Figure 28. Number of E. coli strains isolated resistant to the different number of antimicrobials tested 
and their antimicrobial resistance pattern, according to commercial (CFC) and improved (IFC) farm 
conditions. n: Total isolates from each experimental group. AMR: Antimicrobial resistances. CFC: 
Commercial farm conditions; IFC: Improved farm conditions; CIP: Ciprofloxacin, NAL: Nalidixic 
acid, AMP: Ampicillin, CTX: Cefotaxime, CAZ: Ceftazidime, CHL: Chloramphenicol, SXT: 
Trimethoprim-sulfamethoxazole, CST: Colistin, AZM: Azithromycin, TGC: Tigecycline, GEN: 
Gentamycin, TMP: Trimethoprim. 
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3.2.2.5 Discussion 

Despite the fact that no AMAs were administered during the experiment, it was observed 

that 83.3% of E. coli isolates obtained were AMR, and 57.3% of them were MDR, with 

slight variations between sampling moments. These data are in line with those reported 

by the last EFSA report (EFSA and ECDC, 2020), and could be explained by a vertical 

or a horizontal resistance acquisition from breeders (Osman et al., 2018; Marin et al., 

2020) or the environment (Oikarainen et al., 2019; Montoro-Dasi et al., 2020a), 

respectively. 

At the beginning of the study, on arrival day, the animals presented 80% of resistant E. 

coli isolates, and 62.5% of them were MDR. These results show the importance of AMR 

and MDR acquired from breeding, hatching or transport environment (Poulsen et al., 

2017; Dame-Korevaar et al., 2019). It has been reported that day-old chicks could be 

colonised by direct vertical transmission through breeders’ microbiota (Nilsson et al., 

2014) or by the resistant bacteria persistent in the hatchery or on delivery transport 

surfaces (Projahn et al., 2017, 2018; Oikarainen et al., 2019), being an important threat 

requiring strict management control in the initial stages to reduce the selective 

AMR/MDR pressure on breeders, hatcheries and farm environments (Dierikx et al., 2013; 

Aarestrup, 2015). 

Among the most relevant results observed in the dynamics of AMAs studied, the highest 

resistances were observed against ciprofloxacin, nalidixic acid and ampicillin, in line with 

results reported by the EFSA (EFSA and ECDC, 2020). It is important to highlight the 

absence of bacteria resistant to colistin and trimethoprim, as they are critically important 

AMAs, reserved to treat serious infections caused by MDR bacteria in human medicine 

(WHO, 2019). These results reveal that the strategies implemented by governments and 

poultry industry to control the use of critical AMAs, such as ‘stop-colistin’, are having an 

important effect at field level (WHO, 2011). In line with these findings, further efforts 

are needed to achieve a greater decrease in the use of other AMAs.  

Moreover, in this study at the end of the growing period, resistant bacteria to ceftazidime 

and azithromycin appeared, and the resistant bacteria to gentamycin and tigecycline 

increased. This could be explained due to an horizontal transmission of resistance genes 

from the environment, which is considered a critical point in livestock production. Several 
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authors demonstrated that horizontal transmission of resistances from the environment 

could be more important than vertical transmission in broiler production (Oikarainen et 

al., 2019). In fact, previous studies demonstrated that residual faeces or dust are important 

reservoirs for resistant bacteria and AMR genes between different flocks in commercial 

farms, due to the high survival of resistant microorganisms after cleaning and disinfection 

procedures (Marin et al., 2011; Davies and Wales, 2019; Chuppava et al., 2019; Luiken 

et al., 2020), the application of proper cleaning and disinfection protocols being 

mandatory to avoid the survival of bacteria (Carrique-Mas et al., 2009; Maertens et al., 

2019). 

In this regard, it is demonstrated that an increase in animal welfare promotes the presence 

of beneficial microbiota and the integrity of the intestinal epithelium. As a consequence, 

the protective mechanisms are working perfectly and the interactions between 

environmental and intestinal bacteria are reduced. In contrast, stress situations such as the 

arrival to new facilities or the high-density levels presented at the end of the growing 

period reduce the effectiveness of these protective mechanisms, increasing the 

colonisation of potential pathogens and resistant bacteria to the intestinal tract of broilers, 

increasing interactions and transmission of resistant genes (Burkholder et al., 2008; 

Dawkins, 2019; He et al., 2019; Mandal et al., 2020). In this sense, animal welfare could 

be considered as preventive medicine, promoting immunologically stronger animals that 

are better able to cope with infectious diseases without AMAs administration (Burbarelli 

et al., 2015; Rojo-Gimeno et al., 2016; Dawkins, 2019). However, in this study it has 

been observed that although animals subjected to less intensive production conditions 

showed a lower level of MDR at mid-period, at the end of the growing stage the presence 

of AMR and MDR were particularly high, regardless of the poultry being under less or 

more intensive conditions, at around 70% and 77.8%, respectively. This fact could be 

explained by the high AMR rates at the arrival day, and the short time of rearing (42 

days), highlighting the importance of controlling the use of AMAs in the first stages of 

poultry production system (Dierikx et al., 2013). In addition, it is important not to forget 

that at the end of the growing period, when the highest levels of AMR have been 

observed, animals are handled for transport to the slaughterhouse, which could involve 

an increase in stress, intestinal dysbiosis and excretion of microorganisms in faeces just 

before processing of the carcasses, constituting an important threat to consumers (Marin 

and Lainez, 2009; Gregova et al., 2012; Althaus et al., 2017; Sevilla-Navarro et al., 2020). 
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Therefore, it is essential to develop more accurate and cost-effective techniques to be 

applied at farm level to avoid the presence of AMR and MDR microorganisms upon 

arrival at the slaughterhouse. 

3.2.2.6 Conclusion 

In conclusion, AMR and MDR are present throughout the growing period, although no 

AMAs were administered. Moreover, although a lower level of MDR was observed at 

mid-period in animals reared under less intensive farm conditions, no differences were 

found between the two experimental groups at the end of the growing period. For this 

reason, further studies are needed to evaluate how management could reduce the presence 

of AMR and MDR bacteria in poultry production at all production stages. 
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3.2.3.1 Abstract 

Salmonella Infantis is a zoonotic pathogen isolated in broilers causing great economic 

losses in the European poultry sector. It is demonstrated that an investment in 

management measures at farm level could directly affect the control of food chain 

microorganisms. The aim of this study was to investigate the development of S. Infantis 

AMR patterns during the growing period, according to flock density and ventilation 

management, without AB administration. The experiment was performed in two identical 

poultry houses, evaluating commercial and optimal farm conditions. At 24h of rearing, 

20% of the animals were orally infected with a S. Infantis strain susceptible to all the ABs 

tested. To study Salmonella shedding, faeces samples from each experimental group were 

taken weekly and analysed as per ISO 6579-2:2017. AB susceptibility was assessed 

according to Decision 652/2013. Salmonella shedding showed that the lowest counts 

were observed in the first week post-infection and highest at slaughter day for both 

groups. Moreover, 100% of the isolates were multi-resistant. The acquisition of AMR by 

S. Infantis starts at the onset of the production cycle and is maintained until the end, 

demonstrating the importance of transmission of AMR in zoonotic bacteria at farm level.  

  



CHAPTER III. EXPERIMENTAL CHAPTERS 
 

 180 

3.2.3.1 Introduction 

Animal welfare and food safety are increasing concerns for poultry product consumers 

(Bhaisare et al., 2014). Both issues are closely related, as it has been demonstrated that if 

animals are in good welfare status, their resilience is increased, and they can cope with 

environmental challenges or infectious diseases (Soleimani et al., 2012; Gomes et al., 

2014; Dawkins, 2017; Swaggerty et al., 2019). For this reason, an investment in more 

efficient and animal-friendly management measures in the poultry sector could directly 

affect animal health (Guardia et al., 2011; Franz et al., 2012; Gomes et al., 2014; Sassi et 

al., 2016; Rouger et al., 2017). In this sense, a good ventilation system is essential for 

heat stress management, a factor that undermines the productivity and immunology of 

livestock (Farag and Alagawany, 2018; Ranjan et al., 2019). Likewise, high stocking 

density also has an adverse effect on the performance and immune status of broilers 

(Farhadi et al., 2016; Qaid et al., 2016; Desoky, 2018). 

Furthermore, despite the strict legislation against Salmonella, these bacteria remain the 

principal source of human foodborne disease in Europe, and poultry products are the main 

source involved in human outbreaks (EFSA and ECDC, 2004; Bhaisare et al., 2014; 

EFSA and ECDC, 2019c). Moreover, S. Infantis is an emerging serovar of great concern 

for European broiler production, as it has been demonstrated that this serovar is present 

in 50% of Salmonella contaminated broiler meat samples analysed (EFSA and ECDC, 

2019a,c). Consequently, nowadays S. Infantis control at farm level is one of the main 

objectives for the poultry sector.  

One hypothesis that explains the emergence of S. Infantis in the poultry sector is its ability 

to gain AMR from the gut microbiota and/or environment (Shah et al., 2016; Abdi et al., 

2017; Cohen et al., 2020). Moreover, a novel megaplasmid has been identified that 

represents a recent evolutionary change in the pathogenicity and stress tolerance of local 

S. Infantis population (Aviv et al., 2016). In this context, AMR control in the field 

requires effective surveillance programmes, proper food handling practices and prudent 

use of ABs throughout the production cycle (Wallmann, 2014; Sohan Rodney Bangera et 

al., 2019). However, to be able to establish adequate control measures it is necessary to 

have better knowledge of the epidemiology of this serovar. 
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In accordance with the increasing consumer concern for animal welfare and the public 

health issue of AMR, the objective of this study was to investigate the development of S. 

Infantis AMR during the broiler growing period, according to density and ventilation 

management. 

3.2.3.3 Material and methods 

In this experiment, all animals were handled according to the principles of animal care 

published by Spanish Royal Decree 53/2013 (BOE, 2013), and approved by the Ethical 

Review Panel of the Directorate-General for Agriculture, Fisheries and Livestock from 

the Valencian Community by the code 2018/VSC/PEA/0067 

3.2.3.3.1 Experiment design  

The study was performed in two identical poultry houses of an experimental poultry farm 

at the CITA-IVIA. For this purpose, two different environmental farm conditions: CFC 

(house 1) and OFC (house 2), were evaluated. For CFC, chicks were housed at 35 kg/m2 

density and non-optimal parameters of ventilation were applied (allowing a maximum 

concentration of ammonia of 25 ppm). While in OFC, the animals were housed in low 

density at 17 kg/m2 and ventilation was provided within the optimal parameters (allowing 

a maximum concentration of ammonia of 10 ppm). 

To this end, day-old-chicks (Ross®) (males and females) were distributed in two identical 

poultry houses (n=1 062, 531 per house). Within each of the houses, 204/531 animals 

were located in 12 pens with wood shavings as bedding material. The rest of the animals 

(327/531) were housed in the remaining space using also wood shavings as bedding 

material to simulate production conditions. The house was supplied with programmable 

electrical lights, automated electric heating and forced ventilation. The environmental 

temperature was gradually decreased from 32 ºC (1 day) to 19 ºC (42 days) following 

common practice in poultry production. The experimental pelleted feed was commercial 

feed according to standard diets for broilers. Two different diets were offered to the birds: 

starter (1 day to 21 days) and grower (21 days to 42 days). Only one batch of feed per age 

(starter and grower) was provided. Nutritional and product analysis were assessed before 

the arrival of animals. Feed was weighed, manually distributed and added ad libitum. 
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Furthermore, the mortality and the presence of diarrhoea were registered daily. Finally, 

animals were weighed at weekly intervals and feed consumption per pen was recorded. 

3.2.3.3.2 Salmonella infection 

At 24h after placing, 20% of birds/pen were orally infected with S. Infantis. The 

experimental infection was done with 100 µL of a S. Infantis diluted at an infective titter 

of 104 CFU/mL. The strain was selected from a database of Salmonella strains isolated 

from the Salmonella National Control Program (CECAV). To ensure that this strain was 

susceptible to all ABs studied, antimicrobial susceptibility was tested according to the 

EUCAST guidelines (Matuschek et al., 2014). The source for zone diameters used for 

interpretation of the test was: http://www.eucast.org/clinical_breakpoints/. The strain of 

S. Infantis was inoculated into Mueller-Hinton agar (Scharlab, S.L., Barcelona, Spain) to 

form a bacterial lawn, the AB discs were added, and plates were incubated at 37 ºC ± 1 

ºC for 24 ± 3h.  

3.2.3.3.3 Salmonella detection and identification 

Salmonella status of the chicken houses were tested before the arrival of the animals in 

accordance with ISO 6579-1:2017 (ISO, 2017a). In addition, Salmonella status of the 

flock was tested at the arrival day, collecting samples of meconium (n=250) and delivery 

box liners (n=10) (MAPA, 2003).  

Salmonella enumeration was assessed as per ISO 6579-2:2017 (ISO, 2017b). Animals 

were sampled at different times throughout the growing period (7, 14, 21, 28, 35 and 42 

days of age). For each sampling time and house (CFC vs. OFC), faeces samples (25g) 

were directly collected from each pen per duplicate (n=24). Once in the laboratory, two 

pools of samples from each replicate per house (n=2 pools/treatment/house) were 

homogenised and transferred into 225 mL of Buffered Peptone Water (BPW, Scharlab, 

S.L., Barcelona, Spain). Afterwards, 2.5 mL of the suspension were transferred into an 

empty tube. Serial 1:5 dilutions were made from each tube and incubated at 37 ºC for 18 

± 2h. After incubation, 20 μL were transferred onto Rappaport Vasiliadis agar plates 

(MSRV, Difco, Valencia, Spain) and incubated at 41.5 ºC for 24 to 48h. Suspected plates 

were streaked into XLD medium (Scharlab, S.L., Barcelona, Spain) and incubated at 37 

ºC ± 1 ºC for 24 ± 3h. Then, API-20E test (Biomerieux, S.L., Barcelona, Spain) was 
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performed to confirm Salmonella. Finally, for the estimation of Most Probable Number 

(MPN), the software described by Jarvis et al. (2010) was used and the results were 

transformed into logarithms (log10 CFU/g) (Jarvis et al., 2010). To confirm that the 

isolates were obtained from the original inoculum, Salmonella strains were serotyped at 

CECAV, using the Kauffman-White-Le Minor scheme (WHO, 2007). 

3.2.3.3.4 Antimicrobial susceptibility testing 

Antimicrobial susceptibility of the strains isolated was tested as reported above. The ABs 

selected were those set forth in Decision 652/2013 (EC, 2013) including two quinolones: 

CIP (5 µg) and NAL (30 µg); three b-lactams: AMP (10 µg), CTX (30 µg) and CAZ (30 

µg); one phenicol: CHL (5 µg); one potentiated sulfonamide: SXT (1.25/23.75 µg); one 

polymyxin: CST (10 µg); one macrolide: AZM (15 µg); one glycylcycline: TGC (15 µg); 

one aminoglycoside: GEN (10 µg), and one pyrimidine: TMP (5 µg). MDR was defined 

as acquired resistance to at least one agent in two or more antimicrobial classes (EFSA 

and ECDC, 2016). 

3.2.3.3.5 Statistical analysis 

An analysis of variance (ANOVA) test was used to study the dynamics of S. Infantis 

shedding and AMR during growing period under different farm conditions (CFC and 

OFC). A P-value<0.05 was considered to indicate a statistically significant difference. 

Analyses were carried out using a commercially available software application (SPSS 

24.0 software package; SPSS Inc., Chicago, IL, 2002).  

3.2.3.4 Results 

During this experiment, all the productive parameters were according to the breed 

standards and no signs of intestinal disease were observed. Thus, no ABs were 

administered in this study. 

3.2.3.4.1 Salmonella excretion 

At the start of the trial, negative Salmonella status of the chicken houses and the day-old-

chickens was confirmed. Moreover, all the Salmonella strains isolated during this study 

were serotyped as S. Infantis. 
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Results obtained for CFC and OFC are presented in Figure 29. For both environmental 

farm conditions studied, the lowest excretion of S. Infantis was observed in the first week 

post-infection (wpi). Then, for CFC, S. Infantis detection increased until 14 days and then 

became stable until the end of growing period (P-value<0.05). However, for OFC, S. 

Infantis counts increased until 21 days of the growing period and then remained stable 

until the end of growing (P-value<0.05). However, no statistically significant differences 

were found between treatments (CFC vs OFC) in Salmonella counts (P-value>0.05). 

 
Figure 29. Salmonella excretion dynamic in commercial (CFC) and optimal (OFC) farm conditions 
during growing period. a, b: Different superscripts means significant differences with a P-value<0.05. 

3.2.3.4.2 Prevalence of antimicrobial resistance and multidrug-resistance 

Although the S. Infantis strain used to infect the animals was completely susceptible to 

all ABs tested at the time of infection and no ABs were administered during the growing 

period, Salmonella isolates obtained from both groups (n=24) were MDR after 1 wpi. No 

statistically differences were found between experimental conditions (CFC vs OFC) and 

the time of sampling (P-value>0.05).  
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For CFC, the highest percentages of AMR were found to CIP (100%, n=12), NAL (100%, 

n=12) and TMP (100%, n=12), followed by SXT (91.7%, n=11), CTX (25.0%, n=3), 

CAZ (25.0%, n=3), AZM (16.7%, n=2) and finally, CST (8.3%, n=1). No resistance was 

found against AMP, CHL, GEN and TGC. Regarding resistance dynamic through the 

entire growing period, at 1 wpi, S. Infantis strains showed resistance to CIP, NAL, CTX, 

CAZ, SXT and TMP. It is important to highlight that at 2 wpi, resistance to CST also 

appeared. However, from the third wpi onwards, only resistance to CIP, NAL, SXT and 

TMP remained until slaughter day (Table 15). 

In the case of OFC, the highest AMR percentages were observed to CIP (100%, n=12), 

NAL (100%, n=12) and SXT (100%, n=12), followed by TMP (91.7%, n=11). The 

remaining ABs showed a lower AMR percentage: CTX (33.3%, n=4), CAZ (16.7%, n=2), 

AMP (16.7%, n=2), AZM (16.7%, n=2) and CHL (8.3%, n=1). Regarding the AMR 

dynamics during the growing period, at 1 wpi and at the slaughter day, S. Infantis strains 

were resistant to the same ABs of CFC isolated strains. However, in OFC no resistance 

to CST appeared during the growing period (Table 15). 

3.2.3.4.3 Antibiotic resistance patterns 

The number of Salmonella strains isolated resistant to the different ABs tested according 

to different environmental farm conditions (CFC and OFC) are presented in Table 16.  

Overall, 11 different resistance patterns were observed. The combination of CIP-NAL-

SXT-TMP (37.5%, n=9) was the pattern most frequently observed, followed by CIP-

NAL-SXT-AZM-TMP (16.67%, n=4). 
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Table 15. Antibiotic resistance isolates according to the antibiotic and the moment of the growing period in CFC and OFC. 

Environmental 

conditions 
wpi N pools CIP NAL CTX CAZ AMP CHL SXT CST AZM TGC GEN TMP 

CFC 

1 2 2 2 2 1 0 0 2 0 0 0 0 2 

2 2 2 2 1 1 0 0 2 1 0 0 0 2 

3 2 2 2 0 0 0 0 2 0 0 0 0 2 

4 2 2 2 0 1 0 0 2 0 0 0 0 2 

5 2 2 2 0 0 0 0 1 0 0 0 0 2 

6 2 2 2 0 0 0 0 2 0 2 0 0 2 

Total 12 12 12 3 3 0 0 11 1 2 0 0 12 

OFC 

1 2 2 2 2 1 0 0 2 0 0 0 0 2 

2 2 2 2 1 0 1 1 2 0 0 0 0 1 

3 2 2 2 0 0 0 0 2 0 0 0 0 2 

4 2 2 2 1 1 1 0 2 0 0 0 0 2 

5 2 2 2 0 0 0 0 2 0 0 0 0 2 

6 2 2 2 0 0 0 0 2 0 2 0 0 2 

Total 12 12 12 4 2 2 1 12 0 2 0 0 11 

CFC: commercial farm conditions, OFC: optimal farm conditions, CIP: ciprofloxacin, NAL: nalidixic acid, CTX: cefotaxime, CAZ: ceftazidime, AMP: ampicillin, CHL: 
chloramphenicol, SXT: trimethoprim-sulfamethoxazole, CST: colistin, AZM: azithromycin, TGC: tigecycline, GEN: gentamycin and TMP: trimethoprim. 
 



 

 187 

Table 16. Number of Salmonella strains isolated resistant to the different antibiotics tested according to different environmental farm 
conditions.  

 

Environmental 
conditions 

Number of AMR to the indicated number of antibiotics 

0 1 2 3 4 5 6 7 8 9 10 Total 

CFC 0 0 0 1 4 5 2 0 0 0 0 12 
OFC 0 0 0 1 5 3 1 2 0 0 0 12 

 

AMR: antimicrobial resistance; CFC: commercial farm conditions; OFC: optimal farm conditions
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3.2.3.5 Discussion 

The present study examined the development of S. Infantis AMR in broiler chickens 

during the growing period, comparing two different environmental conditions according 

to density and ventilation parameters. To our best knowledge, this is the first study in 

scientific literature to evaluate the effect of these management measures at farm level on 

S. Infantis epidemiology.  

On the day of placement, the negative Salmonella status of the chickens was confirmed. 

After infection, for CFC experimental group S. Infantis counts increased until 14 days 

and, for OFC until 21 days, without statistically significant differences between 

treatments. Our results agree with those reported previously by Marin and Lainez (2009), 

when Salmonella detection in faeces increased until second week of age, coinciding with 

the maturation of the animals’ immune system and remaining stable until processing day 

(Marin and Lainez, 2009; Cosby et al., 2015). 

In the EU a strict poultry welfare legislation has been set out at farm level (EC, 2007). 

However, a large section of society calls for a continuous increase in animal welfare 

during the grow-out period (Bhaisare et al., 2014). In fact, different authors indicate that 

lower stress situations increase the potential of the immune system to protect the 

individual against pathogens (Soleimani et al., 2012; Gomes et al., 2014; Scanes, 2016; 

Calefi et al., 2017; Dawkins, 2017; Desoky, 2018; Farag and Alagawany, 2018a; EFSA 

and ECDC, 2019a,d). However, the results of our study showed that the improvement in 

ventilation or density parameters of the flock has no effects in terms of either Salmonella 

shedding which is in line with Velasquez et al. (2018) and Pulido-Landínez (2019) 

(Velasquez et al., 2018; Pulido-Landínez, 2019). 

AMR rates of Salmonella isolates obtained since the start of the trial showed that no 

statistical differences were found between treatments, despite the improvement in 

management conditions. In addition, it is important to underscore that a high percentage 

of S. Infantis isolated during the growing period were MDR, although no ABs were 

administrated (Andoh et al., 2016; Sohan Rodney Bangera et al., 2019; EFSA and ECDC, 

2019c). 



CHAPTER III. EXPERIMENTAL CHAPTERS 

 189 

Different hypotheses could explain this fact. Previous studies using genomic analysis of 

bacteria indicated they could acquire resistance profiles by incorporating different genetic 

elements through horizontal gene transfer from other bacteria and/or from the 

environment (Cosby et al., 2015; Projahn et al., 2017, 2018; Osman et al., 2018; Daehre 

et al., 2018; Agyare et al., 2018; Okorafor et al., 2019). In this sense, the commensal 

microbiota could acquire the AMR and, intestinal zoonotic bacteria such as Salmonella, 

could acquire the AMR by conjugation, transformation or transduction mechanisms 

(Tripathi and Tripathi, 2017; EFSA and ECDC, 2020). For this reason, different scientific 

studies underline the importance of developing sanitary measures at the interface between 

the environment and livestock farming (Allen et al., 2010; Bengtsson-Palme et al., 2018; 

Westphal-Settele et al., 2018). However, further studies are needed to confirm the main 

source of AMR of the Salmonella strains at farm level.  

Moreover, in reference to AMR percentages obtained from different ABs assessed, it is 

important to highlight the results obtained against CST and TGC, as they are considered 

critically important antimicrobials used as last-resort drugs to treat human infectious 

diseases (Kern, 2018; EFSA and ECDC, 2020). On the one hand, no isolates showed 

AMR to TGC. The results agree with that reported by the EFSA (EFSA and ECDC, 

2020), and it might be explained by the restricted use to human in hospital treatments 

(WHO, 2019). Conversely, the presence of AMR against CST could be due to its use in 

animal production for several years to treat infectious diseases and as a growth promotor 

(EMA, 2018) and, as indicated by previous studies, resistant genes could remain in the 

environment and reach the microbiota of animals, and from there transmitted to zoonotic 

bacteria. Furthermore, it is important to note that the highest AMR obtained are to CIP, 

NAL, SXT and TMP. In 2020, EFSA reported very high levels of resistance to CIP, NAL 

and SXT in Salmonella isolated from broilers, and low levels of resistance to AMP and 

CHL, matching our results (EFSA and ECDC, 2020). Moreover, specifically for SXT and 

TMP, one hypothesis that could explain the results obtained in this study is that these ABs 

are permitted in Spain as therapeutic agents for antibacterial therapy in animal (WHO, 

2019). This study reveals the importance of AMR monitoring in zoonotic and commensal 

bacteria in food-producing animals and their food products to be able to understand the 

development and diffusion of resistance, providing relevant risk assessment data, and 

evaluating targeted interventions (EFSA and ECDC, 2019b, 2020). 



CHAPTER III. EXPERIMENTAL CHAPTERS 
 

 190 

3.2.3.6 Conclusion 

In conclusion, the results of this study showed that when chicks are infected with the 

serovar S. Infantis at day one of the growing period, they continue shedding the bacteria 

in faeces until the processing day. Besides, the acquisition of AMR began at the onset of 

the production cycle and continue until the end, regardless of different management 

conditions applied. Nevertheless, it is important to highlight that no molecular studies of 

the microbiota interaction have been done in this study, which may restrict the 

interpretation of the results obtained. Thus, further deeply studies of the plasmids, 

pathogenicity islands or transposons are needed to achieve a better knowledge of S. 

Infantis AMR dynamics at the farm level, in order to establish better control programmes 

and reduce its prevalence throughout the food chain. 
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Poultry production is one of the most important livestock sectors due to its high degree 

of specialisation and the production of healthy, nutritious and competitive protein for the 

population. In addition, society increasingly demands less intensive production, more 

respectful of animal welfare, environment and biodiversity, encompassed under the ‘One 

Health’ approach (Lusk, 2018). However, new and worrying challenges, such as AMR, 

are emerging in the sector. These days, AMR is one of the most important threats to public 

health worldwide (WHO, 2019). In consequence, alternative production systems are 

being developed, focused on enhancing animal welfare and reducing the use of AMAs by 

using more rustic breeds and implementing precision livestock farming systems 

(Castellini and Dal Bosco, 2017). Thus, this doctoral thesis has been focused on 

evaluating the effect of alternative management tools on the microbiota composition 

development and AMR dynamics in poultry production, both by modifying the breed 

selection criteria and by improving environmental farm conditions.  

Nowadays, producers are motivated to choose more rustic breeds for their ability to deal 

with the natural environment, reducing the use of AMAs and the impact on farms of 

global warming and pollution. However, the balance between productive performance 

and animal welfare is not easy to achieve (Castellini and Dal Bosco, 2017). So, the aim 

of the first experiment was to study the effect of the genetic breed, by comparing a 

commercial fast-growing breed vs. an alternative slow-growing breed, on microbiota 

development and AMR dynamics. 

In the first study, the caecal microbiota was characterised in two different broiler 

management systems, fast and slow-growing, during their respective growing periods, 

using 16S rRNA sequencing analysis. 

Microbiota are defined as the microbial communities that colonise different areas of 

animals and have an important influence on animal health, productivity and disease 

control (Oakley et al., 2014; Stanley et al., 2014; Pourabedin and Zhao, 2015; Sender et 

al., 2016; Banerjee et al., 2018; Clavijo and Flórez, 2018; Pandit et al., 2018; Shang et 

al., 2018; Carrasco et al., 2019). Hence, the presence of beneficial microbiota plays an 

important part in production, protection from pathogens, and modulation of the immune 

system (Sekirov et al., 2010; Clavijo and Flórez, 2018; Carrasco et al., 2019). Moreover, 

it is demonstrated that microbiota composition and development is affected by both 
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intrinsic (such as age breed, maternal elements, sex and gastrointestinal location) and 

external factors (diet, housing, hygiene, temperature, litter or AB administration) (Clavijo 

and Flórez, 2018; Kers et al., 2018). In this sense, the caecum is described as the organ 

with the greatest taxonomic diversity and abundance, and it is responsible for different 

important nutritional functions (Clavijo and Flórez, 2018). 

Due to the emergence of MDR bacteria, society is pressing for a reduction in AMAs 

administration by finding effective alternatives to control infectious diseases at farm level 

(WHO, 2014; Alós, 2015; Gadde et al., 2017). The variability obtained in different studies 

highlights the need to know how the microbiota evolves throughout the growing period 

under production conditions. The main results obtained in this study showed that there is 

a significant variation in microbiota diversity from arrival day to mid-period, and a less 

pronounced change from this point to the slaughter day, for both experimental groups. 

According to other authors, it could be deduced that fast and slow-growing broiler 

microbiota are in constant development throughout rearing, being relatively stable as of 

21 days of age (Lu et al., 2003; Mohd Shaufi et al., 2015; Richards et al., 2019; Xi et al., 

2019). Although some authors reported that bacterial diversity in the intestinal tract is 

higher in fast-growing breeds (Stanley et al., 2012; Carrasco et al., 2019), the results of 

this study showed a similar microbiota diversity for both breeds throughout the 

production cycle (Schokker et al., 2015; Richards et al., 2019). These results evidence 

that flock management during the production cycle is even more important that breed 

selected, in terms of microbiota balance control (Qu et al., 2008; Kers et al., 2018; 

Carrasco et al., 2019).  

Firmicutes and Proteobacteria were the most abundant phyla at the onset of the 

production cycle. However, while the Firmicutes increased their concentration for the 

throughout the growing period, the Proteobacteria decreased until the end of the cycle. 

Proteobacteria was found in a high concentration for both groups at the arrival day. 

However, in other moments of the growing period, an increment of this phylum is 

associated with dysbiosis and, consequently, with an increase in the presence of zoonotic 

bacteria belonging to this phylum, such as Salmonella or Campylobacter (Lu et al., 2003; 

Ducatelle et al., 2018; Kumar et al., 2018; Yacoubi et al., 2018; Rychlik, 2020). For this 

reason, it is important to ensure strict management practices from the start of the growing 

period, as any stress could produce an increment of this phylum, and could result in a 
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higher shedding of pathogenic bacteria and environmental contamination throughout 

rearing (Neal-McKinney et al., 2012; Shin et al., 2015; Ducatelle et al., 2018; Carrasco 

et al., 2019). It is an important concern for poultry sector to maintain these bacteria under 

control from the beginning to the end of rearing, the last step before loading, transport 

and processing of chickens at the slaughterhouse. Nowadays, Campylobacter and 

Salmonella are still the two most important causes of zoonotic diseases in Europe, and 

poultry products are the main source of human infection (EFSA and ECDC, 2019a). 

Regarding the genus, it should be noted that the three most abundant groups for both 

groups, Ruminococcus spp., Lactobacillus spp. and Bacteroides spp., are related to better 

productive performance and intestinal health, so they could be considered indicators of 

adequate intestinal health in poultry. It is important to highlight that 75%, 93% and 97.8% 

of genus were common to both breeds, at the beginning, mid- and end period, 

respectively. These results could mean that microbiota would have similar development 

for both broiler breeds despite the rusticity (Zhao et al., 2013; Richards et al., 2019). 

Moreover, although there existed some variations at genus level, results obtained were 

also broadly similar for both breeds. According to other authors, slight changes in 

microbiota composition have not always entail a performance consequence (Torok et al., 

2011; Schokker et al., 2015).  

There are numerous factors that influence on microbiota composition development, and 

all of them should be valued globally in situ, under its specific production characteristics 

(Kers et al., 2018). Therefore, developing molecular techniques that can be applied in the 

field to measure the balance of the microbiota in each specific case could help us assess 

the impact of different management techniques on day-to-day work, and could be a 

promising line of research for our sector. 

In addition to the study of the microbiota throughout the production cycle, in the second 

study AMR and MDR dynamic in two genetic poultry breeds, fast-growing and slow-

growing, during the growing period, using commensal E. coli as sentinel bacterium was 

studied. 

It is well known that it is necessary to reduce AMAs administration in farms by finding 

effective alternative treatments, such as using more resistant breeds to improve animal 

welfare. However, to be able to assess the effect of the alternatives proposed, it is essential 
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to study the epidemiology of AMR under production conditions. The main results of this 

study demonstrated that although non-ABs were administered at any point, similar AMR 

rates were observed in both breeds (fast and slow-growing) at the end of the growing 

period. The results obtained were in accordance with those reported by the EFSA, which 

indicates that in 2016, the 77.8% of E. coli isolated from broilers in EU were AMR. 

However, there were large differences in AMR rates between EU MS, being notably 

lower in Nordic countries and higher in Southern countries, especially Spain (EFSA and 

ECDC, 2018). Regarding the different AB assessed, it is important to note that resistance 

to CST was found in both breeds, and it is a last-resort drug used to treat human infectious 

diseases caused by MDR bacteria (Kern, 2018). This fact can be explained by CST use 

in animal production for several years as a growth promoter, and its consequent high 

resistance level worldwide, including Europe, where growth promoters have been banned 

since 2006. The AMR rates observed in other ABs studied, such as CTX, CAZ, CHL and 

GEN were low, in accordance with results obtained in previous studies performed in the 

EU (EFSA and ECDC, 2018; MAPA, 2018). However, Koga et al. (2015) recorded 

higher resistance rates in commercial broiler production in Brazil to all these ABs, except 

to CAZ. Moreover, it is important to highlight the high AMR to CIP, NAL, AMP, SXT, 

AZM and TMP found in this study (Koga et al., 2015; Hussain et al., 2017; Ayandiran et 

al., 2018; EFSA and ECDC, 2018). It is reported that slight variations in AMR rates 

among isolates between different studies could be due to the different analysis methods 

employed, the different management systems set up, level of AMR present in hatcheries 

and previous use of ABs in the study areas (Okorafor et al., 2019). Specifically, for AMP, 

TMP and SXT, one hypothesis that could explain the results obtained in this study is that 

these ABs are permitted in Spain as therapeutic agents for bacterial infections (PRAN, 

2018). 

These results demonstrate the importance of AMR shedding from breeders to day-old 

chicks. In fact, several authors have shown that day-old-chicks are potential reservoirs of 

MDR enterobacteria obtained vertically from breeders (Jiménez-Belenguer et al., 2016; 

Projahn et al., 2017a,b; Okorafor et al., 2019). These MDR bacteria could be transmitted 

through contaminated eggshells and/or from parent stock to hatchery (Daehre et al., 2017; 

Projahn et al., 2017a; Osman et al., 2018). Indeed, it is demonstrated that vertical 

transmission to chicks from the top of the production pyramid origins the introduction 
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and spread of resistance genes in the poultry production chain (Borjesson et al., 2016; 

Osman et al., 2018).  

Moreover, horizontal transmission of AMR is also an important concern for the poultry 

industry (Szmolka and Nagy, 2013; Bengtsson-Palme et al., 2017; Agyare et al., 2018). 

Actually, genomic analysis of the bacteria indicates that they could acquire 

their resistance profiles by incorporating different genetic elements through horizontal 

gene transfer (Agyare et al., 2018). For this reason, different scientific studies underline 

the importance of developing sanitary measures at the interface between 

the environment and livestock farming (Allen et al., 2010; Bengtsson-Palme et al., 2018; 

Westphal-Settele et al., 2018). However, it is important to highlight that in this study the 

animals’ origin is from the same hatchery. For this reason, further studies are necessary 

to compare the AMR dynamics from different companies. 

In conclusion, the fact that similar AMR rates were observed in both breeds, strongly 

suggests the possibility of vertical transmission from hatcheries and the subsequent 

dissemination through the environment and between flocks. However, further studies are 

needed to confirm this hypothesis. Moreover, innovative-cost effective tools should be 

implemented at farm level to avoid AMAs administration whenever possible in all the 

broiler production chain. 

Historically, poultry veterinarians have mainly used AMAs to fight against infectious 

diseases. However, current social demand for AB-free meat has increased. In this social 

context, alternative production systems are being developed, to avoid the drawbacks of 

more intensive production, while also trying to maintain the profitability of their farms 

(Gocsik et al., 2016; El-Deek and El-Sabrout, 2019). As described previously, microbiota 

play a considerable role in animal health. Thus, increasing animal welfare in poultry 

production above the standards laid down in European Union legislation could improve 

the intestinal microbiota balance, increasing the resilience of the animals, lessening the 

prevalence of infectious diseases and, in consequence, reducing AB administration in 

animal production (Teirlynck et al., 2011; Chen et al., 2015; Ducatelle et al., 2018; Maki 

et al., 2019; Díaz-Sánchez et al., 2019; Ocejo et al., 2019). In this context, the aim of the 

second experiment was to study the effect of the management system (density and 

ventilation) on the intestinal microbiota, antimicrobial resistance dynamics and 

Salmonella spp. epidemiology. 
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The first study assessed the influence on microbiota balance of broilers in standardised 

commercial farm conditions or under improved farm conditions, using 16S rRNA 

sequencing analysis. 

As reported above, poultry is one of the main agricultural sub-sectors worldwide. 

However, public concern regarding animal welfare and AMR has risen in recent years. 

In this context, microbiota might be considered to evaluate poultry welfare and health, 

due to the influence of management practices in its composition. In fact, the main results 

of this study demonstrated significant differences on microbiota diversity between farm 

conditions at slaughter day (42 days of age), where animals reared under less intensive 

farm conditions showed a high diversity level. It is well known that a greater complexity 

of the gut microbiota is observed as animals grow and became relatively stable as of mid-

period (Lu et al., 2003; Amit-Romach et al., 2004; Kers et al., 2018; Shang et al., 2018; 

Kollarcikova et al., 2019), but high stocking density and heat stress present at the end of 

the cycle usually induce oxidation alteration, which is closely related to intestinal barrier 

integrity, which is in turn related to gut microbiota balance (Song et al., 2014; He et al., 

2019; Yang et al., 2019; Paraskeuas and Mountzouris, 2019; Slawinska et al., 2019).  

Regarding microbiota composition, the most predominant phyla observed were 

Firmicutes, followed by Proteobacteria at the onset of the growing period, and by 

Bacteroidetes during the rest of the cycle, and the most common groups observed at genus 

level for both management systems were Oscillospira spp., Ruminococcus spp., 

Bacteroides spp. and Coprococcus spp. Both predominant phyla and genera were in 

accordance with the bibliography (Wei et al., 2013; Mohd Shaufi et al., 2015; Kumar et 

al., 2018; Pandit et al., 2018; Carrasco et al., 2019; Hasan and Yang, 2019; He et al., 

2019; Xi et al., 2019). This fact evidences that although the microbiota diversity is low 

in animals housed according to the European Union legislation, stress levels are not 

enough to change the microbiota composition. 

In conclusion, microbiota diversity increases throughout the growing period, being 

relatively stable since the mid-period. However, at the end of the rearing, a significant 

higher level of microbiota complexity was observed in animals reared under less intensive 

farm conditions. Regarding microbiota composition, no statistical differences were 

observed between experimental groups. For both of them Firmicutes was the most 

abundant phylum during all the growing period, Proteobacteria decreased their 
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concentration throughout the growing, and Bacteroidetes increased. At genus level, the 

predominant groups for both management systems were Oscillospira spp., Ruminococcus 

spp., Bacteroides spp. and Coprococcus spp. Thus, it could be recommended to reassess 

the management farm conditions using gut microbiota diversity and composition as 

biomarkers of animal health. This could be an important tool for infectious diseases 

control to reduce the AMAs administration at farm level. 

In addition to the study of the microbiota throughout the production cycle, the AMR and 

MDR dynamics in broiler chickens during the rearing period under two different 

management conditions (commercial vs. improved), using E. coli as sentinel bacterium 

was studied. The most relevant results obtained showed that despite the fact that no ABs 

were administered, the 83.3% of E. coli isolates obtained were AMR, and 57.3% of them 

were MDR, with slight variations between sampling moments. These data could be 

explained by a vertical or a horizontal resistance acquisition from breeders (Osman et al., 

2018; Marin et al., 2020) or the environment (Oikarainen et al., 2019), respectively. 

At the beginning of the study, 80% of the E. coli isolates were AMR, and 62.5% of them 

were MDR. These results show the importance of AMR and MDR acquisition from 

breeding, hatching or transport environment (Poulsen et al., 2017; Dame-Korevaar et al., 

2019), being an important threat requiring strict management control in these initial stages 

to reduce the selective AMR/MDR pressure (Dierikx et al., 2013; Aarestrup, 2015).  

The highest resistances observed were to CIP, NAL and AMP, in line with results 

reported by the EFSA (EFSA and ECDC, 2020). However, any strain resistant against 

CST and TGC was isolated, revealing that the strategies implemented by governments 

and poultry industry to control the use of critical AMAs are having an important effect at 

field level (WHO, 2011). 

Moreover, in this study, resistant bacteria to CAZ and AZM appeared at the end of the 

growing period, and the resistant bacteria to GEN and TMP increased. This could be 

explained due to a horizontal transmission of resistance genes from the environment, 

which is considered a critical point in livestock production. Thus, it is important to 

highlight the role of proper protocols of cleansing and disinfection at the end or rearing 

to avoid horizontal dissemination of resistances between flocks (Marin et al., 2011; 

Davies and Wales, 2019; Chuppava et al., 2019; Luiken et al., 2020). 
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It has been demonstrated that an increase in animal welfare reduces interactions between 

environmental and intestinal bacteria because it promotes the presence of beneficial 

microbiota and the integrity of the intestinal epithelium. However, in this study it has 

been observed that although animals subjected to less intensive production conditions 

showed a lower level of MDR at mid-period, at the slaughter day the presence of AMR 

and MDR were particularly high for both groups. This fact could be explained by the high 

AMR rates observed at the arrival day, and the short time of rearing (42 days), 

highlighting the importance of controlling the use of AMAs in the first stages of poultry 

production system (Dierikx et al., 2013). In addition, it is important not to forget that at 

the end of the growing period, when the highest levels of AMR have been observed, 

animals are handled for transport to the slaughterhouse, which could involve an increase 

in stress, intestinal dysbiosis and excretion of microorganisms in faeces just before 

processing of the carcasses, constituting an important threat to consumers (Marin and 

Lainez, 2009; Gregova et al., 2012; Althaus et al., 2017; Sevilla-Navarro et al., 2020). 

For this reason, further studies are needed to evaluate how management could reduce the 

presence of AMR and MDR bacteria in poultry production at all production stages. 

In accordance with the increasing consumer concern for animal welfare and the public 

health issue of AMR, the development of S. Infantis AMR during the broiler growing 

period, according to density and ventilation management was also assessed in the last 

study. 

Despite the strict legislation against Salmonella, these bacteria remain the principal 

source of human foodborne outbreaks in Europe, and poultry products are the main source 

involved in human cases of salmonellosis (EFSA and ECDC, 2004; Bhaisare et al., 2014; 

EFSA and ECDC, 2019a,b). Moreover, S. Infantis is an emerging serovar of great concern 

for European broiler production, as it has been demonstrated that this serovar is present 

in 50% of Salmonella contaminated broiler meat samples analysed (EFSA and ECDC, 

2019a,c). One hypothesis that explains the emergence of S. Infantis in the poultry sector 

is its great ability to gain AMR from the gut microbiota and/or environment (Shah et al., 

2016; Abdi et al., 2017; Cohen et al., 2020). Consequently, nowadays S. Infantis control 

at farm level is one of the main objectives for the poultry sector.  

Different authors indicate that less intensive production systems, increase the potential of 

the animals’ immune system to protect them against pathogens (Soleimani et al., 2012; 
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Gomes et al., 2014; Scanes, 2016; Calefi et al., 2017; Dawkins, 2017; Desoky, 2018; 

Farag and Alagawany, 2018a; EFSA and ECDC, 2019a). However, the results of this 

study showed that AMR rates of Salmonella isolates did not present statistical differences 

between treatments, despite the improvement in management conditions. In addition, it 

is important to underscore that a high percentage of S. Infantis isolates obtained during 

the growing period were MDR, although no ABs were administrated (Andoh et al., 2016; 

Sohan Rodney Bangera et al., 2019; EFSA and ECDC, 2019c). Different hypotheses 

could explain this fact. Previous studies, using genomic analysis, indicated that bacteria 

could acquire resistance genes by incorporating different genetic elements through 

horizontal gene transfer from other bacteria and/or from the environment (Cosby et al., 

2015; Projahn et al., 2017a,b; Osman et al., 2018; Daehre et al., 2018; Agyare et al., 

2018; Okorafor et al., 2019). In consequence, the commensal microbiota could acquire 

the AMR from the environment, and intestinal zoonotic bacteria such as Salmonella, 

could acquire the AMR genes by conjugation, transformation or transduction mechanisms 

(Tripathi and Tripathi, 2017; EFSA and ECDC, 2020). For this reason, different scientific 

studies underline the importance of developing sanitary measures at the interface between 

the environment and livestock farming (Allen et al., 2010; Bengtsson-Palme et al., 2018; 

Westphal-Settele et al., 2018). However, further studies are needed to confirm the main 

source of AMR present in Salmonella strains at farm level. Moreover, it is important to 

highlight the results obtained against CST and TGC, as they are considered critically 

important antimicrobials used as last-resort drugs to treat human infectious diseases 

(Kern, 2018; EFSA and ECDC, 2020). On the one hand, no isolates showed AMR to 

TGC. The results agree with that reported by the EFSA (EFSA and ECDC, 2020), and it 

might be explained by the restricted use to human in hospital treatments (WHO, 2019). 

Conversely, the presence of AMR against CST could be due to its use in animal 

production for several years to treat infectious diseases and as a growth promotor (EMA, 

2018) and, as indicated by previous studies, resistant genes could remain in the 

environment and reach the microbiota of animals, and from there transmitted to zoonotic 

bacteria. This study reveals the importance of AMR monitoring in zoonotic and 

commensal bacteria in food-producing animals and their food products to be able to 

understand the development and diffusion of resistance (EFSA and ECDC, 2019d, 2020). 

In conclusion, the results of this study showed that when chicks are infected with the 

serovar S. Infantis at day one of the growing period, they continue shedding the bacteria 
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in faeces until the slaughter day. Besides, the acquisition of AMR began at the onset of 

the production cycle and continue until the end, regardless of different management 

conditions applied. Nevertheless, it is important to highlight that no molecular studies of 

the microbiota interaction have been done in this study, which may restrict the 

interpretation of the results obtained. Thus, further deeply studies of the plasmids, 

pathogenicity islands or transposons are needed to achieve a better knowledge of S. 

Infantis AMR dynamics at the farm level, in order to establish better control programmes 

and reduce its prevalence throughout the food chain. 

As final conclusion of this doctoral thesis, the main results obtained include that 

microbiota diversity and composition are in constant development throughout the 

growing period, being affected by farm management factors, and evidencing real health 

and welfare status of animals. Moreover, AMR is present in commensal bacteria as of the 

arrival day and increases until the end of the rearing period, emphasising the need to 

control AMAs administration in all the stages of poultry production. Regarding S. Infantis 

epidemiology, the continuous shedding during all the growing period and its ability to 

gain AMR, regardless of farm management conditions, strongly suggest the need for 

further studies to being able to establish better control programmes to control the bacteria 

presence in the food chain. This doctoral thesis constitutes a transversal tool to evaluate 

the alternative poultry production systems developed to meet consumer demands under a 

new future perspective, connecting sustainability and technology in benefit of animal, 

human and environmental health. 
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1. Fast and slow-growing broiler microbiota was in constant development throughout 

rearing, becoming relatively stable at 21 days of age. Firmicutes and Proteobacteria 

were the most abundant phyla at the onset of the production cycle. However, while 

the Firmicutes increased their concentration for the two management systems 

throughout the growing period, the Proteobacteria decreased until the end of the 

cycle. Regarding the genus, it should be noted that the three most abundant groups 

for both systems, Ruminococcus spp., Lactobacillus spp. and Bacteroides spp., are 

related to better productive performance and intestinal health. 

 

2. The fact that the same AMR rates were observed, regardless of the breed studied, 

strongly suggests the possibility of vertical transmission from hatcheries and 

dissemination spread through the environment between flocks. Further studies are 

needed to confirm this hypothesis, and innovative-cost effective tools should be 

implemented at farm level to avoid AB administration whenever possible throughout 

the broiler production chain. 

 

3. Microbiota diversity increased throughout the growing period, being relatively stable 

since the mid-period, for both farm conditions. However, at the end of the rearing, a 

significant higher level of microbiota complexity was observed in animals reared 

under optimal farm conditions. Regarding microbiota composition, no statistical 

differences were observed between experimental groups, for both of them Firmicutes 

was the most abundant phylum during all the research, Proteobacteria decreased their 

concentration throughout the growing, and Bacteroidetes increased. At genus level, 

the most common groups observed for both management systems were Oscillospira 

spp., Ruminococcus spp., Bacteroides spp. and Coprococcus spp. Thus, it could be 

recommendable to reassess the management farm conditions using gut microbiota 

diversity and composition as biomarkers of animal health. This could be an important 

tool for infectious disease control with the aim of reducing the administration of ABs 

at farm level. 

 

4. In both experimental groups, AMR and MDR were present throughout the growing 

period, although no AMAs were administered. Moreover, although a lower level of 

MDR was observed at mid-period in animals reared under less intensive farm 
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conditions, no differences were found between the two experimental groups at the 

end of the growing period. For this reason, further studies are needed to evaluate how 

management could reduce the presence of AMR and MDR bacteria in poultry 

production at all production stages. 

 

5. The results of this study showed that when chicks are infected with the serovar S. 

Infantis at day one of the growing period, they continue shedding the bacteria in 

faeces until the processing day. Besides, the acquisition of AMR began at the onset 

of the production cycle and continued until the end, regardless of the different 

management conditions applied. Nevertheless, it is important to highlight that no 

molecular studies of microbiota interaction were performed in this study, which may 

restrict the interpretation of the results obtained. Thus, further in-depth studies of the 

plasmids, pathogenicity islands or transposons are needed to achieve a better 

knowledge of S. Infantis AMR dynamics at the farm level, in order to establish better 

control programmes and reduce its prevalence throughout the food chain. 

 

 



 

 

 

 

 

 

 


